mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-21 04:42:53 +08:00
3666a04883
This commits the result of running gdb/copyright.py as per our Start of New Year procedure... gdb/ChangeLog Update copyright year range in copyright header of all GDB files.
2413 lines
65 KiB
C
2413 lines
65 KiB
C
/* Implementation of the GDB variable objects API.
|
||
|
||
Copyright (C) 1999-2021 Free Software Foundation, Inc.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include "value.h"
|
||
#include "expression.h"
|
||
#include "frame.h"
|
||
#include "language.h"
|
||
#include "gdbcmd.h"
|
||
#include "block.h"
|
||
#include "valprint.h"
|
||
#include "gdb_regex.h"
|
||
|
||
#include "varobj.h"
|
||
#include "gdbthread.h"
|
||
#include "inferior.h"
|
||
#include "varobj-iter.h"
|
||
#include "parser-defs.h"
|
||
#include "gdbarch.h"
|
||
#include <algorithm>
|
||
|
||
#if HAVE_PYTHON
|
||
#include "python/python.h"
|
||
#include "python/python-internal.h"
|
||
#else
|
||
typedef int PyObject;
|
||
#endif
|
||
|
||
/* See varobj.h. */
|
||
|
||
unsigned int varobjdebug = 0;
|
||
static void
|
||
show_varobjdebug (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
|
||
}
|
||
|
||
/* String representations of gdb's format codes. */
|
||
const char *varobj_format_string[] =
|
||
{ "natural", "binary", "decimal", "hexadecimal", "octal", "zero-hexadecimal" };
|
||
|
||
/* True if we want to allow Python-based pretty-printing. */
|
||
static bool pretty_printing = false;
|
||
|
||
void
|
||
varobj_enable_pretty_printing (void)
|
||
{
|
||
pretty_printing = true;
|
||
}
|
||
|
||
/* Data structures */
|
||
|
||
/* Every root variable has one of these structures saved in its
|
||
varobj. */
|
||
struct varobj_root
|
||
{
|
||
/* The expression for this parent. */
|
||
expression_up exp;
|
||
|
||
/* Block for which this expression is valid. */
|
||
const struct block *valid_block = NULL;
|
||
|
||
/* The frame for this expression. This field is set iff valid_block is
|
||
not NULL. */
|
||
struct frame_id frame = null_frame_id;
|
||
|
||
/* The global thread ID that this varobj_root belongs to. This field
|
||
is only valid if valid_block is not NULL.
|
||
When not 0, indicates which thread 'frame' belongs to.
|
||
When 0, indicates that the thread list was empty when the varobj_root
|
||
was created. */
|
||
int thread_id = 0;
|
||
|
||
/* If true, the -var-update always recomputes the value in the
|
||
current thread and frame. Otherwise, variable object is
|
||
always updated in the specific scope/thread/frame. */
|
||
bool floating = false;
|
||
|
||
/* Flag that indicates validity: set to false when this varobj_root refers
|
||
to symbols that do not exist anymore. */
|
||
bool is_valid = true;
|
||
|
||
/* Language-related operations for this variable and its
|
||
children. */
|
||
const struct lang_varobj_ops *lang_ops = NULL;
|
||
|
||
/* The varobj for this root node. */
|
||
struct varobj *rootvar = NULL;
|
||
};
|
||
|
||
/* Dynamic part of varobj. */
|
||
|
||
struct varobj_dynamic
|
||
{
|
||
/* Whether the children of this varobj were requested. This field is
|
||
used to decide if dynamic varobj should recompute their children.
|
||
In the event that the frontend never asked for the children, we
|
||
can avoid that. */
|
||
bool children_requested = false;
|
||
|
||
/* The pretty-printer constructor. If NULL, then the default
|
||
pretty-printer will be looked up. If None, then no
|
||
pretty-printer will be installed. */
|
||
PyObject *constructor = NULL;
|
||
|
||
/* The pretty-printer that has been constructed. If NULL, then a
|
||
new printer object is needed, and one will be constructed. */
|
||
PyObject *pretty_printer = NULL;
|
||
|
||
/* The iterator returned by the printer's 'children' method, or NULL
|
||
if not available. */
|
||
std::unique_ptr<varobj_iter> child_iter;
|
||
|
||
/* We request one extra item from the iterator, so that we can
|
||
report to the caller whether there are more items than we have
|
||
already reported. However, we don't want to install this value
|
||
when we read it, because that will mess up future updates. So,
|
||
we stash it here instead. */
|
||
std::unique_ptr<varobj_item> saved_item;
|
||
};
|
||
|
||
/* Private function prototypes */
|
||
|
||
/* Helper functions for the above subcommands. */
|
||
|
||
static int delete_variable (struct varobj *, bool);
|
||
|
||
static void delete_variable_1 (int *, struct varobj *, bool, bool);
|
||
|
||
static void install_variable (struct varobj *);
|
||
|
||
static void uninstall_variable (struct varobj *);
|
||
|
||
static struct varobj *create_child (struct varobj *, int, std::string &);
|
||
|
||
static struct varobj *
|
||
create_child_with_value (struct varobj *parent, int index,
|
||
struct varobj_item *item);
|
||
|
||
/* Utility routines */
|
||
|
||
static enum varobj_display_formats variable_default_display (struct varobj *);
|
||
|
||
static bool update_type_if_necessary (struct varobj *var,
|
||
struct value *new_value);
|
||
|
||
static bool install_new_value (struct varobj *var, struct value *value,
|
||
bool initial);
|
||
|
||
/* Language-specific routines. */
|
||
|
||
static int number_of_children (const struct varobj *);
|
||
|
||
static std::string name_of_variable (const struct varobj *);
|
||
|
||
static std::string name_of_child (struct varobj *, int);
|
||
|
||
static struct value *value_of_root (struct varobj **var_handle, bool *);
|
||
|
||
static struct value *value_of_child (const struct varobj *parent, int index);
|
||
|
||
static std::string my_value_of_variable (struct varobj *var,
|
||
enum varobj_display_formats format);
|
||
|
||
static bool is_root_p (const struct varobj *var);
|
||
|
||
static struct varobj *varobj_add_child (struct varobj *var,
|
||
struct varobj_item *item);
|
||
|
||
/* Private data */
|
||
|
||
/* Mappings of varobj_display_formats enums to gdb's format codes. */
|
||
static int format_code[] = { 0, 't', 'd', 'x', 'o', 'z' };
|
||
|
||
/* List of root variable objects. */
|
||
static std::list<struct varobj_root *> rootlist;
|
||
|
||
/* Pointer to the varobj hash table (built at run time). */
|
||
static htab_t varobj_table;
|
||
|
||
|
||
|
||
/* API Implementation */
|
||
static bool
|
||
is_root_p (const struct varobj *var)
|
||
{
|
||
return (var->root->rootvar == var);
|
||
}
|
||
|
||
#ifdef HAVE_PYTHON
|
||
|
||
/* See python-internal.h. */
|
||
gdbpy_enter_varobj::gdbpy_enter_varobj (const struct varobj *var)
|
||
: gdbpy_enter (var->root->exp->gdbarch, var->root->exp->language_defn)
|
||
{
|
||
}
|
||
|
||
#endif
|
||
|
||
/* Return the full FRAME which corresponds to the given CORE_ADDR
|
||
or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
|
||
|
||
static struct frame_info *
|
||
find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
|
||
{
|
||
struct frame_info *frame = NULL;
|
||
|
||
if (frame_addr == (CORE_ADDR) 0)
|
||
return NULL;
|
||
|
||
for (frame = get_current_frame ();
|
||
frame != NULL;
|
||
frame = get_prev_frame (frame))
|
||
{
|
||
/* The CORE_ADDR we get as argument was parsed from a string GDB
|
||
output as $fp. This output got truncated to gdbarch_addr_bit.
|
||
Truncate the frame base address in the same manner before
|
||
comparing it against our argument. */
|
||
CORE_ADDR frame_base = get_frame_base_address (frame);
|
||
int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
|
||
|
||
if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
|
||
frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
|
||
|
||
if (frame_base == frame_addr)
|
||
return frame;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Creates a varobj (not its children). */
|
||
|
||
struct varobj *
|
||
varobj_create (const char *objname,
|
||
const char *expression, CORE_ADDR frame, enum varobj_type type)
|
||
{
|
||
/* Fill out a varobj structure for the (root) variable being constructed. */
|
||
std::unique_ptr<varobj> var (new varobj (new varobj_root));
|
||
|
||
if (expression != NULL)
|
||
{
|
||
struct frame_info *fi;
|
||
struct frame_id old_id = null_frame_id;
|
||
const struct block *block;
|
||
const char *p;
|
||
struct value *value = NULL;
|
||
CORE_ADDR pc;
|
||
|
||
/* Parse and evaluate the expression, filling in as much of the
|
||
variable's data as possible. */
|
||
|
||
if (has_stack_frames ())
|
||
{
|
||
/* Allow creator to specify context of variable. */
|
||
if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
|
||
fi = get_selected_frame (NULL);
|
||
else
|
||
/* FIXME: cagney/2002-11-23: This code should be doing a
|
||
lookup using the frame ID and not just the frame's
|
||
``address''. This, of course, means an interface
|
||
change. However, with out that interface change ISAs,
|
||
such as the ia64 with its two stacks, won't work.
