binutils-gdb/gold/fileread.cc
2008-02-13 02:44:50 +00:00

740 lines
18 KiB
C++

// fileread.cc -- read files for gold
// Copyright 2006, 2007 Free Software Foundation, Inc.
// Written by Ian Lance Taylor <iant@google.com>.
// This file is part of gold.
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.
#include "gold.h"
#include <cstring>
#include <cerrno>
#include <fcntl.h>
#include <unistd.h>
#include <sys/mman.h>
#include <sys/uio.h>
#include "filenames.h"
#include "parameters.h"
#include "options.h"
#include "dirsearch.h"
#include "target.h"
#include "binary.h"
#include "fileread.h"
namespace gold
{
// Class File_read::View.
File_read::View::~View()
{
gold_assert(!this->is_locked());
if (!this->mapped_)
delete[] this->data_;
else
{
if (::munmap(const_cast<unsigned char*>(this->data_), this->size_) != 0)
gold_warning(_("munmap failed: %s"), strerror(errno));
File_read::current_mapped_bytes -= this->size_;
}
}
void
File_read::View::lock()
{
++this->lock_count_;
}
void
File_read::View::unlock()
{
gold_assert(this->lock_count_ > 0);
--this->lock_count_;
}
bool
File_read::View::is_locked()
{
return this->lock_count_ > 0;
}
// Class File_read.
// The File_read static variables.
unsigned long long File_read::total_mapped_bytes;
unsigned long long File_read::current_mapped_bytes;
unsigned long long File_read::maximum_mapped_bytes;
// The File_read class is designed to support file descriptor caching,
// but this is not currently implemented.
File_read::~File_read()
{
gold_assert(this->token_.is_writable());
if (this->descriptor_ >= 0)
{
if (close(this->descriptor_) < 0)
gold_warning(_("close of %s failed: %s"),
this->name_.c_str(), strerror(errno));
this->descriptor_ = -1;
}
this->name_.clear();
this->clear_views(true);
}
// Open the file.
bool
File_read::open(const Task* task, const std::string& name)
{
gold_assert(this->token_.is_writable()
&& this->descriptor_ < 0
&& this->name_.empty());
this->name_ = name;
this->descriptor_ = ::open(this->name_.c_str(), O_RDONLY);
if (this->descriptor_ >= 0)
{
struct stat s;
if (::fstat(this->descriptor_, &s) < 0)
gold_error(_("%s: fstat failed: %s"),
this->name_.c_str(), strerror(errno));
this->size_ = s.st_size;
}
this->token_.add_writer(task);
return this->descriptor_ >= 0;
}
// Open the file with the contents in memory.
bool
File_read::open(const Task* task, const std::string& name,
const unsigned char* contents, off_t size)
{
gold_assert(this->token_.is_writable()
&& this->descriptor_ < 0
&& this->name_.empty());
this->name_ = name;
this->contents_ = contents;
this->size_ = size;
this->token_.add_writer(task);
return true;
}
// Release the file. This is called when we are done with the file in
// a Task.
void
File_read::release()
{
gold_assert(this->is_locked());
File_read::total_mapped_bytes += this->mapped_bytes_;
File_read::current_mapped_bytes += this->mapped_bytes_;
this->mapped_bytes_ = 0;
if (File_read::current_mapped_bytes > File_read::maximum_mapped_bytes)
File_read::maximum_mapped_bytes = File_read::current_mapped_bytes;
this->clear_views(false);
this->released_ = true;
}
// Lock the file.
void
File_read::lock(const Task* task)
{
gold_assert(this->released_);
this->token_.add_writer(task);
this->released_ = false;
}
// Unlock the file.
void
File_read::unlock(const Task* task)
{
this->release();
this->token_.remove_writer(task);
}
// Return whether the file is locked.
bool
File_read::is_locked() const
{
if (!this->token_.is_writable())
return true;
// The file is not locked, so it should have been released.
gold_assert(this->released_);
return false;
}
// See if we have a view which covers the file starting at START for
// SIZE bytes. Return a pointer to the View if found, NULL if not.
inline File_read::View*
File_read::find_view(off_t start, section_size_type size) const
{
off_t page = File_read::page_offset(start);
Views::const_iterator p = this->views_.lower_bound(page);
if (p == this->views_.end() || p->first > page)
{
if (p == this->views_.begin())
return NULL;
--p;
}
if (p->second->start() + static_cast<off_t>(p->second->size())
< start + static_cast<off_t>(size))
return NULL;
p->second->set_accessed();
return p->second;
}
// Read SIZE bytes from the file starting at offset START. Read into
// the buffer at P.
