mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-09 04:21:49 +08:00
ceacbf6edf
Replace all uses of it by type::field. Note that since type::field returns a reference to the field, some spots are used to assign the whole field structure. See ctfread.c, function attach_fields_to_type, for example. This is the same as was happening with the macro, so I don't think it's a problem, but if anybody sees a really nicer way to do this, now could be a good time to implement it. gdb/ChangeLog: * gdbtypes.h (TYPE_FIELD): Remove. Replace all uses with type::field.
3902 lines
118 KiB
C
3902 lines
118 KiB
C
/* Perform non-arithmetic operations on values, for GDB.
|
||
|
||
Copyright (C) 1986-2020 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include "symtab.h"
|
||
#include "gdbtypes.h"
|
||
#include "value.h"
|
||
#include "frame.h"
|
||
#include "inferior.h"
|
||
#include "gdbcore.h"
|
||
#include "target.h"
|
||
#include "demangle.h"
|
||
#include "language.h"
|
||
#include "gdbcmd.h"
|
||
#include "regcache.h"
|
||
#include "cp-abi.h"
|
||
#include "block.h"
|
||
#include "infcall.h"
|
||
#include "dictionary.h"
|
||
#include "cp-support.h"
|
||
#include "target-float.h"
|
||
#include "tracepoint.h"
|
||
#include "observable.h"
|
||
#include "objfiles.h"
|
||
#include "extension.h"
|
||
#include "gdbtypes.h"
|
||
#include "gdbsupport/byte-vector.h"
|
||
|
||
/* Local functions. */
|
||
|
||
static int typecmp (int staticp, int varargs, int nargs,
|
||
struct field t1[], struct value *t2[]);
|
||
|
||
static struct value *search_struct_field (const char *, struct value *,
|
||
struct type *, int);
|
||
|
||
static struct value *search_struct_method (const char *, struct value **,
|
||
struct value **,
|
||
LONGEST, int *, struct type *);
|
||
|
||
static int find_oload_champ_namespace (gdb::array_view<value *> args,
|
||
const char *, const char *,
|
||
std::vector<symbol *> *oload_syms,
|
||
badness_vector *,
|
||
const int no_adl);
|
||
|
||
static int find_oload_champ_namespace_loop (gdb::array_view<value *> args,
|
||
const char *, const char *,
|
||
int, std::vector<symbol *> *oload_syms,
|
||
badness_vector *, int *,
|
||
const int no_adl);
|
||
|
||
static int find_oload_champ (gdb::array_view<value *> args,
|
||
size_t num_fns,
|
||
fn_field *methods,
|
||
xmethod_worker_up *xmethods,
|
||
symbol **functions,
|
||
badness_vector *oload_champ_bv);
|
||
|
||
static int oload_method_static_p (struct fn_field *, int);
|
||
|
||
enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
|
||
|
||
static enum oload_classification classify_oload_match
|
||
(const badness_vector &, int, int);
|
||
|
||
static struct value *value_struct_elt_for_reference (struct type *,
|
||
int, struct type *,
|
||
const char *,
|
||
struct type *,
|
||
int, enum noside);
|
||
|
||
static struct value *value_namespace_elt (const struct type *,
|
||
const char *, int , enum noside);
|
||
|
||
static struct value *value_maybe_namespace_elt (const struct type *,
|
||
const char *, int,
|
||
enum noside);
|
||
|
||
static CORE_ADDR allocate_space_in_inferior (int);
|
||
|
||
static struct value *cast_into_complex (struct type *, struct value *);
|
||
|
||
bool overload_resolution = false;
|
||
static void
|
||
show_overload_resolution (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c,
|
||
const char *value)
|
||
{
|
||
fprintf_filtered (file, _("Overload resolution in evaluating "
|
||
"C++ functions is %s.\n"),
|
||
value);
|
||
}
|
||
|
||
/* Find the address of function name NAME in the inferior. If OBJF_P
|
||
is non-NULL, *OBJF_P will be set to the OBJFILE where the function
|
||
is defined. */
|
||
|
||
struct value *
|
||
find_function_in_inferior (const char *name, struct objfile **objf_p)
|
||
{
|
||
struct block_symbol sym;
|
||
|
||
sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
|
||
if (sym.symbol != NULL)
|
||
{
|
||
if (SYMBOL_CLASS (sym.symbol) != LOC_BLOCK)
|
||
{
|
||
error (_("\"%s\" exists in this program but is not a function."),
|
||
name);
|
||
}
|
||
|
||
if (objf_p)
|
||
*objf_p = symbol_objfile (sym.symbol);
|
||
|
||
return value_of_variable (sym.symbol, sym.block);
|
||
}
|
||
else
|
||
{
|
||
struct bound_minimal_symbol msymbol =
|
||
lookup_bound_minimal_symbol (name);
|
||
|
||
if (msymbol.minsym != NULL)
|
||
{
|
||
struct objfile *objfile = msymbol.objfile;
|
||
struct gdbarch *gdbarch = objfile->arch ();
|
||
|
||
struct type *type;
|
||
CORE_ADDR maddr;
|
||
type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
|
||
type = lookup_function_type (type);
|
||
type = lookup_pointer_type (type);
|
||
maddr = BMSYMBOL_VALUE_ADDRESS (msymbol);
|
||
|
||
if (objf_p)
|
||
*objf_p = objfile;
|
||
|
||
return value_from_pointer (type, maddr);
|
||
}
|
||
else
|
||
{
|
||
if (!target_has_execution)
|
||
error (_("evaluation of this expression "
|
||
"requires the target program to be active"));
|
||
else
|
||
error (_("evaluation of this expression requires the "
|
||
"program to have a function \"%s\"."),
|
||
name);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Allocate NBYTES of space in the inferior using the inferior's
|
||
malloc and return a value that is a pointer to the allocated
|
||
space. */
|
||
|
||
struct value *
|
||
value_allocate_space_in_inferior (int len)
|
||
{
|
||
struct objfile *objf;
|
||
struct value *val = find_function_in_inferior ("malloc", &objf);
|
||
struct gdbarch *gdbarch = objf->arch ();
|
||
struct value *blocklen;
|
||
|
||
blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
|
||
val = call_function_by_hand (val, NULL, blocklen);
|
||
if (value_logical_not (val))
|
||
{
|
||
if (!target_has_execution)
|
||
error (_("No memory available to program now: "
|
||
"you need to start the target first"));
|
||
else
|
||
error (_("No memory available to program: call to malloc failed"));
|
||
}
|
||
return val;
|
||
}
|
||
|
||
static CORE_ADDR
|
||
allocate_space_in_inferior (int len)
|
||
{
|
||
return value_as_long (value_allocate_space_in_inferior (len));
|
||
}
|
||
|
||
/* Cast struct value VAL to type TYPE and return as a value.
|
||
Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
|
||
for this to work. Typedef to one of the codes is permitted.
|
||
Returns NULL if the cast is neither an upcast nor a downcast. */
|
||
|
||
static struct value *
|
||
value_cast_structs (struct type *type, struct value *v2)
|
||
{
|
||
struct type *t1;
|
||
struct type *t2;
|
||
struct value *v;
|
||
|
||
gdb_assert (type != NULL && v2 != NULL);
|
||
|
||
t1 = check_typedef (type);
|
||
t2 = check_typedef (value_type (v2));
|
||
|
||
/* Check preconditions. */
|
||
gdb_assert ((t1->code () == TYPE_CODE_STRUCT
|
||
|| t1->code () == TYPE_CODE_UNION)
|
||
&& !!"Precondition is that type is of STRUCT or UNION kind.");
|
||
gdb_assert ((t2->code () == TYPE_CODE_STRUCT
|
||
|| t2->code () == TYPE_CODE_UNION)
|
||
&& !!"Precondition is that value is of STRUCT or UNION kind");
|
||
|
||
if (t1->name () != NULL
|
||
&& t2->name () != NULL
|
||
&& !strcmp (t1->name (), t2->name ()))
|
||
return NULL;
|
||
|
||
/* Upcasting: look in the type of the source to see if it contains the
|
||
type of the target as a superclass. If so, we'll need to
|
||
offset the pointer rather than just change its type. */
|
||
if (t1->name () != NULL)
|
||
{
|
||
v = search_struct_field (t1->name (),
|
||
v2, t2, 1);
|
||
if (v)
|
||
return v;
|
||
}
|
||
|
||
/* Downcasting: look in the type of the target to see if it contains the
|
||
type of the source as a superclass. If so, we'll need to
|
||
offset the pointer rather than just change its type. */
|
||
if (t2->name () != NULL)
|
||
{
|
||
/* Try downcasting using the run-time type of the value. */
|
||
int full, using_enc;
|
||
LONGEST top;
|
||
struct type *real_type;
|
||
|
||
real_type = value_rtti_type (v2, &full, &top, &using_enc);
|
||
if (real_type)
|
||
{
|
||
v = value_full_object (v2, real_type, full, top, using_enc);
|
||
v = value_at_lazy (real_type, value_address (v));
|
||
real_type = value_type (v);
|
||
|
||
/* We might be trying to cast to the outermost enclosing
|
||
type, in which case search_struct_field won't work. */
|
||
if (real_type->name () != NULL
|
||
&& !strcmp (real_type->name (), t1->name ()))
|
||
return v;
|
||
|
||
v = search_struct_field (t2->name (), v, real_type, 1);
|
||
if (v)
|
||
return v;
|
||
}
|
||
|
||
/* Try downcasting using information from the destination type
|
||
T2. This wouldn't work properly for classes with virtual
|
||
bases, but those were handled above. */
|
||
v = search_struct_field (t2->name (),
|
||
value_zero (t1, not_lval), t1, 1);
|
||
if (v)
|
||
{
|
||
/* Downcasting is possible (t1 is superclass of v2). */
|
||
CORE_ADDR addr2 = value_address (v2);
|
||
|
||
addr2 -= value_address (v) + value_embedded_offset (v);
|
||
return value_at (type, addr2);
|
||
}
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Cast one pointer or reference type to another. Both TYPE and
|
||
the type of ARG2 should be pointer types, or else both should be
|
||
reference types. If SUBCLASS_CHECK is non-zero, this will force a
|
||
check to see whether TYPE is a superclass of ARG2's type. If
|
||
SUBCLASS_CHECK is zero, then the subclass check is done only when
|
||
ARG2 is itself non-zero. Returns the new pointer or reference. */
|
||
|
||
struct value *
|
||
value_cast_pointers (struct type *type, struct value *arg2,
|
||
int subclass_check)
|
||
{
|
||
struct type *type1 = check_typedef (type);
|
||
struct type *type2 = check_typedef (value_type (arg2));
|
||
struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
|
||
struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
|
||
|
||
if (t1->code () == TYPE_CODE_STRUCT
|
||
&& t2->code () == TYPE_CODE_STRUCT
|
||
&& (subclass_check || !value_logical_not (arg2)))
|
||
{
|
||
struct value *v2;
|
||
|
||
if (TYPE_IS_REFERENCE (type2))
|
||
v2 = coerce_ref (arg2);
|
||
else
|
||
v2 = value_ind (arg2);
|
||
gdb_assert (check_typedef (value_type (v2))->code ()
|
||
== TYPE_CODE_STRUCT && !!"Why did coercion fail?");
|
||
v2 = value_cast_structs (t1, v2);
|
||
/* At this point we have what we can have, un-dereference if needed. */
|
||
if (v2)
|
||
{
|
||
struct value *v = value_addr (v2);
|
||
|
||
deprecated_set_value_type (v, type);
|
||
return v;
|
||
}
|
||
}
|
||
|
||
/* No superclass found, just change the pointer type. */
|
||
arg2 = value_copy (arg2);
|
||
deprecated_set_value_type (arg2, type);
|
||
set_value_enclosing_type (arg2, type);
|
||
set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
|
||
return arg2;
|
||
}
|
||
|
||
/* Cast value ARG2 to type TYPE and return as a value.