|
||
Similar goes for the case where there is a frameless
|
||
function. */
|
||
fi = find_frame_addr_in_frame_chain (frame);
|
||
}
|
||
else
|
||
fi = NULL;
|
||
|
||
if (type == USE_SELECTED_FRAME)
|
||
var->root->floating = true;
|
||
|
||
pc = 0;
|
||
block = NULL;
|
||
if (fi != NULL)
|
||
{
|
||
block = get_frame_block (fi, 0);
|
||
pc = get_frame_pc (fi);
|
||
}
|
||
|
||
p = expression;
|
||
|
||
innermost_block_tracker tracker (INNERMOST_BLOCK_FOR_SYMBOLS
|
||
| INNERMOST_BLOCK_FOR_REGISTERS);
|
||
/* Wrap the call to parse expression, so we can
|
||
return a sensible error. */
|
||
try
|
||
{
|
||
var->root->exp = parse_exp_1 (&p, pc, block, 0, &tracker);
|
||
}
|
||
|
||
catch (const gdb_exception_error &except)
|
||
{
|
||
return NULL;
|
||
}
|
||
|
||
/* Don't allow variables to be created for types. */
|
||
enum exp_opcode opcode = var->root->exp->first_opcode ();
|
||
if (opcode == OP_TYPE
|
||
|| opcode == OP_TYPEOF
|
||
|| opcode == OP_DECLTYPE)
|
||
{
|
||
fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
|
||
" as an expression.\n");
|
||
return NULL;
|
||
}
|
||
|
||
var->format = variable_default_display (var.get ());
|
||
var->root->valid_block =
|
||
var->root->floating ? NULL : tracker.block ();
|
||
var->name = expression;
|
||
/* For a root var, the name and the expr are the same. */
|
||
var->path_expr = expression;
|
||
|
||
/* When the frame is different from the current frame,
|
||
we must select the appropriate frame before parsing
|
||
the expression, otherwise the value will not be current.
|
||
Since select_frame is so benign, just call it for all cases. */
|
||
if (var->root->valid_block)
|
||
{
|
||
/* User could specify explicit FRAME-ADDR which was not found but
|
||
EXPRESSION is frame specific and we would not be able to evaluate
|
||
it correctly next time. With VALID_BLOCK set we must also set
|
||
FRAME and THREAD_ID. */
|
||
if (fi == NULL)
|
||
error (_("Failed to find the specified frame"));
|
||
|
||
var->root->frame = get_frame_id (fi);
|
||
var->root->thread_id = inferior_thread ()->global_num;
|
||
old_id = get_frame_id (get_selected_frame (NULL));
|
||
select_frame (fi);
|
||
}
|
||
|
||
/* We definitely need to catch errors here.
|
||
If evaluate_expression succeeds we got the value we wanted.
|
||
But if it fails, we still go on with a call to evaluate_type(). */
|
||
try
|
||
{
|
||
value = evaluate_expression (var->root->exp.get ());
|
||
}
|
||
catch (const gdb_exception_error &except)
|
||
{
|
||
/* Error getting the value. Try to at least get the
|
||
right type. */
|
||
struct value *type_only_value = evaluate_type (var->root->exp.get ());
|
||
|
||
var->type = value_type (type_only_value);
|
||
}
|
||
|
||
if (value != NULL)
|
||
{
|
||
int real_type_found = 0;
|
||
|
||
var->type = value_actual_type (value, 0, &real_type_found);
|
||
if (real_type_found)
|
||
value = value_cast (var->type, value);
|
||
}
|
||
|
||
/* Set language info */
|
||
var->root->lang_ops = var->root->exp->language_defn->varobj_ops ();
|
||
|
||
install_new_value (var.get (), value, 1 /* Initial assignment */);
|
||
|
||
/* Set ourselves as our root. */
|
||
var->root->rootvar = var.get ();
|
||
|
||
/* Reset the selected frame. */
|
||
if (frame_id_p (old_id))
|
||
select_frame (frame_find_by_id (old_id));
|
||
}
|
||
|
||
/* If the variable object name is null, that means this
|
||
is a temporary variable, so don't install it. */
|
||
|
||
if ((var != NULL) && (objname != NULL))
|
||
{
|
||
var->obj_name = objname;
|
||
install_variable (var.get ());
|
||
}
|
||
|
||
return var.release ();
|
||
}
|
||
|
||
/* Generates an unique name that can be used for a varobj. */
|
||
|
||
std::string
|
||
varobj_gen_name (void)
|
||
{
|
||
static int id = 0;
|
||
|
||
/* Generate a name for this object. */
|
||
id++;
|
||
return string_printf ("var%d", id);
|
||
}
|
||
|
||
/* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
|
||
error if OBJNAME cannot be found. */
|
||
|
||
struct varobj *
|
||
varobj_get_handle (const char *objname)
|
||
{
|
||
varobj *var = (varobj *) htab_find_with_hash (varobj_table, objname,
|
||
htab_hash_string (objname));
|
||
|
||
if (var == NULL)
|
||
error (_("Variable object not found"));
|
||
|
||
return var;
|
||
}
|
||
|
||
/* Given the handle, return the name of the object. */
|
||
|
||
const char *
|
||
varobj_get_objname (const struct varobj *var)
|
||
{
|
||
return var->obj_name.c_str ();
|
||
}
|
||
|
||
/* Given the handle, return the expression represented by the
|
||
object. */
|
||
|
||
std::string
|
||
varobj_get_expression (const struct varobj *var)
|
||
{
|
||
return name_of_variable (var);
|
||
}
|
||
|
||
/* See varobj.h. */
|
||
|
||
int
|
||
varobj_delete (struct varobj *var, bool only_children)
|
||
{
|
||
return delete_variable (var, only_children);
|
||
}
|
||
|
||
#if HAVE_PYTHON
|
||
|
||
/* Convenience function for varobj_set_visualizer. Instantiate a
|
||
pretty-printer for a given value. */
|
||
static PyObject *
|
||
instantiate_pretty_printer (PyObject *constructor, struct value *value)
|
||
{
|
||
gdbpy_ref<> val_obj (value_to_value_object (value));
|
||
if (val_obj == nullptr)
|
||
return NULL;
|
||
|
||
return PyObject_CallFunctionObjArgs (constructor, val_obj.get (), NULL);
|
||
}
|
||
|
||
#endif
|
||
|
||
/* Set/Get variable object display format. */
|
||
|
||
enum varobj_display_formats
|
||
varobj_set_display_format (struct varobj *var,
|
||
enum varobj_display_formats format)
|
||
{
|
||
switch (format)
|
||
{
|
||
case FORMAT_NATURAL:
|
||
case FORMAT_BINARY:
|
||
case FORMAT_DECIMAL:
|
||
case FORMAT_HEXADECIMAL:
|
||
case FORMAT_OCTAL:
|
||
case FORMAT_ZHEXADECIMAL:
|
||
var->format = format;
|
||
break;
|
||
|
||
default:
|
||
var->format = variable_default_display (var);
|
||
}
|
||
|
||
if (varobj_value_is_changeable_p (var)
|
||
&& var->value != nullptr && !value_lazy (var->value.get ()))
|
||
{
|
||
var->print_value = varobj_value_get_print_value (var->value.get (),
|
||
var->format, var);
|
||
}
|
||
|
||
return var->format;
|
||
}
|
||
|
||
enum varobj_display_formats
|
||
varobj_get_display_format (const struct varobj *var)
|
||
{
|
||
return var->format;
|
||
}
|
||
|
||
gdb::unique_xmalloc_ptr<char>
|
||
varobj_get_display_hint (const struct varobj *var)
|
||
{
|
||
gdb::unique_xmalloc_ptr<char> result;
|
||
|
||
#if HAVE_PYTHON
|
||
if (!gdb_python_initialized)
|
||
return NULL;
|
||
|
||
gdbpy_enter_varobj enter_py (var);
|
||
|
||
if (var->dynamic->pretty_printer != NULL)
|
||
result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
|
||
#endif
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Return true if the varobj has items after TO, false otherwise. */
|
||
|
||
bool
|
||
varobj_has_more (const struct varobj *var, int to)
|
||
{
|
||
if (var->children.size () > to)
|
||
return true;
|
||
|
||
return ((to == -1 || var->children.size () == to)
|
||
&& (var->dynamic->saved_item != NULL));
|
||
}
|
||
|
||
/* If the variable object is bound to a specific thread, that
|
||
is its evaluation can always be done in context of a frame
|
||
inside that thread, returns GDB id of the thread -- which
|
||
is always positive. Otherwise, returns -1. */
|
||
int
|
||
varobj_get_thread_id (const struct varobj *var)
|
||
{
|
||
if (var->root->valid_block && var->root->thread_id > 0)
|
||
return var->root->thread_id;
|
||
else
|
||
return -1;
|
||
}
|
||
|
||
void
|
||
varobj_set_frozen (struct varobj *var, bool frozen)
|
||
{
|
||
/* When a variable is unfrozen, we don't fetch its value.
|
||
The 'not_fetched' flag remains set, so next -var-update
|
||
won't complain.