void
File_read::do_read(off_t start, section_size_type size, void* p) const
{
ssize_t bytes;
if (this->contents_ != NULL)
{
bytes = this->size_ - start;
if (static_cast<section_size_type>(bytes) >= size)
{
memcpy(p, this->contents_ + start, size);
return;
}
}
else
{
bytes = ::pread(this->descriptor_, p, size, start);
if (static_cast<section_size_type>(bytes) == size)
return;
if (bytes < 0)
{
gold_fatal(_("%s: pread failed: %s"),
this->filename().c_str(), strerror(errno));
return;
}
}
gold_fatal(_("%s: file too short: read only %lld of %lld bytes at %lld"),
this->filename().c_str(),
static_cast<long long>(bytes),
static_cast<long long>(size),
static_cast<long long>(start));
}
// Read data from the file.
void
File_read::read(off_t start, section_size_type size, void* p) const
{
const File_read::View* pv = this->find_view(start, size);
if (pv != NULL)
{
memcpy(p, pv->data() + (start - pv->start()), size);
return;
}
this->do_read(start, size, p);
}
// Find an existing view or make a new one.
File_read::View*
File_read::find_or_make_view(off_t start, section_size_type size, bool cache)
{
gold_assert(!this->token_.is_writable());
this->released_ = false;
File_read::View* v = this->find_view(start, size);
if (v != NULL)
{
if (cache)
v->set_cache();
return v;
}
off_t poff = File_read::page_offset(start);
File_read::View* const vnull = NULL;
std::pair<Views::iterator, bool> ins =
this->views_.insert(std::make_pair(poff, vnull));
if (!ins.second)
{
// There was an existing view at this offset. It must not be
// large enough. We can't delete it here, since something might
// be using it; put it on a list to be deleted when the file is
// unlocked.
v = ins.first->second;
gold_assert(v->size() - (start - v->start()) < size);
if (v->should_cache())
cache = true;
v->clear_cache();
this->saved_views_.push_back(v);
}
// We need to map data from the file.
section_size_type psize = File_read::pages(size + (start - poff));
if (poff + static_cast<off_t>(psize) >= this->size_)
{
psize = this->size_ - poff;
gold_assert(psize >= size);
}
if (this->contents_ != NULL)
{
unsigned char* p = new unsigned char[psize];
this->do_read(poff, psize, p);
v = new File_read::View(poff, psize, p, cache, false);
}
else
{
void* p = ::mmap(NULL, psize, PROT_READ, MAP_PRIVATE,
this->descriptor_, poff);
if (p == MAP_FAILED)
gold_fatal(_("%s: mmap offset %lld size %lld failed: %s"),
this->filename().c_str(),
static_cast<long long>(poff),
static_cast<long long>(psize),
strerror(errno));
this->mapped_bytes_ += psize;
const unsigned char* pbytes = static_cast<const unsigned char*>(p);
v = new File_read::View(poff, psize, pbytes, cache, true);
}
ins.first->second = v;
return v;
}
// Get a view into the file.
const unsigned char*
File_read::get_view(off_t start, section_size_type size, bool cache)
{
File_read::View* pv = this->find_or_make_view(start, size, cache);
return pv->data() + (start - pv->start());
}
File_view*
File_read::get_lasting_view(off_t start, section_size_type size, bool cache)
{
File_read::View* pv = this->find_or_make_view(start, size, cache);
pv->lock();
return new File_view(*this, pv, pv->data() + (start - pv->start()));
}
// Use readv to read COUNT entries from RM starting at START. BASE
// must be added to all file offsets in RM.