|
||
More general than a C cast: accepts any two types of the same length,
|
||
and if ARG2 is an lvalue it can be cast into anything at all. */
|
||
/* In C++, casts may change pointer or object representations. */
|
||
|
||
struct value *
|
||
value_cast (struct type *type, struct value *arg2)
|
||
{
|
||
enum type_code code1;
|
||
enum type_code code2;
|
||
int scalar;
|
||
struct type *type2;
|
||
|
||
int convert_to_boolean = 0;
|
||
|
||
if (value_type (arg2) == type)
|
||
return arg2;
|
||
|
||
/* Check if we are casting struct reference to struct reference. */
|
||
if (TYPE_IS_REFERENCE (check_typedef (type)))
|
||
{
|
||
/* We dereference type; then we recurse and finally
|
||
we generate value of the given reference. Nothing wrong with
|
||
that. */
|
||
struct type *t1 = check_typedef (type);
|
||
struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
|
||
struct value *val = value_cast (dereftype, arg2);
|
||
|
||
return value_ref (val, t1->code ());
|
||
}
|
||
|
||
if (TYPE_IS_REFERENCE (check_typedef (value_type (arg2))))
|
||
/* We deref the value and then do the cast. */
|
||
return value_cast (type, coerce_ref (arg2));
|
||
|
||
/* Strip typedefs / resolve stubs in order to get at the type's
|
||
code/length, but remember the original type, to use as the
|
||
resulting type of the cast, in case it was a typedef. */
|
||
struct type *to_type = type;
|
||
|
||
type = check_typedef (type);
|
||
code1 = type->code ();
|
||
arg2 = coerce_ref (arg2);
|
||
type2 = check_typedef (value_type (arg2));
|
||
|
||
/* You can't cast to a reference type. See value_cast_pointers
|
||
instead. */
|
||
gdb_assert (!TYPE_IS_REFERENCE (type));
|
||
|
||
/* A cast to an undetermined-length array_type, such as
|
||
(TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
|
||
where N is sizeof(OBJECT)/sizeof(TYPE). */
|
||
if (code1 == TYPE_CODE_ARRAY)
|
||
{
|
||
struct type *element_type = TYPE_TARGET_TYPE (type);
|
||
unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
|
||
|
||
if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
|
||
{
|
||
struct type *range_type = TYPE_INDEX_TYPE (type);
|
||
int val_length = TYPE_LENGTH (type2);
|
||
LONGEST low_bound, high_bound, new_length;
|
||
|
||
if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
|
||
low_bound = 0, high_bound = 0;
|
||
new_length = val_length / element_length;
|
||
if (val_length % element_length != 0)
|
||
warning (_("array element type size does not "
|
||
"divide object size in cast"));
|
||
/* FIXME-type-allocation: need a way to free this type when
|
||
we are done with it. */
|
||
range_type = create_static_range_type (NULL,
|
||
TYPE_TARGET_TYPE (range_type),
|
||
low_bound,
|
||
new_length + low_bound - 1);
|
||
deprecated_set_value_type (arg2,
|
||
create_array_type (NULL,
|
||
element_type,
|
||
range_type));
|
||
return arg2;
|
||
}
|
||
}
|
||
|
||
if (current_language->c_style_arrays
|
||
&& type2->code () == TYPE_CODE_ARRAY
|
||
&& !TYPE_VECTOR (type2))
|
||
arg2 = value_coerce_array (arg2);
|
||
|
||
if (type2->code () == TYPE_CODE_FUNC)
|
||
arg2 = value_coerce_function (arg2);
|
||
|
||
type2 = check_typedef (value_type (arg2));
|
||
code2 = type2->code ();
|
||
|
||
if (code1 == TYPE_CODE_COMPLEX)
|
||
return cast_into_complex (to_type, arg2);
|
||
if (code1 == TYPE_CODE_BOOL)
|
||
{
|
||
code1 = TYPE_CODE_INT;
|
||
convert_to_boolean = 1;
|
||
}
|
||
if (code1 == TYPE_CODE_CHAR)
|
||
code1 = TYPE_CODE_INT;
|
||
if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
|
||
code2 = TYPE_CODE_INT;
|
||
|
||
scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
|
||
|| code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
|
||
|| code2 == TYPE_CODE_RANGE);
|
||
|
||
if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
|
||
&& (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
|
||
&& type->name () != 0)
|
||
{
|
||
struct value *v = value_cast_structs (to_type, arg2);
|
||
|
||
if (v)
|
||
return v;
|
||
}
|
||
|
||
if (is_floating_type (type) && scalar)
|
||
{
|
||
if (is_floating_value (arg2))
|
||
{
|
||
struct value *v = allocate_value (to_type);
|
||
target_float_convert (value_contents (arg2), type2,
|
||
value_contents_raw (v), type);
|
||
return v;
|
||
}
|
||
|
||
/* The only option left is an integral type. */
|
||
if (TYPE_UNSIGNED (type2))
|
||
return value_from_ulongest (to_type, value_as_long (arg2));
|
||
else
|
||
return value_from_longest (to_type, value_as_long (arg2));
|
||
}
|
||
else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
|
||
|| code1 == TYPE_CODE_RANGE)
|
||
&& (scalar || code2 == TYPE_CODE_PTR
|
||
|| code2 == TYPE_CODE_MEMBERPTR))
|
||
{
|
||
LONGEST longest;
|
||
|
||
/* When we cast pointers to integers, we mustn't use
|
||
gdbarch_pointer_to_address to find the address the pointer
|
||
represents, as value_as_long would. GDB should evaluate
|
||
expressions just as the compiler would --- and the compiler
|
||
sees a cast as a simple reinterpretation of the pointer's
|
||
bits. */
|
||
if (code2 == TYPE_CODE_PTR)
|
||
longest = extract_unsigned_integer
|
||
(value_contents (arg2), TYPE_LENGTH (type2),
|
||
type_byte_order (type2));
|
||
else
|
||
longest = value_as_long (arg2);
|
||
return value_from_longest (to_type, convert_to_boolean ?
|
||
(LONGEST) (longest ? 1 : 0) : longest);
|
||
}
|
||
else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
|
||
|| code2 == TYPE_CODE_ENUM
|
||
|| code2 == TYPE_CODE_RANGE))
|
||
{
|
||
/* TYPE_LENGTH (type) is the length of a pointer, but we really
|
||
want the length of an address! -- we are really dealing with
|
||
addresses (i.e., gdb representations) not pointers (i.e.,
|
||
target representations) here.
|
||
|
||
This allows things like "print *(int *)0x01000234" to work
|
||
without printing a misleading message -- which would
|
||
otherwise occur when dealing with a target having two byte
|
||
pointers and four byte addresses. */
|
||
|
||
int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
|
||
LONGEST longest = value_as_long (arg2);
|
||
|
||
if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
|
||
{
|
||
if (longest >= ((LONGEST) 1 << addr_bit)
|
||
|| longest <= -((LONGEST) 1 << addr_bit))
|
||
warning (_("value truncated"));
|
||
}
|
||
return value_from_longest (to_type, longest);
|
||
}
|
||
else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
|
||
&& value_as_long (arg2) == 0)
|
||
{
|
||
struct value *result = allocate_value (to_type);
|
||
|
||
cplus_make_method_ptr (to_type, value_contents_writeable (result), 0, 0);
|
||
return result;
|
||
}
|
||
else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
|
||
&& value_as_long (arg2) == 0)
|
||
{
|
||
/* The Itanium C++ ABI represents NULL pointers to members as
|
||
minus one, instead of biasing the normal case. */
|
||
return value_from_longest (to_type, -1);
|
||
}
|
||
else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
|
||
&& code2 == TYPE_CODE_ARRAY && TYPE_VECTOR (type2)
|
||
&& TYPE_LENGTH (type) != TYPE_LENGTH (type2))
|
||
error (_("Cannot convert between vector values of different sizes"));
|
||
else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar
|
||
&& TYPE_LENGTH (type) != TYPE_LENGTH (type2))
|
||
error (_("can only cast scalar to vector of same size"));
|
||
else if (code1 == TYPE_CODE_VOID)
|
||
{
|
||
return value_zero (to_type, not_lval);
|
||
}
|
||
else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
|
||
{
|
||
if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
|
||
return value_cast_pointers (to_type, arg2, 0);
|
||
|
||
arg2 = value_copy (arg2);
|
||
deprecated_set_value_type (arg2, to_type);
|
||
set_value_enclosing_type (arg2, to_type);
|
||
set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
|
||
return arg2;
|
||
}
|
||
else if (VALUE_LVAL (arg2) == lval_memory)
|
||
return value_at_lazy (to_type, value_address (arg2));
|
||
else
|
||
{
|
||
if (current_language->la_language == language_ada)
|
||
error (_("Invalid type conversion."));
|
||
error (_("Invalid cast."));
|
||
}
|
||
}
|
||
|
||
/* The C++ reinterpret_cast operator. */
|
||
|
||
struct value *
|
||
value_reinterpret_cast (struct type *type, struct value *arg)
|
||
{
|
||
struct value *result;
|
||
struct type *real_type = check_typedef (type);
|
||
struct type *arg_type, *dest_type;
|
||
int is_ref = 0;
|
||
enum type_code dest_code, arg_code;
|
||
|
||
/* Do reference, function, and array conversion. */
|
||
arg = coerce_array (arg);
|
||
|
||
/* Attempt to preserve the type the user asked for. */
|
||
dest_type = type;
|
||
|
||
/* If we are casting to a reference type, transform
|
||
reinterpret_cast<T&[&]>(V) to *reinterpret_cast<T*>(&V). */
|
||
if (TYPE_IS_REFERENCE (real_type))
|
||
{
|
||
is_ref = 1;
|
||
arg = value_addr (arg);
|
||
dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
|
||
real_type = lookup_pointer_type (real_type);
|
||
}
|
||
|
||
arg_type = value_type (arg);
|
||
|
||
dest_code = real_type->code ();
|
||
arg_code = arg_type->code ();
|
||
|
||
/* We can convert pointer types, or any pointer type to int, or int
|
||
type to pointer. */
|
||
if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
|
||
|| (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
|
||
|| (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
|
||
|| (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
|
||
|| (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
|
||
|| (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
|
||
|| (dest_code == arg_code
|
||
&& (dest_code == TYPE_CODE_PTR
|
||
|| dest_code == TYPE_CODE_METHODPTR
|
||
|| dest_code == TYPE_CODE_MEMBERPTR)))
|
||
result = value_cast (dest_type, arg);
|
||
else
|
||
error (_("Invalid reinterpret_cast"));
|
||
|
||
if (is_ref)
|
||
result = value_cast (type, value_ref (value_ind (result),
|
||
type->code ()));
|
||
|
||
return result;
|
||
}
|
||
|
||
/* A helper for value_dynamic_cast. This implements the first of two
|
||
runtime checks: we iterate over all the base classes of the value's
|
||
class which are equal to the desired class; if only one of these
|
||
holds the value, then it is the answer. */
|
||
|
||
static int
|
||
dynamic_cast_check_1 (struct type *desired_type,
|
||
const gdb_byte *valaddr,
|
||
LONGEST embedded_offset,
|
||
CORE_ADDR address,
|
||
struct value *val,
|
||
struct type *search_type,
|
||
CORE_ADDR arg_addr,
|
||
struct type *arg_type,
|
||
struct value **result)
|
||
{
|
||
int i, result_count = 0;
|
||
|
||
for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
|
||
{
|
||
LONGEST offset = baseclass_offset (search_type, i, valaddr,
|
||
embedded_offset,
|
||
address, val);
|
||
|
||
if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
|
||
{
|
||
if (address + embedded_offset + offset >= arg_addr
|
||
&& address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
|
||
{
|
||
++result_count;
|
||
if (!*result)
|
||
*result = value_at_lazy (TYPE_BASECLASS (search_type, i),
|
||
address + embedded_offset + offset);
|
||
}
|
||
}
|
||
else
|
||
result_count += dynamic_cast_check_1 (desired_type,
|
||
valaddr,
|
||
embedded_offset + offset,
|
||
address, val,
|
||
TYPE_BASECLASS (search_type, i),
|
||
arg_addr,
|
||
arg_type,
|
||
result);
|
||
}
|
||
|
||
return result_count;
|
||
}
|
||
|
||
/* A helper for value_dynamic_cast. This implements the second of two
