mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-18 12:24:38 +08:00
3507 lines
106 KiB
C++
3507 lines
106 KiB
C++
/* ELF linker support.
|
||
Copyright 1995, 1996 Free Software Foundation, Inc.
|
||
|
||
This file is part of BFD, the Binary File Descriptor library.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
||
|
||
/* ELF linker code. */
|
||
|
||
static boolean elf_link_add_object_symbols
|
||
PARAMS ((bfd *, struct bfd_link_info *));
|
||
static boolean elf_link_add_archive_symbols
|
||
PARAMS ((bfd *, struct bfd_link_info *));
|
||
static Elf_Internal_Rela *elf_link_read_relocs
|
||
PARAMS ((bfd *, asection *, PTR, Elf_Internal_Rela *, boolean));
|
||
static boolean elf_export_symbol
|
||
PARAMS ((struct elf_link_hash_entry *, PTR));
|
||
static boolean elf_adjust_dynamic_symbol
|
||
PARAMS ((struct elf_link_hash_entry *, PTR));
|
||
|
||
/* This struct is used to pass information to routines called via
|
||
elf_link_hash_traverse which must return failure. */
|
||
|
||
struct elf_info_failed
|
||
{
|
||
boolean failed;
|
||
struct bfd_link_info *info;
|
||
};
|
||
|
||
/* Given an ELF BFD, add symbols to the global hash table as
|
||
appropriate. */
|
||
|
||
boolean
|
||
elf_bfd_link_add_symbols (abfd, info)
|
||
bfd *abfd;
|
||
struct bfd_link_info *info;
|
||
{
|
||
switch (bfd_get_format (abfd))
|
||
{
|
||
case bfd_object:
|
||
return elf_link_add_object_symbols (abfd, info);
|
||
case bfd_archive:
|
||
return elf_link_add_archive_symbols (abfd, info);
|
||
default:
|
||
bfd_set_error (bfd_error_wrong_format);
|
||
return false;
|
||
}
|
||
}
|
||
|
||
|
||
/* Add symbols from an ELF archive file to the linker hash table. We
|
||
don't use _bfd_generic_link_add_archive_symbols because of a
|
||
problem which arises on UnixWare. The UnixWare libc.so is an
|
||
archive which includes an entry libc.so.1 which defines a bunch of
|
||
symbols. The libc.so archive also includes a number of other
|
||
object files, which also define symbols, some of which are the same
|
||
as those defined in libc.so.1. Correct linking requires that we
|
||
consider each object file in turn, and include it if it defines any
|
||
symbols we need. _bfd_generic_link_add_archive_symbols does not do
|
||
this; it looks through the list of undefined symbols, and includes
|
||
any object file which defines them. When this algorithm is used on
|
||
UnixWare, it winds up pulling in libc.so.1 early and defining a
|
||
bunch of symbols. This means that some of the other objects in the
|
||
archive are not included in the link, which is incorrect since they
|
||
precede libc.so.1 in the archive.
|
||
|
||
Fortunately, ELF archive handling is simpler than that done by
|
||
_bfd_generic_link_add_archive_symbols, which has to allow for a.out
|
||
oddities. In ELF, if we find a symbol in the archive map, and the
|
||
symbol is currently undefined, we know that we must pull in that
|
||
object file.
|
||
|
||
Unfortunately, we do have to make multiple passes over the symbol
|
||
table until nothing further is resolved. */
|
||
|
||
static boolean
|
||
elf_link_add_archive_symbols (abfd, info)
|
||
bfd *abfd;
|
||
struct bfd_link_info *info;
|
||
{
|
||
symindex c;
|
||
boolean *defined = NULL;
|
||
boolean *included = NULL;
|
||
carsym *symdefs;
|
||
boolean loop;
|
||
|
||
if (! bfd_has_map (abfd))
|
||
{
|
||
/* An empty archive is a special case. */
|
||
if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
|
||
return true;
|
||
bfd_set_error (bfd_error_no_armap);
|
||
return false;
|
||
}
|
||
|
||
/* Keep track of all symbols we know to be already defined, and all
|
||
files we know to be already included. This is to speed up the
|
||
second and subsequent passes. */
|
||
c = bfd_ardata (abfd)->symdef_count;
|
||
if (c == 0)
|
||
return true;
|
||
defined = (boolean *) bfd_malloc (c * sizeof (boolean));
|
||
included = (boolean *) bfd_malloc (c * sizeof (boolean));
|
||
if (defined == (boolean *) NULL || included == (boolean *) NULL)
|
||
goto error_return;
|
||
memset (defined, 0, c * sizeof (boolean));
|
||
memset (included, 0, c * sizeof (boolean));
|
||
|
||
symdefs = bfd_ardata (abfd)->symdefs;
|
||
|
||
do
|
||
{
|
||
file_ptr last;
|
||
symindex i;
|
||
carsym *symdef;
|
||
carsym *symdefend;
|
||
|
||
loop = false;
|
||
last = -1;
|
||
|
||
symdef = symdefs;
|
||
symdefend = symdef + c;
|
||
for (i = 0; symdef < symdefend; symdef++, i++)
|
||
{
|
||
struct elf_link_hash_entry *h;
|
||
bfd *element;
|
||
struct bfd_link_hash_entry *undefs_tail;
|
||
symindex mark;
|
||
|
||
if (defined[i] || included[i])
|
||
continue;
|
||
if (symdef->file_offset == last)
|
||
{
|
||
included[i] = true;
|
||
continue;
|
||
}
|
||
|
||
h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
|
||
false, false, false);
|
||
if (h == (struct elf_link_hash_entry *) NULL)
|
||
continue;
|
||
if (h->root.type != bfd_link_hash_undefined)
|
||
{
|
||
if (h->root.type != bfd_link_hash_undefweak)
|
||
defined[i] = true;
|
||
continue;
|
||
}
|
||
|
||
/* We need to include this archive member. */
|
||
|
||
element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
|
||
if (element == (bfd *) NULL)
|
||
goto error_return;
|
||
|
||
if (! bfd_check_format (element, bfd_object))
|
||
goto error_return;
|
||
|
||
/* Doublecheck that we have not included this object
|
||
already--it should be impossible, but there may be
|
||
something wrong with the archive. */
|
||
if (element->archive_pass != 0)
|
||
{
|
||
bfd_set_error (bfd_error_bad_value);
|
||
goto error_return;
|
||
}
|
||
element->archive_pass = 1;
|
||
|
||
undefs_tail = info->hash->undefs_tail;
|
||
|
||
if (! (*info->callbacks->add_archive_element) (info, element,
|
||
symdef->name))
|
||
goto error_return;
|
||
if (! elf_link_add_object_symbols (element, info))
|
||
goto error_return;
|
||
|
||
/* If there are any new undefined symbols, we need to make
|
||
another pass through the archive in order to see whether
|
||
they can be defined. FIXME: This isn't perfect, because
|
||
common symbols wind up on undefs_tail and because an
|
||
undefined symbol which is defined later on in this pass
|
||
does not require another pass. This isn't a bug, but it
|
||
does make the code less efficient than it could be. */
|
||
if (undefs_tail != info->hash->undefs_tail)
|
||
loop = true;
|
||
|
||
/* Look backward to mark all symbols from this object file
|
||
which we have already seen in this pass. */
|
||
mark = i;
|
||
do
|
||
{
|
||
included[mark] = true;
|
||
if (mark == 0)
|
||
break;
|
||
--mark;
|
||
}
|
||
while (symdefs[mark].file_offset == symdef->file_offset);
|
||
|
||
/* We mark subsequent symbols from this object file as we go
|
||
on through the loop. */
|
||
last = symdef->file_offset;
|
||
}
|
||
}
|
||
while (loop);
|
||
|
||
free (defined);
|
||
free (included);
|
||
|
||
return true;
|
||
|
||
error_return:
|
||
if (defined != (boolean *) NULL)
|
||
free (defined);
|
||
if (included != (boolean *) NULL)
|
||
free (included);
|
||
return false;
|
||
}
|
||
|
||
/* Add symbols from an ELF object file to the linker hash table. */
|
||
|
||
static boolean
|
||
elf_link_add_object_symbols (abfd, info)
|
||
bfd *abfd;
|
||
struct bfd_link_info *info;
|
||
{
|
||
boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
|
||
const Elf_Internal_Sym *,
|
||
const char **, flagword *,
|
||
asection **, bfd_vma *));
|
||
boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
|
||
asection *, const Elf_Internal_Rela *));
|
||
boolean collect;
|
||
Elf_Internal_Shdr *hdr;
|
||
size_t symcount;
|
||
size_t extsymcount;
|
||
size_t extsymoff;
|
||
Elf_External_Sym *buf = NULL;
|
||
struct elf_link_hash_entry **sym_hash;
|
||
boolean dynamic;
|
||
Elf_External_Dyn *dynbuf = NULL;
|
||
struct elf_link_hash_entry *weaks;
|
||
Elf_External_Sym *esym;
|
||
Elf_External_Sym *esymend;
|
||
|
||
add_symbol_hook = get_elf_backend_data (abfd)->elf_add_symbol_hook;
|
||
collect = get_elf_backend_data (abfd)->collect;
|
||
|
||
/* As a GNU extension, any input sections which are named
|
||
.gnu.warning.SYMBOL are treated as warning symbols for the given
|
||
symbol. This differs from .gnu.warning sections, which generate
|
||
warnings when they are included in an output file. */
|
||
if (! info->shared)
|
||
{
|
||
asection *s;
|
||
|
||
for (s = abfd->sections; s != NULL; s = s->next)
|
||
{
|
||
const char *name;
|
||
|
||
name = bfd_get_section_name (abfd, s);
|
||
if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
|
||
{
|
||
char *msg;
|
||
bfd_size_type sz;
|
||
|
||
sz = bfd_section_size (abfd, s);
|
||
msg = (char *) bfd_alloc (abfd, sz);
|
||
if (msg == NULL)
|
||
goto error_return;
|
||
|
||
if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
|
||
goto error_return;
|
||
|
||
if (! (_bfd_generic_link_add_one_symbol
|
||
(info, abfd,
|
||
name + sizeof ".gnu.warning." - 1,
|
||
BSF_WARNING, s, (bfd_vma) 0, msg, false, collect,
|
||
(struct bfd_link_hash_entry **) NULL)))
|
||
goto error_return;
|
||
|
||
if (! info->relocateable)
|
||
{
|
||
/* Clobber the section size so that the warning does
|
||
not get copied into the output file. */
|
||
s->_raw_size = 0;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* A stripped shared library might only have a dynamic symbol table,
|
||
not a regular symbol table. In that case we can still go ahead
|
||
and link using the dynamic symbol table. */
|
||
if (elf_onesymtab (abfd) == 0
|
||
&& elf_dynsymtab (abfd) != 0)
|
||
{
|
||
elf_onesymtab (abfd) = elf_dynsymtab (abfd);
|
||
elf_tdata (abfd)->symtab_hdr = elf_tdata (abfd)->dynsymtab_hdr;
|
||
}
|
||
|
||
hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
symcount = hdr->sh_size / sizeof (Elf_External_Sym);
|
||
|
||
/* The sh_info field of the symtab header tells us where the
|
||
external symbols start. We don't care about the local symbols at
|
||
this point. */
|
||
if (elf_bad_symtab (abfd))
|
||
{
|
||
extsymcount = symcount;
|
||
extsymoff = 0;
|
||
}
|
||
else
|
||
{
|
||
extsymcount = symcount - hdr->sh_info;
|
||
extsymoff = hdr->sh_info;
|
||
}
|
||
|
||
buf = ((Elf_External_Sym *)
|
||
bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
|
||
if (buf == NULL && extsymcount != 0)
|
||
goto error_return;
|
||
|
||
/* We store a pointer to the hash table entry for each external
|
||
symbol. */
|
||
sym_hash = ((struct elf_link_hash_entry **)
|
||
bfd_alloc (abfd,
|
||
extsymcount * sizeof (struct elf_link_hash_entry *)));
|
||
if (sym_hash == NULL)
|
||
goto error_return;
|
||
elf_sym_hashes (abfd) = sym_hash;
|
||
|
||
if (elf_elfheader (abfd)->e_type != ET_DYN)
|
||
{
|
||
dynamic = false;
|
||
|
||
/* If we are creating a shared library, create all the dynamic
|
||
sections immediately. We need to attach them to something,
|
||
so we attach them to this BFD, provided it is the right
|
||
format. FIXME: If there are no input BFD's of the same
|
||
format as the output, we can't make a shared library. */
|
||
if (info->shared
|
||
&& ! elf_hash_table (info)->dynamic_sections_created
|
||
&& abfd->xvec == info->hash->creator)
|
||
{
|
||
if (! elf_link_create_dynamic_sections (abfd, info))
|
||
goto error_return;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
asection *s;
|
||
boolean add_needed;
|
||
const char *name;
|
||
bfd_size_type oldsize;
|
||
bfd_size_type strindex;
|
||
|
||
dynamic = true;
|
||
|
||
/* You can't use -r against a dynamic object. Also, there's no
|
||
hope of using a dynamic object which does not exactly match
|
||
the format of the output file. */
|
||
if (info->relocateable
|
||
|| info->hash->creator != abfd->xvec)
|
||
{
|
||
bfd_set_error (bfd_error_invalid_operation);
|
||
goto error_return;
|
||
}
|
||
|
||
/* Find the name to use in a DT_NEEDED entry that refers to this
|
||
object. If the object has a DT_SONAME entry, we use it.