|
||
|
||
We don't fetch the value, because for structures the client
|
||
should do -var-update anyway. It would be bad to have different
|
||
client-size logic for structure and other types. */
|
||
var->frozen = frozen;
|
||
}
|
||
|
||
bool
|
||
varobj_get_frozen (const struct varobj *var)
|
||
{
|
||
return var->frozen;
|
||
}
|
||
|
||
/* A helper function that updates the contents of FROM and TO based on the
|
||
size of the vector CHILDREN. If the contents of either FROM or TO are
|
||
negative the entire range is used. */
|
||
|
||
void
|
||
varobj_restrict_range (const std::vector<varobj *> &children,
|
||
int *from, int *to)
|
||
{
|
||
int len = children.size ();
|
||
|
||
if (*from < 0 || *to < 0)
|
||
{
|
||
*from = 0;
|
||
*to = len;
|
||
}
|
||
else
|
||
{
|
||
if (*from > len)
|
||
*from = len;
|
||
if (*to > len)
|
||
*to = len;
|
||
if (*from > *to)
|
||
*from = *to;
|
||
}
|
||
}
|
||
|
||
/* A helper for update_dynamic_varobj_children that installs a new
|
||
child when needed. */
|
||
|
||
static void
|
||
install_dynamic_child (struct varobj *var,
|
||
std::vector<varobj *> *changed,
|
||
std::vector<varobj *> *type_changed,
|
||
std::vector<varobj *> *newobj,
|
||
std::vector<varobj *> *unchanged,
|
||
bool *cchanged,
|
||
int index,
|
||
struct varobj_item *item)
|
||
{
|
||
if (var->children.size () < index + 1)
|
||
{
|
||
/* There's no child yet. */
|
||
struct varobj *child = varobj_add_child (var, item);
|
||
|
||
if (newobj != NULL)
|
||
{
|
||
newobj->push_back (child);
|
||
*cchanged = true;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
varobj *existing = var->children[index];
|
||
bool type_updated = update_type_if_necessary (existing,
|
||
item->value.get ());
|
||
|
||
if (type_updated)
|
||
{
|
||
if (type_changed != NULL)
|
||
type_changed->push_back (existing);
|
||
}
|
||
if (install_new_value (existing, item->value.get (), 0))
|
||
{
|
||
if (!type_updated && changed != NULL)
|
||
changed->push_back (existing);
|
||
}
|
||
else if (!type_updated && unchanged != NULL)
|
||
unchanged->push_back (existing);
|
||
}
|
||
}
|
||
|
||
#if HAVE_PYTHON
|
||
|
||
static bool
|
||
dynamic_varobj_has_child_method (const struct varobj *var)
|
||
{
|
||
PyObject *printer = var->dynamic->pretty_printer;
|
||
|
||
if (!gdb_python_initialized)
|
||
return false;
|
||
|
||
gdbpy_enter_varobj enter_py (var);
|
||
return PyObject_HasAttr (printer, gdbpy_children_cst);
|
||
}
|
||
#endif
|
||
|
||
/* A factory for creating dynamic varobj's iterators. Returns an
|
||
iterator object suitable for iterating over VAR's children. */
|
||
|
||
static std::unique_ptr<varobj_iter>
|
||
varobj_get_iterator (struct varobj *var)
|
||
{
|
||
#if HAVE_PYTHON
|
||
if (var->dynamic->pretty_printer)
|
||
return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
|
||
#endif
|
||
|
||
gdb_assert_not_reached (_("\
|
||
requested an iterator from a non-dynamic varobj"));
|
||
}
|
||
|
||
static bool
|
||
update_dynamic_varobj_children (struct varobj *var,
|
||
std::vector<varobj *> *changed,
|
||
std::vector<varobj *> *type_changed,
|
||
std::vector<varobj *> *newobj,
|
||
std::vector<varobj *> *unchanged,
|
||
bool *cchanged,
|
||
bool update_children,
|
||
int from,
|
||
int to)
|
||
{
|
||
int i;
|
||
|
||
*cchanged = false;
|
||
|
||
if (update_children || var->dynamic->child_iter == NULL)
|
||
{
|
||
var->dynamic->child_iter = varobj_get_iterator (var);
|
||
var->dynamic->saved_item.reset (nullptr);
|
||
|
||
i = 0;
|
||
|
||
if (var->dynamic->child_iter == NULL)
|
||
return false;
|
||
}
|
||
else
|
||
i = var->children.size ();
|
||
|
||
/* We ask for one extra child, so that MI can report whether there
|
||
are more children. */
|
||
for (; to < 0 || i < to + 1; ++i)
|
||
{
|
||
std::unique_ptr<varobj_item> item;
|
||
|
||
/* See if there was a leftover from last time. */
|
||
if (var->dynamic->saved_item != NULL)
|
||
item = std::move (var->dynamic->saved_item);
|
||
else
|
||
item = var->dynamic->child_iter->next ();
|
||
|
||
if (item == NULL)
|
||
{
|
||
/* Iteration is done. Remove iterator from VAR. */
|
||
var->dynamic->child_iter.reset (nullptr);
|
||
break;
|
||
}
|
||
/* We don't want to push the extra child on any report list. */
|
||
if (to < 0 || i < to)
|
||
{
|
||
bool can_mention = from < 0 || i >= from;
|
||
|
||
install_dynamic_child (var, can_mention ? changed : NULL,
|
||
can_mention ? type_changed : NULL,
|
||
can_mention ? newobj : NULL,
|
||
can_mention ? unchanged : NULL,
|
||
can_mention ? cchanged : NULL, i,
|
||
item.get ());
|
||
}
|
||
else
|
||
{
|
||
var->dynamic->saved_item = std::move (item);
|
||
|
||
/* We want to truncate the child list just before this
|
||
element. */
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (i < var->children.size ())
|
||
{
|
||
*cchanged = true;
|
||
for (int j = i; j < var->children.size (); ++j)
|
||
varobj_delete (var->children[j], 0);
|
||
|
||
var->children.resize (i);
|
||
}
|
||
|
||
/* If there are fewer children than requested, note that the list of
|
||
children changed. */
|
||
if (to >= 0 && var->children.size () < to)
|
||
*cchanged = true;
|
||
|
||
var->num_children = var->children.size ();
|
||
|
||
return true;
|
||
}
|
||
|
||
int
|
||
varobj_get_num_children (struct varobj *var)
|
||
{
|
||
if (var->num_children == -1)
|
||
{
|
||
if (varobj_is_dynamic_p (var))
|
||
{
|
||
bool dummy;
|
||
|
||
/* If we have a dynamic varobj, don't report -1 children.
|
||
So, try to fetch some children first. */
|
||
update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
|
||
false, 0, 0);
|
||
}
|
||
else
|
||
var->num_children = number_of_children (var);
|
||
}
|
||
|
||
return var->num_children >= 0 ? var->num_children : 0;
|
||
}
|
||
|
||
/* Creates a list of the immediate children of a variable object;
|
||
the return code is the number of such children or -1 on error. */
|
||
|
||
const std::vector<varobj *> &
|
||
varobj_list_children (struct varobj *var, int *from, int *to)
|
||
{
|
||
var->dynamic->children_requested = true;
|
||
|
||
if (varobj_is_dynamic_p (var))
|
||
{
|
||
bool children_changed;
|
||
|
||
/* This, in theory, can result in the number of children changing without
|
||
frontend noticing. But well, calling -var-list-children on the same
|
||
varobj twice is not something a sane frontend would do. */
|
||
update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
|
||
&children_changed, false, 0, *to);
|
||
varobj_restrict_range (var->children, from, to);
|
||
return var->children;
|
||
}
|
||
|
||
if (var->num_children == -1)
|
||
var->num_children = number_of_children (var);
|
||
|
||
/* If that failed, give up. */
|
||
if (var->num_children == -1)
|
||
return var->children;
|
||
|
||
/* If we're called when the list of children is not yet initialized,
|
||
allocate enough elements in it. */
|
||
while (var->children.size () < var->num_children)
|
||
var->children.push_back (NULL);
|
||
|
||
for (int i = 0; i < var->num_children; i++)
|
||
{
|
||
if (var->children[i] == NULL)
|
||
{
|
||
/* Either it's the first call to varobj_list_children for
|
||
this variable object, and the child was never created,
|
||
or it was explicitly deleted by the client. */
|
||
std::string name = name_of_child (var, i);
|
||
var->children[i] = create_child (var, i, name);
|
||
}
|
||
}
|
||
|
||
varobj_restrict_range (var->children, from, to);
|
||
return var->children;
|
||
}
|
||
|
||
static struct varobj *
|
||
varobj_add_child (struct varobj *var, struct varobj_item *item)
|
||
{
|
||
varobj *v = create_child_with_value (var, var->children.size (), item);
|
||
|
||
var->children.push_back (v);
|
||
|
||
return v;
|
||
}
|
||
|
||
/* Obtain the type of an object Variable as a string similar to the one gdb
|
||
prints on the console. The caller is responsible for freeing the string.
|
||
*/
|
||
|
||
std::string
|
||
varobj_get_type (struct varobj *var)
|
||
{
|
||
/* For the "fake" variables, do not return a type. (Its type is
|
||
NULL, too.)
|
||
Do not return a type for invalid variables as well. */
|
||
if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
|
||
return std::string ();
|
||
|
||
return type_to_string (var->type);
|
||
}
|
||
|
||
/* Obtain the type of an object variable. */
|
||
|
||
struct type *
|
||
varobj_get_gdb_type (const struct varobj *var)
|
||
{
|
||
return var->type;
|
||
}
|
||
|
||
/* Is VAR a path expression parent, i.e., can it be used to construct
|
||
a valid path expression? */
|
||
|
||
static bool
|
||
is_path_expr_parent (const struct varobj *var)
|
||
{
|
||
gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
|
||
return var->root->lang_ops->is_path_expr_parent (var);
|
||
}
|
||
|
||
/* Is VAR a path expression parent, i.e., can it be used to construct
|
||
a valid path expression? By default we assume any VAR can be a path
|
||
parent. */
|
||
|
||
bool
|
||
varobj_default_is_path_expr_parent (const struct varobj *var)
|
||
{
|
||
return true;
|
||
}
|
||
|
||
/* Return the path expression parent for VAR. */
|
||
|
||
const struct varobj *
|
||
varobj_get_path_expr_parent (const struct varobj *var)
|
||
{
|
||
const struct varobj *parent = var;
|
||
|
||
while (!is_root_p (parent) && !is_path_expr_parent (parent))
|
||
parent = parent->parent;
|
||
|
||
/* Computation of full rooted expression for children of dynamic
|
||
varobjs is not supported. */
|
||
if (varobj_is_dynamic_p (parent))
|
||
error (_("Invalid variable object (child of a dynamic varobj)"));
|
||
|
||
return parent;
|
||
}
|
||
|
||
/* Return a pointer to the full rooted expression of varobj VAR.