|
||
runtime checks: we look for a unique public sibling class of the
|
||
argument's declared class. */
|
||
|
||
static int
|
||
dynamic_cast_check_2 (struct type *desired_type,
|
||
const gdb_byte *valaddr,
|
||
LONGEST embedded_offset,
|
||
CORE_ADDR address,
|
||
struct value *val,
|
||
struct type *search_type,
|
||
struct value **result)
|
||
{
|
||
int i, result_count = 0;
|
||
|
||
for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
|
||
{
|
||
LONGEST offset;
|
||
|
||
if (! BASETYPE_VIA_PUBLIC (search_type, i))
|
||
continue;
|
||
|
||
offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
|
||
address, val);
|
||
if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
|
||
{
|
||
++result_count;
|
||
if (*result == NULL)
|
||
*result = value_at_lazy (TYPE_BASECLASS (search_type, i),
|
||
address + embedded_offset + offset);
|
||
}
|
||
else
|
||
result_count += dynamic_cast_check_2 (desired_type,
|
||
valaddr,
|
||
embedded_offset + offset,
|
||
address, val,
|
||
TYPE_BASECLASS (search_type, i),
|
||
result);
|
||
}
|
||
|
||
return result_count;
|
||
}
|
||
|
||
/* The C++ dynamic_cast operator. */
|
||
|
||
struct value *
|
||
value_dynamic_cast (struct type *type, struct value *arg)
|
||
{
|
||
int full, using_enc;
|
||
LONGEST top;
|
||
struct type *resolved_type = check_typedef (type);
|
||
struct type *arg_type = check_typedef (value_type (arg));
|
||
struct type *class_type, *rtti_type;
|
||
struct value *result, *tem, *original_arg = arg;
|
||
CORE_ADDR addr;
|
||
int is_ref = TYPE_IS_REFERENCE (resolved_type);
|
||
|
||
if (resolved_type->code () != TYPE_CODE_PTR
|
||
&& !TYPE_IS_REFERENCE (resolved_type))
|
||
error (_("Argument to dynamic_cast must be a pointer or reference type"));
|
||
if (TYPE_TARGET_TYPE (resolved_type)->code () != TYPE_CODE_VOID
|
||
&& TYPE_TARGET_TYPE (resolved_type)->code () != TYPE_CODE_STRUCT)
|
||
error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
|
||
|
||
class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
|
||
if (resolved_type->code () == TYPE_CODE_PTR)
|
||
{
|
||
if (arg_type->code () != TYPE_CODE_PTR
|
||
&& ! (arg_type->code () == TYPE_CODE_INT
|
||
&& value_as_long (arg) == 0))
|
||
error (_("Argument to dynamic_cast does not have pointer type"));
|
||
if (arg_type->code () == TYPE_CODE_PTR)
|
||
{
|
||
arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
|
||
if (arg_type->code () != TYPE_CODE_STRUCT)
|
||
error (_("Argument to dynamic_cast does "
|
||
"not have pointer to class type"));
|
||
}
|
||
|
||
/* Handle NULL pointers. */
|
||
if (value_as_long (arg) == 0)
|
||
return value_zero (type, not_lval);
|
||
|
||
arg = value_ind (arg);
|
||
}
|
||
else
|
||
{
|
||
if (arg_type->code () != TYPE_CODE_STRUCT)
|
||
error (_("Argument to dynamic_cast does not have class type"));
|
||
}
|
||
|
||
/* If the classes are the same, just return the argument. */
|
||
if (class_types_same_p (class_type, arg_type))
|
||
return value_cast (type, arg);
|
||
|
||
/* If the target type is a unique base class of the argument's
|
||
declared type, just cast it. */
|
||
if (is_ancestor (class_type, arg_type))
|
||
{
|
||
if (is_unique_ancestor (class_type, arg))
|
||
return value_cast (type, original_arg);
|
||
error (_("Ambiguous dynamic_cast"));
|
||
}
|
||
|
||
rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
|
||
if (! rtti_type)
|
||
error (_("Couldn't determine value's most derived type for dynamic_cast"));
|
||
|
||
/* Compute the most derived object's address. */
|
||
addr = value_address (arg);
|
||
if (full)
|
||
{
|
||
/* Done. */
|
||
}
|
||
else if (using_enc)
|
||
addr += top;
|
||
else
|
||
addr += top + value_embedded_offset (arg);
|
||
|
||
/* dynamic_cast<void *> means to return a pointer to the
|
||
most-derived object. */
|
||
if (resolved_type->code () == TYPE_CODE_PTR
|
||
&& TYPE_TARGET_TYPE (resolved_type)->code () == TYPE_CODE_VOID)
|
||
return value_at_lazy (type, addr);
|
||
|
||
tem = value_at (type, addr);
|
||
type = value_type (tem);
|
||
|
||
/* The first dynamic check specified in 5.2.7. */
|
||
if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
|
||
{
|
||
if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
|
||
return tem;
|
||
result = NULL;
|
||
if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
|
||
value_contents_for_printing (tem),
|
||
value_embedded_offset (tem),
|
||
value_address (tem), tem,
|
||
rtti_type, addr,
|
||
arg_type,
|
||
&result) == 1)
|
||
return value_cast (type,
|
||
is_ref
|
||
? value_ref (result, resolved_type->code ())
|
||
: value_addr (result));
|
||
}
|
||
|
||
/* The second dynamic check specified in 5.2.7. */
|
||
result = NULL;
|
||
if (is_public_ancestor (arg_type, rtti_type)
|
||
&& dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
|
||
value_contents_for_printing (tem),
|
||
value_embedded_offset (tem),
|
||
value_address (tem), tem,
|
||
rtti_type, &result) == 1)
|
||
return value_cast (type,
|
||
is_ref
|
||
? value_ref (result, resolved_type->code ())
|
||
: value_addr (result));
|
||
|
||
if (resolved_type->code () == TYPE_CODE_PTR)
|
||
return value_zero (type, not_lval);
|
||
|
||
error (_("dynamic_cast failed"));
|
||
}
|
||
|
||
/* Create a value of type TYPE that is zero, and return it. */
|
||
|
||
struct value *
|
||
value_zero (struct type *type, enum lval_type lv)
|
||
{
|
||
struct value *val = allocate_value (type);
|
||
|
||
VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv);
|
||
return val;
|
||
}
|
||
|
||
/* Create a not_lval value of numeric type TYPE that is one, and return it. */
|
||
|
||
struct value *
|
||
value_one (struct type *type)
|
||
{
|
||
struct type *type1 = check_typedef (type);
|
||
struct value *val;
|
||
|
||
if (is_integral_type (type1) || is_floating_type (type1))
|
||
{
|
||
val = value_from_longest (type, (LONGEST) 1);
|
||
}
|
||
else if (type1->code () == TYPE_CODE_ARRAY && TYPE_VECTOR (type1))
|
||
{
|
||
struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
|
||
int i;
|
||
LONGEST low_bound, high_bound;
|
||
struct value *tmp;
|
||
|
||
if (!get_array_bounds (type1, &low_bound, &high_bound))
|
||
error (_("Could not determine the vector bounds"));
|
||
|
||
val = allocate_value (type);
|
||
for (i = 0; i < high_bound - low_bound + 1; i++)
|
||
{
|
||
tmp = value_one (eltype);
|
||
memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
|
||
value_contents_all (tmp), TYPE_LENGTH (eltype));
|
||
}
|
||
}
|
||
else
|
||
{
|
||
error (_("Not a numeric type."));
|
||
}
|
||
|
||
/* value_one result is never used for assignments to. */
|
||
gdb_assert (VALUE_LVAL (val) == not_lval);
|
||
|
||
return val;
|
||
}
|
||
|
||
/* Helper function for value_at, value_at_lazy, and value_at_lazy_stack.
|
||
The type of the created value may differ from the passed type TYPE.
|
||
Make sure to retrieve the returned values's new type after this call
|
||
e.g. in case the type is a variable length array. */
|
||
|
||
static struct value *
|
||
get_value_at (struct type *type, CORE_ADDR addr, int lazy)
|
||
{
|
||
struct value *val;
|
||
|
||
if (check_typedef (type)->code () == TYPE_CODE_VOID)
|
||
error (_("Attempt to dereference a generic pointer."));
|
||
|
||
val = value_from_contents_and_address (type, NULL, addr);
|
||
|
||
if (!lazy)
|
||
value_fetch_lazy (val);
|
||
|
||
return val;
|
||
}
|
||
|
||
/* Return a value with type TYPE located at ADDR.
|
||
|
||
Call value_at only if the data needs to be fetched immediately;
|
||
if we can be 'lazy' and defer the fetch, perhaps indefinitely, call
|
||
value_at_lazy instead. value_at_lazy simply records the address of
|
||
the data and sets the lazy-evaluation-required flag. The lazy flag
|
||
is tested in the value_contents macro, which is used if and when
|
||
the contents are actually required. The type of the created value
|
||
may differ from the passed type TYPE. Make sure to retrieve the
|
||
returned values's new type after this call e.g. in case the type
|
||
is a variable length array.
|
||
|
||
Note: value_at does *NOT* handle embedded offsets; perform such
|
||
adjustments before or after calling it. */
|
||
|
||
struct value *
|
||
value_at (struct type *type, CORE_ADDR addr)
|
||
{
|
||
return get_value_at (type, addr, 0);
|
||
}
|
||
|
||
/* Return a lazy value with type TYPE located at ADDR (cf. value_at).
|
||
The type of the created value may differ from the passed type TYPE.
|
||
Make sure to retrieve the returned values's new type after this call
|
||
e.g. in case the type is a variable length array. */
|
||
|
||
struct value *
|
||
value_at_lazy (struct type *type, CORE_ADDR addr)
|
||
{
|
||
return get_value_at (type, addr, 1);
|
||
}
|
||
|
||
void
|
||
read_value_memory (struct value *val, LONGEST bit_offset,
|
||
int stack, CORE_ADDR memaddr,
|
||
gdb_byte *buffer, size_t length)
|
||
{
|
||
ULONGEST xfered_total = 0;
|
||
struct gdbarch *arch = get_value_arch (val);
|
||
int unit_size = gdbarch_addressable_memory_unit_size (arch);
|
||
enum target_object object;
|
||
|
||
object = stack ? TARGET_OBJECT_STACK_MEMORY : TARGET_OBJECT_MEMORY;
|
||
|
||
while (xfered_total < length)
|
||
{
|
||
enum target_xfer_status status;
|
||
ULONGEST xfered_partial;
|
||
|
||
status = target_xfer_partial (current_top_target (),
|
||
object, NULL,
|
||
buffer + xfered_total * unit_size, NULL,
|
||
memaddr + xfered_total,
|
||
length - xfered_total,
|
||
&xfered_partial);
|
||
|
||
if (status == TARGET_XFER_OK)
|
||
/* nothing */;
|
||
else if (status == TARGET_XFER_UNAVAILABLE)
|
||
mark_value_bits_unavailable (val, (xfered_total * HOST_CHAR_BIT
|
||
+ bit_offset),
|
||
xfered_partial * HOST_CHAR_BIT);
|
||
else if (status == TARGET_XFER_EOF)
|
||
memory_error (TARGET_XFER_E_IO, memaddr + xfered_total);
|
||
else
|
||
memory_error (status, memaddr + xfered_total);
|
||
|
||
xfered_total += xfered_partial;
|
||
QUIT;
|
||
}
|
||
}
|
||
|
||
/* Store the contents of FROMVAL into the location of TOVAL.
|
||
Return a new value with the location of TOVAL and contents of FROMVAL. */
|
||
|
||
struct value *
|
||
value_assign (struct value *toval, struct value *fromval)
|
||
{
|
||
struct type *type;
|
||
struct value *val;
|
||
struct frame_id old_frame;
|
||
|
||
if (!deprecated_value_modifiable (toval))
|
||
error (_("Left operand of assignment is not a modifiable lvalue."));
|
||
|
||
toval = coerce_ref (toval);
|
||
|
||
type = value_type (toval);
|
||
if (VALUE_LVAL (toval) != lval_internalvar)
|
||
fromval = value_cast (type, fromval);
|
||
else
|
||
{
|
||
/* Coerce arrays and functions to pointers, except for arrays
|
||
which only live in GDB's storage. */
|
||
if (!value_must_coerce_to_target (fromval))
|
||
fromval = coerce_array (fromval);
|
||
}
|
||
|
||
type = check_typedef (type);
|
||
|
||
/* Since modifying a register can trash the frame chain, and
|
||
modifying memory can trash the frame cache, we save the old frame
|
||
and then restore the new frame afterwards. */
|
||
old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
|
||
|
||
switch (VALUE_LVAL (toval))
|
||
{
|
||
case lval_internalvar:
|
||
set_internalvar (VALUE_INTERNALVAR (toval), fromval);
|
||
return value_of_internalvar (get_type_arch (type),
|
||
VALUE_INTERNALVAR (toval));
|
||
|
||
case lval_internalvar_component:
|
||
{
|
||
LONGEST offset = value_offset (toval);
|
||
|
||
/* Are we dealing with a bitfield?