|
||
Otherwise, if the generic linker stuck something in
|
||
elf_dt_name, we use that. Otherwise, we just use the file
|
||
name. If the generic linker put a null string into
|
||
elf_dt_name, we don't make a DT_NEEDED entry at all, even if
|
||
there is a DT_SONAME entry. */
|
||
add_needed = true;
|
||
name = bfd_get_filename (abfd);
|
||
if (elf_dt_name (abfd) != NULL)
|
||
{
|
||
name = elf_dt_name (abfd);
|
||
if (*name == '\0')
|
||
add_needed = false;
|
||
}
|
||
s = bfd_get_section_by_name (abfd, ".dynamic");
|
||
if (s != NULL)
|
||
{
|
||
Elf_External_Dyn *extdyn;
|
||
Elf_External_Dyn *extdynend;
|
||
int elfsec;
|
||
unsigned long link;
|
||
|
||
dynbuf = (Elf_External_Dyn *) bfd_malloc ((size_t) s->_raw_size);
|
||
if (dynbuf == NULL)
|
||
goto error_return;
|
||
|
||
if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
|
||
(file_ptr) 0, s->_raw_size))
|
||
goto error_return;
|
||
|
||
elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
|
||
if (elfsec == -1)
|
||
goto error_return;
|
||
link = elf_elfsections (abfd)[elfsec]->sh_link;
|
||
|
||
extdyn = dynbuf;
|
||
extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
|
||
for (; extdyn < extdynend; extdyn++)
|
||
{
|
||
Elf_Internal_Dyn dyn;
|
||
|
||
elf_swap_dyn_in (abfd, extdyn, &dyn);
|
||
if (dyn.d_tag == DT_SONAME)
|
||
{
|
||
name = bfd_elf_string_from_elf_section (abfd, link,
|
||
dyn.d_un.d_val);
|
||
if (name == NULL)
|
||
goto error_return;
|
||
}
|
||
if (dyn.d_tag == DT_NEEDED)
|
||
{
|
||
struct bfd_link_needed_list *n, **pn;
|
||
char *fnm, *anm;
|
||
|
||
n = ((struct bfd_link_needed_list *)
|
||
bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
|
||
fnm = bfd_elf_string_from_elf_section (abfd, link,
|
||
dyn.d_un.d_val);
|
||
if (n == NULL || fnm == NULL)
|
||
goto error_return;
|
||
anm = bfd_alloc (abfd, strlen (fnm) + 1);
|
||
if (anm == NULL)
|
||
goto error_return;
|
||
strcpy (anm, fnm);
|
||
n->name = anm;
|
||
n->by = abfd;
|
||
n->next = NULL;
|
||
for (pn = &elf_hash_table (info)->needed;
|
||
*pn != NULL;
|
||
pn = &(*pn)->next)
|
||
;
|
||
*pn = n;
|
||
}
|
||
}
|
||
|
||
free (dynbuf);
|
||
dynbuf = NULL;
|
||
}
|
||
|
||
/* We do not want to include any of the sections in a dynamic
|
||
object in the output file. We hack by simply clobbering the
|
||
list of sections in the BFD. This could be handled more
|
||
cleanly by, say, a new section flag; the existing
|
||
SEC_NEVER_LOAD flag is not the one we want, because that one
|
||
still implies that the section takes up space in the output
|
||
file. */
|
||
abfd->sections = NULL;
|
||
abfd->section_count = 0;
|
||
|
||
/* If this is the first dynamic object found in the link, create
|
||
the special sections required for dynamic linking. */
|
||
if (! elf_hash_table (info)->dynamic_sections_created)
|
||
{
|
||
if (! elf_link_create_dynamic_sections (abfd, info))
|
||
goto error_return;
|
||
}
|
||
|
||
if (add_needed)
|
||
{
|
||
/* Add a DT_NEEDED entry for this dynamic object. */
|
||
oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
|
||
strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, name,
|
||
true, false);
|
||
if (strindex == (bfd_size_type) -1)
|
||
goto error_return;
|
||
|
||
if (oldsize == _bfd_stringtab_size (elf_hash_table (info)->dynstr))
|
||
{
|
||
asection *sdyn;
|
||
Elf_External_Dyn *dyncon, *dynconend;
|
||
|
||
/* The hash table size did not change, which means that
|
||
the dynamic object name was already entered. If we
|
||
have already included this dynamic object in the
|
||
link, just ignore it. There is no reason to include
|
||
a particular dynamic object more than once. */
|
||
sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
|
||
".dynamic");
|
||
BFD_ASSERT (sdyn != NULL);
|
||
|
||
dyncon = (Elf_External_Dyn *) sdyn->contents;
|
||
dynconend = (Elf_External_Dyn *) (sdyn->contents +
|
||
sdyn->_raw_size);
|
||
for (; dyncon < dynconend; dyncon++)
|
||
{
|
||
Elf_Internal_Dyn dyn;
|
||
|
||
elf_swap_dyn_in (elf_hash_table (info)->dynobj, dyncon,
|
||
&dyn);
|
||
if (dyn.d_tag == DT_NEEDED
|
||
&& dyn.d_un.d_val == strindex)
|
||
{
|
||
if (buf != NULL)
|
||
free (buf);
|
||
return true;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
|
||
goto error_return;
|
||
}
|
||
|
||
/* Save the SONAME, if there is one, because sometimes the
|
||
linker emulation code will need to know it. */
|
||
if (*name == '\0')
|
||
name = bfd_get_filename (abfd);
|
||
elf_dt_name (abfd) = name;
|
||
}
|
||
|
||
if (bfd_seek (abfd,
|
||
hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
|
||
SEEK_SET) != 0
|
||
|| (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
|
||
!= extsymcount * sizeof (Elf_External_Sym)))
|
||
goto error_return;
|
||
|
||
weaks = NULL;
|
||
|
||
esymend = buf + extsymcount;
|
||
for (esym = buf; esym < esymend; esym++, sym_hash++)
|
||
{
|
||
Elf_Internal_Sym sym;
|
||
int bind;
|
||
bfd_vma value;
|
||
asection *sec;
|
||
flagword flags;
|
||
const char *name;
|
||
struct elf_link_hash_entry *h;
|
||
boolean definition;
|
||
boolean size_change_ok, type_change_ok;
|
||
boolean new_weakdef;
|
||
|
||
elf_swap_symbol_in (abfd, esym, &sym);
|
||
|
||
flags = BSF_NO_FLAGS;
|
||
sec = NULL;
|
||
value = sym.st_value;
|
||
*sym_hash = NULL;
|
||
|
||
bind = ELF_ST_BIND (sym.st_info);
|
||
if (bind == STB_LOCAL)
|
||
{
|
||
/* This should be impossible, since ELF requires that all
|
||
global symbols follow all local symbols, and that sh_info
|
||
point to the first global symbol. Unfortunatealy, Irix 5
|
||
screws this up. */
|
||
continue;
|
||
}
|
||
else if (bind == STB_GLOBAL)
|
||
{
|
||
if (sym.st_shndx != SHN_UNDEF
|
||
&& sym.st_shndx != SHN_COMMON)
|
||
flags = BSF_GLOBAL;
|
||
else
|
||
flags = 0;
|
||
}
|
||
else if (bind == STB_WEAK)
|
||
flags = BSF_WEAK;
|
||
else
|
||
{
|
||
/* Leave it up to the processor backend. */
|
||
}
|
||
|
||
if (sym.st_shndx == SHN_UNDEF)
|
||
sec = bfd_und_section_ptr;
|
||
else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE)
|
||
{
|
||
sec = section_from_elf_index (abfd, sym.st_shndx);
|
||
if (sec != NULL)
|
||
value -= sec->vma;
|
||
else
|
||
sec = bfd_abs_section_ptr;
|
||
}
|
||
else if (sym.st_shndx == SHN_ABS)
|
||
sec = bfd_abs_section_ptr;
|
||
else if (sym.st_shndx == SHN_COMMON)
|
||
{
|
||
sec = bfd_com_section_ptr;
|
||
/* What ELF calls the size we call the value. What ELF
|
||
calls the value we call the alignment. */
|
||
value = sym.st_size;
|
||
}
|
||
else
|
||
{
|
||
/* Leave it up to the processor backend. */
|
||
}
|
||
|
||
name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
|
||
if (name == (const char *) NULL)
|
||
goto error_return;
|
||
|
||
if (add_symbol_hook)
|
||
{
|
||
if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec,
|
||
&value))
|
||
goto error_return;
|
||
|
||
/* The hook function sets the name to NULL if this symbol
|
||
should be skipped for some reason. */
|
||
if (name == (const char *) NULL)
|
||
continue;
|
||
}
|
||
|
||
/* Sanity check that all possibilities were handled. */
|
||
if (sec == (asection *) NULL)
|
||
{
|
||
bfd_set_error (bfd_error_bad_value);
|
||
goto error_return;
|
||
}
|
||
|
||
if (bfd_is_und_section (sec)
|
||
|| bfd_is_com_section (sec))
|
||
definition = false;
|
||
else
|
||
definition = true;
|
||
|
||
size_change_ok = false;
|
||
type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
|
||
if (info->hash->creator->flavour == bfd_target_elf_flavour)
|
||
{
|
||
/* We need to look up the symbol now in order to get some of
|
||
the dynamic object handling right. We pass the hash
|
||
table entry in to _bfd_generic_link_add_one_symbol so
|
||
that it does not have to look it up again. */
|
||
if (! bfd_is_und_section (sec))
|
||
h = elf_link_hash_lookup (elf_hash_table (info), name,
|
||
true, false, false);
|
||
else
|
||
h = ((struct elf_link_hash_entry *)
|
||
bfd_wrapped_link_hash_lookup (abfd, info, name, true,
|
||
false, false));
|
||
if (h == NULL)
|
||
goto error_return;
|
||
*sym_hash = h;
|
||
|
||
if (h->root.type == bfd_link_hash_new)
|
||
h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
|
||
|
||
while (h->root.type == bfd_link_hash_indirect
|
||
|| h->root.type == bfd_link_hash_warning)
|
||
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
||
|
||
/* It's OK to change the type if it used to be a weak
|
||
definition. */
|
||
if (h->root.type == bfd_link_hash_defweak
|
||
|| h->root.type == bfd_link_hash_undefweak)
|
||
type_change_ok = true;
|
||
|
||
/* It's OK to change the size if it used to be a weak
|
||
definition, or if it used to be undefined, or if we will
|
||
be overriding an old definition. */
|
||
if (type_change_ok
|
||
|| h->root.type == bfd_link_hash_undefined)
|
||
size_change_ok = true;
|
||
|
||
/* If we are looking at a dynamic object, and this is a
|
||
definition, we need to see if it has already been defined
|
||
by some other object. If it has, we want to use the
|
||
existing definition, and we do not want to report a
|
||
multiple symbol definition error; we do this by
|
||
clobbering sec to be bfd_und_section_ptr. */
|
||
if (dynamic && definition)
|
||
{
|
||
if (h->root.type == bfd_link_hash_defined
|
||
|| h->root.type == bfd_link_hash_defweak
|
||
|| (h->root.type == bfd_link_hash_common
|
||
&& bind == STB_WEAK))
|
||
{
|
||
sec = bfd_und_section_ptr;
|
||
definition = false;
|
||
size_change_ok = true;
|
||
}
|
||
}
|
||
|
||
/* Similarly, if we are not looking at a dynamic object, and
|
||
we have a definition, we want to override any definition
|
||
we may have from a dynamic object. Symbols from regular
|
||
files always take precedence over symbols from dynamic
|
||
objects, even if they are defined after the dynamic
|
||
object in the link. */
|
||
if (! dynamic
|
||
&& definition
|
||
&& (h->root.type == bfd_link_hash_defined
|
||
|| h->root.type == bfd_link_hash_defweak)
|
||
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
|
||
&& (bfd_get_flavour (h->root.u.def.section->owner)
|
||
== bfd_target_elf_flavour)
|
||
&& (elf_elfheader (h->root.u.def.section->owner)->e_type
|
||
== ET_DYN))
|
||
{
|
||
/* Change the hash table entry to undefined, and let
|
||
_bfd_generic_link_add_one_symbol do the right thing
|
||
with the new definition. */
|
||
h->root.type = bfd_link_hash_undefined;
|
||
h->root.u.undef.abfd = h->root.u.def.section->owner;
|
||
size_change_ok = true;
|
||
}
|
||
}
|
||
|
||
if (! (_bfd_generic_link_add_one_symbol
|
||
(info, abfd, name, flags, sec, value, (const char *) NULL,
|
||
false, collect, (struct bfd_link_hash_entry **) sym_hash)))
|
||
goto error_return;
|
||
|
||
h = *sym_hash;
|
||
while (h->root.type == bfd_link_hash_indirect
|
||
|| h->root.type == bfd_link_hash_warning)
|
||
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
||
*sym_hash = h;
|
||
|
||
new_weakdef = false;
|
||
if (dynamic
|
||
&& definition
|
||
&& (flags & BSF_WEAK) != 0
|
||
&& ELF_ST_TYPE (sym.st_info) != STT_FUNC
|
||
&& info->hash->creator->flavour == bfd_target_elf_flavour
|
||
&& h->weakdef == NULL)
|
||
{
|
||
/* Keep a list of all weak defined non function symbols from
|
||
a dynamic object, using the weakdef field. Later in this
|
||
function we will set the weakdef field to the correct
|
||
value. We only put non-function symbols from dynamic
|
||
objects on this list, because that happens to be the only
|
||
time we need to know the normal symbol corresponding to a
|
||
weak symbol, and the information is time consuming to
|
||
figure out. If the weakdef field is not already NULL,
|
||
then this symbol was already defined by some previous
|
||
dynamic object, and we will be using that previous
|
||
definition anyhow. */
|
||
|
||
h->weakdef = weaks;
|
||
weaks = h;
|
||
new_weakdef = true;
|
||
}
|
||
|
||
/* Get the alignment of a common symbol. */
|
||
if (sym.st_shndx == SHN_COMMON
|
||
&& h->root.type == bfd_link_hash_common)
|
||
h->root.u.c.p->alignment_power = bfd_log2 (sym.st_value);
|
||
|
||
if (info->hash->creator->flavour == bfd_target_elf_flavour)
|
||
{
|
||
int old_flags;
|
||
boolean dynsym;
|
||
int new_flag;
|
||
|
||
/* Remember the symbol size and type. */
|
||
if (sym.st_size != 0
|
||
&& (definition || h->size == 0))
|
||
{
|
||
if (h->size != 0 && h->size != sym.st_size && ! size_change_ok)
|
||
(*_bfd_error_handler)
|
||
("Warning: size of symbol `%s' changed from %lu to %lu in %s",
|
||
name, (unsigned long) h->size, (unsigned long) sym.st_size,
|
||
bfd_get_filename (abfd));
|
||
|
||
h->size = sym.st_size;
|
||
}
|
||
if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE
|
||
&& (definition || h->type == STT_NOTYPE))
|
||
{
|
||
if (h->type != STT_NOTYPE
|
||
&& h->type != ELF_ST_TYPE (sym.st_info)
|
||
&& ! type_change_ok)
|
||
(*_bfd_error_handler)
|
||
("Warning: type of symbol `%s' changed from %d to %d in %s",
|
||
name, h->type, ELF_ST_TYPE (sym.st_info),
|
||
bfd_get_filename (abfd));
|
||
|
||
h->type = ELF_ST_TYPE (sym.st_info);
|
||
}
|
||
|
||
/* Set a flag in the hash table entry indicating the type of
|
||
reference or definition we just found. Keep a count of
|
||
the number of dynamic symbols we find. A dynamic symbol
|
||
is one which is referenced or defined by both a regular
|
||
object and a shared object, or one which is referenced or
|
||
defined by more than one shared object. */
|
||
old_flags = h->elf_link_hash_flags;
|
||
dynsym = false;
|
||
if (! dynamic)
|
||
{
|
||
if (! definition)
|
||
new_flag = ELF_LINK_HASH_REF_REGULAR;
|
||
else
|
||
new_flag = ELF_LINK_HASH_DEF_REGULAR;
|
||
if (info->shared
|
||
|| (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
|
||
| ELF_LINK_HASH_REF_DYNAMIC)) != 0)
|
||
dynsym = true;
|
||
}
|
||
else
|
||
{
|
||
if (! definition)
|
||
new_flag = ELF_LINK_HASH_REF_DYNAMIC;
|
||
else
|
||
new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
|
||
if ((old_flags & new_flag) != 0
|
||
|| (old_flags & (ELF_LINK_HASH_DEF_REGULAR
|
||
| ELF_LINK_HASH_REF_REGULAR)) != 0
|
||
|| (h->weakdef != NULL
|
||
&& (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
|
||
| ELF_LINK_HASH_REF_DYNAMIC)) != 0))
|
||
dynsym = true;
|
||
}
|
||
|
||
h->elf_link_hash_flags |= new_flag;
|
||
if (dynsym && h->dynindx == -1)
|
||
{
|
||
if (! _bfd_elf_link_record_dynamic_symbol (info, h))
|
||
goto error_return;
|
||
if (h->weakdef != NULL
|
||
&& ! new_weakdef
|
||
&& h->weakdef->dynindx == -1)
|
||
{
|
||
if (! _bfd_elf_link_record_dynamic_symbol (info,
|
||
h->weakdef))
|
||
goto error_return;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Now set the weakdefs field correctly for all the weak defined
|
||
symbols we found. The only way to do this is to search all the
|
||
symbols. Since we only need the information for non functions in
|
||
dynamic objects, that's the only time we actually put anything on
|
||
the list WEAKS. We need this information so that if a regular
|
||
object refers to a symbol defined weakly in a dynamic object, the
|
||
real symbol in the dynamic object is also put in the dynamic
|
||
symbols; we also must arrange for both symbols to point to the
|
||
same memory location. We could handle the general case of symbol
|
||
aliasing, but a general symbol alias can only be generated in
|
||
assembler code, handling it correctly would be very time
|
||
consuming, and other ELF linkers don't handle general aliasing
|
||
either. */
|
||
while (weaks != NULL)
|
||
{
|
||
struct elf_link_hash_entry *hlook;
|
||
asection *slook;
|
||
bfd_vma vlook;
|
||
struct elf_link_hash_entry **hpp;
|
||
struct elf_link_hash_entry **hppend;
|
||
|
||
hlook = weaks;
|
||
weaks = hlook->weakdef;
|
||
hlook->weakdef = NULL;
|
||
|
||
BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
|
||
|| hlook->root.type == bfd_link_hash_defweak
|
||
|| hlook->root.type == bfd_link_hash_common
|
||
|| hlook->root.type == bfd_link_hash_indirect);
|
||
slook = hlook->root.u.def.section;
|
||
vlook = hlook->root.u.def.value;
|
||
|
||
hpp = elf_sym_hashes (abfd);
|
||
hppend = hpp + extsymcount;
|
||
for (; hpp < hppend; hpp++)
|
||
{
|
||
struct elf_link_hash_entry *h;
|
||
|
||
h = *hpp;
|
||
if (h != NULL && h != hlook
|
||
&& h->root.type == bfd_link_hash_defined
|
||
&& h->root.u.def.section == slook
|
||
&& h->root.u.def.value == vlook)
|
||
{
|
||
hlook->weakdef = h;
|
||
|
||
/* If the weak definition is in the list of dynamic
|
||
symbols, make sure the real definition is put there
|
||
as well. */
|
||
if (hlook->dynindx != -1
|
||
&& h->dynindx == -1)
|
||
{
|
||
if (! _bfd_elf_link_record_dynamic_symbol (info, h))
|
||
goto error_return;
|
||
}
|
||
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (buf != NULL)
|
||
{
|
||
free (buf);
|
||
buf = NULL;
|
||
}
|
||
|
||
/* If this object is the same format as the output object, and it is
|
||
not a shared library, then let the backend look through the
|
||
relocs.