|
||
If it has not been computed yet, compute it. */
|
||
|
||
const char *
|
||
varobj_get_path_expr (const struct varobj *var)
|
||
{
|
||
if (var->path_expr.empty ())
|
||
{
|
||
/* For root varobjs, we initialize path_expr
|
||
when creating varobj, so here it should be
|
||
child varobj. */
|
||
struct varobj *mutable_var = (struct varobj *) var;
|
||
gdb_assert (!is_root_p (var));
|
||
|
||
mutable_var->path_expr = (*var->root->lang_ops->path_expr_of_child) (var);
|
||
}
|
||
|
||
return var->path_expr.c_str ();
|
||
}
|
||
|
||
const struct language_defn *
|
||
varobj_get_language (const struct varobj *var)
|
||
{
|
||
return var->root->exp->language_defn;
|
||
}
|
||
|
||
int
|
||
varobj_get_attributes (const struct varobj *var)
|
||
{
|
||
int attributes = 0;
|
||
|
||
if (varobj_editable_p (var))
|
||
/* FIXME: define masks for attributes. */
|
||
attributes |= 0x00000001; /* Editable */
|
||
|
||
return attributes;
|
||
}
|
||
|
||
/* Return true if VAR is a dynamic varobj. */
|
||
|
||
bool
|
||
varobj_is_dynamic_p (const struct varobj *var)
|
||
{
|
||
return var->dynamic->pretty_printer != NULL;
|
||
}
|
||
|
||
std::string
|
||
varobj_get_formatted_value (struct varobj *var,
|
||
enum varobj_display_formats format)
|
||
{
|
||
return my_value_of_variable (var, format);
|
||
}
|
||
|
||
std::string
|
||
varobj_get_value (struct varobj *var)
|
||
{
|
||
return my_value_of_variable (var, var->format);
|
||
}
|
||
|
||
/* Set the value of an object variable (if it is editable) to the
|
||
value of the given expression. */
|
||
/* Note: Invokes functions that can call error(). */
|
||
|
||
bool
|
||
varobj_set_value (struct varobj *var, const char *expression)
|
||
{
|
||
struct value *val = NULL; /* Initialize to keep gcc happy. */
|
||
/* The argument "expression" contains the variable's new value.
|
||
We need to first construct a legal expression for this -- ugh! */
|
||
/* Does this cover all the bases? */
|
||
struct value *value = NULL; /* Initialize to keep gcc happy. */
|
||
int saved_input_radix = input_radix;
|
||
const char *s = expression;
|
||
|
||
gdb_assert (varobj_editable_p (var));
|
||
|
||
input_radix = 10; /* ALWAYS reset to decimal temporarily. */
|
||
expression_up exp = parse_exp_1 (&s, 0, 0, 0);
|
||
try
|
||
{
|
||
value = evaluate_expression (exp.get ());
|
||
}
|
||
|
||
catch (const gdb_exception_error &except)
|
||
{
|
||
/* We cannot proceed without a valid expression. */
|
||
return false;
|
||
}
|
||
|
||
/* All types that are editable must also be changeable. */
|
||
gdb_assert (varobj_value_is_changeable_p (var));
|
||
|
||
/* The value of a changeable variable object must not be lazy. */
|
||
gdb_assert (!value_lazy (var->value.get ()));
|
||
|
||
/* Need to coerce the input. We want to check if the
|
||
value of the variable object will be different
|
||
after assignment, and the first thing value_assign
|
||
does is coerce the input.
|
||
For example, if we are assigning an array to a pointer variable we
|
||
should compare the pointer with the array's address, not with the
|
||
array's content. */
|
||
value = coerce_array (value);
|
||
|
||
/* The new value may be lazy. value_assign, or
|
||
rather value_contents, will take care of this. */
|
||
try
|
||
{
|
||
val = value_assign (var->value.get (), value);
|
||
}
|
||
|
||
catch (const gdb_exception_error &except)
|
||
{
|
||
return false;
|
||
}
|
||
|
||
/* If the value has changed, record it, so that next -var-update can
|
||
report this change. If a variable had a value of '1', we've set it
|
||
to '333' and then set again to '1', when -var-update will report this
|
||
variable as changed -- because the first assignment has set the
|
||
'updated' flag. There's no need to optimize that, because return value
|
||
of -var-update should be considered an approximation. */
|
||
var->updated = install_new_value (var, val, false /* Compare values. */);
|
||
input_radix = saved_input_radix;
|
||
return true;
|
||
}
|
||
|
||
#if HAVE_PYTHON
|
||
|
||
/* A helper function to install a constructor function and visualizer
|
||
in a varobj_dynamic. */
|
||
|
||
static void
|
||
install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
|
||
PyObject *visualizer)
|
||
{
|
||
Py_XDECREF (var->constructor);
|
||
var->constructor = constructor;
|
||
|
||
Py_XDECREF (var->pretty_printer);
|
||
var->pretty_printer = visualizer;
|
||
|
||
var->child_iter.reset (nullptr);
|
||
}
|
||
|
||
/* Install the default visualizer for VAR. */
|
||
|
||
static void
|
||
install_default_visualizer (struct varobj *var)
|
||
{
|
||
/* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
|
||
if (CPLUS_FAKE_CHILD (var))
|
||
return;
|
||
|
||
if (pretty_printing)
|
||
{
|
||
gdbpy_ref<> pretty_printer;
|
||
|
||
if (var->value != nullptr)
|
||
{
|
||
pretty_printer = gdbpy_get_varobj_pretty_printer (var->value.get ());
|
||
if (pretty_printer == nullptr)
|
||
{
|
||
gdbpy_print_stack ();
|
||
error (_("Cannot instantiate printer for default visualizer"));
|
||
}
|
||
}
|
||
|
||
if (pretty_printer == Py_None)
|
||
pretty_printer.reset (nullptr);
|
||
|
||
install_visualizer (var->dynamic, NULL, pretty_printer.release ());
|
||
}
|
||
}
|
||
|
||
/* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
|
||
make a new object. */
|
||
|
||
static void
|
||
construct_visualizer (struct varobj *var, PyObject *constructor)
|
||
{
|
||
PyObject *pretty_printer;
|
||
|
||
/* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
|
||
if (CPLUS_FAKE_CHILD (var))
|
||
return;
|
||
|
||
Py_INCREF (constructor);
|
||
if (constructor == Py_None)
|
||
pretty_printer = NULL;
|
||
else
|
||
{
|
||
pretty_printer = instantiate_pretty_printer (constructor,
|
||
var->value.get ());
|
||
if (! pretty_printer)
|
||
{
|
||
gdbpy_print_stack ();
|
||
Py_DECREF (constructor);
|
||
constructor = Py_None;
|
||
Py_INCREF (constructor);
|
||
}
|
||
|
||
if (pretty_printer == Py_None)
|
||
{
|
||
Py_DECREF (pretty_printer);
|
||
pretty_printer = NULL;
|
||
}
|
||
}
|
||
|
||
install_visualizer (var->dynamic, constructor, pretty_printer);
|
||
}
|
||
|
||
#endif /* HAVE_PYTHON */
|
||
|
||
/* A helper function for install_new_value. This creates and installs
|
||
a visualizer for VAR, if appropriate. */
|
||
|
||
static void
|
||
install_new_value_visualizer (struct varobj *var)
|
||
{
|
||
#if HAVE_PYTHON
|
||
/* If the constructor is None, then we want the raw value. If VAR
|
||
does not have a value, just skip this. */
|
||
if (!gdb_python_initialized)
|
||
return;
|
||
|
||
if (var->dynamic->constructor != Py_None && var->value != NULL)
|
||
{
|
||
gdbpy_enter_varobj enter_py (var);
|
||
|
||
if (var->dynamic->constructor == NULL)
|
||
install_default_visualizer (var);
|
||
else
|
||
construct_visualizer (var, var->dynamic->constructor);
|
||
}
|
||
#else
|
||
/* Do nothing. */
|
||
#endif
|
||
}
|
||
|
||
/* When using RTTI to determine variable type it may be changed in runtime when
|
||
the variable value is changed. This function checks whether type of varobj
|
||
VAR will change when a new value NEW_VALUE is assigned and if it is so
|
||
updates the type of VAR. */
|
||
|
||
static bool
|
||
update_type_if_necessary (struct varobj *var, struct value *new_value)
|
||
{
|
||
if (new_value)
|
||
{
|
||
struct value_print_options opts;
|
||
|
||
get_user_print_options (&opts);
|
||
if (opts.objectprint)
|
||
{
|
||
struct type *new_type = value_actual_type (new_value, 0, 0);
|
||
std::string new_type_str = type_to_string (new_type);
|
||
std::string curr_type_str = varobj_get_type (var);
|
||
|
||
/* Did the type name change? */
|
||
if (curr_type_str != new_type_str)
|
||
{
|
||
var->type = new_type;
|
||
|
||
/* This information may be not valid for a new type. */
|
||
varobj_delete (var, 1);
|
||
var->children.clear ();
|
||
var->num_children = -1;
|
||
return true;
|
||
}
|
||
}
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Assign a new value to a variable object. If INITIAL is true,
|
||
this is the first assignment after the variable object was just
|
||
created, or changed type. In that case, just assign the value
|
||
and return false.
|
||
Otherwise, assign the new value, and return true if the value is
|
||
different from the current one, false otherwise. The comparison is
|
||
done on textual representation of value. Therefore, some types
|
||
need not be compared. E.g. for structures the reported value is
|
||
always "{...}", so no comparison is necessary here. If the old
|
||
value was NULL and new one is not, or vice versa, we always return true.
|
||
|
||
The VALUE parameter should not be released -- the function will
|
||
take care of releasing it when needed. */
|
||
static bool
|
||
install_new_value (struct varobj *var, struct value *value, bool initial)
|
||
{
|
||
bool changeable;
|
||
bool need_to_fetch;
|
||
bool changed = false;
|
||
bool intentionally_not_fetched = false;
|
||
|
||
/* We need to know the varobj's type to decide if the value should
|
||
be fetched or not. C++ fake children (public/protected/private)
|
||
don't have a type. */
|
||
gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
|
||
changeable = varobj_value_is_changeable_p (var);
|
||
|
||
/* If the type has custom visualizer, we consider it to be always
|
||
changeable. FIXME: need to make sure this behaviour will not
|
||
mess up read-sensitive values. */
|
||
if (var->dynamic->pretty_printer != NULL)
|
||
changeable = true;
|
||
|
||
need_to_fetch = changeable;
|
||
|
||
/* We are not interested in the address of references, and given
|
||
that in C++ a reference is not rebindable, it cannot
|
||
meaningfully change. So, get hold of the real value. */
|
||
if (value)
|
||
value = coerce_ref (value);
|
||
|
||
if (var->type && var->type->code () == TYPE_CODE_UNION)
|
||
/* For unions, we need to fetch the value implicitly because
|
||
of implementation of union member fetch. When gdb
|
||
creates a value for a field and the value of the enclosing
|
||
structure is not lazy, it immediately copies the necessary
|
||
bytes from the enclosing values. If the enclosing value is
|
||
lazy, the call to value_fetch_lazy on the field will read
|
||
the data from memory. For unions, that means we'll read the
|
||
same memory more than once, which is not desirable. So
|
||
fetch now. */
|
||
need_to_fetch = true;
|
||
|
||
/* The new value might be lazy. If the type is changeable,
|
||
that is we'll be comparing values of this type, fetch the
|
||
value now. Otherwise, on the next update the old value
|
||
will be lazy, which means we've lost that old value. */
|
||
if (need_to_fetch && value && value_lazy (value))
|
||
{
|
||
const struct varobj *parent = var->parent;
|
||
bool frozen = var->frozen;
|
||
|
||
for (; !frozen && parent; parent = parent->parent)
|
||
frozen |= parent->frozen;
|
||
|
||
if (frozen && initial)
|
||
{
|
||
/* For variables that are frozen, or are children of frozen
|
||
variables, we don't do fetch on initial assignment.