void
File_read::do_readv(off_t base, const Read_multiple& rm, size_t start,
size_t count)
{
unsigned char discard[File_read::page_size];
iovec iov[File_read::max_readv_entries * 2];
size_t iov_index = 0;
off_t first_offset = rm[start].file_offset;
off_t last_offset = first_offset;
ssize_t want = 0;
for (size_t i = 0; i < count; ++i)
{
const Read_multiple_entry& i_entry(rm[start + i]);
if (i_entry.file_offset > last_offset)
{
size_t skip = i_entry.file_offset - last_offset;
gold_assert(skip <= sizeof discard);
iov[iov_index].iov_base = discard;
iov[iov_index].iov_len = skip;
++iov_index;
want += skip;
}
iov[iov_index].iov_base = i_entry.buffer;
iov[iov_index].iov_len = i_entry.size;
++iov_index;
want += i_entry.size;
last_offset = i_entry.file_offset + i_entry.size;
}
gold_assert(iov_index < sizeof iov / sizeof iov[0]);
if (::lseek(this->descriptor_, base + first_offset, SEEK_SET) < 0)
gold_fatal(_("%s: lseek failed: %s"),
this->filename().c_str(), strerror(errno));
ssize_t got = ::readv(this->descriptor_, iov, iov_index);
if (got < 0)
gold_fatal(_("%s: readv failed: %s"),
this->filename().c_str(), strerror(errno));
if (got != want)
gold_fatal(_("%s: file too short: read only %zd of %zd bytes at %lld"),
this->filename().c_str(),
got, want, static_cast<long long>(base + first_offset));
}
// Read several pieces of data from the file.
void
File_read::read_multiple(off_t base, const Read_multiple& rm)
{
size_t count = rm.size();
size_t i = 0;
while (i < count)
{
// Find up to MAX_READV_ENTRIES consecutive entries which are
// less than one page apart.
const Read_multiple_entry& i_entry(rm[i]);
off_t i_off = i_entry.file_offset;
off_t end_off = i_off + i_entry.size;
size_t j;
for (j = i + 1; j < count; ++j)
{
if (j - i >= File_read::max_readv_entries)
break;
const Read_multiple_entry& j_entry(rm[j]);
off_t j_off = j_entry.file_offset;
gold_assert(j_off >= end_off);
off_t j_end_off = j_off + j_entry.size;
if (j_end_off - end_off >= File_read::page_size)
break;
end_off = j_end_off;
}
if (j == i + 1)
this->read(base + i_off, i_entry.size, i_entry.buffer);
else
{
File_read::View* view = this->find_view(base + i_off,
end_off - i_off);
if (view == NULL)
this->do_readv(base, rm, i, j - i);
else
{
const unsigned char* v = (view->data()
+ (base + i_off - view->start()));
for (size_t k = i; k < j; ++k)
{
const Read_multiple_entry& k_entry(rm[k]);
gold_assert((convert_to_section_size_type(k_entry.file_offset
- i_off)
+ k_entry.size)
<= convert_to_section_size_type(end_off
- i_off));
memcpy(k_entry.buffer,
v + (k_entry.file_offset - i_off),
k_entry.size);
}
}
}
i = j;
}
}
// Mark all views as no longer cached.
void
File_read::clear_view_cache_marks()
{
// Just ignore this if there are multiple objects associated with
// the file. Otherwise we will wind up uncaching and freeing some
// views for other objects.
if (this->object_count_ > 1)
return;
for (Views::iterator p = this->views_.begin();
p != this->views_.end();
++p)
p->second->clear_cache();
for (Saved_views::iterator p = this->saved_views_.begin();
p != this->saved_views_.end();
++p)
(*p)->clear_cache();
}
// Remove all the file views. For a file which has multiple
// associated objects (i.e., an archive), we keep accessed views
// around until next time, in the hopes that they will be useful for
// the next object.
void
File_read::clear_views(bool destroying)
{
Views::iterator p = this->views_.begin();
while (p != this->views_.end())
{
bool should_delete;
if (p->second->is_locked())
should_delete = false;
else if (destroying)
should_delete = true;
else if (p->second->should_cache())
should_delete = false;
else if (this->object_count_ > 1 && p->second->accessed())
should_delete = false;
else
should_delete = true;
if (should_delete)
{
delete p->second;
// map::erase invalidates only the iterator to the deleted
// element.
Views::iterator pe = p;
++p;
this->views_.erase(pe);
}
else
{
gold_assert(!destroying);
p->second->clear_accessed();
++p;
}
}
Saved_views::iterator q = this->saved_views_.begin();
while (q != this->saved_views_.end())
{
if (!(*q)->is_locked())
{
delete *q;
q = this->saved_views_.erase(q);
}
else
{
gold_assert(!destroying);
++q;
}
}
}
// Print statistical information to stderr. This is used for --stats.
void
File_read::print_stats()
{
fprintf(stderr, _("%s: total bytes mapped for read: %llu\n"),
program_name, File_read::total_mapped_bytes);
fprintf(stderr, _("%s: maximum bytes mapped for read at one time: %llu\n"),
program_name, File_read::maximum_mapped_bytes);
}
// Class File_view.