|
||
|
||
This is required to build global offset table entries and to
|
||
arrange for dynamic relocs. It is not required for the
|
||
particular common case of linking non PIC code, even when linking
|
||
against shared libraries, but unfortunately there is no way of
|
||
knowing whether an object file has been compiled PIC or not.
|
||
Looking through the relocs is not particularly time consuming.
|
||
The problem is that we must either (1) keep the relocs in memory,
|
||
which causes the linker to require additional runtime memory or
|
||
(2) read the relocs twice from the input file, which wastes time.
|
||
This would be a good case for using mmap.
|
||
|
||
I have no idea how to handle linking PIC code into a file of a
|
||
different format. It probably can't be done. */
|
||
check_relocs = get_elf_backend_data (abfd)->check_relocs;
|
||
if (! dynamic
|
||
&& abfd->xvec == info->hash->creator
|
||
&& check_relocs != NULL)
|
||
{
|
||
asection *o;
|
||
|
||
for (o = abfd->sections; o != NULL; o = o->next)
|
||
{
|
||
Elf_Internal_Rela *internal_relocs;
|
||
boolean ok;
|
||
|
||
if ((o->flags & SEC_RELOC) == 0
|
||
|| o->reloc_count == 0)
|
||
continue;
|
||
|
||
/* I believe we can ignore the relocs for any section which
|
||
does not form part of the final process image, such as a
|
||
debugging section. */
|
||
if ((o->flags & SEC_ALLOC) == 0)
|
||
continue;
|
||
|
||
internal_relocs = elf_link_read_relocs (abfd, o, (PTR) NULL,
|
||
(Elf_Internal_Rela *) NULL,
|
||
info->keep_memory);
|
||
if (internal_relocs == NULL)
|
||
goto error_return;
|
||
|
||
ok = (*check_relocs) (abfd, info, o, internal_relocs);
|
||
|
||
if (! info->keep_memory)
|
||
free (internal_relocs);
|
||
|
||
if (! ok)
|
||
goto error_return;
|
||
}
|
||
}
|
||
|
||
/* If this is a non-traditional, non-relocateable link, try to
|
||
optimize the handling of the .stab/.stabstr sections. */
|
||
if (! dynamic
|
||
&& ! info->relocateable
|
||
&& ! info->traditional_format
|
||
&& info->hash->creator->flavour == bfd_target_elf_flavour
|
||
&& (info->strip != strip_all && info->strip != strip_debugger))
|
||
{
|
||
asection *stab, *stabstr;
|
||
|
||
stab = bfd_get_section_by_name (abfd, ".stab");
|
||
if (stab != NULL)
|
||
{
|
||
stabstr = bfd_get_section_by_name (abfd, ".stabstr");
|
||
|
||
if (stabstr != NULL)
|
||
{
|
||
struct bfd_elf_section_data *secdata;
|
||
|
||
secdata = elf_section_data (stab);
|
||
if (! _bfd_link_section_stabs (abfd,
|
||
&elf_hash_table (info)->stab_info,
|
||
stab, stabstr,
|
||
&secdata->stab_info))
|
||
goto error_return;
|
||
}
|
||
}
|
||
}
|
||
|
||
return true;
|
||
|
||
error_return:
|
||
if (buf != NULL)
|
||
free (buf);
|
||
if (dynbuf != NULL)
|
||
free (dynbuf);
|
||
return false;
|
||
}
|
||
|
||
/* Create some sections which will be filled in with dynamic linking
|
||
information. ABFD is an input file which requires dynamic sections
|
||
to be created. The dynamic sections take up virtual memory space
|
||
when the final executable is run, so we need to create them before
|
||
addresses are assigned to the output sections. We work out the
|
||
actual contents and size of these sections later. */
|
||
|
||
boolean
|
||
elf_link_create_dynamic_sections (abfd, info)
|
||
bfd *abfd;
|
||
struct bfd_link_info *info;
|
||
{
|
||
flagword flags;
|
||
register asection *s;
|
||
struct elf_link_hash_entry *h;
|
||
struct elf_backend_data *bed;
|
||
|
||
if (elf_hash_table (info)->dynamic_sections_created)
|
||
return true;
|
||
|
||
/* Make sure that all dynamic sections use the same input BFD. */
|
||
if (elf_hash_table (info)->dynobj == NULL)
|
||
elf_hash_table (info)->dynobj = abfd;
|
||
else
|
||
abfd = elf_hash_table (info)->dynobj;
|
||
|
||
/* Note that we set the SEC_IN_MEMORY flag for all of these
|
||
sections. */
|
||
flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY;
|
||
|
||
/* A dynamically linked executable has a .interp section, but a
|
||
shared library does not. */
|
||
if (! info->shared)
|
||
{
|
||
s = bfd_make_section (abfd, ".interp");
|
||
if (s == NULL
|
||
|| ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
|
||
return false;
|
||
}
|
||
|
||
s = bfd_make_section (abfd, ".dynsym");
|
||
if (s == NULL
|
||
|| ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
|
||
|| ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
|
||
return false;
|
||
|
||
s = bfd_make_section (abfd, ".dynstr");
|
||
if (s == NULL
|
||
|| ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
|
||
return false;
|
||
|
||
/* Create a strtab to hold the dynamic symbol names. */
|
||
if (elf_hash_table (info)->dynstr == NULL)
|
||
{
|
||
elf_hash_table (info)->dynstr = elf_stringtab_init ();
|
||
if (elf_hash_table (info)->dynstr == NULL)
|
||
return false;
|
||
}
|
||
|
||
s = bfd_make_section (abfd, ".dynamic");
|
||
if (s == NULL
|
||
|| ! bfd_set_section_flags (abfd, s, flags)
|
||
|| ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
|
||
return false;
|
||
|
||
/* The special symbol _DYNAMIC is always set to the start of the
|
||
.dynamic section. This call occurs before we have processed the
|
||
symbols for any dynamic object, so we don't have to worry about
|
||
overriding a dynamic definition. We could set _DYNAMIC in a
|
||
linker script, but we only want to define it if we are, in fact,
|
||
creating a .dynamic section. We don't want to define it if there
|
||
is no .dynamic section, since on some ELF platforms the start up
|
||
code examines it to decide how to initialize the process. */
|
||
h = NULL;
|
||
if (! (_bfd_generic_link_add_one_symbol
|
||
(info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
|
||
(const char *) NULL, false, get_elf_backend_data (abfd)->collect,
|
||
(struct bfd_link_hash_entry **) &h)))
|
||
return false;
|
||
h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
|
||
h->type = STT_OBJECT;
|
||
|
||
if (info->shared
|
||
&& ! _bfd_elf_link_record_dynamic_symbol (info, h))
|
||
return false;
|
||
|
||
s = bfd_make_section (abfd, ".hash");
|
||
if (s == NULL
|
||
|| ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
|
||
|| ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
|
||
return false;
|
||
|
||
/* Let the backend create the rest of the sections. This lets the
|
||
backend set the right flags. The backend will normally create
|
||
the .got and .plt sections. */
|
||
bed = get_elf_backend_data (abfd);
|
||
if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
|
||
return false;
|
||
|
||
elf_hash_table (info)->dynamic_sections_created = true;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Add an entry to the .dynamic table. */
|
||
|
||
boolean
|
||
elf_add_dynamic_entry (info, tag, val)
|
||
struct bfd_link_info *info;
|
||
bfd_vma tag;
|
||
bfd_vma val;
|
||
{
|
||
Elf_Internal_Dyn dyn;
|
||
bfd *dynobj;
|
||
asection *s;
|
||
size_t newsize;
|
||
bfd_byte *newcontents;
|
||
|
||
dynobj = elf_hash_table (info)->dynobj;
|
||
|
||
s = bfd_get_section_by_name (dynobj, ".dynamic");
|
||
BFD_ASSERT (s != NULL);
|
||
|
||
newsize = s->_raw_size + sizeof (Elf_External_Dyn);
|
||
newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
|
||
if (newcontents == NULL)
|
||
return false;
|
||
|
||
dyn.d_tag = tag;
|
||
dyn.d_un.d_val = val;
|
||
elf_swap_dyn_out (dynobj, &dyn,
|
||
(Elf_External_Dyn *) (newcontents + s->_raw_size));
|
||
|
||
s->_raw_size = newsize;
|
||
s->contents = newcontents;
|
||
|
||
return true;
|
||
}
|
||
|
||
|
||
/* Read and swap the relocs for a section. They may have been cached.
|
||
If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are not NULL,
|
||
they are used as buffers to read into. They are known to be large
|
||
enough. If the INTERNAL_RELOCS relocs argument is NULL, the return
|
||
value is allocated using either malloc or bfd_alloc, according to
|
||
the KEEP_MEMORY argument. */
|
||
|
||
static Elf_Internal_Rela *
|
||
elf_link_read_relocs (abfd, o, external_relocs, internal_relocs, keep_memory)
|
||
bfd *abfd;
|
||
asection *o;
|
||
PTR external_relocs;
|
||
Elf_Internal_Rela *internal_relocs;
|
||
boolean keep_memory;
|
||
{
|
||
Elf_Internal_Shdr *rel_hdr;
|
||
PTR alloc1 = NULL;
|
||
Elf_Internal_Rela *alloc2 = NULL;
|
||
|
||
if (elf_section_data (o)->relocs != NULL)
|
||
return elf_section_data (o)->relocs;
|
||
|
||
if (o->reloc_count == 0)
|
||
return NULL;
|
||
|
||
rel_hdr = &elf_section_data (o)->rel_hdr;
|
||
|
||
if (internal_relocs == NULL)
|
||
{
|
||
size_t size;
|
||
|
||
size = o->reloc_count * sizeof (Elf_Internal_Rela);
|
||
if (keep_memory)
|
||
internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
|
||
else
|
||
internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
|
||
if (internal_relocs == NULL)
|
||
goto error_return;
|
||
}
|
||
|
||
if (external_relocs == NULL)
|
||
{
|
||
alloc1 = (PTR) bfd_malloc ((size_t) rel_hdr->sh_size);
|
||
if (alloc1 == NULL)
|
||
goto error_return;
|
||
external_relocs = alloc1;
|
||
}
|
||
|
||
if ((bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0)
|
||
|| (bfd_read (external_relocs, 1, rel_hdr->sh_size, abfd)
|
||
!= rel_hdr->sh_size))
|
||
goto error_return;
|
||
|
||
/* Swap in the relocs. For convenience, we always produce an
|
||
Elf_Internal_Rela array; if the relocs are Rel, we set the addend
|
||
to 0. */
|
||
if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
|
||
{
|
||
Elf_External_Rel *erel;
|
||
Elf_External_Rel *erelend;
|
||
Elf_Internal_Rela *irela;
|
||
|
||
erel = (Elf_External_Rel *) external_relocs;
|
||
erelend = erel + o->reloc_count;
|
||
irela = internal_relocs;
|
||
for (; erel < erelend; erel++, irela++)
|
||
{
|
||
Elf_Internal_Rel irel;
|
||
|
||
elf_swap_reloc_in (abfd, erel, &irel);
|
||
irela->r_offset = irel.r_offset;
|
||
irela->r_info = irel.r_info;
|
||
irela->r_addend = 0;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
Elf_External_Rela *erela;
|
||
Elf_External_Rela *erelaend;
|
||
Elf_Internal_Rela *irela;
|
||
|
||
BFD_ASSERT (rel_hdr->sh_entsize == sizeof (Elf_External_Rela));
|
||
|
||
erela = (Elf_External_Rela *) external_relocs;
|
||
erelaend = erela + o->reloc_count;
|
||
irela = internal_relocs;
|
||
for (; erela < erelaend; erela++, irela++)
|
||
elf_swap_reloca_in (abfd, erela, irela);
|
||
}
|
||
|
||
/* Cache the results for next time, if we can. */
|
||
if (keep_memory)
|
||
elf_section_data (o)->relocs = internal_relocs;
|
||
|
||
if (alloc1 != NULL)
|
||
free (alloc1);
|
||
|
||
/* Don't free alloc2, since if it was allocated we are passing it
|
||
back (under the name of internal_relocs). */
|
||
|
||
return internal_relocs;
|
||
|
||
error_return:
|
||
if (alloc1 != NULL)
|
||
free (alloc1);
|
||
if (alloc2 != NULL)
|
||
free (alloc2);
|
||
return NULL;
|
||
}
|
||
|
||
|
||
/* Record an assignment to a symbol made by a linker script. We need
|
||
this in case some dynamic object refers to this symbol. */
|
||
|
||
/*ARGSUSED*/
|
||
boolean
|
||
NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
|
||
bfd *output_bfd;
|
||
struct bfd_link_info *info;
|
||
const char *name;
|
||
boolean provide;
|
||
{
|
||
struct elf_link_hash_entry *h;
|
||
|
||
if (info->hash->creator->flavour != bfd_target_elf_flavour)
|
||
return true;
|
||
|
||
h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
|
||
if (h == NULL)
|
||
return false;
|
||
|
||
if (h->root.type == bfd_link_hash_new)
|
||
h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
|
||
|
||
/* If this symbol is being provided by the linker script, and it is
|
||
currently defined by a dynamic object, but not by a regular
|
||
object, then mark it as undefined so that the generic linker will
|
||
force the correct value. */
|
||
if (provide
|
||
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
|
||
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
|
||
h->root.type = bfd_link_hash_undefined;
|
||
|
||
h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
|
||
h->type = STT_OBJECT;
|
||
|
||
if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
|
||
| ELF_LINK_HASH_REF_DYNAMIC)) != 0
|
||
|| info->shared)
|
||
&& h->dynindx == -1)
|
||
{
|
||
if (! _bfd_elf_link_record_dynamic_symbol (info, h))
|
||
return false;
|
||
|
||