|
||
For non-initial assignment we do the fetch, since it means we're
|
||
explicitly asked to compare the new value with the old one. */
|
||
intentionally_not_fetched = true;
|
||
}
|
||
else
|
||
{
|
||
|
||
try
|
||
{
|
||
value_fetch_lazy (value);
|
||
}
|
||
|
||
catch (const gdb_exception_error &except)
|
||
{
|
||
/* Set the value to NULL, so that for the next -var-update,
|
||
we don't try to compare the new value with this value,
|
||
that we couldn't even read. */
|
||
value = NULL;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Get a reference now, before possibly passing it to any Python
|
||
code that might release it. */
|
||
value_ref_ptr value_holder;
|
||
if (value != NULL)
|
||
value_holder = value_ref_ptr::new_reference (value);
|
||
|
||
/* Below, we'll be comparing string rendering of old and new
|
||
values. Don't get string rendering if the value is
|
||
lazy -- if it is, the code above has decided that the value
|
||
should not be fetched. */
|
||
std::string print_value;
|
||
if (value != NULL && !value_lazy (value)
|
||
&& var->dynamic->pretty_printer == NULL)
|
||
print_value = varobj_value_get_print_value (value, var->format, var);
|
||
|
||
/* If the type is changeable, compare the old and the new values.
|
||
If this is the initial assignment, we don't have any old value
|
||
to compare with. */
|
||
if (!initial && changeable)
|
||
{
|
||
/* If the value of the varobj was changed by -var-set-value,
|
||
then the value in the varobj and in the target is the same.
|
||
However, that value is different from the value that the
|
||
varobj had after the previous -var-update. So need to the
|
||
varobj as changed. */
|
||
if (var->updated)
|
||
changed = true;
|
||
else if (var->dynamic->pretty_printer == NULL)
|
||
{
|
||
/* Try to compare the values. That requires that both
|
||
values are non-lazy. */
|
||
if (var->not_fetched && value_lazy (var->value.get ()))
|
||
{
|
||
/* This is a frozen varobj and the value was never read.
|
||
Presumably, UI shows some "never read" indicator.
|
||
Now that we've fetched the real value, we need to report
|
||
this varobj as changed so that UI can show the real
|
||
value. */
|
||
changed = true;
|
||
}
|
||
else if (var->value == NULL && value == NULL)
|
||
/* Equal. */
|
||
;
|
||
else if (var->value == NULL || value == NULL)
|
||
{
|
||
changed = true;
|
||
}
|
||
else
|
||
{
|
||
gdb_assert (!value_lazy (var->value.get ()));
|
||
gdb_assert (!value_lazy (value));
|
||
|
||
gdb_assert (!var->print_value.empty () && !print_value.empty ());
|
||
if (var->print_value != print_value)
|
||
changed = true;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (!initial && !changeable)
|
||
{
|
||
/* For values that are not changeable, we don't compare the values.
|
||
However, we want to notice if a value was not NULL and now is NULL,
|
||
or vise versa, so that we report when top-level varobjs come in scope
|
||
and leave the scope. */
|
||
changed = (var->value != NULL) != (value != NULL);
|
||
}
|
||
|
||
/* We must always keep the new value, since children depend on it. */
|
||
var->value = value_holder;
|
||
if (value && value_lazy (value) && intentionally_not_fetched)
|
||
var->not_fetched = true;
|
||
else
|
||
var->not_fetched = false;
|
||
var->updated = false;
|
||
|
||
install_new_value_visualizer (var);
|
||
|
||
/* If we installed a pretty-printer, re-compare the printed version
|
||
to see if the variable changed. */
|
||
if (var->dynamic->pretty_printer != NULL)
|
||
{
|
||
print_value = varobj_value_get_print_value (var->value.get (),
|
||
var->format, var);
|
||
if ((var->print_value.empty () && !print_value.empty ())
|
||
|| (!var->print_value.empty () && print_value.empty ())
|
||
|| (!var->print_value.empty () && !print_value.empty ()
|
||
&& var->print_value != print_value))
|
||
changed = true;
|
||
}
|
||
var->print_value = print_value;
|
||
|
||
gdb_assert (var->value == nullptr || value_type (var->value.get ()));
|
||
|
||
return changed;
|
||
}
|
||
|
||
/* Return the requested range for a varobj. VAR is the varobj. FROM
|
||
and TO are out parameters; *FROM and *TO will be set to the
|
||
selected sub-range of VAR. If no range was selected using
|
||
-var-set-update-range, then both will be -1. */
|
||
void
|
||
varobj_get_child_range (const struct varobj *var, int *from, int *to)
|
||
{
|
||
*from = var->from;
|
||
*to = var->to;
|
||
}
|
||
|
||
/* Set the selected sub-range of children of VAR to start at index
|
||
FROM and end at index TO. If either FROM or TO is less than zero,
|
||
this is interpreted as a request for all children. */
|
||
void
|
||
varobj_set_child_range (struct varobj *var, int from, int to)
|
||
{
|
||
var->from = from;
|
||
var->to = to;
|
||
}
|
||
|
||
void
|
||
varobj_set_visualizer (struct varobj *var, const char *visualizer)
|
||
{
|
||
#if HAVE_PYTHON
|
||
PyObject *mainmod;
|
||
|
||
if (!gdb_python_initialized)
|
||
return;
|
||
|
||
gdbpy_enter_varobj enter_py (var);
|
||
|
||
mainmod = PyImport_AddModule ("__main__");
|
||
gdbpy_ref<> globals
|
||
= gdbpy_ref<>::new_reference (PyModule_GetDict (mainmod));
|
||
gdbpy_ref<> constructor (PyRun_String (visualizer, Py_eval_input,
|
||
globals.get (), globals.get ()));
|
||
|
||
if (constructor == NULL)
|
||
{
|
||
gdbpy_print_stack ();
|
||
error (_("Could not evaluate visualizer expression: %s"), visualizer);
|
||
}
|
||
|
||
construct_visualizer (var, constructor.get ());
|
||
|
||
/* If there are any children now, wipe them. */
|
||
varobj_delete (var, 1 /* children only */);
|
||
var->num_children = -1;
|
||
#else
|
||
error (_("Python support required"));
|
||
#endif
|
||
}
|
||
|
||
/* If NEW_VALUE is the new value of the given varobj (var), return
|
||
true if var has mutated. In other words, if the type of
|
||
the new value is different from the type of the varobj's old
|
||
value.
|
||
|
||
NEW_VALUE may be NULL, if the varobj is now out of scope. */
|
||
|
||
static bool
|
||
varobj_value_has_mutated (const struct varobj *var, struct value *new_value,
|
||
struct type *new_type)
|
||
{
|
||
/* If we haven't previously computed the number of children in var,
|
||
it does not matter from the front-end's perspective whether
|
||
the type has mutated or not. For all intents and purposes,
|
||
it has not mutated. */
|
||
if (var->num_children < 0)
|
||
return false;
|
||
|
||
if (var->root->lang_ops->value_has_mutated != NULL)
|
||
{
|
||
/* The varobj module, when installing new values, explicitly strips
|
||
references, saying that we're not interested in those addresses.
|
||
But detection of mutation happens before installing the new
|
||
value, so our value may be a reference that we need to strip
|
||
in order to remain consistent. */
|
||
if (new_value != NULL)
|
||
new_value = coerce_ref (new_value);
|
||
return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
|
||
}
|
||
else
|
||
return false;
|
||
}
|
||
|
||
/* Update the values for a variable and its children. This is a
|
||
two-pronged attack. First, re-parse the value for the root's
|
||
expression to see if it's changed. Then go all the way
|
||
through its children, reconstructing them and noting if they've
|
||
changed.
|
||
|
||
The IS_EXPLICIT parameter specifies if this call is result
|
||
of MI request to update this specific variable, or
|
||
result of implicit -var-update *. For implicit request, we don't
|
||
update frozen variables.