|
||
|
||
It is important to mention that `value_parent (toval)' is
|
||
non-NULL iff `value_bitsize (toval)' is non-zero. */
|
||
if (value_bitsize (toval))
|
||
{
|
||
/* VALUE_INTERNALVAR below refers to the parent value, while
|
||
the offset is relative to this parent value. */
|
||
gdb_assert (value_parent (value_parent (toval)) == NULL);
|
||
offset += value_offset (value_parent (toval));
|
||
}
|
||
|
||
set_internalvar_component (VALUE_INTERNALVAR (toval),
|
||
offset,
|
||
value_bitpos (toval),
|
||
value_bitsize (toval),
|
||
fromval);
|
||
}
|
||
break;
|
||
|
||
case lval_memory:
|
||
{
|
||
const gdb_byte *dest_buffer;
|
||
CORE_ADDR changed_addr;
|
||
int changed_len;
|
||
gdb_byte buffer[sizeof (LONGEST)];
|
||
|
||
if (value_bitsize (toval))
|
||
{
|
||
struct value *parent = value_parent (toval);
|
||
|
||
changed_addr = value_address (parent) + value_offset (toval);
|
||
changed_len = (value_bitpos (toval)
|
||
+ value_bitsize (toval)
|
||
+ HOST_CHAR_BIT - 1)
|
||
/ HOST_CHAR_BIT;
|
||
|
||
/* If we can read-modify-write exactly the size of the
|
||
containing type (e.g. short or int) then do so. This
|
||
is safer for volatile bitfields mapped to hardware
|
||
registers. */
|
||
if (changed_len < TYPE_LENGTH (type)
|
||
&& TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
|
||
&& ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
|
||
changed_len = TYPE_LENGTH (type);
|
||
|
||
if (changed_len > (int) sizeof (LONGEST))
|
||
error (_("Can't handle bitfields which "
|
||
"don't fit in a %d bit word."),
|
||
(int) sizeof (LONGEST) * HOST_CHAR_BIT);
|
||
|
||
read_memory (changed_addr, buffer, changed_len);
|
||
modify_field (type, buffer, value_as_long (fromval),
|
||
value_bitpos (toval), value_bitsize (toval));
|
||
dest_buffer = buffer;
|
||
}
|
||
else
|
||
{
|
||
changed_addr = value_address (toval);
|
||
changed_len = type_length_units (type);
|
||
dest_buffer = value_contents (fromval);
|
||
}
|
||
|
||
write_memory_with_notification (changed_addr, dest_buffer, changed_len);
|
||
}
|
||
break;
|
||
|
||
case lval_register:
|
||
{
|
||
struct frame_info *frame;
|
||
struct gdbarch *gdbarch;
|
||
int value_reg;
|
||
|
||
/* Figure out which frame this is in currently.
|
||
|
||
We use VALUE_FRAME_ID for obtaining the value's frame id instead of
|
||
VALUE_NEXT_FRAME_ID due to requiring a frame which may be passed to
|
||
put_frame_register_bytes() below. That function will (eventually)
|
||
perform the necessary unwind operation by first obtaining the next
|
||
frame. */
|
||
frame = frame_find_by_id (VALUE_FRAME_ID (toval));
|
||
|
||
value_reg = VALUE_REGNUM (toval);
|
||
|
||
if (!frame)
|
||
error (_("Value being assigned to is no longer active."));
|
||
|
||
gdbarch = get_frame_arch (frame);
|
||
|
||
if (value_bitsize (toval))
|
||
{
|
||
struct value *parent = value_parent (toval);
|
||
LONGEST offset = value_offset (parent) + value_offset (toval);
|
||
int changed_len;
|
||
gdb_byte buffer[sizeof (LONGEST)];
|
||
int optim, unavail;
|
||
|
||
changed_len = (value_bitpos (toval)
|
||
+ value_bitsize (toval)
|
||
+ HOST_CHAR_BIT - 1)
|
||
/ HOST_CHAR_BIT;
|
||
|
||
if (changed_len > (int) sizeof (LONGEST))
|
||
error (_("Can't handle bitfields which "
|
||
"don't fit in a %d bit word."),
|
||
(int) sizeof (LONGEST) * HOST_CHAR_BIT);
|
||
|
||
if (!get_frame_register_bytes (frame, value_reg, offset,
|
||
changed_len, buffer,
|
||
&optim, &unavail))
|
||
{
|
||
if (optim)
|
||
throw_error (OPTIMIZED_OUT_ERROR,
|
||
_("value has been optimized out"));
|
||
if (unavail)
|
||
throw_error (NOT_AVAILABLE_ERROR,
|
||
_("value is not available"));
|
||
}
|
||
|
||
modify_field (type, buffer, value_as_long (fromval),
|
||
value_bitpos (toval), value_bitsize (toval));
|
||
|
||
put_frame_register_bytes (frame, value_reg, offset,
|
||
changed_len, buffer);
|
||
}
|
||
else
|
||
{
|
||
if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval),
|
||
type))
|
||
{
|
||
/* If TOVAL is a special machine register requiring
|
||
conversion of program values to a special raw
|
||
format. */
|
||
gdbarch_value_to_register (gdbarch, frame,
|
||
VALUE_REGNUM (toval), type,
|
||
value_contents (fromval));
|
||
}
|
||
else
|
||
{
|
||
put_frame_register_bytes (frame, value_reg,
|
||
value_offset (toval),
|
||
TYPE_LENGTH (type),
|
||
value_contents (fromval));
|
||
}
|
||
}
|
||
|
||
gdb::observers::register_changed.notify (frame, value_reg);
|
||
break;
|
||
}
|
||
|
||
case lval_computed:
|
||
{
|
||
const struct lval_funcs *funcs = value_computed_funcs (toval);
|
||
|
||
if (funcs->write != NULL)
|
||
{
|
||
funcs->write (toval, fromval);
|
||
break;
|
||
}
|
||
}
|
||
/* Fall through. */
|
||
|
||
default:
|
||
error (_("Left operand of assignment is not an lvalue."));
|
||
}
|
||
|
||
/* Assigning to the stack pointer, frame pointer, and other
|
||
(architecture and calling convention specific) registers may
|
||
cause the frame cache and regcache to be out of date. Assigning to memory
|
||
also can. We just do this on all assignments to registers or
|
||
memory, for simplicity's sake; I doubt the slowdown matters. */
|
||
switch (VALUE_LVAL (toval))
|
||
{
|
||
case lval_memory:
|
||
case lval_register:
|
||
case lval_computed:
|
||
|
||
gdb::observers::target_changed.notify (current_top_target ());
|
||
|
||
/* Having destroyed the frame cache, restore the selected
|
||
frame. */
|
||
|
||
/* FIXME: cagney/2002-11-02: There has to be a better way of
|
||
doing this. Instead of constantly saving/restoring the
|
||
frame. Why not create a get_selected_frame() function that,
|
||
having saved the selected frame's ID can automatically
|
||
re-find the previously selected frame automatically. */
|
||
|
||
{
|
||
struct frame_info *fi = frame_find_by_id (old_frame);
|
||
|
||
if (fi != NULL)
|
||
select_frame (fi);
|
||
}
|
||
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* If the field does not entirely fill a LONGEST, then zero the sign
|
||
bits. If the field is signed, and is negative, then sign
|
||
extend. */
|
||
if ((value_bitsize (toval) > 0)
|
||
&& (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
|
||
{
|
||
LONGEST fieldval = value_as_long (fromval);
|
||
LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
|
||
|
||
fieldval &= valmask;
|
||
if (!TYPE_UNSIGNED (type)
|
||
&& (fieldval & (valmask ^ (valmask >> 1))))
|
||
fieldval |= ~valmask;
|
||
|
||
fromval = value_from_longest (type, fieldval);
|
||
}
|
||
|
||
/* The return value is a copy of TOVAL so it shares its location
|
||
information, but its contents are updated from FROMVAL. This
|
||
implies the returned value is not lazy, even if TOVAL was. */
|
||
val = value_copy (toval);
|
||
set_value_lazy (val, 0);
|
||
memcpy (value_contents_raw (val), value_contents (fromval),
|
||
TYPE_LENGTH (type));
|
||
|
||
/* We copy over the enclosing type and pointed-to offset from FROMVAL
|
||
in the case of pointer types. For object types, the enclosing type
|
||
and embedded offset must *not* be copied: the target object refered
|
||
to by TOVAL retains its original dynamic type after assignment. */
|
||
if (type->code () == TYPE_CODE_PTR)
|
||
{
|
||
set_value_enclosing_type (val, value_enclosing_type (fromval));
|
||
set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
|
||
}
|
||
|
||
return val;
|
||
}
|
||
|
||
/* Extend a value VAL to COUNT repetitions of its type. */
|
||
|
||
struct value *
|
||
value_repeat (struct value *arg1, int count)
|
||
{
|
||
struct value *val;
|
||
|
||
if (VALUE_LVAL (arg1) != lval_memory)
|
||
error (_("Only values in memory can be extended with '@'."));
|
||
if (count < 1)
|
||
error (_("Invalid number %d of repetitions."), count);
|
||
|
||
val = allocate_repeat_value (value_enclosing_type (arg1), count);
|
||
|
||
VALUE_LVAL (val) = lval_memory;
|
||
set_value_address (val, value_address (arg1));
|
||
|
||
read_value_memory (val, 0, value_stack (val), value_address (val),
|
||
value_contents_all_raw (val),
|
||
type_length_units (value_enclosing_type (val)));
|
||
|
||
return val;
|
||
}
|
||
|
||
struct value *
|
||
value_of_variable (struct symbol *var, const struct block *b)
|
||
{
|
||
struct frame_info *frame = NULL;
|
||
|
||
if (symbol_read_needs_frame (var))
|
||
frame = get_selected_frame (_("No frame selected."));
|
||
|
||
return read_var_value (var, b, frame);
|
||
}
|
||
|
||
struct value *
|
||
address_of_variable (struct symbol *var, const struct block *b)
|
||
{
|
||
struct type *type = SYMBOL_TYPE (var);
|
||
struct value *val;
|
||
|
||
/* Evaluate it first; if the result is a memory address, we're fine.
|
||
Lazy evaluation pays off here. */
|
||
|
||
val = value_of_variable (var, b);
|
||
type = value_type (val);
|
||
|
||
if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
|
||
|| type->code () == TYPE_CODE_FUNC)
|
||
{
|
||
CORE_ADDR addr = value_address (val);
|
||
|
||
return value_from_pointer (lookup_pointer_type (type), addr);
|
||
}
|
||
|
||
/* Not a memory address; check what the problem was. */
|
||
switch (VALUE_LVAL (val))
|
||
{
|
||
case lval_register:
|
||
{
|
||
struct frame_info *frame;
|
||
const char *regname;
|
||
|
||
frame = frame_find_by_id (VALUE_NEXT_FRAME_ID (val));
|
||
gdb_assert (frame);
|
||
|
||
regname = gdbarch_register_name (get_frame_arch (frame),
|
||
VALUE_REGNUM (val));
|
||
gdb_assert (regname && *regname);
|
||
|
||
error (_("Address requested for identifier "
|
||
"\"%s\" which is in register $%s"),
|
||
var->print_name (), regname);
|
||
break;
|
||
}
|
||
|
||
default:
|
||
error (_("Can't take address of \"%s\" which isn't an lvalue."),
|
||
var->print_name ());
|
||
break;
|
||
}
|
||
|
||
return val;
|
||
}
|
||
|
||
/* See value.h. */
|
||
|
||
bool
|
||
value_must_coerce_to_target (struct value *val)
|
||
{
|
||
struct type *valtype;
|
||
|
||
/* The only lval kinds which do not live in target memory. */
|
||
if (VALUE_LVAL (val) != not_lval
|
||
&& VALUE_LVAL (val) != lval_internalvar
|
||
&& VALUE_LVAL (val) != lval_xcallable)
|
||
return false;
|
||
|
||
valtype = check_typedef (value_type (val));
|
||
|
||
switch (valtype->code ())
|
||
{
|
||
case TYPE_CODE_ARRAY:
|
||
return TYPE_VECTOR (valtype) ? 0 : 1;
|
||
case TYPE_CODE_STRING:
|
||
return true;
|
||
default:
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/* Make sure that VAL lives in target memory if it's supposed to. For
|
||
instance, strings are constructed as character arrays in GDB's
|
||
storage, and this function copies them to the target. */
|
||
|
||
struct value *
|
||
value_coerce_to_target (struct value *val)
|
||
{
|
||
LONGEST length;
|
||
CORE_ADDR addr;
|
||
|
||
if (!value_must_coerce_to_target (val))
|
||
return val;
|
||
|
||
length = TYPE_LENGTH (check_typedef (value_type (val)));
|
||
addr = allocate_space_in_inferior (length);
|
||
write_memory (addr, value_contents (val), length);
|
||
return value_at_lazy (value_type (val), addr);
|
||
}
|
||
|
||
/* Given a value which is an array, return a value which is a pointer
|
||
to its first element, regardless of whether or not the array has a
|
||
nonzero lower bound.