/* If this is a weak defined symbol, and we know a corresponding
|
||
real symbol from the same dynamic object, make sure the real
|
||
symbol is also made into a dynamic symbol. */
|
||
if (h->weakdef != NULL
|
||
&& h->weakdef->dynindx == -1)
|
||
{
|
||
if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
|
||
return false;
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
|
||
/* Array used to determine the number of hash table buckets to use
|
||
based on the number of symbols there are. If there are fewer than
|
||
3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
|
||
fewer than 37 we use 17 buckets, and so forth. We never use more
|
||
than 521 buckets. */
|
||
|
||
static const size_t elf_buckets[] =
|
||
{
|
||
1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 0
|
||
};
|
||
|
||
/* Set up the sizes and contents of the ELF dynamic sections. This is
|
||
called by the ELF linker emulation before_allocation routine. We
|
||
must set the sizes of the sections before the linker sets the
|
||
addresses of the various sections. */
|
||
|
||
boolean
|
||
NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
|
||
export_dynamic, info, sinterpptr)
|
||
bfd *output_bfd;
|
||
const char *soname;
|
||
const char *rpath;
|
||
boolean export_dynamic;
|
||
struct bfd_link_info *info;
|
||
asection **sinterpptr;
|
||
{
|
||
bfd *dynobj;
|
||
struct elf_backend_data *bed;
|
||
|
||
*sinterpptr = NULL;
|
||
|
||
if (info->hash->creator->flavour != bfd_target_elf_flavour)
|
||
return true;
|
||
|
||
dynobj = elf_hash_table (info)->dynobj;
|
||
|
||
/* If there were no dynamic objects in the link, there is nothing to
|
||
do here. */
|
||
if (dynobj == NULL)
|
||
return true;
|
||
|
||
/* If we are supposed to export all symbols into the dynamic symbol
|
||
table (this is not the normal case), then do so. */
|
||
if (export_dynamic)
|
||
{
|
||
struct elf_info_failed eif;
|
||
|
||
eif.failed = false;
|
||
eif.info = info;
|
||
elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
|
||
(PTR) &eif);
|
||
if (eif.failed)
|
||
return false;
|
||
}
|
||
|
||
if (elf_hash_table (info)->dynamic_sections_created)
|
||
{
|
||
struct elf_info_failed eif;
|
||
struct elf_link_hash_entry *h;
|
||
bfd_size_type strsize;
|
||
|
||
*sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
|
||
BFD_ASSERT (*sinterpptr != NULL || info->shared);
|
||
|
||
if (soname != NULL)
|
||
{
|
||
bfd_size_type indx;
|
||
|
||
indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, soname,
|
||
true, true);
|
||
if (indx == (bfd_size_type) -1
|
||
|| ! elf_add_dynamic_entry (info, DT_SONAME, indx))
|
||
return false;
|
||
}
|
||
|
||
if (info->symbolic)
|
||
{
|
||
if (! elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
|
||
return false;
|
||
}
|
||
|
||
if (rpath != NULL)
|
||
{
|
||
bfd_size_type indx;
|
||
|
||
indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, rpath,
|
||
true, true);
|
||
if (indx == (bfd_size_type) -1
|
||
|| ! elf_add_dynamic_entry (info, DT_RPATH, indx))
|
||
return false;
|
||
}
|
||
|
||
/* Find all symbols which were defined in a dynamic object and make
|
||
the backend pick a reasonable value for them. */
|
||
eif.failed = false;
|
||
eif.info = info;
|
||
elf_link_hash_traverse (elf_hash_table (info),
|
||
elf_adjust_dynamic_symbol,
|
||
(PTR) &eif);
|
||
if (eif.failed)
|
||
return false;
|
||
|
||
/* Add some entries to the .dynamic section. We fill in some of the
|
||
values later, in elf_bfd_final_link, but we must add the entries
|
||
now so that we know the final size of the .dynamic section. */
|
||
h = elf_link_hash_lookup (elf_hash_table (info), "_init", false,
|
||
false, false);
|
||
if (h != NULL
|
||
&& (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
|
||
| ELF_LINK_HASH_DEF_REGULAR)) != 0)
|
||
{
|
||
if (! elf_add_dynamic_entry (info, DT_INIT, 0))
|
||
return false;
|
||
}
|
||
h = elf_link_hash_lookup (elf_hash_table (info), "_fini", false,
|
||
false, false);
|
||
if (h != NULL
|
||
&& (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
|
||
| ELF_LINK_HASH_DEF_REGULAR)) != 0)
|
||
{
|
||
if (! elf_add_dynamic_entry (info, DT_FINI, 0))
|
||
return false;
|
||
}
|
||
strsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
|
||
if (! elf_add_dynamic_entry (info, DT_HASH, 0)
|
||
|| ! elf_add_dynamic_entry (info, DT_STRTAB, 0)
|
||
|| ! elf_add_dynamic_entry (info, DT_SYMTAB, 0)
|
||
|| ! elf_add_dynamic_entry (info, DT_STRSZ, strsize)
|
||
|| ! elf_add_dynamic_entry (info, DT_SYMENT,
|
||
sizeof (Elf_External_Sym)))
|
||
return false;
|
||
}
|
||
|
||
/* The backend must work out the sizes of all the other dynamic
|
||
sections. */
|
||
bed = get_elf_backend_data (output_bfd);
|
||
if (! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
|
||
return false;
|
||
|
||
if (elf_hash_table (info)->dynamic_sections_created)
|
||
{
|
||
size_t dynsymcount;
|
||
asection *s;
|
||
size_t i;
|
||
size_t bucketcount = 0;
|
||
Elf_Internal_Sym isym;
|
||
|
||
/* Set the size of the .dynsym and .hash sections. We counted
|
||
the number of dynamic symbols in elf_link_add_object_symbols.
|
||
We will build the contents of .dynsym and .hash when we build
|
||
the final symbol table, because until then we do not know the
|
||
correct value to give the symbols. We built the .dynstr
|
||
section as we went along in elf_link_add_object_symbols. */
|
||
dynsymcount = elf_hash_table (info)->dynsymcount;
|
||
s = bfd_get_section_by_name (dynobj, ".dynsym");
|
||
BFD_ASSERT (s != NULL);
|
||
s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
|
||
s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
|
||
if (s->contents == NULL && s->_raw_size != 0)
|
||
return false;
|
||
|
||
/* The first entry in .dynsym is a dummy symbol. */
|
||
isym.st_value = 0;
|
||
isym.st_size = 0;
|
||
isym.st_name = 0;
|
||
isym.st_info = 0;
|
||
isym.st_other = 0;
|
||
isym.st_shndx = 0;
|
||
elf_swap_symbol_out (output_bfd, &isym,
|
||
(PTR) (Elf_External_Sym *) s->contents);
|
||
|
||
for (i = 0; elf_buckets[i] != 0; i++)
|
||
{
|
||
bucketcount = elf_buckets[i];
|
||
if (dynsymcount < elf_buckets[i + 1])
|
||
break;
|
||
}
|
||
|
||
s = bfd_get_section_by_name (dynobj, ".hash");
|
||
BFD_ASSERT (s != NULL);
|
||
s->_raw_size = (2 + bucketcount + dynsymcount) * (ARCH_SIZE / 8);
|
||
s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
|
||
if (s->contents == NULL)
|
||
return false;
|
||
memset (s->contents, 0, (size_t) s->_raw_size);
|
||
|
||
put_word (output_bfd, bucketcount, s->contents);
|
||
put_word (output_bfd, dynsymcount, s->contents + (ARCH_SIZE / 8));
|
||
|
||
elf_hash_table (info)->bucketcount = bucketcount;
|
||
|
||
s = bfd_get_section_by_name (dynobj, ".dynstr");
|
||
BFD_ASSERT (s != NULL);
|
||
s->_raw_size = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
|
||
|
||
if (! elf_add_dynamic_entry (info, DT_NULL, 0))
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
|
||
/* This routine is used to export all defined symbols into the dynamic
|
||
symbol table. It is called via elf_link_hash_traverse. */
|
||
|
||
static boolean
|
||
elf_export_symbol (h, data)
|
||
struct elf_link_hash_entry *h;
|
||
PTR data;
|
||
{
|
||
struct elf_info_failed *eif = (struct elf_info_failed *) data;
|
||
|
||
if (h->dynindx == -1
|
||
&& (h->elf_link_hash_flags
|
||
& (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
|
||
{
|
||
if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
|
||
{
|
||
eif->failed = true;
|
||
return false;
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
|
||
/* Make the backend pick a good value for a dynamic symbol. This is
|
||
called via elf_link_hash_traverse, and also calls itself
|
||
recursively. */
|
||
|
||
static boolean
|
||
elf_adjust_dynamic_symbol (h, data)
|
||
struct elf_link_hash_entry *h;
|
||
PTR data;
|
||
{
|
||
struct elf_info_failed *eif = (struct elf_info_failed *) data;
|
||
bfd *dynobj;
|
||
struct elf_backend_data *bed;
|
||
|
||
/* If this symbol was mentioned in a non-ELF file, try to set
|
||
DEF_REGULAR and REF_REGULAR correctly. This is the only way to
|
||
permit a non-ELF file to correctly refer to a symbol defined in
|
||
an ELF dynamic object. */
|
||
if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
|
||
{
|
||
if (h->root.type != bfd_link_hash_defined
|
||
&& h->root.type != bfd_link_hash_defweak)
|
||
h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
|
||
else
|
||
{
|
||
if (h->root.u.def.section->owner != NULL
|
||
&& (bfd_get_flavour (h->root.u.def.section->owner)
|
||
== bfd_target_elf_flavour))
|
||
h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
|
||
else
|
||
h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
|
||
}
|
||
|
||
if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
|
||
|| (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
|
||
{
|
||
if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
|
||
{
|
||
eif->failed = true;
|
||
return false;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If this is a final link, and the symbol was defined as a common
|
||
symbol in a regular object file, and there was no definition in
|
||
any dynamic object, then the linker will have allocated space for
|
||
the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
|
||
flag will not have been set. */
|
||
if (h->root.type == bfd_link_hash_defined
|
||
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
|
||
&& (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
|
||
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
|
||
&& (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
|
||
h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
|
||
|
||
/* If -Bsymbolic was used (which means to bind references to global
|
||
symbols to the definition within the shared object), and this
|
||
symbol was defined in a regular object, then it actually doesn't
|
||
need a PLT entry. */
|
||
if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
|
||
&& eif->info->shared
|
||
&& eif->info->symbolic
|
||
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
|
||
h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
|
||
|
||
/* If this symbol does not require a PLT entry, and it is not
|
||
defined by a dynamic object, or is not referenced by a regular
|
||
object, ignore it. We do have to handle a weak defined symbol,
|
||
even if no regular object refers to it, if we decided to add it
|
||
to the dynamic symbol table. FIXME: Do we normally need to worry
|
||
about symbols which are defined by one dynamic object and
|
||
referenced by another one? */
|
||
if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
|
||
&& ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
|
||
|| (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
|
||
|| ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
|
||
&& (h->weakdef == NULL || h->weakdef->dynindx == -1))))
|
||
return true;
|
||
|
||
/* If we've already adjusted this symbol, don't do it again. This
|
||
can happen via a recursive call. */
|
||
if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
|
||
return true;
|
||
|
||
/* Don't look at this symbol again. Note that we must set this
|
||
after checking the above conditions, because we may look at a
|
||
symbol once, decide not to do anything, and then get called
|
||
recursively later after REF_REGULAR is set below. */
|
||
h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
|
||
|
||
/* If this is a weak definition, and we know a real definition, and
|
||
the real symbol is not itself defined by a regular object file,
|
||
then get a good value for the real definition. We handle the
|
||
real symbol first, for the convenience of the backend routine.
|
||
|
||
Note that there is a confusing case here. If the real definition
|
||
is defined by a regular object file, we don't get the real symbol
|
||
from the dynamic object, but we do get the weak symbol. If the
|
||
processor backend uses a COPY reloc, then if some routine in the
|
||
dynamic object changes the real symbol, we will not see that
|
||
change in the corresponding weak symbol. This is the way other
|
||
ELF linkers work as well, and seems to be a result of the shared
|
||
library model.