|
||
|
||
NOTE: This function may delete the caller's varobj. If it
|
||
returns TYPE_CHANGED, then it has done this and VARP will be modified
|
||
to point to the new varobj. */
|
||
|
||
std::vector<varobj_update_result>
|
||
varobj_update (struct varobj **varp, bool is_explicit)
|
||
{
|
||
bool type_changed = false;
|
||
struct value *newobj;
|
||
std::vector<varobj_update_result> stack;
|
||
std::vector<varobj_update_result> result;
|
||
|
||
/* Frozen means frozen -- we don't check for any change in
|
||
this varobj, including its going out of scope, or
|
||
changing type. One use case for frozen varobjs is
|
||
retaining previously evaluated expressions, and we don't
|
||
want them to be reevaluated at all. */
|
||
if (!is_explicit && (*varp)->frozen)
|
||
return result;
|
||
|
||
if (!(*varp)->root->is_valid)
|
||
{
|
||
result.emplace_back (*varp, VAROBJ_INVALID);
|
||
return result;
|
||
}
|
||
|
||
if ((*varp)->root->rootvar == *varp)
|
||
{
|
||
varobj_update_result r (*varp);
|
||
|
||
/* Update the root variable. value_of_root can return NULL
|
||
if the variable is no longer around, i.e. we stepped out of
|
||
the frame in which a local existed. We are letting the
|
||
value_of_root variable dispose of the varobj if the type
|
||
has changed. */
|
||
newobj = value_of_root (varp, &type_changed);
|
||
if (update_type_if_necessary (*varp, newobj))
|
||
type_changed = true;
|
||
r.varobj = *varp;
|
||
r.type_changed = type_changed;
|
||
if (install_new_value ((*varp), newobj, type_changed))
|
||
r.changed = true;
|
||
|
||
if (newobj == NULL)
|
||
r.status = VAROBJ_NOT_IN_SCOPE;
|
||
r.value_installed = true;
|
||
|
||
if (r.status == VAROBJ_NOT_IN_SCOPE)
|
||
{
|
||
if (r.type_changed || r.changed)
|
||
result.push_back (std::move (r));
|
||
|
||
return result;
|
||
}
|
||
|
||
stack.push_back (std::move (r));
|
||
}
|
||
else
|
||
stack.emplace_back (*varp);
|
||
|
||
/* Walk through the children, reconstructing them all. */
|
||
while (!stack.empty ())
|
||
{
|
||
varobj_update_result r = std::move (stack.back ());
|
||
stack.pop_back ();
|
||
struct varobj *v = r.varobj;
|
||
|
||
/* Update this variable, unless it's a root, which is already
|
||
updated. */
|
||
if (!r.value_installed)
|
||
{
|
||
struct type *new_type;
|
||
|
||
newobj = value_of_child (v->parent, v->index);
|
||
if (update_type_if_necessary (v, newobj))
|
||
r.type_changed = true;
|
||
if (newobj)
|
||
new_type = value_type (newobj);
|
||
else
|
||
new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
|
||
|
||
if (varobj_value_has_mutated (v, newobj, new_type))
|
||
{
|
||
/* The children are no longer valid; delete them now.
|
||
Report the fact that its type changed as well. */
|
||
varobj_delete (v, 1 /* only_children */);
|
||
v->num_children = -1;
|
||
v->to = -1;
|
||
v->from = -1;
|
||
v->type = new_type;
|
||
r.type_changed = true;
|
||
}
|
||
|
||
if (install_new_value (v, newobj, r.type_changed))
|
||
{
|
||
r.changed = true;
|
||
v->updated = false;
|
||
}
|
||
}
|
||
|
||
/* We probably should not get children of a dynamic varobj, but
|
||
for which -var-list-children was never invoked. */
|
||
if (varobj_is_dynamic_p (v))
|
||
{
|
||
std::vector<varobj *> changed, type_changed_vec, unchanged, newobj_vec;
|
||
bool children_changed = false;
|
||
|
||
if (v->frozen)
|
||
continue;
|
||
|
||
if (!v->dynamic->children_requested)
|
||
{
|
||
bool dummy;
|
||
|
||
/* If we initially did not have potential children, but
|
||
now we do, consider the varobj as changed.
|
||
Otherwise, if children were never requested, consider
|
||
it as unchanged -- presumably, such varobj is not yet
|
||
expanded in the UI, so we need not bother getting
|
||
it. */
|
||
if (!varobj_has_more (v, 0))
|
||
{
|
||
update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
|
||
&dummy, false, 0, 0);
|
||
if (varobj_has_more (v, 0))
|
||
r.changed = true;
|
||
}
|
||
|
||
if (r.changed)
|
||
result.push_back (std::move (r));
|
||
|
||
continue;
|
||
}
|
||
|
||
/* If update_dynamic_varobj_children returns false, then we have
|
||
a non-conforming pretty-printer, so we skip it. */
|
||
if (update_dynamic_varobj_children (v, &changed, &type_changed_vec,
|
||
&newobj_vec,
|
||
&unchanged, &children_changed,
|
||
true, v->from, v->to))
|
||
{
|
||
if (children_changed || !newobj_vec.empty ())
|
||
{
|
||
r.children_changed = true;
|
||
r.newobj = std::move (newobj_vec);
|
||
}
|
||
/* Push in reverse order so that the first child is
|
||
popped from the work stack first, and so will be
|
||
added to result first. This does not affect
|
||
correctness, just "nicer". */
|
||
for (int i = type_changed_vec.size () - 1; i >= 0; --i)
|
||
{
|
||
varobj_update_result item (type_changed_vec[i]);
|
||
|
||
/* Type may change only if value was changed. */
|
||
item.changed = true;
|
||
item.type_changed = true;
|
||
item.value_installed = true;
|
||
|
||
stack.push_back (std::move (item));
|
||
}
|
||
for (int i = changed.size () - 1; i >= 0; --i)
|
||
{
|
||
varobj_update_result item (changed[i]);
|
||
|
||
item.changed = true;
|
||
item.value_installed = true;
|
||
|
||
stack.push_back (std::move (item));
|
||
}
|
||
for (int i = unchanged.size () - 1; i >= 0; --i)
|
||
{
|
||
if (!unchanged[i]->frozen)
|
||
{
|
||
varobj_update_result item (unchanged[i]);
|
||
|
||
item.value_installed = true;
|
||
|
||
stack.push_back (std::move (item));
|
||
}
|
||
}
|
||
if (r.changed || r.children_changed)
|
||
result.push_back (std::move (r));
|
||
|
||
continue;
|
||
}
|
||
}
|
||
|
||
/* Push any children. Use reverse order so that the first
|
||
child is popped from the work stack first, and so
|
||
will be added to result first. This does not
|
||
affect correctness, just "nicer". */
|
||
for (int i = v->children.size () - 1; i >= 0; --i)
|
||
{
|
||
varobj *c = v->children[i];
|
||
|
||
/* Child may be NULL if explicitly deleted by -var-delete. */
|
||
if (c != NULL && !c->frozen)
|
||
stack.emplace_back (c);
|
||
}
|
||
|
||
if (r.changed || r.type_changed)
|
||
result.push_back (std::move (r));
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Helper functions */
|
||
|
||
/*
|
||
* Variable object construction/destruction
|
||
*/
|
||
|
||
static int
|
||
delete_variable (struct varobj *var, bool only_children_p)
|
||
{
|
||
int delcount = 0;
|
||
|
||
delete_variable_1 (&delcount, var, only_children_p,
|
||
true /* remove_from_parent_p */ );
|
||
|
||
return delcount;
|
||
}
|
||
|
||
/* Delete the variable object VAR and its children. */
|
||
/* IMPORTANT NOTE: If we delete a variable which is a child
|
||
and the parent is not removed we dump core. It must be always
|
||
initially called with remove_from_parent_p set. */
|
||
static void
|
||
delete_variable_1 (int *delcountp, struct varobj *var, bool only_children_p,
|
||
bool remove_from_parent_p)
|
||
{
|
||
/* Delete any children of this variable, too. */
|
||
for (varobj *child : var->children)
|
||
{
|
||
if (!child)
|
||
continue;
|
||
|
||
if (!remove_from_parent_p)
|
||
child->parent = NULL;
|
||
|
||
delete_variable_1 (delcountp, child, false, only_children_p);
|
||
}
|
||
var->children.clear ();
|
||
|
||
/* if we were called to delete only the children we are done here. */
|
||
if (only_children_p)
|
||
return;
|
||
|
||
/* Otherwise, add it to the list of deleted ones and proceed to do so. */
|
||
/* If the name is empty, this is a temporary variable, that has not
|
||
yet been installed, don't report it, it belongs to the caller... */
|
||
if (!var->obj_name.empty ())
|
||
{
|
||
*delcountp = *delcountp + 1;
|
||
}
|
||
|
||
/* If this variable has a parent, remove it from its parent's list. */
|
||
/* OPTIMIZATION: if the parent of this variable is also being deleted,
|
||
(as indicated by remove_from_parent_p) we don't bother doing an
|
||
expensive list search to find the element to remove when we are
|
||
discarding the list afterwards. */
|
||
if ((remove_from_parent_p) && (var->parent != NULL))
|
||
var->parent->children[var->index] = NULL;
|
||
|
||
if (!var->obj_name.empty ())
|
||
uninstall_variable (var);
|
||
|
||
/* Free memory associated with this variable. */
|
||
delete var;
|
||
}
|
||
|
||
/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
|
||
static void
|
||
install_variable (struct varobj *var)
|
||
{
|
||
hashval_t hash = htab_hash_string (var->obj_name.c_str ());
|
||
void **slot = htab_find_slot_with_hash (varobj_table,
|
||
var->obj_name.c_str (),
|
||
hash, INSERT);
|
||
if (*slot != nullptr)
|
||
error (_("Duplicate variable object name"));
|
||
|
||
/* Add varobj to hash table. */
|
||
*slot = var;
|
||
|
||
/* If root, add varobj to root list. */
|
||
if (is_root_p (var))
|
||
rootlist.push_front (var->root);
|
||
}
|
||
|
||
/* Uninstall the object VAR. */
|
||
static void
|
||
uninstall_variable (struct varobj *var)
|
||
{
|
||
hashval_t hash = htab_hash_string (var->obj_name.c_str ());
|
||
htab_remove_elt_with_hash (varobj_table, var->obj_name.c_str (), hash);
|
||
|
||
if (varobjdebug)
|
||
fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name.c_str ());
|
||
|
||
/* If root, remove varobj from root list. */
|
||
if (is_root_p (var))
|
||
{
|
||
auto iter = std::find (rootlist.begin (), rootlist.end (), var->root);
|
||
rootlist.erase (iter);
|
||
}
|
||
}
|
||
|
||
/* Create and install a child of the parent of the given name.