|
||
|
||
FIXME: A previous comment here indicated that this routine should
|
||
be substracting the array's lower bound. It's not clear to me that
|
||
this is correct. Given an array subscripting operation, it would
|
||
certainly work to do the adjustment here, essentially computing:
|
||
|
||
(&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
|
||
|
||
However I believe a more appropriate and logical place to account
|
||
for the lower bound is to do so in value_subscript, essentially
|
||
computing:
|
||
|
||
(&array[0] + ((index - lowerbound) * sizeof array[0]))
|
||
|
||
As further evidence consider what would happen with operations
|
||
other than array subscripting, where the caller would get back a
|
||
value that had an address somewhere before the actual first element
|
||
of the array, and the information about the lower bound would be
|
||
lost because of the coercion to pointer type. */
|
||
|
||
struct value *
|
||
value_coerce_array (struct value *arg1)
|
||
{
|
||
struct type *type = check_typedef (value_type (arg1));
|
||
|
||
/* If the user tries to do something requiring a pointer with an
|
||
array that has not yet been pushed to the target, then this would
|
||
be a good time to do so. */
|
||
arg1 = value_coerce_to_target (arg1);
|
||
|
||
if (VALUE_LVAL (arg1) != lval_memory)
|
||
error (_("Attempt to take address of value not located in memory."));
|
||
|
||
return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
|
||
value_address (arg1));
|
||
}
|
||
|
||
/* Given a value which is a function, return a value which is a pointer
|
||
to it. */
|
||
|
||
struct value *
|
||
value_coerce_function (struct value *arg1)
|
||
{
|
||
struct value *retval;
|
||
|
||
if (VALUE_LVAL (arg1) != lval_memory)
|
||
error (_("Attempt to take address of value not located in memory."));
|
||
|
||
retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
|
||
value_address (arg1));
|
||
return retval;
|
||
}
|
||
|
||
/* Return a pointer value for the object for which ARG1 is the
|
||
contents. */
|
||
|
||
struct value *
|
||
value_addr (struct value *arg1)
|
||
{
|
||
struct value *arg2;
|
||
struct type *type = check_typedef (value_type (arg1));
|
||
|
||
if (TYPE_IS_REFERENCE (type))
|
||
{
|
||
if (value_bits_synthetic_pointer (arg1, value_embedded_offset (arg1),
|
||
TARGET_CHAR_BIT * TYPE_LENGTH (type)))
|
||
arg1 = coerce_ref (arg1);
|
||
else
|
||
{
|
||
/* Copy the value, but change the type from (T&) to (T*). We
|
||
keep the same location information, which is efficient, and
|
||
allows &(&X) to get the location containing the reference.
|
||
Do the same to its enclosing type for consistency. */
|
||
struct type *type_ptr
|
||
= lookup_pointer_type (TYPE_TARGET_TYPE (type));
|
||
struct type *enclosing_type
|
||
= check_typedef (value_enclosing_type (arg1));
|
||
struct type *enclosing_type_ptr
|
||
= lookup_pointer_type (TYPE_TARGET_TYPE (enclosing_type));
|
||
|
||
arg2 = value_copy (arg1);
|
||
deprecated_set_value_type (arg2, type_ptr);
|
||
set_value_enclosing_type (arg2, enclosing_type_ptr);
|
||
|
||
return arg2;
|
||
}
|
||
}
|
||
if (type->code () == TYPE_CODE_FUNC)
|
||
return value_coerce_function (arg1);
|
||
|
||
/* If this is an array that has not yet been pushed to the target,
|
||
then this would be a good time to force it to memory. */
|
||
arg1 = value_coerce_to_target (arg1);
|
||
|
||
if (VALUE_LVAL (arg1) != lval_memory)
|
||
error (_("Attempt to take address of value not located in memory."));
|
||
|
||
/* Get target memory address. */
|
||
arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
|
||
(value_address (arg1)
|
||
+ value_embedded_offset (arg1)));
|
||
|
||
/* This may be a pointer to a base subobject; so remember the
|
||
full derived object's type ... */
|
||
set_value_enclosing_type (arg2,
|
||
lookup_pointer_type (value_enclosing_type (arg1)));
|
||
/* ... and also the relative position of the subobject in the full
|
||
object. */
|
||
set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
|
||
return arg2;
|
||
}
|
||
|
||
/* Return a reference value for the object for which ARG1 is the
|
||
contents. */
|
||
|
||
struct value *
|
||
value_ref (struct value *arg1, enum type_code refcode)
|
||
{
|
||
struct value *arg2;
|
||
struct type *type = check_typedef (value_type (arg1));
|
||
|
||
gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
|
||
|
||
if ((type->code () == TYPE_CODE_REF
|
||
|| type->code () == TYPE_CODE_RVALUE_REF)
|
||
&& type->code () == refcode)
|
||
return arg1;
|
||
|
||
arg2 = value_addr (arg1);
|
||
deprecated_set_value_type (arg2, lookup_reference_type (type, refcode));
|
||
return arg2;
|
||
}
|
||
|
||
/* Given a value of a pointer type, apply the C unary * operator to
|
||
it. */
|
||
|
||
struct value *
|
||
value_ind (struct value *arg1)
|
||
{
|
||
struct type *base_type;
|
||
struct value *arg2;
|
||
|
||
arg1 = coerce_array (arg1);
|
||
|
||
base_type = check_typedef (value_type (arg1));
|
||
|
||
if (VALUE_LVAL (arg1) == lval_computed)
|
||
{
|
||
const struct lval_funcs *funcs = value_computed_funcs (arg1);
|
||
|
||
if (funcs->indirect)
|
||
{
|
||
struct value *result = funcs->indirect (arg1);
|
||
|
||
if (result)
|
||
return result;
|
||
}
|
||
}
|
||
|
||
if (base_type->code () == TYPE_CODE_PTR)
|
||
{
|
||
struct type *enc_type;
|
||
|
||
/* We may be pointing to something embedded in a larger object.
|
||
Get the real type of the enclosing object. */
|
||
enc_type = check_typedef (value_enclosing_type (arg1));
|
||
enc_type = TYPE_TARGET_TYPE (enc_type);
|
||
|
||
if (check_typedef (enc_type)->code () == TYPE_CODE_FUNC
|
||
|| check_typedef (enc_type)->code () == TYPE_CODE_METHOD)
|
||
/* For functions, go through find_function_addr, which knows
|
||
how to handle function descriptors. */
|
||
arg2 = value_at_lazy (enc_type,
|
||
find_function_addr (arg1, NULL));
|
||
else
|
||
/* Retrieve the enclosing object pointed to. */
|
||
arg2 = value_at_lazy (enc_type,
|
||
(value_as_address (arg1)
|
||
- value_pointed_to_offset (arg1)));
|
||
|
||
enc_type = value_type (arg2);
|
||
return readjust_indirect_value_type (arg2, enc_type, base_type, arg1);
|
||
}
|
||
|
||
error (_("Attempt to take contents of a non-pointer value."));
|
||
}
|
||
|
||
/* Create a value for an array by allocating space in GDB, copying the
|
||
data into that space, and then setting up an array value.
|
||
|
||
The array bounds are set from LOWBOUND and HIGHBOUND, and the array
|
||
is populated from the values passed in ELEMVEC.
|
||
|
||
The element type of the array is inherited from the type of the
|
||
first element, and all elements must have the same size (though we
|
||
don't currently enforce any restriction on their types). */
|
||
|
||
struct value *
|
||
value_array (int lowbound, int highbound, struct value **elemvec)
|
||
{
|
||
int nelem;
|
||
int idx;
|
||
ULONGEST typelength;
|
||
struct value *val;
|
||
struct type *arraytype;
|
||
|
||
/* Validate that the bounds are reasonable and that each of the
|
||
elements have the same size. */
|
||
|
||
nelem = highbound - lowbound + 1;
|
||
if (nelem <= 0)
|
||
{
|
||
error (_("bad array bounds (%d, %d)"), lowbound, highbound);
|
||
}
|
||
typelength = type_length_units (value_enclosing_type (elemvec[0]));
|
||
for (idx = 1; idx < nelem; idx++)
|
||
{
|
||
if (type_length_units (value_enclosing_type (elemvec[idx]))
|
||
!= typelength)
|
||
{
|
||
error (_("array elements must all be the same size"));
|
||
}
|
||
}
|
||
|
||
arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
|
||
lowbound, highbound);
|
||
|
||
if (!current_language->c_style_arrays)
|
||
{
|
||
val = allocate_value (arraytype);
|
||
for (idx = 0; idx < nelem; idx++)
|
||
value_contents_copy (val, idx * typelength, elemvec[idx], 0,
|
||
typelength);
|
||
return val;
|
||
}
|
||
|
||
/* Allocate space to store the array, and then initialize it by
|
||
copying in each element. */
|
||
|
||
val = allocate_value (arraytype);
|
||
for (idx = 0; idx < nelem; idx++)
|
||
value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
|
||
return val;
|
||
}
|
||
|
||
struct value *
|
||
value_cstring (const char *ptr, ssize_t len, struct type *char_type)
|
||
{
|
||
struct value *val;
|
||
int lowbound = current_language->string_lower_bound;
|
||
ssize_t highbound = len / TYPE_LENGTH (char_type);
|
||
struct type *stringtype
|
||
= lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
|
||
|
||
val = allocate_value (stringtype);
|
||
memcpy (value_contents_raw (val), ptr, len);
|
||
return val;
|
||
}
|
||
|
||
/* Create a value for a string constant by allocating space in the
|
||
inferior, copying the data into that space, and returning the
|
||
address with type TYPE_CODE_STRING. PTR points to the string
|
||
constant data; LEN is number of characters.
|
||
|
||
Note that string types are like array of char types with a lower
|
||
bound of zero and an upper bound of LEN - 1. Also note that the
|
||
string may contain embedded null bytes. */
|
||
|
||
struct value *
|
||
value_string (const char *ptr, ssize_t len, struct type *char_type)
|
||
{
|
||
struct value *val;
|
||
int lowbound = current_language->string_lower_bound;
|
||
ssize_t highbound = len / TYPE_LENGTH (char_type);
|
||
struct type *stringtype
|
||
= lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
|
||
|
||
val = allocate_value (stringtype);
|
||
memcpy (value_contents_raw (val), ptr, len);
|
||
return val;
|
||
}
|
||
|
||
|
||
/* See if we can pass arguments in T2 to a function which takes
|
||
arguments of types T1. T1 is a list of NARGS arguments, and T2 is
|
||
a NULL-terminated vector. If some arguments need coercion of some
|
||
sort, then the coerced values are written into T2. Return value is
|
||
0 if the arguments could be matched, or the position at which they
|
||
differ if not.
|
||
|
||
STATICP is nonzero if the T1 argument list came from a static
|
||
member function. T2 will still include the ``this'' pointer, but
|
||
it will be skipped.