File_view::~File_view()
{
gold_assert(this->file_.is_locked());
this->view_->unlock();
}
// Class Input_file.
// Create a file for testing.
Input_file::Input_file(const Task* task, const char* name,
const unsigned char* contents, off_t size)
: file_()
{
this->input_argument_ =
new Input_file_argument(name, false, "", false,
Position_dependent_options());
bool ok = file_.open(task, name, contents, size);
gold_assert(ok);
}
// Return the position dependent options in force for this file.
const Position_dependent_options&
Input_file::options() const
{
return this->input_argument_->options();
}
// Return the name given by the user. For -lc this will return "c".
const char*
Input_file::name() const
{
return this->input_argument_->name();
}
// Return whether we are only reading symbols.
bool
Input_file::just_symbols() const
{
return this->input_argument_->just_symbols();
}
// Open the file.
// If the filename is not absolute, we assume it is in the current
// directory *except* when:
// A) input_argument_->is_lib() is true; or
// B) input_argument_->extra_search_path() is not empty.
// In both cases, we look in extra_search_path + library_path to find
// the file location, rather than the current directory.
bool
Input_file::open(const General_options& options, const Dirsearch& dirpath,
const Task* task)
{
std::string name;
// Case 1: name is an absolute file, just try to open it
// Case 2: name is relative but is_lib is false and extra_search_path
// is empty
if (IS_ABSOLUTE_PATH (this->input_argument_->name())
|| (!this->input_argument_->is_lib()
&& this->input_argument_->extra_search_path() == NULL))
{
name = this->input_argument_->name();
this->found_name_ = name;
}
// Case 3: is_lib is true
else if (this->input_argument_->is_lib())
{
// We don't yet support extra_search_path with -l.
gold_assert(this->input_argument_->extra_search_path() == NULL);
std::string n1("lib");
n1 += this->input_argument_->name();
std::string n2;
if (options.is_static()
|| this->input_argument_->options().do_static_search())
n1 += ".a";
else
{
n2 = n1 + ".a";
n1 += ".so";
}
name = dirpath.find(n1, n2, &this->is_in_sysroot_);
if (name.empty())
{
gold_error(_("cannot find -l%s"),
this->input_argument_->name());
return false;
}
if (n2.empty() || name[name.length() - 1] == 'o')
this->found_name_ = n1;
else
this->found_name_ = n2;
}
// Case 4: extra_search_path is not empty
else
{
gold_assert(this->input_argument_->extra_search_path() != NULL);
// First, check extra_search_path.
name = this->input_argument_->extra_search_path();
if (!IS_DIR_SEPARATOR (name[name.length() - 1]))
name += '/';
name += this->input_argument_->name();
struct stat dummy_stat;
if (::stat(name.c_str(), &dummy_stat) < 0)
{
// extra_search_path failed, so check the normal search-path.
name = dirpath.find(this->input_argument_->name(), "",
&this->is_in_sysroot_);
if (name.empty())
{
gold_error(_("cannot find %s"),
this->input_argument_->name());
return false;
}
}
this->found_name_ = this->input_argument_->name();
}
// Now that we've figured out where the file lives, try to open it.
General_options::Object_format format =
this->input_argument_->options().input_format();
bool ok;
if (format == General_options::OBJECT_FORMAT_ELF)
ok = this->file_.open(task, name);
else
{
gold_assert(format == General_options::OBJECT_FORMAT_BINARY);
ok = this->open_binary(options, task, name);
}
if (!ok)
{
gold_error(_("cannot open %s: %s"),
name.c_str(), strerror(errno));
return false;
}
return true;
}
// Open a file for --format binary.
bool
Input_file::open_binary(const General_options& options,
const Task* task, const std::string& name)
{
// In order to open a binary file, we need machine code, size, and
// endianness. We may not have a valid target at this point, in
// which case we use the default target.
Target* target;
if (parameters->is_target_valid())
target = parameters->target();
else
target = options.default_target();
Binary_to_elf binary_to_elf(target->machine_code(),
target->get_size(),
target->is_big_endian(),
name);
if (!binary_to_elf.convert(task))
return false;
return this->file_.open(task, name, binary_to_elf.converted_data_leak(),
binary_to_elf.converted_size());
}
} // End namespace gold.