|
||
|
||
I will clarify this issue. Most SVR4 shared libraries define the
|
||
variable _timezone and define timezone as a weak synonym. The
|
||
tzset call changes _timezone. If you write
|
||
extern int timezone;
|
||
int _timezone = 5;
|
||
int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
|
||
you might expect that, since timezone is a synonym for _timezone,
|
||
the same number will print both times. However, if the processor
|
||
backend uses a COPY reloc, then actually timezone will be copied
|
||
into your process image, and, since you define _timezone
|
||
yourself, _timezone will not. Thus timezone and _timezone will
|
||
wind up at different memory locations. The tzset call will set
|
||
_timezone, leaving timezone unchanged. */
|
||
|
||
if (h->weakdef != NULL)
|
||
{
|
||
struct elf_link_hash_entry *weakdef;
|
||
|
||
BFD_ASSERT (h->root.type == bfd_link_hash_defined
|
||
|| h->root.type == bfd_link_hash_defweak);
|
||
weakdef = h->weakdef;
|
||
BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
|
||
|| weakdef->root.type == bfd_link_hash_defweak);
|
||
BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
|
||
if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
|
||
{
|
||
/* This symbol is defined by a regular object file, so we
|
||
will not do anything special. Clear weakdef for the
|
||
convenience of the processor backend. */
|
||
h->weakdef = NULL;
|
||
}
|
||
else
|
||
{
|
||
/* There is an implicit reference by a regular object file
|
||
via the weak symbol. */
|
||
weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
|
||
if (! elf_adjust_dynamic_symbol (weakdef, (PTR) eif))
|
||
return false;
|
||
}
|
||
}
|
||
|
||
dynobj = elf_hash_table (eif->info)->dynobj;
|
||
bed = get_elf_backend_data (dynobj);
|
||
if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
|
||
{
|
||
eif->failed = true;
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Final phase of ELF linker. */
|
||
|
||
/* A structure we use to avoid passing large numbers of arguments. */
|
||
|
||
struct elf_final_link_info
|
||
{
|
||
/* General link information. */
|
||
struct bfd_link_info *info;
|
||
/* Output BFD. */
|
||
bfd *output_bfd;
|
||
/* Symbol string table. */
|
||
struct bfd_strtab_hash *symstrtab;
|
||
/* .dynsym section. */
|
||
asection *dynsym_sec;
|
||
/* .hash section. */
|
||
asection *hash_sec;
|
||
/* Buffer large enough to hold contents of any section. */
|
||
bfd_byte *contents;
|
||
/* Buffer large enough to hold external relocs of any section. */
|
||
PTR external_relocs;
|
||
/* Buffer large enough to hold internal relocs of any section. */
|
||
Elf_Internal_Rela *internal_relocs;
|
||
/* Buffer large enough to hold external local symbols of any input
|
||
BFD. */
|
||
Elf_External_Sym *external_syms;
|
||
/* Buffer large enough to hold internal local symbols of any input
|
||
BFD. */
|
||
Elf_Internal_Sym *internal_syms;
|
||
/* Array large enough to hold a symbol index for each local symbol
|
||
of any input BFD. */
|
||
long *indices;
|
||
/* Array large enough to hold a section pointer for each local
|
||
symbol of any input BFD. */
|
||
asection **sections;
|
||
/* Buffer to hold swapped out symbols. */
|
||
Elf_External_Sym *symbuf;
|
||
/* Number of swapped out symbols in buffer. */
|
||
size_t symbuf_count;
|
||
/* Number of symbols which fit in symbuf. */
|
||
size_t symbuf_size;
|
||
};
|
||
|
||
static boolean elf_link_output_sym
|
||
PARAMS ((struct elf_final_link_info *, const char *,
|
||
Elf_Internal_Sym *, asection *));
|
||
static boolean elf_link_flush_output_syms
|
||
PARAMS ((struct elf_final_link_info *));
|
||
static boolean elf_link_output_extsym
|
||
PARAMS ((struct elf_link_hash_entry *, PTR));
|
||
static boolean elf_link_input_bfd
|
||
PARAMS ((struct elf_final_link_info *, bfd *));
|
||
static boolean elf_reloc_link_order
|
||
PARAMS ((bfd *, struct bfd_link_info *, asection *,
|
||
struct bfd_link_order *));
|
||
|
||
/* This struct is used to pass information to routines called via
|
||
elf_link_hash_traverse which must return failure. */
|
||
|
||
struct elf_finfo_failed
|
||
{
|
||
boolean failed;
|
||
struct elf_final_link_info *finfo;
|
||
};
|
||
|
||
/* Do the final step of an ELF link. */
|
||
|
||
boolean
|
||
elf_bfd_final_link (abfd, info)
|
||
bfd *abfd;
|
||
struct bfd_link_info *info;
|
||
{
|
||
boolean dynamic;
|
||
bfd *dynobj;
|
||
struct elf_final_link_info finfo;
|
||
register asection *o;
|
||
register struct bfd_link_order *p;
|
||
register bfd *sub;
|
||
size_t max_contents_size;
|
||
size_t max_external_reloc_size;
|
||
size_t max_internal_reloc_count;
|
||
size_t max_sym_count;
|
||
file_ptr off;
|
||
Elf_Internal_Sym elfsym;
|
||
unsigned int i;
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
Elf_Internal_Shdr *symstrtab_hdr;
|
||
struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
||
struct elf_finfo_failed eif;
|
||
|
||
if (info->shared)
|
||
abfd->flags |= DYNAMIC;
|
||
|
||
dynamic = elf_hash_table (info)->dynamic_sections_created;
|
||
dynobj = elf_hash_table (info)->dynobj;
|
||
|
||
finfo.info = info;
|
||
finfo.output_bfd = abfd;
|
||
finfo.symstrtab = elf_stringtab_init ();
|
||
if (finfo.symstrtab == NULL)
|
||
return false;
|
||
if (! dynamic)
|
||
{
|
||
finfo.dynsym_sec = NULL;
|
||
finfo.hash_sec = NULL;
|
||
}
|
||
else
|
||
{
|
||
finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
|
||
finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
|
||
BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
|
||
}
|
||
finfo.contents = NULL;
|
||
finfo.external_relocs = NULL;
|
||
finfo.internal_relocs = NULL;
|
||
finfo.external_syms = NULL;
|
||
finfo.internal_syms = NULL;
|
||
finfo.indices = NULL;
|
||
finfo.sections = NULL;
|
||
finfo.symbuf = NULL;
|
||
finfo.symbuf_count = 0;
|
||
|
||
/* Count up the number of relocations we will output for each output
|
||
section, so that we know the sizes of the reloc sections. We
|
||
also figure out some maximum sizes. */
|
||
max_contents_size = 0;
|
||
max_external_reloc_size = 0;
|
||
max_internal_reloc_count = 0;
|
||
max_sym_count = 0;
|
||
for (o = abfd->sections; o != (asection *) NULL; o = o->next)
|
||
{
|
||
o->reloc_count = 0;
|
||
|
||
for (p = o->link_order_head; p != NULL; p = p->next)
|
||
{
|
||
if (p->type == bfd_section_reloc_link_order
|
||
|| p->type == bfd_symbol_reloc_link_order)
|
||
++o->reloc_count;
|
||
else if (p->type == bfd_indirect_link_order)
|
||
{
|
||
asection *sec;
|
||
|
||
sec = p->u.indirect.section;
|
||
|
||
/* Mark all sections which are to be included in the
|
||
link. This will normally be every section. We need
|
||
to do this so that we can identify any sections which
|
||
the linker has decided to not include. */
|
||
sec->linker_mark = true;
|
||
|
||
if (info->relocateable)
|
||
o->reloc_count += sec->reloc_count;
|
||
|
||
if (sec->_raw_size > max_contents_size)
|
||
max_contents_size = sec->_raw_size;
|
||
if (sec->_cooked_size > max_contents_size)
|
||
max_contents_size = sec->_cooked_size;
|
||
|
||
/* We are interested in just local symbols, not all
|
||
symbols. */
|
||
if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour)
|
||
{
|
||
size_t sym_count;
|
||
|
||
if (elf_bad_symtab (sec->owner))
|
||
sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
|
||
/ sizeof (Elf_External_Sym));
|
||
else
|
||
sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
|
||
|
||
if (sym_count > max_sym_count)
|
||
max_sym_count = sym_count;
|
||
|
||
if ((sec->flags & SEC_RELOC) != 0)
|
||
{
|
||
size_t ext_size;
|
||
|
||
ext_size = elf_section_data (sec)->rel_hdr.sh_size;
|
||
if (ext_size > max_external_reloc_size)
|
||
max_external_reloc_size = ext_size;
|
||
if (sec->reloc_count > max_internal_reloc_count)
|
||
max_internal_reloc_count = sec->reloc_count;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if (o->reloc_count > 0)
|
||
o->flags |= SEC_RELOC;
|
||
else
|
||
{
|
||
/* Explicitly clear the SEC_RELOC flag. The linker tends to
|
||
set it (this is probably a bug) and if it is set
|
||
assign_section_numbers will create a reloc section. */
|
||
o->flags &=~ SEC_RELOC;
|
||
}
|
||
|
||
/* If the SEC_ALLOC flag is not set, force the section VMA to
|
||
zero. This is done in elf_fake_sections as well, but forcing
|
||
the VMA to 0 here will ensure that relocs against these
|
||
sections are handled correctly. */
|
||
if ((o->flags & SEC_ALLOC) == 0
|
||
&& ! o->user_set_vma)
|
||
o->vma = 0;
|
||
}
|
||
|
||
/* Figure out the file positions for everything but the symbol table
|
||
and the relocs. We set symcount to force assign_section_numbers
|
||
to create a symbol table. */
|
||
abfd->symcount = info->strip == strip_all ? 0 : 1;
|
||
BFD_ASSERT (! abfd->output_has_begun);
|
||
if (! _bfd_elf_compute_section_file_positions (abfd, info))
|
||
goto error_return;
|
||
|
||
/* That created the reloc sections. Set their sizes, and assign
|
||
them file positions, and allocate some buffers. */
|
||
for (o = abfd->sections; o != NULL; o = o->next)
|
||
{
|
||
if ((o->flags & SEC_RELOC) != 0)
|
||
{
|
||
Elf_Internal_Shdr *rel_hdr;
|
||
register struct elf_link_hash_entry **p, **pend;
|
||
|
||
rel_hdr = &elf_section_data (o)->rel_hdr;
|
||
|
||
rel_hdr->sh_size = rel_hdr->sh_entsize * o->reloc_count;
|
||
|
||
/* The contents field must last into write_object_contents,
|
||
so we allocate it with bfd_alloc rather than malloc. */
|
||
rel_hdr->contents = (PTR) bfd_alloc (abfd, rel_hdr->sh_size);
|
||
if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
|
||
goto error_return;
|
||
|
||
p = ((struct elf_link_hash_entry **)
|
||
bfd_malloc (o->reloc_count
|
||
* sizeof (struct elf_link_hash_entry *)));
|
||
if (p == NULL && o->reloc_count != 0)
|
||
goto error_return;
|
||
elf_section_data (o)->rel_hashes = p;
|
||
pend = p + o->reloc_count;
|
||
for (; p < pend; p++)
|
||
*p = NULL;
|
||
|
||
/* Use the reloc_count field as an index when outputting the
|
||
relocs. */
|
||
o->reloc_count = 0;
|
||
}
|
||
}
|
||
|
||
_bfd_elf_assign_file_positions_for_relocs (abfd);
|
||
|
||
/* We have now assigned file positions for all the sections except
|
||
.symtab and .strtab. We start the .symtab section at the current
|
||
file position, and write directly to it. We build the .strtab
|
||
section in memory. */
|
||
abfd->symcount = 0;
|
||
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
/* sh_name is set in prep_headers. */
|
||
symtab_hdr->sh_type = SHT_SYMTAB;
|
||
symtab_hdr->sh_flags = 0;
|
||
symtab_hdr->sh_addr = 0;
|
||
symtab_hdr->sh_size = 0;
|
||
symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
|
||
/* sh_link is set in assign_section_numbers. */
|
||
/* sh_info is set below. */
|
||
/* sh_offset is set just below. */
|
||
symtab_hdr->sh_addralign = 4; /* FIXME: system dependent? */
|
||
|
||
off = elf_tdata (abfd)->next_file_pos;
|
||
off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
|
||
|
||
/* Note that at this point elf_tdata (abfd)->next_file_pos is
|
||
incorrect. We do not yet know the size of the .symtab section.
|
||
We correct next_file_pos below, after we do know the size. */
|
||
|
||
/* Allocate a buffer to hold swapped out symbols. This is to avoid
|
||
continuously seeking to the right position in the file. */
|
||
if (! info->keep_memory || max_sym_count < 20)
|
||
finfo.symbuf_size = 20;
|
||
else
|
||
finfo.symbuf_size = max_sym_count;
|
||
finfo.symbuf = ((Elf_External_Sym *)
|
||
bfd_malloc (finfo.symbuf_size * sizeof (Elf_External_Sym)));
|
||
if (finfo.symbuf == NULL)
|
||
goto error_return;
|
||
|
||
/* Start writing out the symbol table. The first symbol is always a
|
||
dummy symbol. */
|
||
if (info->strip != strip_all || info->relocateable)
|
||
{
|
||
elfsym.st_value = 0;
|
||
elfsym.st_size = 0;
|
||
elfsym.st_info = 0;
|
||
elfsym.st_other = 0;
|
||
elfsym.st_shndx = SHN_UNDEF;
|
||
if (! elf_link_output_sym (&finfo, (const char *) NULL,
|
||
&elfsym, bfd_und_section_ptr))
|
||
goto error_return;
|
||
}
|
||
|
||
#if 0
|
||
/* Some standard ELF linkers do this, but we don't because it causes
|
||
bootstrap comparison failures. */
|
||
/* Output a file symbol for the output file as the second symbol.
|
||
We output this even if we are discarding local symbols, although
|
||
I'm not sure if this is correct. */
|
||
elfsym.st_value = 0;
|
||
elfsym.st_size = 0;
|
||
elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
|
||
elfsym.st_other = 0;
|
||
elfsym.st_shndx = SHN_ABS;
|
||
if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
|
||
&elfsym, bfd_abs_section_ptr))
|
||
goto error_return;
|
||
#endif
|
||
|
||
/* Output a symbol for each section. We output these even if we are
|
||
discarding local symbols, since they are used for relocs. These
|
||
symbols have no names. We store the index of each one in the
|
||
index field of the section, so that we can find it again when
|
||
outputting relocs. */
|
||
if (info->strip != strip_all || info->relocateable)
|
||
{
|
||
elfsym.st_value = 0;
|
||
elfsym.st_size = 0;
|
||
elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
|
||
elfsym.st_other = 0;
|
||
for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
|
||
{
|
||
o = section_from_elf_index (abfd, i);
|
||
if (o != NULL)
|
||
o->target_index = abfd->symcount;
|
||
elfsym.st_shndx = i;
|
||
if (! elf_link_output_sym (&finfo, (const char *) NULL,
|
||
&elfsym, o))
|
||
goto error_return;
|
||
}
|
||
}
|
||
|
||
/* Allocate some memory to hold information read in from the input
|
||
files. */
|
||
finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
|
||
finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
|
||
finfo.internal_relocs = ((Elf_Internal_Rela *)
|
||
bfd_malloc (max_internal_reloc_count
|
||
* sizeof (Elf_Internal_Rela)));
|
||
finfo.external_syms = ((Elf_External_Sym *)
|
||
bfd_malloc (max_sym_count
|
||
* sizeof (Elf_External_Sym)));
|
||
finfo.internal_syms = ((Elf_Internal_Sym *)
|
||
bfd_malloc (max_sym_count
|
||
* sizeof (Elf_Internal_Sym)));
|
||
finfo.indices = (long *) bfd_malloc (max_sym_count * sizeof (long));
|
||
finfo.sections = ((asection **)
|
||
bfd_malloc (max_sym_count * sizeof (asection *)));
|
||
if ((finfo.contents == NULL && max_contents_size != 0)
|
||
|| (finfo.external_relocs == NULL && max_external_reloc_size != 0)
|
||
|| (finfo.internal_relocs == NULL && max_internal_reloc_count != 0)
|
||
|| (finfo.external_syms == NULL && max_sym_count != 0)
|
||
|| (finfo.internal_syms == NULL && max_sym_count != 0)
|
||
|| (finfo.indices == NULL && max_sym_count != 0)
|
||
|| (finfo.sections == NULL && max_sym_count != 0))
|
||
goto error_return;
|
||
|
||
/* Since ELF permits relocations to be against local symbols, we
|
||
must have the local symbols available when we do the relocations.
|
||
Since we would rather only read the local symbols once, and we
|
||
would rather not keep them in memory, we handle all the
|
||
relocations for a single input file at the same time.