|
||
|
||
For non-static member functions, we ignore the first argument,
|
||
which is the type of the instance variable. This is because we
|
||
want to handle calls with objects from derived classes. This is
|
||
not entirely correct: we should actually check to make sure that a
|
||
requested operation is type secure, shouldn't we? FIXME. */
|
||
|
||
static int
|
||
typecmp (int staticp, int varargs, int nargs,
|
||
struct field t1[], struct value *t2[])
|
||
{
|
||
int i;
|
||
|
||
if (t2 == 0)
|
||
internal_error (__FILE__, __LINE__,
|
||
_("typecmp: no argument list"));
|
||
|
||
/* Skip ``this'' argument if applicable. T2 will always include
|
||
THIS. */
|
||
if (staticp)
|
||
t2 ++;
|
||
|
||
for (i = 0;
|
||
(i < nargs) && t1[i].type->code () != TYPE_CODE_VOID;
|
||
i++)
|
||
{
|
||
struct type *tt1, *tt2;
|
||
|
||
if (!t2[i])
|
||
return i + 1;
|
||
|
||
tt1 = check_typedef (t1[i].type);
|
||
tt2 = check_typedef (value_type (t2[i]));
|
||
|
||
if (TYPE_IS_REFERENCE (tt1)
|
||
/* We should be doing hairy argument matching, as below. */
|
||
&& (check_typedef (TYPE_TARGET_TYPE (tt1))->code ()
|
||
== tt2->code ()))
|
||
{
|
||
if (tt2->code () == TYPE_CODE_ARRAY)
|
||
t2[i] = value_coerce_array (t2[i]);
|
||
else
|
||
t2[i] = value_ref (t2[i], tt1->code ());
|
||
continue;
|
||
}
|
||
|
||
/* djb - 20000715 - Until the new type structure is in the
|
||
place, and we can attempt things like implicit conversions,
|
||
we need to do this so you can take something like a map<const
|
||
char *>, and properly access map["hello"], because the
|
||
argument to [] will be a reference to a pointer to a char,
|
||
and the argument will be a pointer to a char. */
|
||
while (TYPE_IS_REFERENCE (tt1) || tt1->code () == TYPE_CODE_PTR)
|
||
{
|
||
tt1 = check_typedef ( TYPE_TARGET_TYPE (tt1) );
|
||
}
|
||
while (tt2->code () == TYPE_CODE_ARRAY
|
||
|| tt2->code () == TYPE_CODE_PTR
|
||
|| TYPE_IS_REFERENCE (tt2))
|
||
{
|
||
tt2 = check_typedef (TYPE_TARGET_TYPE (tt2));
|
||
}
|
||
if (tt1->code () == tt2->code ())
|
||
continue;
|
||
/* Array to pointer is a `trivial conversion' according to the
|
||
ARM. */
|
||
|
||
/* We should be doing much hairier argument matching (see
|
||
section 13.2 of the ARM), but as a quick kludge, just check
|
||
for the same type code. */
|
||
if (t1[i].type->code () != value_type (t2[i])->code ())
|
||
return i + 1;
|
||
}
|
||
if (varargs || t2[i] == NULL)
|
||
return 0;
|
||
return i + 1;
|
||
}
|
||
|
||
/* Helper class for do_search_struct_field that updates *RESULT_PTR
|
||
and *LAST_BOFFSET, and possibly throws an exception if the field
|
||
search has yielded ambiguous results. */
|
||
|
||
static void
|
||
update_search_result (struct value **result_ptr, struct value *v,
|
||
LONGEST *last_boffset, LONGEST boffset,
|
||
const char *name, struct type *type)
|
||
{
|
||
if (v != NULL)
|
||
{
|
||
if (*result_ptr != NULL
|
||
/* The result is not ambiguous if all the classes that are
|
||
found occupy the same space. */
|
||
&& *last_boffset != boffset)
|
||
error (_("base class '%s' is ambiguous in type '%s'"),
|
||
name, TYPE_SAFE_NAME (type));
|
||
*result_ptr = v;
|
||
*last_boffset = boffset;
|
||
}
|
||
}
|
||
|
||
/* A helper for search_struct_field. This does all the work; most
|
||
arguments are as passed to search_struct_field. The result is
|
||
stored in *RESULT_PTR, which must be initialized to NULL.
|
||
OUTERMOST_TYPE is the type of the initial type passed to
|
||
search_struct_field; this is used for error reporting when the
|
||
lookup is ambiguous. */
|
||
|
||
static void
|
||
do_search_struct_field (const char *name, struct value *arg1, LONGEST offset,
|
||
struct type *type, int looking_for_baseclass,
|
||
struct value **result_ptr,
|
||
LONGEST *last_boffset,
|
||
struct type *outermost_type)
|
||
{
|
||
int i;
|
||
int nbases;
|
||
|
||
type = check_typedef (type);
|
||
nbases = TYPE_N_BASECLASSES (type);
|
||
|
||
if (!looking_for_baseclass)
|
||
for (i = type->num_fields () - 1; i >= nbases; i--)
|
||
{
|
||
const char *t_field_name = TYPE_FIELD_NAME (type, i);
|
||
|
||
if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
|
||
{
|
||
struct value *v;
|
||
|
||
if (field_is_static (&type->field (i)))
|
||
v = value_static_field (type, i);
|
||
else
|
||
v = value_primitive_field (arg1, offset, i, type);
|
||
*result_ptr = v;
|
||
return;
|
||
}
|
||
|
||
if (t_field_name
|
||
&& t_field_name[0] == '\0')
|
||
{
|
||
struct type *field_type = TYPE_FIELD_TYPE (type, i);
|
||
|
||
if (field_type->code () == TYPE_CODE_UNION
|
||
|| field_type->code () == TYPE_CODE_STRUCT)
|
||
{
|
||
/* Look for a match through the fields of an anonymous
|
||
union, or anonymous struct. C++ provides anonymous
|
||
unions.
|
||
|
||
In the GNU Chill (now deleted from GDB)
|
||
implementation of variant record types, each
|
||
<alternative field> has an (anonymous) union type,
|
||
each member of the union represents a <variant
|
||
alternative>. Each <variant alternative> is
|
||
represented as a struct, with a member for each
|
||
<variant field>. */
|
||
|
||
struct value *v = NULL;
|
||
LONGEST new_offset = offset;
|
||
|
||
/* This is pretty gross. In G++, the offset in an
|
||
anonymous union is relative to the beginning of the
|
||
enclosing struct. In the GNU Chill (now deleted
|
||
from GDB) implementation of variant records, the
|
||
bitpos is zero in an anonymous union field, so we
|
||
have to add the offset of the union here. */
|
||
if (field_type->code () == TYPE_CODE_STRUCT
|
||
|| (field_type->num_fields () > 0
|
||
&& TYPE_FIELD_BITPOS (field_type, 0) == 0))
|
||
new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
|
||
|
||
do_search_struct_field (name, arg1, new_offset,
|
||
field_type,
|
||
looking_for_baseclass, &v,
|
||
last_boffset,
|
||
outermost_type);
|
||
if (v)
|
||
{
|
||
*result_ptr = v;
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
for (i = 0; i < nbases; i++)
|
||
{
|
||
struct value *v = NULL;
|
||
struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
|
||
/* If we are looking for baseclasses, this is what we get when
|
||
we hit them. But it could happen that the base part's member
|
||
name is not yet filled in. */
|
||
int found_baseclass = (looking_for_baseclass
|
||
&& TYPE_BASECLASS_NAME (type, i) != NULL
|
||
&& (strcmp_iw (name,
|
||
TYPE_BASECLASS_NAME (type,
|
||
i)) == 0));
|
||
LONGEST boffset = value_embedded_offset (arg1) + offset;
|
||
|
||
if (BASETYPE_VIA_VIRTUAL (type, i))
|
||
{
|
||
struct value *v2;
|
||
|
||
boffset = baseclass_offset (type, i,
|
||
value_contents_for_printing (arg1),
|
||
value_embedded_offset (arg1) + offset,
|
||
value_address (arg1),
|
||
arg1);
|
||
|
||
/* The virtual base class pointer might have been clobbered
|
||
by the user program. Make sure that it still points to a
|
||
valid memory location. */
|
||
|
||
boffset += value_embedded_offset (arg1) + offset;
|
||
if (boffset < 0
|
||
|| boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
|
||
{
|
||
CORE_ADDR base_addr;
|
||
|
||
base_addr = value_address (arg1) + boffset;
|
||
v2 = value_at_lazy (basetype, base_addr);
|
||
if (target_read_memory (base_addr,
|
||
value_contents_raw (v2),
|
||
TYPE_LENGTH (value_type (v2))) != 0)
|
||
error (_("virtual baseclass botch"));
|
||
}
|
||
else
|
||
{
|
||
v2 = value_copy (arg1);
|
||
deprecated_set_value_type (v2, basetype);
|
||
set_value_embedded_offset (v2, boffset);
|
||
}
|
||
|
||
if (found_baseclass)
|
||
v = v2;
|
||
else
|
||
{
|
||
do_search_struct_field (name, v2, 0,
|
||
TYPE_BASECLASS (type, i),
|
||
looking_for_baseclass,
|
||
result_ptr, last_boffset,
|
||
outermost_type);
|
||
}
|
||
}
|
||
else if (found_baseclass)
|
||
v = value_primitive_field (arg1, offset, i, type);
|
||
else
|
||
{
|
||
do_search_struct_field (name, arg1,
|
||
offset + TYPE_BASECLASS_BITPOS (type,
|
||
i) / 8,
|
||
basetype, looking_for_baseclass,
|
||
result_ptr, last_boffset,
|
||
outermost_type);
|
||
}
|
||
|
||
update_search_result (result_ptr, v, last_boffset,
|
||
boffset, name, outermost_type);
|
||
}
|
||
}
|
||
|
||
/* Helper function used by value_struct_elt to recurse through
|
||
baseclasses. Look for a field NAME in ARG1. Search in it assuming
|
||
it has (class) type TYPE. If found, return value, else return NULL.
|
||
|
||
If LOOKING_FOR_BASECLASS, then instead of looking for struct
|
||
fields, look for a baseclass named NAME. */
|
||
|
||
static struct value *
|
||
search_struct_field (const char *name, struct value *arg1,
|
||
struct type *type, int looking_for_baseclass)
|
||
{
|
||
struct value *result = NULL;
|
||
LONGEST boffset = 0;
|
||
|
||
do_search_struct_field (name, arg1, 0, type, looking_for_baseclass,
|
||
&result, &boffset, type);
|
||
return result;
|
||
}
|
||
|
||
/* Helper function used by value_struct_elt to recurse through
|
||
baseclasses. Look for a field NAME in ARG1. Adjust the address of
|
||
ARG1 by OFFSET bytes, and search in it assuming it has (class) type
|
||
TYPE.
|
||
|
||
If found, return value, else if name matched and args not return
|
||
(value) -1, else return NULL. */
|
||
|
||
static struct value *
|
||
search_struct_method (const char *name, struct value **arg1p,
|
||
struct value **args, LONGEST offset,
|
||
int *static_memfuncp, struct type *type)
|
||
{
|
||
int i;
|
||
struct value *v;
|
||
int name_matched = 0;
|
||
|
||
type = check_typedef (type);
|
||
for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
|
||
{
|
||
const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
|
||
|
||
if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
|
||
{
|
||
int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
|
||
struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
|
||
|
||
name_matched = 1;
|
||
check_stub_method_group (type, i);
|
||
if (j > 0 && args == 0)
|
||
error (_("cannot resolve overloaded method "
|
||
"`%s': no arguments supplied"), name);
|
||
else if (j == 0 && args == 0)
|
||
{
|
||
v = value_fn_field (arg1p, f, j, type, offset);
|
||
if (v != NULL)
|
||
return v;
|
||
}
|
||
else
|
||
while (j >= 0)
|
||
{
|
||
if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
|
||
TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
|
||
TYPE_FN_FIELD_TYPE (f, j)->num_fields (),
|
||
TYPE_FN_FIELD_ARGS (f, j), args))
|
||
{
|
||
if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
|
||
return value_virtual_fn_field (arg1p, f, j,
|
||
type, offset);
|
||
if (TYPE_FN_FIELD_STATIC_P (f, j)
|
||
&& static_memfuncp)
|
||
*static_memfuncp = 1;
|
||
v = value_fn_field (arg1p, f, j, type, offset);
|
||
if (v != NULL)
|
||
return v;
|
||
}
|
||
j--;
|
||
}
|
||
}
|
||
}
|
||
|
||
for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
|
||
{
|
||
LONGEST base_offset;
|
||
LONGEST this_offset;
|
||
|
||
if (BASETYPE_VIA_VIRTUAL (type, i))
|
||
{
|
||
struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
|
||
struct value *base_val;
|
||
const gdb_byte *base_valaddr;
|
||
|
||
/* The virtual base class pointer might have been
|
||
clobbered by the user program. Make sure that it
|
||
still points to a valid memory location. */
|
||
|
||
if (offset < 0 || offset >= TYPE_LENGTH (type))
|
||
{
|
||
CORE_ADDR address;
|
||
|
||
gdb::byte_vector tmp (TYPE_LENGTH (baseclass));
|
||
address = value_address (*arg1p);
|
||
|
||
if (target_read_memory (address + offset,
|
||
tmp.data (), TYPE_LENGTH (baseclass)) != 0)
|
||
error (_("virtual baseclass botch"));
|
||
|
||
base_val = value_from_contents_and_address (baseclass,
|
||
tmp.data (),
|
||
address + offset);
|
||
base_valaddr = value_contents_for_printing (base_val);
|
||
this_offset = 0;
|
||
}
|
||
else
|
||
{
|
||
base_val = *arg1p;
|
||
base_valaddr = value_contents_for_printing (*arg1p);
|
||
this_offset = offset;
|
||
}
|
||
|
||
base_offset = baseclass_offset (type, i, base_valaddr,
|
||
this_offset, value_address (base_val),
|
||
base_val);
|
||
}
|
||
else
|
||
{
|
||
base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
|
||
}
|
||
v = search_struct_method (name, arg1p, args, base_offset + offset,
|
||
static_memfuncp, TYPE_BASECLASS (type, i));
|
||
if (v == (struct value *) - 1)
|
||
{
|
||
name_matched = 1;
|
||
}
|
||
else if (v)
|
||
{
|
||
/* FIXME-bothner: Why is this commented out? Why is it here? */
|
||
/* *arg1p = arg1_tmp; */
|
||
return v;
|
||
}
|
||
}
|
||
if (name_matched)
|
||
return (struct value *) - 1;
|
||
else
|
||
return NULL;
|
||
}
|
||
|
||
/* Given *ARGP, a value of type (pointer to a)* structure/union,
|
||
extract the component named NAME from the ultimate target
|
||
structure/union and return it as a value with its appropriate type.