|
||
|
||
The created VAROBJ takes ownership of the allocated NAME. */
|
||
|
||
static struct varobj *
|
||
create_child (struct varobj *parent, int index, std::string &name)
|
||
{
|
||
struct varobj_item item;
|
||
|
||
std::swap (item.name, name);
|
||
item.value = release_value (value_of_child (parent, index));
|
||
|
||
return create_child_with_value (parent, index, &item);
|
||
}
|
||
|
||
static struct varobj *
|
||
create_child_with_value (struct varobj *parent, int index,
|
||
struct varobj_item *item)
|
||
{
|
||
varobj *child = new varobj (parent->root);
|
||
|
||
/* NAME is allocated by caller. */
|
||
std::swap (child->name, item->name);
|
||
child->index = index;
|
||
child->parent = parent;
|
||
|
||
if (varobj_is_anonymous_child (child))
|
||
child->obj_name = string_printf ("%s.%d_anonymous",
|
||
parent->obj_name.c_str (), index);
|
||
else
|
||
child->obj_name = string_printf ("%s.%s",
|
||
parent->obj_name.c_str (),
|
||
child->name.c_str ());
|
||
|
||
install_variable (child);
|
||
|
||
/* Compute the type of the child. Must do this before
|
||
calling install_new_value. */
|
||
if (item->value != NULL)
|
||
/* If the child had no evaluation errors, var->value
|
||
will be non-NULL and contain a valid type. */
|
||
child->type = value_actual_type (item->value.get (), 0, NULL);
|
||
else
|
||
/* Otherwise, we must compute the type. */
|
||
child->type = (*child->root->lang_ops->type_of_child) (child->parent,
|
||
child->index);
|
||
install_new_value (child, item->value.get (), 1);
|
||
|
||
return child;
|
||
}
|
||
|
||
|
||
/*
|
||
* Miscellaneous utility functions.
|
||
*/
|
||
|
||
/* Allocate memory and initialize a new variable. */
|
||
varobj::varobj (varobj_root *root_)
|
||
: root (root_), dynamic (new varobj_dynamic)
|
||
{
|
||
}
|
||
|
||
/* Free any allocated memory associated with VAR. */
|
||
|
||
varobj::~varobj ()
|
||
{
|
||
varobj *var = this;
|
||
|
||
#if HAVE_PYTHON
|
||
if (var->dynamic->pretty_printer != NULL)
|
||
{
|
||
gdbpy_enter_varobj enter_py (var);
|
||
|
||
Py_XDECREF (var->dynamic->constructor);
|
||
Py_XDECREF (var->dynamic->pretty_printer);
|
||
}
|
||
#endif
|
||
|
||
if (is_root_p (var))
|
||
delete var->root;
|
||
|
||
delete var->dynamic;
|
||
}
|
||
|
||
/* Return the type of the value that's stored in VAR,
|
||
or that would have being stored there if the
|
||
value were accessible.
|
||
|
||
This differs from VAR->type in that VAR->type is always
|
||
the true type of the expression in the source language.
|
||
The return value of this function is the type we're
|
||
actually storing in varobj, and using for displaying
|
||
the values and for comparing previous and new values.
|
||
|
||
For example, top-level references are always stripped. */
|
||
struct type *
|
||
varobj_get_value_type (const struct varobj *var)
|
||
{
|
||
struct type *type;
|
||
|
||
if (var->value != nullptr)
|
||
type = value_type (var->value.get ());
|
||
else
|
||
type = var->type;
|
||
|
||
type = check_typedef (type);
|
||
|
||
if (TYPE_IS_REFERENCE (type))
|
||
type = get_target_type (type);
|
||
|
||
type = check_typedef (type);
|
||
|
||
return type;
|
||
}
|
||
|
||
/* What is the default display for this variable? We assume that
|
||
everything is "natural". Any exceptions? */
|
||
static enum varobj_display_formats
|
||
variable_default_display (struct varobj *var)
|
||
{
|
||
return FORMAT_NATURAL;
|
||
}
|
||
|
||
/*
|
||
* Language-dependencies
|
||
*/
|
||
|
||
/* Common entry points */
|
||
|
||
/* Return the number of children for a given variable.
|
||
The result of this function is defined by the language
|
||
implementation. The number of children returned by this function
|
||
is the number of children that the user will see in the variable
|
||
display. */
|
||
static int
|
||
number_of_children (const struct varobj *var)
|
||
{
|
||
return (*var->root->lang_ops->number_of_children) (var);
|
||
}
|
||
|
||
/* What is the expression for the root varobj VAR? */
|
||
|
||
static std::string
|
||
name_of_variable (const struct varobj *var)
|
||
{
|
||
return (*var->root->lang_ops->name_of_variable) (var);
|
||
}
|
||
|
||
/* What is the name of the INDEX'th child of VAR? */
|
||
|
||
static std::string
|
||
name_of_child (struct varobj *var, int index)
|
||
{
|
||
return (*var->root->lang_ops->name_of_child) (var, index);
|
||
}
|
||
|
||
/* If frame associated with VAR can be found, switch
|
||
to it and return true. Otherwise, return false. */
|
||
|
||
static bool
|
||
check_scope (const struct varobj *var)
|
||
{
|
||
struct frame_info *fi;
|
||
bool scope;
|
||
|
||
fi = frame_find_by_id (var->root->frame);
|
||
scope = fi != NULL;
|
||
|
||
if (fi)
|
||
{
|
||
CORE_ADDR pc = get_frame_pc (fi);
|
||
|
||
if (pc < BLOCK_START (var->root->valid_block) ||
|
||
pc >= BLOCK_END (var->root->valid_block))
|
||
scope = false;
|
||
else
|
||
select_frame (fi);
|
||
}
|
||
return scope;
|
||
}
|
||
|
||
/* Helper function to value_of_root. */
|
||
|
||
static struct value *
|
||
value_of_root_1 (struct varobj **var_handle)
|
||
{
|
||
struct value *new_val = NULL;
|
||
struct varobj *var = *var_handle;
|
||
bool within_scope = false;
|
||
|
||
/* Only root variables can be updated... */
|
||
if (!is_root_p (var))
|
||
/* Not a root var. */
|
||
return NULL;
|
||
|
||
scoped_restore_current_thread restore_thread;
|
||
|
||
/* Determine whether the variable is still around. */
|
||
if (var->root->valid_block == NULL || var->root->floating)
|
||
within_scope = true;
|
||
else if (var->root->thread_id == 0)
|
||
{
|
||
/* The program was single-threaded when the variable object was
|
||
created. Technically, it's possible that the program became
|
||
multi-threaded since then, but we don't support such
|
||
scenario yet. */
|
||
within_scope = check_scope (var);
|
||
}
|
||
else
|
||
{
|
||
thread_info *thread = find_thread_global_id (var->root->thread_id);
|
||
|
||
if (thread != NULL)
|
||
{
|
||
switch_to_thread (thread);
|
||
within_scope = check_scope (var);
|
||
}
|
||
}
|
||
|
||
if (within_scope)
|
||
{
|
||
|
||
/* We need to catch errors here, because if evaluate
|
||
expression fails we want to just return NULL. */
|
||
try
|
||
{
|
||
new_val = evaluate_expression (var->root->exp.get ());
|
||
}
|
||
catch (const gdb_exception_error &except)
|
||
{
|
||
}
|
||
}
|
||
|
||
return new_val;
|
||
}
|
||
|
||
/* What is the ``struct value *'' of the root variable VAR?
|
||
For floating variable object, evaluation can get us a value
|
||
of different type from what is stored in varobj already. In
|
||
that case:
|
||
- *type_changed will be set to 1
|
||
- old varobj will be freed, and new one will be
|
||
created, with the same name.
|
||
- *var_handle will be set to the new varobj
|
||
Otherwise, *type_changed will be set to 0. */
|
||
static struct value *
|
||
value_of_root (struct varobj **var_handle, bool *type_changed)
|
||
{
|
||
struct varobj *var;
|
||
|
||
if (var_handle == NULL)
|
||
return NULL;
|
||
|
||
var = *var_handle;
|
||
|
||
/* This should really be an exception, since this should
|
||
only get called with a root variable. */
|
||
|
||
if (!is_root_p (var))
|
||
return NULL;
|
||
|
||
if (var->root->floating)
|
||
{
|
||
struct varobj *tmp_var;
|
||
|
||
tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
|
||
USE_SELECTED_FRAME);
|
||
if (tmp_var == NULL)
|
||
{
|
||
return NULL;
|
||
}
|
||
std::string old_type = varobj_get_type (var);
|
||
std::string new_type = varobj_get_type (tmp_var);
|
||
if (old_type == new_type)
|
||
{
|
||
/* The expression presently stored inside var->root->exp
|
||
remembers the locations of local variables relatively to
|
||
the frame where the expression was created (in DWARF location
|
||
button, for example). Naturally, those locations are not
|
||
correct in other frames, so update the expression. */
|
||
|
||
std::swap (var->root->exp, tmp_var->root->exp);
|
||
|
||
varobj_delete (tmp_var, 0);
|
||
*type_changed = 0;
|
||
}
|
||
else
|
||
{
|
||
tmp_var->obj_name = var->obj_name;
|
||
tmp_var->from = var->from;
|
||
tmp_var->to = var->to;
|
||
varobj_delete (var, 0);
|
||
|
||
install_variable (tmp_var);
|
||
*var_handle = tmp_var;
|
||
var = *var_handle;
|
||
*type_changed = true;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
*type_changed = 0;
|
||
}
|
||
|
||
{
|
||
struct value *value;
|
||
|
||
value = value_of_root_1 (var_handle);
|
||
if (var->value == NULL || value == NULL)
|
||
{
|
||
/* For root varobj-s, a NULL value indicates a scoping issue.
|
||
So, nothing to do in terms of checking for mutations. */
|
||
}
|
||
else if (varobj_value_has_mutated (var, value, value_type (value)))
|
||
{
|
||
/* The type has mutated, so the children are no longer valid.