|
||
|
||
Unfortunately, there is no way to know the total number of local
|
||
symbols until we have seen all of them, and the local symbol
|
||
indices precede the global symbol indices. This means that when
|
||
we are generating relocateable output, and we see a reloc against
|
||
a global symbol, we can not know the symbol index until we have
|
||
finished examining all the local symbols to see which ones we are
|
||
going to output. To deal with this, we keep the relocations in
|
||
memory, and don't output them until the end of the link. This is
|
||
an unfortunate waste of memory, but I don't see a good way around
|
||
it. Fortunately, it only happens when performing a relocateable
|
||
link, which is not the common case. FIXME: If keep_memory is set
|
||
we could write the relocs out and then read them again; I don't
|
||
know how bad the memory loss will be. */
|
||
|
||
for (sub = info->input_bfds; sub != NULL; sub = sub->next)
|
||
sub->output_has_begun = false;
|
||
for (o = abfd->sections; o != NULL; o = o->next)
|
||
{
|
||
for (p = o->link_order_head; p != NULL; p = p->next)
|
||
{
|
||
if (p->type == bfd_indirect_link_order
|
||
&& (bfd_get_flavour (p->u.indirect.section->owner)
|
||
== bfd_target_elf_flavour))
|
||
{
|
||
sub = p->u.indirect.section->owner;
|
||
if (! sub->output_has_begun)
|
||
{
|
||
if (! elf_link_input_bfd (&finfo, sub))
|
||
goto error_return;
|
||
sub->output_has_begun = true;
|
||
}
|
||
}
|
||
else if (p->type == bfd_section_reloc_link_order
|
||
|| p->type == bfd_symbol_reloc_link_order)
|
||
{
|
||
if (! elf_reloc_link_order (abfd, info, o, p))
|
||
goto error_return;
|
||
}
|
||
else
|
||
{
|
||
if (! _bfd_default_link_order (abfd, info, o, p))
|
||
goto error_return;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* That wrote out all the local symbols. Finish up the symbol table
|
||
with the global symbols. */
|
||
|
||
/* The sh_info field records the index of the first non local
|
||
symbol. */
|
||
symtab_hdr->sh_info = abfd->symcount;
|
||
if (dynamic)
|
||
elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info = 1;
|
||
|
||
/* We get the global symbols from the hash table. */
|
||
eif.failed = false;
|
||
eif.finfo = &finfo;
|
||
elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
|
||
(PTR) &eif);
|
||
if (eif.failed)
|
||
return false;
|
||
|
||
/* Flush all symbols to the file. */
|
||
if (! elf_link_flush_output_syms (&finfo))
|
||
return false;
|
||
|
||
/* Now we know the size of the symtab section. */
|
||
off += symtab_hdr->sh_size;
|
||
|
||
/* Finish up and write out the symbol string table (.strtab)
|
||
section. */
|
||
symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
|
||
/* sh_name was set in prep_headers. */
|
||
symstrtab_hdr->sh_type = SHT_STRTAB;
|
||
symstrtab_hdr->sh_flags = 0;
|
||
symstrtab_hdr->sh_addr = 0;
|
||
symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
|
||
symstrtab_hdr->sh_entsize = 0;
|
||
symstrtab_hdr->sh_link = 0;
|
||
symstrtab_hdr->sh_info = 0;
|
||
/* sh_offset is set just below. */
|
||
symstrtab_hdr->sh_addralign = 1;
|
||
|
||
off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
|
||
elf_tdata (abfd)->next_file_pos = off;
|
||
|
||
if (abfd->symcount > 0)
|
||
{
|
||
if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
|
||
|| ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
|
||
return false;
|
||
}
|
||
|
||
/* Adjust the relocs to have the correct symbol indices. */
|
||
for (o = abfd->sections; o != NULL; o = o->next)
|
||
{
|
||
struct elf_link_hash_entry **rel_hash;
|
||
Elf_Internal_Shdr *rel_hdr;
|
||
|
||
if ((o->flags & SEC_RELOC) == 0)
|
||
continue;
|
||
|
||
rel_hash = elf_section_data (o)->rel_hashes;
|
||
rel_hdr = &elf_section_data (o)->rel_hdr;
|
||
for (i = 0; i < o->reloc_count; i++, rel_hash++)
|
||
{
|
||
if (*rel_hash == NULL)
|
||
continue;
|
||
|
||
BFD_ASSERT ((*rel_hash)->indx >= 0);
|
||
|
||
if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
|
||
{
|
||
Elf_External_Rel *erel;
|
||
Elf_Internal_Rel irel;
|
||
|
||
erel = (Elf_External_Rel *) rel_hdr->contents + i;
|
||
elf_swap_reloc_in (abfd, erel, &irel);
|
||
irel.r_info = ELF_R_INFO ((*rel_hash)->indx,
|
||
ELF_R_TYPE (irel.r_info));
|
||
elf_swap_reloc_out (abfd, &irel, erel);
|
||
}
|
||
else
|
||
{
|
||
Elf_External_Rela *erela;
|
||
Elf_Internal_Rela irela;
|
||
|
||
BFD_ASSERT (rel_hdr->sh_entsize
|
||
== sizeof (Elf_External_Rela));
|
||
|
||
erela = (Elf_External_Rela *) rel_hdr->contents + i;
|
||
elf_swap_reloca_in (abfd, erela, &irela);
|
||
irela.r_info = ELF_R_INFO ((*rel_hash)->indx,
|
||
ELF_R_TYPE (irela.r_info));
|
||
elf_swap_reloca_out (abfd, &irela, erela);
|
||
}
|
||
}
|
||
|
||
/* Set the reloc_count field to 0 to prevent write_relocs from
|
||
trying to swap the relocs out itself. */
|
||
o->reloc_count = 0;
|
||
}
|
||
|
||
/* If we are linking against a dynamic object, or generating a
|
||
shared library, finish up the dynamic linking information. */
|
||
if (dynamic)
|
||
{
|
||
Elf_External_Dyn *dyncon, *dynconend;
|
||
|
||
/* Fix up .dynamic entries. */
|
||
o = bfd_get_section_by_name (dynobj, ".dynamic");
|
||
BFD_ASSERT (o != NULL);
|
||
|
||
dyncon = (Elf_External_Dyn *) o->contents;
|
||
dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
|
||
for (; dyncon < dynconend; dyncon++)
|
||
{
|
||
Elf_Internal_Dyn dyn;
|
||
const char *name;
|
||
unsigned int type;
|
||
|
||
elf_swap_dyn_in (dynobj, dyncon, &dyn);
|
||
|
||
switch (dyn.d_tag)
|
||
{
|
||
default:
|
||
break;
|
||
|
||
/* SVR4 linkers seem to set DT_INIT and DT_FINI based on
|
||
magic _init and _fini symbols. This is pretty ugly,
|
||
but we are compatible. */
|
||
case DT_INIT:
|
||
name = "_init";
|
||
goto get_sym;
|
||
case DT_FINI:
|
||
name = "_fini";
|
||
get_sym:
|
||
{
|
||
struct elf_link_hash_entry *h;
|
||
|
||
h = elf_link_hash_lookup (elf_hash_table (info), name,
|
||
false, false, true);
|
||
if (h != NULL
|
||
&& (h->root.type == bfd_link_hash_defined
|
||
|| h->root.type == bfd_link_hash_defweak))
|
||
{
|
||
dyn.d_un.d_val = h->root.u.def.value;
|
||
o = h->root.u.def.section;
|
||
if (o->output_section != NULL)
|
||
dyn.d_un.d_val += (o->output_section->vma
|
||
+ o->output_offset);
|
||
else
|
||
{
|
||
/* The symbol is imported from another shared
|
||
library and does not apply to this one. */
|
||
dyn.d_un.d_val = 0;
|
||
}
|
||
|
||
elf_swap_dyn_out (dynobj, &dyn, dyncon);
|
||
}
|
||
}
|
||
break;
|
||
|
||
case DT_HASH:
|
||
name = ".hash";
|
||
goto get_vma;
|
||
case DT_STRTAB:
|
||
name = ".dynstr";
|
||
goto get_vma;
|
||
case DT_SYMTAB:
|
||
name = ".dynsym";
|
||
get_vma:
|
||
o = bfd_get_section_by_name (abfd, name);
|
||
BFD_ASSERT (o != NULL);
|
||
dyn.d_un.d_ptr = o->vma;
|
||
elf_swap_dyn_out (dynobj, &dyn, dyncon);
|
||
break;
|
||
|
||
case DT_REL:
|
||
case DT_RELA:
|
||
case DT_RELSZ:
|
||
case DT_RELASZ:
|
||
if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
|
||
type = SHT_REL;
|
||
else
|
||
type = SHT_RELA;
|
||
dyn.d_un.d_val = 0;
|
||
for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
|
||
{
|
||
Elf_Internal_Shdr *hdr;
|
||
|
||
hdr = elf_elfsections (abfd)[i];
|
||
if (hdr->sh_type == type
|
||
&& (hdr->sh_flags & SHF_ALLOC) != 0)
|
||
{
|
||
if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
|
||
dyn.d_un.d_val += hdr->sh_size;
|
||
else
|
||
{
|
||
if (dyn.d_un.d_val == 0
|
||
|| hdr->sh_addr < dyn.d_un.d_val)
|
||
dyn.d_un.d_val = hdr->sh_addr;
|
||
}
|
||
}
|
||
}
|
||
elf_swap_dyn_out (dynobj, &dyn, dyncon);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If we have created any dynamic sections, then output them. */
|
||
if (dynobj != NULL)
|
||
{
|
||
if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
|
||
goto error_return;
|
||
|
||
for (o = dynobj->sections; o != NULL; o = o->next)
|
||
{
|
||
if ((o->flags & SEC_HAS_CONTENTS) == 0
|
||
|| o->_raw_size == 0)
|
||
continue;
|
||
if ((o->flags & SEC_IN_MEMORY) == 0)
|
||
{
|
||
/* At this point, we are only interested in sections
|
||
created by elf_link_create_dynamic_sections. FIXME:
|
||
This test is fragile. */
|
||
continue;
|
||
}
|
||
if ((elf_section_data (o->output_section)->this_hdr.sh_type
|
||
!= SHT_STRTAB)
|
||
|| strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
|
||
{
|
||
if (! bfd_set_section_contents (abfd, o->output_section,
|
||
o->contents, o->output_offset,
|
||
o->_raw_size))
|
||
goto error_return;
|
||
}
|
||
else
|
||
{
|
||
file_ptr off;
|
||
|
||
/* The contents of the .dynstr section are actually in a
|
||
stringtab. */
|
||
off = elf_section_data (o->output_section)->this_hdr.sh_offset;
|
||
if (bfd_seek (abfd, off, SEEK_SET) != 0
|
||
|| ! _bfd_stringtab_emit (abfd,
|
||
elf_hash_table (info)->dynstr))
|
||
goto error_return;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If we have optimized stabs strings, output them. */
|
||
if (elf_hash_table (info)->stab_info != NULL)
|
||
{
|
||
if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
|
||
goto error_return;
|
||
}
|
||
|
||
if (finfo.symstrtab != NULL)
|
||
_bfd_stringtab_free (finfo.symstrtab);
|
||
if (finfo.contents != NULL)
|
||
free (finfo.contents);
|
||
if (finfo.external_relocs != NULL)
|
||
free (finfo.external_relocs);
|
||
if (finfo.internal_relocs != NULL)
|
||
free (finfo.internal_relocs);
|
||
if (finfo.external_syms != NULL)
|
||
free (finfo.external_syms);
|
||
if (finfo.internal_syms != NULL)
|
||
free (finfo.internal_syms);
|
||
if (finfo.indices != NULL)
|
||
free (finfo.indices);
|
||
if (finfo.sections != NULL)
|
||
free (finfo.sections);
|
||
if (finfo.symbuf != NULL)
|
||
free (finfo.symbuf);
|
||
for (o = abfd->sections; o != NULL; o = o->next)
|
||
{
|
||
if ((o->flags & SEC_RELOC) != 0
|
||
&& elf_section_data (o)->rel_hashes != NULL)
|
||
free (elf_section_data (o)->rel_hashes);
|
||
}
|
||
|
||
elf_tdata (abfd)->linker = true;
|
||
|
||
return true;
|
||
|
||
error_return:
|
||
if (finfo.symstrtab != NULL)
|
||
_bfd_stringtab_free (finfo.symstrtab);
|
||
if (finfo.contents != NULL)
|
||
free (finfo.contents);
|
||
if (finfo.external_relocs != NULL)
|
||
free (finfo.external_relocs);
|
||
if (finfo.internal_relocs != NULL)
|
||
free (finfo.internal_relocs);
|
||
if (finfo.external_syms != NULL)
|
||
free (finfo.external_syms);
|
||
if (finfo.internal_syms != NULL)
|
||
free (finfo.internal_syms);
|
||
if (finfo.indices != NULL)
|
||
free (finfo.indices);
|
||
if (finfo.sections != NULL)
|
||
free (finfo.sections);
|
||
if (finfo.symbuf != NULL)
|
||
free (finfo.symbuf);
|
||
for (o = abfd->sections; o != NULL; o = o->next)
|
||
{
|
||
if ((o->flags & SEC_RELOC) != 0
|
||
&& elf_section_data (o)->rel_hashes != NULL)
|
||
free (elf_section_data (o)->rel_hashes);
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Add a symbol to the output symbol table. */
|
||
|
||
static boolean
|
||
elf_link_output_sym (finfo, name, elfsym, input_sec)
|
||
struct elf_final_link_info *finfo;
|
||
const char *name;
|
||
Elf_Internal_Sym *elfsym;
|
||
asection *input_sec;
|
||
{
|
||
boolean (*output_symbol_hook) PARAMS ((bfd *,
|
||
struct bfd_link_info *info,
|
||
const char *,
|
||
Elf_Internal_Sym *,
|
||
asection *));
|
||
|
||
output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
|
||
elf_backend_link_output_symbol_hook;
|
||
if (output_symbol_hook != NULL)
|
||
{
|
||
if (! ((*output_symbol_hook)
|
||
(finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
|
||
return false;
|
||
}
|
||
|
||
if (name == (const char *) NULL || *name == '\0')
|
||
elfsym->st_name = 0;
|
||
else
|
||
{
|
||
elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
|
||
name, true,
|
||
false);
|
||
if (elfsym->st_name == (unsigned long) -1)
|
||
return false;
|
||
}
|
||
|
||
if (finfo->symbuf_count >= finfo->symbuf_size)
|
||
{
|
||
if (! elf_link_flush_output_syms (finfo))
|
||
return false;
|
||
}
|
||
|
||
elf_swap_symbol_out (finfo->output_bfd, elfsym,
|
||
(PTR) (finfo->symbuf + finfo->symbuf_count));
|
||
++finfo->symbuf_count;
|
||
|
||
++finfo->output_bfd->symcount;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Flush the output symbols to the file. */
|
||
|
||
static boolean
|
||
elf_link_flush_output_syms (finfo)
|
||
struct elf_final_link_info *finfo;
|
||
{
|
||
if (finfo->symbuf_count > 0)
|
||
{
|
||
Elf_Internal_Shdr *symtab;
|
||
|
||
symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr;
|
||
|
||
if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size,
|
||
SEEK_SET) != 0
|
||
|| (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count,
|
||
sizeof (Elf_External_Sym), finfo->output_bfd)
|
||
!= finfo->symbuf_count * sizeof (Elf_External_Sym)))
|
||
return false;
|
||
|
||
symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym);
|
||
|
||
finfo->symbuf_count = 0;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Add an external symbol to the symbol table. This is called from
|
||
the hash table traversal routine. */
|
||
|
||
static boolean
|
||
elf_link_output_extsym (h, data)
|
||
struct elf_link_hash_entry *h;
|
||
PTR data;
|
||
{
|
||
struct elf_finfo_failed *eif = (struct elf_finfo_failed *) data;
|
||
struct elf_final_link_info *finfo = eif->finfo;
|
||
boolean strip;
|
||
Elf_Internal_Sym sym;
|
||
asection *input_sec;
|
||
|
||
/* If we are not creating a shared library, and this symbol is
|
||
referenced by a shared library but is not defined anywhere, then
|
||
warn that it is undefined. If we do not do this, the runtime
|
||
linker will complain that the symbol is undefined when the
|
||
program is run. We don't have to worry about symbols that are
|
||
referenced by regular files, because we will already have issued
|
||
warnings for them. */
|
||
if (! finfo->info->relocateable
|
||
&& ! finfo->info->shared
|
||
&& h->root.type == bfd_link_hash_undefined
|
||
&& (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
|
||
&& (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
|
||
{
|
||
if (! ((*finfo->info->callbacks->undefined_symbol)
|
||
(finfo->info, h->root.root.string, h->root.u.undef.abfd,
|
||
(asection *) NULL, 0)))
|
||
{
|
||
eif->failed = true;
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/* We don't want to output symbols that have never been mentioned by
|
||
a regular file, or that we have been told to strip. However, if
|
||
h->indx is set to -2, the symbol is used by a reloc and we must
|
||
output it. */
|
||
if (h->indx == -2)
|
||
strip = false;
|
||
else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
|
||
|| (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
|
||
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
|
||
&& (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
|
||
strip = true;
|
||
else if (finfo->info->strip == strip_all
|
||
|| (finfo->info->strip == strip_some
|
||
&& bfd_hash_lookup (finfo->info->keep_hash,
|
||
h->root.root.string,
|
||
false, false) == NULL))
|
||
strip = true;
|
||
else
|
||
strip = false;
|
||
|
||
/* If we're stripping it, and it's not a dynamic symbol, there's
|
||
nothing else to do. */
|
||
if (strip && h->dynindx == -1)
|
||
return true;
|
||
|
||
sym.st_value = 0;
|
||
sym.st_size = h->size;
|
||
sym.st_other = 0;
|
||
if (h->root.type == bfd_link_hash_undefweak
|
||
|| h->root.type == bfd_link_hash_defweak)
|
||
sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
|
||
else
|
||
sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
|
||
|
||
switch (h->root.type)
|
||
{
|
||
default:
|
||
case bfd_link_hash_new:
|
||
abort ();
|
||
return false;
|
||
|
||
case bfd_link_hash_undefined:
|
||
input_sec = bfd_und_section_ptr;
|
||
sym.st_shndx = SHN_UNDEF;
|
||
break;
|
||
|
||
case bfd_link_hash_undefweak:
|
||
input_sec = bfd_und_section_ptr;
|
||
sym.st_shndx = SHN_UNDEF;
|
||
break;
|
||
|
||
case bfd_link_hash_defined:
|
||
case bfd_link_hash_defweak:
|
||
{
|
||
input_sec = h->root.u.def.section;
|
||
if (input_sec->output_section != NULL)
|
||
{
|
||
sym.st_shndx =
|
||
_bfd_elf_section_from_bfd_section (finfo->output_bfd,
|
||
input_sec->output_section);
|
||
if (sym.st_shndx == (unsigned short) -1)
|
||
{
|
||
eif->failed = true;
|
||
return false;
|
||
}
|
||
|
||
/* ELF symbols in relocateable files are section relative,
|
||
but in nonrelocateable files they are virtual
|
||
addresses. */
|
||
sym.st_value = h->root.u.def.value + input_sec->output_offset;
|
||
if (! finfo->info->relocateable)
|
||
sym.st_value += input_sec->output_section->vma;
|
||
}
|
||
else
|
||
{
|
||
BFD_ASSERT ((bfd_get_flavour (input_sec->owner)
|
||
== bfd_target_elf_flavour)
|
||
&& elf_elfheader (input_sec->owner)->e_type == ET_DYN);
|
||
sym.st_shndx = SHN_UNDEF;
|
||
input_sec = bfd_und_section_ptr;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case bfd_link_hash_common:
|
||
input_sec = bfd_com_section_ptr;
|
||
sym.st_shndx = SHN_COMMON;
|
||
sym.st_value = 1 << h->root.u.c.p->alignment_power;
|
||
break;
|
||
|
||
case bfd_link_hash_indirect:
|
||
case bfd_link_hash_warning:
|
||
/* We can't represent these symbols in ELF. A warning symbol
|
||
may have come from a .gnu.warning.SYMBOL section anyhow. We
|
||
just put the target symbol in the hash table. If the target
|
||
symbol does not really exist, don't do anything. */
|
||
if (h->root.u.i.link->type == bfd_link_hash_new)
|
||
return true;
|
||
return (elf_link_output_extsym
|
||
((struct elf_link_hash_entry *) h->root.u.i.link, data));
|
||
}
|
||
|
||
/* If this symbol should be put in the .dynsym section, then put it
|
||
there now. We have already know the symbol index. We also fill
|
||
in the entry in the .hash section. */
|
||
if (h->dynindx != -1
|
||
&& elf_hash_table (finfo->info)->dynamic_sections_created)
|
||
{
|
||
struct elf_backend_data *bed;
|
||
size_t bucketcount;
|
||
size_t bucket;
|
||
bfd_byte *bucketpos;
|
||
bfd_vma chain;
|
||
|
||
sym.st_name = h->dynstr_index;
|
||
|
||
/* Give the processor backend a chance to tweak the symbol
|
||
value, and also to finish up anything that needs to be done
|
||
for this symbol. */
|
||
bed = get_elf_backend_data (finfo->output_bfd);
|
||
if (! ((*bed->elf_backend_finish_dynamic_symbol)
|
||
(finfo->output_bfd, finfo->info, h, &sym)))
|
||
{
|
||
eif->failed = true;
|
||
return false;
|
||
}
|
||
|
||
elf_swap_symbol_out (finfo->output_bfd, &sym,
|
||
(PTR) (((Elf_External_Sym *)
|
||
finfo->dynsym_sec->contents)
|
||
+ h->dynindx));
|
||
|
||
bucketcount = elf_hash_table (finfo->info)->bucketcount;
|
||
bucket = (bfd_elf_hash ((const unsigned char *) h->root.root.string)
|
||
% bucketcount);
|
||
bucketpos = ((bfd_byte *) finfo->hash_sec->contents
|
||
+ (bucket + 2) * (ARCH_SIZE / 8));
|
||
chain = get_word (finfo->output_bfd, bucketpos);
|
||
put_word (finfo->output_bfd, h->dynindx, bucketpos);
|
||
put_word (finfo->output_bfd, chain,
|
||
((bfd_byte *) finfo->hash_sec->contents
|
||
+ (bucketcount + 2 + h->dynindx) * (ARCH_SIZE / 8)));
|
||
}
|
||
|
||
/* If we're stripping it, then it was just a dynamic symbol, and
|
||
there's nothing else to do. */
|
||
if (strip)
|
||
return true;
|
||
|
||
h->indx = finfo->output_bfd->symcount;
|
||
|
||
if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
|
||
{
|
||
eif->failed = true;
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Link an input file into the linker output file. This function
|
||
handles all the sections and relocations of the input file at once.