|
||
ERR is used in the error message if *ARGP's type is wrong.
|
||
|
||
C++: ARGS is a list of argument types to aid in the selection of
|
||
an appropriate method. Also, handle derived types.
|
||
|
||
STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
|
||
where the truthvalue of whether the function that was resolved was
|
||
a static member function or not is stored.
|
||
|
||
ERR is an error message to be printed in case the field is not
|
||
found. */
|
||
|
||
struct value *
|
||
value_struct_elt (struct value **argp, struct value **args,
|
||
const char *name, int *static_memfuncp, const char *err)
|
||
{
|
||
struct type *t;
|
||
struct value *v;
|
||
|
||
*argp = coerce_array (*argp);
|
||
|
||
t = check_typedef (value_type (*argp));
|
||
|
||
/* Follow pointers until we get to a non-pointer. */
|
||
|
||
while (t->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
|
||
{
|
||
*argp = value_ind (*argp);
|
||
/* Don't coerce fn pointer to fn and then back again! */
|
||
if (check_typedef (value_type (*argp))->code () != TYPE_CODE_FUNC)
|
||
*argp = coerce_array (*argp);
|
||
t = check_typedef (value_type (*argp));
|
||
}
|
||
|
||
if (t->code () != TYPE_CODE_STRUCT
|
||
&& t->code () != TYPE_CODE_UNION)
|
||
error (_("Attempt to extract a component of a value that is not a %s."),
|
||
err);
|
||
|
||
/* Assume it's not, unless we see that it is. */
|
||
if (static_memfuncp)
|
||
*static_memfuncp = 0;
|
||
|
||
if (!args)
|
||
{
|
||
/* if there are no arguments ...do this... */
|
||
|
||
/* Try as a field first, because if we succeed, there is less
|
||
work to be done. */
|
||
v = search_struct_field (name, *argp, t, 0);
|
||
if (v)
|
||
return v;
|
||
|
||
/* C++: If it was not found as a data field, then try to
|
||
return it as a pointer to a method. */
|
||
v = search_struct_method (name, argp, args, 0,
|
||
static_memfuncp, t);
|
||
|
||
if (v == (struct value *) - 1)
|
||
error (_("Cannot take address of method %s."), name);
|
||
else if (v == 0)
|
||
{
|
||
if (TYPE_NFN_FIELDS (t))
|
||
error (_("There is no member or method named %s."), name);
|
||
else
|
||
error (_("There is no member named %s."), name);
|
||
}
|
||
return v;
|
||
}
|
||
|
||
v = search_struct_method (name, argp, args, 0,
|
||
static_memfuncp, t);
|
||
|
||
if (v == (struct value *) - 1)
|
||
{
|
||
error (_("One of the arguments you tried to pass to %s could not "
|
||
"be converted to what the function wants."), name);
|
||
}
|
||
else if (v == 0)
|
||
{
|
||
/* See if user tried to invoke data as function. If so, hand it
|
||
back. If it's not callable (i.e., a pointer to function),
|
||
gdb should give an error. */
|
||
v = search_struct_field (name, *argp, t, 0);
|
||
/* If we found an ordinary field, then it is not a method call.
|
||
So, treat it as if it were a static member function. */
|
||
if (v && static_memfuncp)
|
||
*static_memfuncp = 1;
|
||
}
|
||
|
||
if (!v)
|
||
throw_error (NOT_FOUND_ERROR,
|
||
_("Structure has no component named %s."), name);
|
||
return v;
|
||
}
|
||
|
||
/* Given *ARGP, a value of type structure or union, or a pointer/reference
|
||
to a structure or union, extract and return its component (field) of
|
||
type FTYPE at the specified BITPOS.
|
||
Throw an exception on error. */
|
||
|
||
struct value *
|
||
value_struct_elt_bitpos (struct value **argp, int bitpos, struct type *ftype,
|
||
const char *err)
|
||
{
|
||
struct type *t;
|
||
int i;
|
||
|
||
*argp = coerce_array (*argp);
|
||
|
||
t = check_typedef (value_type (*argp));
|
||
|
||
while (t->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
|
||
{
|
||
*argp = value_ind (*argp);
|
||
if (check_typedef (value_type (*argp))->code () != TYPE_CODE_FUNC)
|
||
*argp = coerce_array (*argp);
|
||
t = check_typedef (value_type (*argp));
|
||
}
|
||
|
||
if (t->code () != TYPE_CODE_STRUCT
|
||
&& t->code () != TYPE_CODE_UNION)
|
||
error (_("Attempt to extract a component of a value that is not a %s."),
|
||
err);
|
||
|
||
for (i = TYPE_N_BASECLASSES (t); i < t->num_fields (); i++)
|
||
{
|
||
if (!field_is_static (&t->field (i))
|
||
&& bitpos == TYPE_FIELD_BITPOS (t, i)
|
||
&& types_equal (ftype, TYPE_FIELD_TYPE (t, i)))
|
||
return value_primitive_field (*argp, 0, i, t);
|
||
}
|
||
|
||
error (_("No field with matching bitpos and type."));
|
||
|
||
/* Never hit. */
|
||
return NULL;
|
||
}
|
||
|
||
/* Search through the methods of an object (and its bases) to find a
|
||
specified method. Return a reference to the fn_field list METHODS of
|
||
overloaded instances defined in the source language. If available
|
||
and matching, a vector of matching xmethods defined in extension
|
||
languages are also returned in XMETHODS.
|
||
|
||
Helper function for value_find_oload_list.
|
||
ARGP is a pointer to a pointer to a value (the object).
|
||
METHOD is a string containing the method name.
|
||
OFFSET is the offset within the value.
|
||
TYPE is the assumed type of the object.
|
||
METHODS is a pointer to the matching overloaded instances defined
|
||
in the source language. Since this is a recursive function,
|
||
*METHODS should be set to NULL when calling this function.
|
||
NUM_FNS is the number of overloaded instances. *NUM_FNS should be set to
|
||
0 when calling this function.
|
||
XMETHODS is the vector of matching xmethod workers. *XMETHODS
|
||
should also be set to NULL when calling this function.
|
||
BASETYPE is set to the actual type of the subobject where the
|
||
method is found.
|
||
BOFFSET is the offset of the base subobject where the method is found. */
|
||
|
||
static void
|
||
find_method_list (struct value **argp, const char *method,
|
||
LONGEST offset, struct type *type,
|
||
gdb::array_view<fn_field> *methods,
|
||
std::vector<xmethod_worker_up> *xmethods,
|
||
struct type **basetype, LONGEST *boffset)
|
||
{
|
||
int i;
|
||
struct fn_field *f = NULL;
|
||
|
||
gdb_assert (methods != NULL && xmethods != NULL);
|
||
type = check_typedef (type);
|
||
|
||
/* First check in object itself.
|
||
This function is called recursively to search through base classes.
|
||
If there is a source method match found at some stage, then we need not
|
||
look for source methods in consequent recursive calls. */
|
||
if (methods->empty ())
|
||
{
|
||
for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
|
||
{
|
||
/* pai: FIXME What about operators and type conversions? */
|
||
const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
|
||
|
||
if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
|
||
{
|
||
int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
|
||
f = TYPE_FN_FIELDLIST1 (type, i);
|
||
*methods = gdb::make_array_view (f, len);
|
||
|
||
*basetype = type;
|
||
*boffset = offset;
|
||
|
||
/* Resolve any stub methods. */
|
||
check_stub_method_group (type, i);
|
||
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Unlike source methods, xmethods can be accumulated over successive
|
||
recursive calls. In other words, an xmethod named 'm' in a class
|
||
will not hide an xmethod named 'm' in its base class(es). We want
|
||
it to be this way because xmethods are after all convenience functions
|
||
and hence there is no point restricting them with something like method
|
||
hiding. Moreover, if hiding is done for xmethods as well, then we will
|
||
have to provide a mechanism to un-hide (like the 'using' construct). */
|
||
get_matching_xmethod_workers (type, method, xmethods);
|
||
|
||
/* If source methods are not found in current class, look for them in the
|
||
base classes. We also have to go through the base classes to gather
|
||
extension methods. */
|
||
for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
|
||
{
|
||
LONGEST base_offset;
|
||
|
||
if (BASETYPE_VIA_VIRTUAL (type, i))
|
||
{
|
||
base_offset = baseclass_offset (type, i,
|
||
value_contents_for_printing (*argp),
|
||
value_offset (*argp) + offset,
|
||
value_address (*argp), *argp);
|
||
}
|
||
else /* Non-virtual base, simply use bit position from debug
|
||
info. */
|
||
{
|
||
base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
|
||
}
|
||
|
||
find_method_list (argp, method, base_offset + offset,
|
||
TYPE_BASECLASS (type, i), methods,
|
||
xmethods, basetype, boffset);
|
||
}
|
||
}
|
||
|
||
/* Return the list of overloaded methods of a specified name. The methods
|
||
could be those GDB finds in the binary, or xmethod. Methods found in
|
||
the binary are returned in METHODS, and xmethods are returned in
|
||
XMETHODS.
|
||
|
||
ARGP is a pointer to a pointer to a value (the object).
|
||
METHOD is the method name.
|
||
OFFSET is the offset within the value contents.
|
||
METHODS is the list of matching overloaded instances defined in
|
||
the source language.
|
||
XMETHODS is the vector of matching xmethod workers defined in
|
||
extension languages.
|
||
BASETYPE is set to the type of the base subobject that defines the
|
||
method.
|
||
BOFFSET is the offset of the base subobject which defines the method. */
|
||
|
||
static void
|
||
value_find_oload_method_list (struct value **argp, const char *method,
|
||
LONGEST offset,
|
||
gdb::array_view<fn_field> *methods,
|
||
std::vector<xmethod_worker_up> *xmethods,
|
||
struct type **basetype, LONGEST *boffset)
|
||
{
|
||
struct type *t;
|
||
|
||
t = check_typedef (value_type (*argp));
|
||
|
||
/* Code snarfed from value_struct_elt. */
|
||
while (t->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
|
||
{
|
||
*argp = value_ind (*argp);
|
||
/* Don't coerce fn pointer to fn and then back again! */
|
||
if (check_typedef (value_type (*argp))->code () != TYPE_CODE_FUNC)
|
||
*argp = coerce_array (*argp);
|
||
t = check_typedef (value_type (*argp));
|
||
}
|
||
|
||
if (t->code () != TYPE_CODE_STRUCT
|
||
&& t->code () != TYPE_CODE_UNION)
|
||
error (_("Attempt to extract a component of a "
|
||
"value that is not a struct or union"));
|
||
|
||
gdb_assert (methods != NULL && xmethods != NULL);
|
||
|
||
/* Clear the lists. */
|
||
*methods = {};
|
||
xmethods->clear ();
|
||
|
||
find_method_list (argp, method, 0, t, methods, xmethods,
|
||
basetype, boffset);
|
||
}
|
||
|
||
/* Given an array of arguments (ARGS) (which includes an entry for
|
||
"this" in the case of C++ methods), the NAME of a function, and
|
||
whether it's a method or not (METHOD), find the best function that
|
||
matches on the argument types according to the overload resolution
|
||
rules.