|
||
Just delete them, and tell our caller that the type has
|
||
changed. */
|
||
varobj_delete (var, 1 /* only_children */);
|
||
var->num_children = -1;
|
||
var->to = -1;
|
||
var->from = -1;
|
||
*type_changed = true;
|
||
}
|
||
return value;
|
||
}
|
||
}
|
||
|
||
/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
|
||
static struct value *
|
||
value_of_child (const struct varobj *parent, int index)
|
||
{
|
||
struct value *value;
|
||
|
||
value = (*parent->root->lang_ops->value_of_child) (parent, index);
|
||
|
||
return value;
|
||
}
|
||
|
||
/* GDB already has a command called "value_of_variable". Sigh. */
|
||
static std::string
|
||
my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
|
||
{
|
||
if (var->root->is_valid)
|
||
{
|
||
if (var->dynamic->pretty_printer != NULL)
|
||
return varobj_value_get_print_value (var->value.get (), var->format,
|
||
var);
|
||
return (*var->root->lang_ops->value_of_variable) (var, format);
|
||
}
|
||
else
|
||
return std::string ();
|
||
}
|
||
|
||
void
|
||
varobj_formatted_print_options (struct value_print_options *opts,
|
||
enum varobj_display_formats format)
|
||
{
|
||
get_formatted_print_options (opts, format_code[(int) format]);
|
||
opts->deref_ref = 0;
|
||
opts->raw = !pretty_printing;
|
||
}
|
||
|
||
std::string
|
||
varobj_value_get_print_value (struct value *value,
|
||
enum varobj_display_formats format,
|
||
const struct varobj *var)
|
||
{
|
||
struct value_print_options opts;
|
||
struct type *type = NULL;
|
||
long len = 0;
|
||
gdb::unique_xmalloc_ptr<char> encoding;
|
||
/* Initialize it just to avoid a GCC false warning. */
|
||
CORE_ADDR str_addr = 0;
|
||
bool string_print = false;
|
||
|
||
if (value == NULL)
|
||
return std::string ();
|
||
|
||
string_file stb;
|
||
std::string thevalue;
|
||
|
||
#if HAVE_PYTHON
|
||
if (gdb_python_initialized)
|
||
{
|
||
PyObject *value_formatter = var->dynamic->pretty_printer;
|
||
|
||
gdbpy_enter_varobj enter_py (var);
|
||
|
||
if (value_formatter)
|
||
{
|
||
/* First check to see if we have any children at all. If so,
|
||
we simply return {...}. */
|
||
if (dynamic_varobj_has_child_method (var))
|
||
return "{...}";
|
||
|
||
if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
|
||
{
|
||
struct value *replacement;
|
||
|
||
gdbpy_ref<> output = apply_varobj_pretty_printer (value_formatter,
|
||
&replacement,
|
||
&stb);
|
||
|
||
/* If we have string like output ... */
|
||
if (output != NULL)
|
||
{
|
||
/* If this is a lazy string, extract it. For lazy
|
||
strings we always print as a string, so set
|
||
string_print. */
|
||
if (gdbpy_is_lazy_string (output.get ()))
|
||
{
|
||
gdbpy_extract_lazy_string (output.get (), &str_addr,
|
||
&type, &len, &encoding);
|
||
string_print = true;
|
||
}
|
||
else
|
||
{
|
||
/* If it is a regular (non-lazy) string, extract
|
||
it and copy the contents into THEVALUE. If the
|
||
hint says to print it as a string, set
|
||
string_print. Otherwise just return the extracted
|
||
string as a value. */
|
||
|
||
gdb::unique_xmalloc_ptr<char> s
|
||
= python_string_to_target_string (output.get ());
|
||
|
||
if (s)
|
||
{
|
||
struct gdbarch *gdbarch;
|
||
|
||
gdb::unique_xmalloc_ptr<char> hint
|
||
= gdbpy_get_display_hint (value_formatter);
|
||
if (hint)
|
||
{
|
||
if (!strcmp (hint.get (), "string"))
|
||
string_print = true;
|
||
}
|
||
|
||
thevalue = std::string (s.get ());
|
||
len = thevalue.size ();
|
||
gdbarch = get_type_arch (value_type (value));
|
||
type = builtin_type (gdbarch)->builtin_char;
|
||
|
||
if (!string_print)
|
||
return thevalue;
|
||
}
|
||
else
|
||
gdbpy_print_stack ();
|
||
}
|
||
}
|
||
/* If the printer returned a replacement value, set VALUE
|
||
to REPLACEMENT. If there is not a replacement value,
|
||
just use the value passed to this function. */
|
||
if (replacement)
|
||
value = replacement;
|
||
}
|
||
}
|
||
}
|
||
#endif
|
||
|
||
varobj_formatted_print_options (&opts, format);
|
||
|
||
/* If the THEVALUE has contents, it is a regular string. */
|
||
if (!thevalue.empty ())
|
||
LA_PRINT_STRING (&stb, type, (gdb_byte *) thevalue.c_str (),
|
||
len, encoding.get (), 0, &opts);
|
||
else if (string_print)
|
||
/* Otherwise, if string_print is set, and it is not a regular
|
||
string, it is a lazy string. */
|
||
val_print_string (type, encoding.get (), str_addr, len, &stb, &opts);
|
||
else
|
||
/* All other cases. */
|
||
common_val_print (value, &stb, 0, &opts, current_language);
|
||
|
||
return std::move (stb.string ());
|
||
}
|
||
|
||
bool
|
||
varobj_editable_p (const struct varobj *var)
|
||
{
|
||
struct type *type;
|
||
|
||
if (!(var->root->is_valid && var->value != nullptr
|
||
&& VALUE_LVAL (var->value.get ())))
|
||
return false;
|
||
|
||
type = varobj_get_value_type (var);
|
||
|
||
switch (type->code ())
|
||
{
|
||
case TYPE_CODE_STRUCT:
|
||
case TYPE_CODE_UNION:
|
||
case TYPE_CODE_ARRAY:
|
||
case TYPE_CODE_FUNC:
|
||
case TYPE_CODE_METHOD:
|
||
return false;
|
||
break;
|
||
|
||
default:
|
||
return true;
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Call VAR's value_is_changeable_p language-specific callback. */
|
||
|
||
bool
|
||
varobj_value_is_changeable_p (const struct varobj *var)
|
||
{
|
||
return var->root->lang_ops->value_is_changeable_p (var);
|
||
}
|
||
|
||
/* Return true if that varobj is floating, that is is always evaluated in the
|
||
selected frame, and not bound to thread/frame. Such variable objects
|
||
are created using '@' as frame specifier to -var-create. */
|
||
bool
|
||
varobj_floating_p (const struct varobj *var)
|
||
{
|
||
return var->root->floating;
|
||
}
|
||
|
||
/* Implement the "value_is_changeable_p" varobj callback for most
|
||
languages. */
|
||
|
||
bool
|
||
varobj_default_value_is_changeable_p (const struct varobj *var)
|
||
{
|
||
bool r;
|
||
struct type *type;
|
||
|
||
if (CPLUS_FAKE_CHILD (var))
|
||
return false;
|
||
|
||
type = varobj_get_value_type (var);
|
||
|
||
switch (type->code ())
|
||
{
|
||
case TYPE_CODE_STRUCT:
|
||
case TYPE_CODE_UNION:
|
||
case TYPE_CODE_ARRAY:
|
||
r = false;
|
||
break;
|
||
|
||
default:
|
||
r = true;
|
||
}
|
||
|
||
return r;
|
||
}
|
||
|
||
/* Iterate all the existing _root_ VAROBJs and call the FUNC callback
|
||
for each one. */
|
||
|
||
void
|
||
all_root_varobjs (gdb::function_view<void (struct varobj *var)> func)
|
||
{
|
||
/* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
|
||
auto iter = rootlist.begin ();
|
||
auto end = rootlist.end ();
|
||
while (iter != end)
|
||
{
|
||
auto self = iter++;
|
||
func ((*self)->rootvar);
|
||
}
|
||
}
|
||
|
||
/* Invalidate varobj VAR if it is tied to locals and re-create it if it is
|
||
defined on globals. It is a helper for varobj_invalidate.
|
||
|
||
This function is called after changing the symbol file, in this case the
|
||
pointers to "struct type" stored by the varobj are no longer valid. All
|
||
varobj must be either re-evaluated, or marked as invalid here. */
|
||
|
||
static void
|
||
varobj_invalidate_iter (struct varobj *var)
|
||
{
|
||
/* global and floating var must be re-evaluated. */
|
||
if (var->root->floating || var->root->valid_block == NULL)
|
||
{
|
||
struct varobj *tmp_var;
|
||
|
||
/* Try to create a varobj with same expression. If we succeed
|
||
replace the old varobj, otherwise invalidate it. */
|
||
tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
|
||
USE_CURRENT_FRAME);
|
||
if (tmp_var != NULL)
|
||
{
|
||
tmp_var->obj_name = var->obj_name;
|
||
varobj_delete (var, 0);
|
||
install_variable (tmp_var);
|
||
}
|
||
else
|
||
var->root->is_valid = false;
|
||
}
|
||
else /* locals must be invalidated. */
|
||
var->root->is_valid = false;
|
||
}
|
||
|
||
/* Invalidate the varobjs that are tied to locals and re-create the ones that
|
||
are defined on globals.
|
||
Invalidated varobjs will be always printed in_scope="invalid". */
|
||
|
||
void
|
||
varobj_invalidate (void)
|
||
{
|
||
all_root_varobjs (varobj_invalidate_iter);
|
||
}
|
||
|
||
/* A hash function for a varobj. */
|
||
|
||
static hashval_t
|
||
hash_varobj (const void *a)
|
||
{
|
||
const varobj *obj = (const varobj *) a;
|
||
return htab_hash_string (obj->obj_name.c_str ());
|
||
}
|
||
|
||
/* A hash table equality function for varobjs. */
|
||
|
||
static int
|
||
eq_varobj_and_string (const void *a, const void *b)
|
||
{
|
||
const varobj *obj = (const varobj *) a;
|
||
const char *name = (const char *) b;
|
||
|
||
return obj->obj_name == name;
|
||
}
|
||
|
||
void _initialize_varobj ();
|
||
void
|
||
_initialize_varobj ()
|
||
{
|
||
varobj_table = htab_create_alloc (5, hash_varobj, eq_varobj_and_string,
|
||
nullptr, xcalloc, xfree);
|
||
|
||
add_setshow_zuinteger_cmd ("varobj", class_maintenance,
|
||
&varobjdebug,
|
||
_("Set varobj debugging."),
|
||
_("Show varobj debugging."),
|
||
_("When non-zero, varobj debugging is enabled."),
|
||
NULL, show_varobjdebug,
|
||
&setdebuglist, &showdebuglist);
|
||
}
|