|
||
This is so that we only have to read the local symbols once, and
|
||
don't have to keep them in memory. */
|
||
|
||
static boolean
|
||
elf_link_input_bfd (finfo, input_bfd)
|
||
struct elf_final_link_info *finfo;
|
||
bfd *input_bfd;
|
||
{
|
||
boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
|
||
bfd *, asection *, bfd_byte *,
|
||
Elf_Internal_Rela *,
|
||
Elf_Internal_Sym *, asection **));
|
||
bfd *output_bfd;
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
size_t locsymcount;
|
||
size_t extsymoff;
|
||
Elf_External_Sym *esym;
|
||
Elf_External_Sym *esymend;
|
||
Elf_Internal_Sym *isym;
|
||
long *pindex;
|
||
asection **ppsection;
|
||
asection *o;
|
||
|
||
output_bfd = finfo->output_bfd;
|
||
relocate_section =
|
||
get_elf_backend_data (output_bfd)->elf_backend_relocate_section;
|
||
|
||
/* If this is a dynamic object, we don't want to do anything here:
|
||
we don't want the local symbols, and we don't want the section
|
||
contents. */
|
||
if (elf_elfheader (input_bfd)->e_type == ET_DYN)
|
||
return true;
|
||
|
||
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
||
if (elf_bad_symtab (input_bfd))
|
||
{
|
||
locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
|
||
extsymoff = 0;
|
||
}
|
||
else
|
||
{
|
||
locsymcount = symtab_hdr->sh_info;
|
||
extsymoff = symtab_hdr->sh_info;
|
||
}
|
||
|
||
/* Read the local symbols. */
|
||
if (locsymcount > 0
|
||
&& (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
|
||
|| (bfd_read (finfo->external_syms, sizeof (Elf_External_Sym),
|
||
locsymcount, input_bfd)
|
||
!= locsymcount * sizeof (Elf_External_Sym))))
|
||
return false;
|
||
|
||
/* Swap in the local symbols and write out the ones which we know
|
||
are going into the output file. */
|
||
esym = finfo->external_syms;
|
||
esymend = esym + locsymcount;
|
||
isym = finfo->internal_syms;
|
||
pindex = finfo->indices;
|
||
ppsection = finfo->sections;
|
||
for (; esym < esymend; esym++, isym++, pindex++, ppsection++)
|
||
{
|
||
asection *isec;
|
||
const char *name;
|
||
Elf_Internal_Sym osym;
|
||
|
||
elf_swap_symbol_in (input_bfd, esym, isym);
|
||
*pindex = -1;
|
||
|
||
if (elf_bad_symtab (input_bfd))
|
||
{
|
||
if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
|
||
{
|
||
*ppsection = NULL;
|
||
continue;
|
||
}
|
||
}
|
||
|
||
if (isym->st_shndx == SHN_UNDEF)
|
||
isec = bfd_und_section_ptr;
|
||
else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE)
|
||
isec = section_from_elf_index (input_bfd, isym->st_shndx);
|
||
else if (isym->st_shndx == SHN_ABS)
|
||
isec = bfd_abs_section_ptr;
|
||
else if (isym->st_shndx == SHN_COMMON)
|
||
isec = bfd_com_section_ptr;
|
||
else
|
||
{
|
||
/* Who knows? */
|
||
isec = NULL;
|
||
}
|
||
|
||
*ppsection = isec;
|
||
|
||
/* Don't output the first, undefined, symbol. */
|
||
if (esym == finfo->external_syms)
|
||
continue;
|
||
|
||
/* If we are stripping all symbols, we don't want to output this
|
||
one. */
|
||
if (finfo->info->strip == strip_all)
|
||
continue;
|
||
|
||
/* We never output section symbols. Instead, we use the section
|
||
symbol of the corresponding section in the output file. */
|
||
if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
|
||
continue;
|
||
|
||
/* If we are discarding all local symbols, we don't want to
|
||
output this one. If we are generating a relocateable output
|
||
file, then some of the local symbols may be required by
|
||
relocs; we output them below as we discover that they are
|
||
needed. */
|
||
if (finfo->info->discard == discard_all)
|
||
continue;
|
||
|
||
/* Get the name of the symbol. */
|
||
name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
|
||
isym->st_name);
|
||
if (name == NULL)
|
||
return false;
|
||
|
||
/* See if we are discarding symbols with this name. */
|
||
if ((finfo->info->strip == strip_some
|
||
&& (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
|
||
== NULL))
|
||
|| (finfo->info->discard == discard_l
|
||
&& strncmp (name, finfo->info->lprefix,
|
||
finfo->info->lprefix_len) == 0))
|
||
continue;
|
||
|
||
/* If we get here, we are going to output this symbol. */
|
||
|
||
osym = *isym;
|
||
|
||
/* Adjust the section index for the output file. */
|
||
osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
|
||
isec->output_section);
|
||
if (osym.st_shndx == (unsigned short) -1)
|
||
return false;
|
||
|
||
*pindex = output_bfd->symcount;
|
||
|
||
/* ELF symbols in relocateable files are section relative, but
|
||
in executable files they are virtual addresses. Note that
|
||
this code assumes that all ELF sections have an associated
|
||
BFD section with a reasonable value for output_offset; below
|
||
we assume that they also have a reasonable value for
|
||
output_section. Any special sections must be set up to meet
|
||
these requirements. */
|
||
osym.st_value += isec->output_offset;
|
||
if (! finfo->info->relocateable)
|
||
osym.st_value += isec->output_section->vma;
|
||
|
||
if (! elf_link_output_sym (finfo, name, &osym, isec))
|
||
return false;
|
||
}
|
||
|
||
/* Relocate the contents of each section. */
|
||
for (o = input_bfd->sections; o != NULL; o = o->next)
|
||
{
|
||
if (! o->linker_mark)
|
||
{
|
||
/* This section was omitted from the link. */
|
||
continue;
|
||
}
|
||
|
||
if ((o->flags & SEC_HAS_CONTENTS) == 0
|
||
|| (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
|
||
continue;
|
||
|
||
if ((o->flags & SEC_IN_MEMORY) != 0
|
||
&& input_bfd == elf_hash_table (finfo->info)->dynobj)
|
||
{
|
||
/* Section was created by elf_link_create_dynamic_sections.
|
||
FIXME: This test is fragile. */
|
||
continue;
|
||
}
|
||
|
||
/* Read the contents of the section. */
|
||
if (! bfd_get_section_contents (input_bfd, o, finfo->contents,
|
||
(file_ptr) 0, o->_raw_size))
|
||
return false;
|
||
|
||
if ((o->flags & SEC_RELOC) != 0)
|
||
{
|
||
Elf_Internal_Rela *internal_relocs;
|
||
|
||
/* Get the swapped relocs. */
|
||
internal_relocs = elf_link_read_relocs (input_bfd, o,
|
||
finfo->external_relocs,
|
||
finfo->internal_relocs,
|
||
false);
|
||
if (internal_relocs == NULL
|
||
&& o->reloc_count > 0)
|
||
return false;
|
||
|
||
/* Relocate the section by invoking a back end routine.
|
||
|
||
The back end routine is responsible for adjusting the
|
||
section contents as necessary, and (if using Rela relocs
|
||
and generating a relocateable output file) adjusting the
|
||
reloc addend as necessary.
|
||
|
||
The back end routine does not have to worry about setting
|
||
the reloc address or the reloc symbol index.
|
||
|
||
The back end routine is given a pointer to the swapped in
|
||
internal symbols, and can access the hash table entries
|
||
for the external symbols via elf_sym_hashes (input_bfd).
|
||
|
||
When generating relocateable output, the back end routine
|
||
must handle STB_LOCAL/STT_SECTION symbols specially. The
|
||
output symbol is going to be a section symbol
|
||
corresponding to the output section, which will require
|
||
the addend to be adjusted. */
|
||
|
||
if (! (*relocate_section) (output_bfd, finfo->info,
|
||
input_bfd, o,
|
||
finfo->contents,
|
||
internal_relocs,
|
||
finfo->internal_syms,
|
||
finfo->sections))
|
||
return false;
|
||
|
||
if (finfo->info->relocateable)
|
||
{
|
||
Elf_Internal_Rela *irela;
|
||
Elf_Internal_Rela *irelaend;
|
||
struct elf_link_hash_entry **rel_hash;
|
||
Elf_Internal_Shdr *input_rel_hdr;
|
||
Elf_Internal_Shdr *output_rel_hdr;
|
||
|
||
/* Adjust the reloc addresses and symbol indices. */
|
||
|
||
irela = internal_relocs;
|
||
irelaend = irela + o->reloc_count;
|
||
rel_hash = (elf_section_data (o->output_section)->rel_hashes
|
||
+ o->output_section->reloc_count);
|
||
for (; irela < irelaend; irela++, rel_hash++)
|
||
{
|
||
unsigned long r_symndx;
|
||
Elf_Internal_Sym *isym;
|
||
asection *sec;
|
||
|
||
irela->r_offset += o->output_offset;
|
||
|
||
r_symndx = ELF_R_SYM (irela->r_info);
|
||
|
||
if (r_symndx == 0)
|
||
continue;
|
||
|
||
if (r_symndx >= locsymcount
|
||
|| (elf_bad_symtab (input_bfd)
|
||
&& finfo->sections[r_symndx] == NULL))
|
||
{
|
||
long indx;
|
||
|
||
/* This is a reloc against a global symbol. We
|
||
have not yet output all the local symbols, so
|
||
we do not know the symbol index of any global
|
||
symbol. We set the rel_hash entry for this
|
||
reloc to point to the global hash table entry
|
||
for this symbol. The symbol index is then
|
||
set at the end of elf_bfd_final_link. */
|
||
indx = r_symndx - extsymoff;
|
||
*rel_hash = elf_sym_hashes (input_bfd)[indx];
|
||
|
||
/* Setting the index to -2 tells
|
||
elf_link_output_extsym that this symbol is
|
||
used by a reloc. */
|
||
BFD_ASSERT ((*rel_hash)->indx < 0);
|
||
(*rel_hash)->indx = -2;
|
||
|
||
continue;
|
||
}
|
||
|
||
/* This is a reloc against a local symbol. */
|
||
|
||
*rel_hash = NULL;
|
||
isym = finfo->internal_syms + r_symndx;
|
||
sec = finfo->sections[r_symndx];
|
||
if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
|
||
{
|
||
/* I suppose the backend ought to fill in the
|
||
section of any STT_SECTION symbol against a
|
||
processor specific section. */
|
||
if (sec != NULL && bfd_is_abs_section (sec))
|
||
r_symndx = 0;
|
||
else if (sec == NULL || sec->owner == NULL)
|
||
{
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return false;
|
||
}
|
||
else
|
||
{
|
||
r_symndx = sec->output_section->target_index;
|
||
BFD_ASSERT (r_symndx != 0);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (finfo->indices[r_symndx] == -1)
|
||
{
|
||
unsigned long link;
|
||
const char *name;
|
||
asection *osec;
|
||
|
||
if (finfo->info->strip == strip_all)
|
||
{
|
||
/* You can't do ld -r -s. */
|
||
bfd_set_error (bfd_error_invalid_operation);
|
||
return false;
|
||
}
|
||
|
||
/* This symbol was skipped earlier, but
|
||
since it is needed by a reloc, we
|
||
must output it now. */
|
||
link = symtab_hdr->sh_link;
|
||
name = bfd_elf_string_from_elf_section (input_bfd,
|
||
link,
|
||
isym->st_name);
|
||
if (name == NULL)
|
||
return false;
|
||
|
||
osec = sec->output_section;
|
||
isym->st_shndx =
|
||
_bfd_elf_section_from_bfd_section (output_bfd,
|
||
osec);
|
||
if (isym->st_shndx == (unsigned short) -1)
|
||
return false;
|
||
|
||
isym->st_value += sec->output_offset;
|
||
if (! finfo->info->relocateable)
|
||
isym->st_value += osec->vma;
|
||
|
||
finfo->indices[r_symndx] = output_bfd->symcount;
|
||
|
||
if (! elf_link_output_sym (finfo, name, isym, sec))
|
||
return false;
|
||
}
|
||
|
||
r_symndx = finfo->indices[r_symndx];
|
||
}
|
||
|
||
irela->r_info = ELF_R_INFO (r_symndx,
|
||
ELF_R_TYPE (irela->r_info));
|
||
}
|
||
|
||
/* Swap out the relocs. */
|
||
input_rel_hdr = &elf_section_data (o)->rel_hdr;
|
||
output_rel_hdr = &elf_section_data (o->output_section)->rel_hdr;
|
||
BFD_ASSERT (output_rel_hdr->sh_entsize
|
||
== input_rel_hdr->sh_entsize);
|
||
irela = internal_relocs;
|
||
irelaend = irela + o->reloc_count;
|
||
if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
|
||
{
|
||
Elf_External_Rel *erel;
|
||
|
||
erel = ((Elf_External_Rel *) output_rel_hdr->contents
|
||
+ o->output_section->reloc_count);
|
||
for (; irela < irelaend; irela++, erel++)
|
||
{
|
||
Elf_Internal_Rel irel;
|
||
|
||
irel.r_offset = irela->r_offset;
|
||
irel.r_info = irela->r_info;
|
||
BFD_ASSERT (irela->r_addend == 0);
|
||
elf_swap_reloc_out (output_bfd, &irel, erel);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
Elf_External_Rela *erela;
|
||
|
||
BFD_ASSERT (input_rel_hdr->sh_entsize
|
||
== sizeof (Elf_External_Rela));
|
||
erela = ((Elf_External_Rela *) output_rel_hdr->contents
|
||
+ o->output_section->reloc_count);
|
||
for (; irela < irelaend; irela++, erela++)
|
||
elf_swap_reloca_out (output_bfd, irela, erela);
|
||
}
|
||
|
||
o->output_section->reloc_count += o->reloc_count;
|
||
}
|
||
}
|
||
|
||
/* Write out the modified section contents. */
|
||
if (elf_section_data (o)->stab_info == NULL)
|
||
{
|
||
if (! bfd_set_section_contents (output_bfd, o->output_section,
|
||
finfo->contents, o->output_offset,
|
||
(o->_cooked_size != 0
|
||
? o->_cooked_size
|
||
: o->_raw_size)))
|
||
return false;
|
||
}
|
||
else
|
||
{
|
||
if (! _bfd_write_section_stabs (output_bfd, o,
|
||
&elf_section_data (o)->stab_info,
|
||
finfo->contents))
|
||
return false;
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Generate a reloc when linking an ELF file. This is a reloc
|
||
requested by the linker, and does come from any input file. This
|
||
is used to build constructor and destructor tables when linking
|
||
with -Ur. */
|
||
|
||
static boolean
|
||
elf_reloc_link_order (output_bfd, info, output_section, link_order)
|
||
bfd *output_bfd;
|
||
struct bfd_link_info *info;
|
||
asection *output_section;
|
||
struct bfd_link_order *link_order;
|
||
{
|
||
reloc_howto_type *howto;
|
||
long indx;
|
||
bfd_vma offset;
|
||
bfd_vma addend;
|
||
struct elf_link_hash_entry **rel_hash_ptr;
|
||
Elf_Internal_Shdr *rel_hdr;
|
||
|
||
howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
|
||
if (howto == NULL)
|
||
{
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return false;
|
||
}
|
||
|
||
addend = link_order->u.reloc.p->addend;
|
||
|
||
/* Figure out the symbol index. */
|
||
rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
|
||
+ output_section->reloc_count);
|
||
if (link_order->type == bfd_section_reloc_link_order)
|
||
{
|
||
indx = link_order->u.reloc.p->u.section->target_index;
|
||
BFD_ASSERT (indx != 0);
|
||
*rel_hash_ptr = NULL;
|
||
}
|
||
else
|
||
{
|
||
struct elf_link_hash_entry *h;
|
||
|
||
/* Treat a reloc against a defined symbol as though it were
|
||
actually against the section. */
|
||
h = ((struct elf_link_hash_entry *)
|
||
bfd_wrapped_link_hash_lookup (output_bfd, info,
|
||
link_order->u.reloc.p->u.name,
|
||
false, false, true));
|
||
if (h != NULL
|
||
&& (h->root.type == bfd_link_hash_defined
|
||
|| h->root.type == bfd_link_hash_defweak))
|
||
{
|
||
asection *section;
|
||
|
||
section = h->root.u.def.section;
|
||
indx = section->output_section->target_index;
|
||
*rel_hash_ptr = NULL;
|
||
/* It seems that we ought to add the symbol value to the
|
||
addend here, but in practice it has already been added
|
||
because it was passed to constructor_callback. */
|
||
addend += section->output_section->vma + section->output_offset;
|
||
}
|
||
else if (h != NULL)
|
||
{
|
||
/* Setting the index to -2 tells elf_link_output_extsym that
|
||
this symbol is used by a reloc. */
|
||
h->indx = -2;
|
||
*rel_hash_ptr = h;
|
||
indx = 0;
|
||
}
|
||
else
|
||
{
|
||
if (! ((*info->callbacks->unattached_reloc)
|
||
(info, link_order->u.reloc.p->u.name, (bfd *) NULL,
|
||
(asection *) NULL, (bfd_vma) 0)))
|
||
return false;
|
||
indx = 0;
|
||
}
|
||
}
|
||
|
||
/* If this is an inplace reloc, we must write the addend into the
|
||
object file. */
|
||
if (howto->partial_inplace && addend != 0)
|
||
{
|
||
bfd_size_type size;
|
||
bfd_reloc_status_type rstat;
|
||
bfd_byte *buf;
|
||
boolean ok;
|
||
|
||
size = bfd_get_reloc_size (howto);
|
||
buf = (bfd_byte *) bfd_zmalloc (size);
|
||
if (buf == (bfd_byte *) NULL)
|
||
return false;
|
||
rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
|
||
switch (rstat)
|
||
{
|
||
case bfd_reloc_ok:
|
||
break;
|
||
default:
|
||
case bfd_reloc_outofrange:
|
||
abort ();
|
||
case bfd_reloc_overflow:
|
||
if (! ((*info->callbacks->reloc_overflow)
|
||
(info,
|
||
(link_order->type == bfd_section_reloc_link_order
|
||
? bfd_section_name (output_bfd,
|
||
link_order->u.reloc.p->u.section)
|
||
: link_order->u.reloc.p->u.name),
|
||
howto->name, addend, (bfd *) NULL, (asection *) NULL,
|
||
(bfd_vma) 0)))
|
||
{
|
||
free (buf);
|
||
return false;
|
||
}
|
||
break;
|
||
}
|
||
ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
|
||
(file_ptr) link_order->offset, size);
|
||
free (buf);
|
||
if (! ok)
|
||
return false;
|
||
}
|
||
|
||
/* The address of a reloc is relative to the section in a
|
||
relocateable file, and is a virtual address in an executable
|
||
file. */
|
||
offset = link_order->offset;
|
||
if (! info->relocateable)
|
||
offset += output_section->vma;
|
||
|
||
rel_hdr = &elf_section_data (output_section)->rel_hdr;
|
||
|
||
if (rel_hdr->sh_type == SHT_REL)
|
||
{
|
||
Elf_Internal_Rel irel;
|
||
Elf_External_Rel *erel;
|
||
|
||
irel.r_offset = offset;
|
||
irel.r_info = ELF_R_INFO (indx, howto->type);
|
||
erel = ((Elf_External_Rel *) rel_hdr->contents
|
||
+ output_section->reloc_count);
|
||
elf_swap_reloc_out (output_bfd, &irel, erel);
|
||
}
|
||
else
|
||
{
|
||
Elf_Internal_Rela irela;
|
||
Elf_External_Rela *erela;
|
||
|
||
irela.r_offset = offset;
|
||
irela.r_info = ELF_R_INFO (indx, howto->type);
|
||
irela.r_addend = addend;
|
||
erela = ((Elf_External_Rela *) rel_hdr->contents
|
||
+ output_section->reloc_count);
|
||
elf_swap_reloca_out (output_bfd, &irela, erela);
|
||
}
|
||
|
||
++output_section->reloc_count;
|
||
|
||
return true;
|
||
}
|
||
|
||
|
||
/* Allocate a pointer to live in a linker created section. */
|
||
|
||
boolean
|
||
elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
|
||
bfd *abfd;
|
||
struct bfd_link_info *info;
|
||
elf_linker_section_t *lsect;
|
||
struct elf_link_hash_entry *h;
|
||
const Elf_Internal_Rela *rel;
|
||
{
|
||
elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
|
||
elf_linker_section_pointers_t *linker_section_ptr;
|
||
unsigned long r_symndx = ELF_R_SYM (rel->r_info);;
|
||
|
||
BFD_ASSERT (lsect != NULL);
|
||
|
||
/* Is this a global symbol? */
|
||
if (h != NULL)
|
||
{
|
||
/* Has this symbol already been allocated, if so, our work is done */
|
||
if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
|
||
rel->r_addend,
|
||
lsect->which))
|
||
return true;
|
||
|
||
ptr_linker_section_ptr = &h->linker_section_pointer;
|
||
/* Make sure this symbol is output as a dynamic symbol. */
|
||
if (h->dynindx == -1)
|
||
{
|
||
if (! elf_link_record_dynamic_symbol (info, h))
|
||
return false;
|
||
}
|
||
|
||
if (lsect->rel_section)
|
||
lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
|
||
}
|
||
|
||
else /* Allocation of a pointer to a local symbol */
|
||
{
|
||
elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
|
||
|
||
/* Allocate a table to hold the local symbols if first time */
|
||
if (!ptr)
|
||
{
|
||
int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
|
||
register unsigned int i;
|
||
|
||
ptr = (elf_linker_section_pointers_t **)
|
||
bfd_alloc (abfd, num_symbols * sizeof (elf_linker_section_pointers_t *));
|
||
|
||
if (!ptr)
|
||
return false;
|
||
|
||
elf_local_ptr_offsets (abfd) = ptr;
|
||
for (i = 0; i < num_symbols; i++)
|
||
ptr[i] = (elf_linker_section_pointers_t *)0;
|
||
}
|
||
|
||
/* Has this symbol already been allocated, if so, our work is done */
|
||
if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
|
||
rel->r_addend,
|
||
lsect->which))
|
||
return true;
|
||
|
||
ptr_linker_section_ptr = &ptr[r_symndx];
|
||
|
||
if (info->shared)
|
||
{
|
||
/* If we are generating a shared object, we need to
|
||
output a R_<xxx>_RELATIVE reloc so that the
|
||
dynamic linker can adjust this GOT entry. */
|
||
BFD_ASSERT (lsect->rel_section != NULL);
|
||
lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
|
||
}
|
||
}
|
||
|
||
/* Allocate space for a pointer in the linker section, and allocate a new pointer record
|
||
from internal memory. */
|
||
BFD_ASSERT (ptr_linker_section_ptr != NULL);
|
||
linker_section_ptr = (elf_linker_section_pointers_t *)
|
||
bfd_alloc (abfd, sizeof (elf_linker_section_pointers_t));
|
||
|
||
if (!linker_section_ptr)
|
||
return false;
|
||
|
||
linker_section_ptr->next = *ptr_linker_section_ptr;
|
||
linker_section_ptr->addend = rel->r_addend;
|
||
linker_section_ptr->which = lsect->which;
|
||
linker_section_ptr->written_address_p = false;
|
||
*ptr_linker_section_ptr = linker_section_ptr;
|
||
|
||
#if 0
|
||
if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
|
||
{
|
||
linker_section_ptr->offset = lsect->section->_raw_size - lsect->hole_size + (ARCH_SIZE / 8);
|
||
lsect->hole_offset += ARCH_SIZE / 8;
|
||
lsect->sym_offset += ARCH_SIZE / 8;
|
||
if (lsect->sym_hash) /* Bump up symbol value if needed */
|
||
{
|
||
lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
|
||
#ifdef DEBUG
|
||
fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
|
||
lsect->sym_hash->root.root.string,
|
||
(long)ARCH_SIZE / 8,
|
||
(long)lsect->sym_hash->root.u.def.value);
|
||
#endif
|
||
}
|
||
}
|
||
else
|
||
#endif
|
||
linker_section_ptr->offset = lsect->section->_raw_size;
|
||
|
||
lsect->section->_raw_size += ARCH_SIZE / 8;
|
||
|
||
#ifdef DEBUG
|
||
fprintf (stderr, "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
|
||
lsect->name, (long)linker_section_ptr->offset, (long)lsect->section->_raw_size);
|
||
#endif
|
||
|
||
return true;
|
||
}
|
||
|
||
|
||
#if ARCH_SIZE==64
|
||
#define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
|
||
#endif
|
||
#if ARCH_SIZE==32
|
||
#define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
|
||
#endif
|
||
|
||
/* Fill in the address for a pointer generated in alinker section. */
|
||
|
||
bfd_vma
|
||
elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h, relocation, rel, relative_reloc)
|
||
bfd *output_bfd;
|
||
bfd *input_bfd;
|
||
struct bfd_link_info *info;
|
||
elf_linker_section_t *lsect;
|
||
struct elf_link_hash_entry *h;
|
||
bfd_vma relocation;
|
||
const Elf_Internal_Rela *rel;
|
||
int relative_reloc;
|
||
{
|
||
elf_linker_section_pointers_t *linker_section_ptr;
|
||
|
||
BFD_ASSERT (lsect != NULL);
|
||
|
||
if (h != NULL) /* global symbol */
|
||
{
|
||
linker_section_ptr = _bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
|
||
rel->r_addend,
|
||
lsect->which);
|
||
|
||
BFD_ASSERT (linker_section_ptr != NULL);
|
||
|
||
if (! elf_hash_table (info)->dynamic_sections_created
|
||
|| (info->shared
|
||
&& info->symbolic
|
||
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
|
||
{
|
||
/* This is actually a static link, or it is a
|
||
-Bsymbolic link and the symbol is defined
|
||
locally. We must initialize this entry in the
|
||
global section.
|
||
|
||
When doing a dynamic link, we create a .rela.<xxx>
|
||
relocation entry to initialize the value. This
|
||
is done in the finish_dynamic_symbol routine. */
|
||
if (!linker_section_ptr->written_address_p)
|
||
{
|
||
linker_section_ptr->written_address_p = true;
|
||
bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
|
||
lsect->section->contents + linker_section_ptr->offset);
|
||
}
|
||
}
|
||
}
|
||
else /* local symbol */
|
||
{
|
||
unsigned long r_symndx = ELF_R_SYM (rel->r_info);
|
||
BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
|
||
BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
|
||
linker_section_ptr = _bfd_elf_find_pointer_linker_section (elf_local_ptr_offsets (input_bfd)[r_symndx],
|
||
rel->r_addend,
|
||
lsect->which);
|
||
|
||
BFD_ASSERT (linker_section_ptr != NULL);
|
||
|
||
/* Write out pointer if it hasn't been rewritten out before */
|
||
if (!linker_section_ptr->written_address_p)
|
||
{
|
||
linker_section_ptr->written_address_p = true;
|
||
bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
|
||
lsect->section->contents + linker_section_ptr->offset);
|
||
|
||
if (info->shared)
|
||
{
|
||
asection *srel = lsect->rel_section;
|
||
Elf_Internal_Rela outrel;
|
||
|
||
/* We need to generate a relative reloc for the dynamic linker. */
|
||
if (!srel)
|
||
lsect->rel_section = srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
|
||
lsect->rel_name);
|
||
|
||
BFD_ASSERT (srel != NULL);
|
||
|
||
outrel.r_offset = (lsect->section->output_section->vma
|
||
+ lsect->section->output_offset
|
||
+ linker_section_ptr->offset);
|
||
outrel.r_info = ELF_R_INFO (0, relative_reloc);
|
||
outrel.r_addend = 0;
|
||
elf_swap_reloca_out (output_bfd, &outrel,
|
||
(((Elf_External_Rela *)
|
||
lsect->section->contents)
|
||
+ lsect->section->reloc_count));
|
||
++lsect->section->reloc_count;
|
||
}
|
||
}
|
||
}
|
||
|
||
relocation = (lsect->section->output_offset
|
||
+ linker_section_ptr->offset
|
||
- lsect->hole_offset
|
||
- lsect->sym_offset);
|
||
|
||
#ifdef DEBUG
|
||
fprintf (stderr, "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
|
||
lsect->name, (long)relocation, (long)relocation);
|
||
#endif
|
||
|
||
/* Subtract out the addend, because it will get added back in by the normal
|
||
processing. */
|
||
return relocation - linker_section_ptr->addend;
|
||
}
|