|
||
|
||
METHOD can be one of three values:
|
||
NON_METHOD for non-member functions.
|
||
METHOD: for member functions.
|
||
BOTH: used for overload resolution of operators where the
|
||
candidates are expected to be either member or non member
|
||
functions. In this case the first argument ARGTYPES
|
||
(representing 'this') is expected to be a reference to the
|
||
target object, and will be dereferenced when attempting the
|
||
non-member search.
|
||
|
||
In the case of class methods, the parameter OBJ is an object value
|
||
in which to search for overloaded methods.
|
||
|
||
In the case of non-method functions, the parameter FSYM is a symbol
|
||
corresponding to one of the overloaded functions.
|
||
|
||
Return value is an integer: 0 -> good match, 10 -> debugger applied
|
||
non-standard coercions, 100 -> incompatible.
|
||
|
||
If a method is being searched for, VALP will hold the value.
|
||
If a non-method is being searched for, SYMP will hold the symbol
|
||
for it.
|
||
|
||
If a method is being searched for, and it is a static method,
|
||
then STATICP will point to a non-zero value.
|
||
|
||
If NO_ADL argument dependent lookup is disabled. This is used to prevent
|
||
ADL overload candidates when performing overload resolution for a fully
|
||
qualified name.
|
||
|
||
If NOSIDE is EVAL_AVOID_SIDE_EFFECTS, then OBJP's memory cannot be
|
||
read while picking the best overload match (it may be all zeroes and thus
|
||
not have a vtable pointer), in which case skip virtual function lookup.
|
||
This is ok as typically EVAL_AVOID_SIDE_EFFECTS is only used to determine
|
||
the result type.
|
||
|
||
Note: This function does *not* check the value of
|
||
overload_resolution. Caller must check it to see whether overload
|
||
resolution is permitted. */
|
||
|
||
int
|
||
find_overload_match (gdb::array_view<value *> args,
|
||
const char *name, enum oload_search_type method,
|
||
struct value **objp, struct symbol *fsym,
|
||
struct value **valp, struct symbol **symp,
|
||
int *staticp, const int no_adl,
|
||
const enum noside noside)
|
||
{
|
||
struct value *obj = (objp ? *objp : NULL);
|
||
struct type *obj_type = obj ? value_type (obj) : NULL;
|
||
/* Index of best overloaded function. */
|
||
int func_oload_champ = -1;
|
||
int method_oload_champ = -1;
|
||
int src_method_oload_champ = -1;
|
||
int ext_method_oload_champ = -1;
|
||
|
||
/* The measure for the current best match. */
|
||
badness_vector method_badness;
|
||
badness_vector func_badness;
|
||
badness_vector ext_method_badness;
|
||
badness_vector src_method_badness;
|
||
|
||
struct value *temp = obj;
|
||
/* For methods, the list of overloaded methods. */
|
||
gdb::array_view<fn_field> methods;
|
||
/* For non-methods, the list of overloaded function symbols. */
|
||
std::vector<symbol *> functions;
|
||
/* For xmethods, the vector of xmethod workers. */
|
||
std::vector<xmethod_worker_up> xmethods;
|
||
struct type *basetype = NULL;
|
||
LONGEST boffset;
|
||
|
||
const char *obj_type_name = NULL;
|
||
const char *func_name = NULL;
|
||
gdb::unique_xmalloc_ptr<char> temp_func;
|
||
enum oload_classification match_quality;
|
||
enum oload_classification method_match_quality = INCOMPATIBLE;
|
||
enum oload_classification src_method_match_quality = INCOMPATIBLE;
|
||
enum oload_classification ext_method_match_quality = INCOMPATIBLE;
|
||
enum oload_classification func_match_quality = INCOMPATIBLE;
|
||
|
||
/* Get the list of overloaded methods or functions. */
|
||
if (method == METHOD || method == BOTH)
|
||
{
|
||
gdb_assert (obj);
|
||
|
||
/* OBJ may be a pointer value rather than the object itself. */
|
||
obj = coerce_ref (obj);
|
||
while (check_typedef (value_type (obj))->code () == TYPE_CODE_PTR)
|
||
obj = coerce_ref (value_ind (obj));
|
||
obj_type_name = value_type (obj)->name ();
|
||
|
||
/* First check whether this is a data member, e.g. a pointer to
|
||
a function. */
|
||
if (check_typedef (value_type (obj))->code () == TYPE_CODE_STRUCT)
|
||
{
|
||
*valp = search_struct_field (name, obj,
|
||
check_typedef (value_type (obj)), 0);
|
||
if (*valp)
|
||
{
|
||
*staticp = 1;
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Retrieve the list of methods with the name NAME. */
|
||
value_find_oload_method_list (&temp, name, 0, &methods,
|
||
&xmethods, &basetype, &boffset);
|
||
/* If this is a method only search, and no methods were found
|
||
the search has failed. */
|
||
if (method == METHOD && methods.empty () && xmethods.empty ())
|
||
error (_("Couldn't find method %s%s%s"),
|
||
obj_type_name,
|
||
(obj_type_name && *obj_type_name) ? "::" : "",
|
||
name);
|
||
/* If we are dealing with stub method types, they should have
|
||
been resolved by find_method_list via
|
||
value_find_oload_method_list above. */
|
||
if (!methods.empty ())
|
||
{
|
||
gdb_assert (TYPE_SELF_TYPE (methods[0].type) != NULL);
|
||
|
||
src_method_oload_champ
|
||
= find_oload_champ (args,
|
||
methods.size (),
|
||
methods.data (), NULL, NULL,
|
||
&src_method_badness);
|
||
|
||
src_method_match_quality = classify_oload_match
|
||
(src_method_badness, args.size (),
|
||
oload_method_static_p (methods.data (), src_method_oload_champ));
|
||
}
|
||
|
||
if (!xmethods.empty ())
|
||
{
|
||
ext_method_oload_champ
|
||
= find_oload_champ (args,
|
||
xmethods.size (),
|
||
NULL, xmethods.data (), NULL,
|
||
&ext_method_badness);
|
||
ext_method_match_quality = classify_oload_match (ext_method_badness,
|
||
args.size (), 0);
|
||
}
|
||
|
||
if (src_method_oload_champ >= 0 && ext_method_oload_champ >= 0)
|
||
{
|
||
switch (compare_badness (ext_method_badness, src_method_badness))
|
||
{
|
||
case 0: /* Src method and xmethod are equally good. */
|
||
/* If src method and xmethod are equally good, then
|
||
xmethod should be the winner. Hence, fall through to the
|
||
case where a xmethod is better than the source
|
||
method, except when the xmethod match quality is
|
||
non-standard. */
|
||
/* FALLTHROUGH */
|
||
case 1: /* Src method and ext method are incompatible. */
|
||
/* If ext method match is not standard, then let source method
|
||
win. Otherwise, fallthrough to let xmethod win. */
|
||
if (ext_method_match_quality != STANDARD)
|
||
{
|
||
method_oload_champ = src_method_oload_champ;
|
||
method_badness = src_method_badness;
|
||
ext_method_oload_champ = -1;
|
||
method_match_quality = src_method_match_quality;
|
||
break;
|
||
}
|
||
/* FALLTHROUGH */
|
||
case 2: /* Ext method is champion. */
|
||
method_oload_champ = ext_method_oload_champ;
|
||
method_badness = ext_method_badness;
|
||
src_method_oload_champ = -1;
|
||
method_match_quality = ext_method_match_quality;
|
||
break;
|
||
case 3: /* Src method is champion. */
|
||
method_oload_champ = src_method_oload_champ;
|
||
method_badness = src_method_badness;
|
||
ext_method_oload_champ = -1;
|
||
method_match_quality = src_method_match_quality;
|
||
break;
|
||
default:
|
||
gdb_assert_not_reached ("Unexpected overload comparison "
|
||
"result");
|
||
break;
|
||
}
|
||
}
|
||
else if (src_method_oload_champ >= 0)
|
||
{
|
||
method_oload_champ = src_method_oload_champ;
|
||
method_badness = src_method_badness;
|
||
method_match_quality = src_method_match_quality;
|
||
}
|
||
else if (ext_method_oload_champ >= 0)
|
||
{
|
||
method_oload_champ = ext_method_oload_champ;
|
||
method_badness = ext_method_badness;
|
||
method_match_quality = ext_method_match_quality;
|
||
}
|
||
}
|
||
|
||
if (method == NON_METHOD || method == BOTH)
|
||
{
|
||
const char *qualified_name = NULL;
|
||
|
||
/* If the overload match is being search for both as a method
|
||
and non member function, the first argument must now be
|
||
dereferenced. */
|
||
if (method == BOTH)
|
||
args[0] = value_ind (args[0]);
|
||
|
||
if (fsym)
|
||
{
|
||
qualified_name = fsym->natural_name ();
|
||
|
||
/* If we have a function with a C++ name, try to extract just
|
||
the function part. Do not try this for non-functions (e.g.
|
||
function pointers). */
|
||
if (qualified_name
|
||
&& (check_typedef (SYMBOL_TYPE (fsym))->code ()
|
||
== TYPE_CODE_FUNC))
|
||
{
|
||
temp_func = cp_func_name (qualified_name);
|
||
|
||
/* If cp_func_name did not remove anything, the name of the
|
||
symbol did not include scope or argument types - it was
|
||
probably a C-style function. */
|
||
if (temp_func != nullptr)
|
||
{
|
||
if (strcmp (temp_func.get (), qualified_name) == 0)
|
||
func_name = NULL;
|
||
else
|
||
func_name = temp_func.get ();
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
func_name = name;
|
||
qualified_name = name;
|
||
}
|
||
|
||
/* If there was no C++ name, this must be a C-style function or
|
||
not a function at all. Just return the same symbol. Do the
|
||
same if cp_func_name fails for some reason. */
|
||
if (func_name == NULL)
|
||
{
|
||
*symp = fsym;
|
||
return 0;
|
||
}
|
||
|
||
func_oload_champ = find_oload_champ_namespace (args,
|
||
func_name,
|
||
qualified_name,
|
||
&functions,
|
||
&func_badness,
|
||
no_adl);
|
||
|
||
if (func_oload_champ >= 0)
|
||
func_match_quality = classify_oload_match (func_badness,
|
||
args.size (), 0);
|
||
}
|
||
|
||
/* Did we find a match ? */
|
||
if (method_oload_champ == -1 && func_oload_champ == -1)
|
||
throw_error (NOT_FOUND_ERROR,
|
||
_("No symbol \"%s\" in current context."),
|
||
name);
|
||
|
||
/* If we have found both a method match and a function
|
||
match, find out which one is better, and calculate match
|
||
quality. */
|
||
if (method_oload_champ >= 0 && func_oload_champ >= 0)
|
||
{
|
||
switch (compare_badness (func_badness, method_badness))
|
||
{
|
||
case 0: /* Top two contenders are equally good. */
|
||
/* FIXME: GDB does not support the general ambiguous case.
|
||
All candidates should be collected and presented the
|
||
user. */
|
||
error (_("Ambiguous overload resolution"));
|
||
break;
|
||
case 1: /* Incomparable top contenders. */
|
||
/* This is an error incompatible candidates
|
||
should not have been proposed. */
|
||
error (_("Internal error: incompatible "
|
||
"overload candidates proposed"));
|
||
break;
|
||
case 2: /* Function champion. */
|
||
method_oload_champ = -1;
|
||
match_quality = func_match_quality;
|
||
break;
|
||
case 3: /* Method champion. */
|
||
func_oload_champ = -1;
|
||
match_quality = method_match_quality;
|
||
break;
|
||
default:
|
||
error (_("Internal error: unexpected overload comparison result"));
|
||
break;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* We have either a method match or a function match. */
|
||
if (method_oload_champ >= 0)
|
||
match_quality = method_match_quality;
|
||
else
|
||
match_quality = func_match_quality;
|
||
}
|
||
|
||
if (match_quality == INCOMPATIBLE)
|
||
{
|
||
if (method == METHOD)
|
||
error (_("Cannot resolve method %s%s%s to any overloaded instance"),
|
||
obj_type_name,
|
||
(obj_type_name && *obj_type_name) ? "::" : "",
|
||
name);
|
||
else
|
||
error (_("Cannot resolve function %s to any overloaded instance"),
|
||
func_name);
|
||
}
|
||
else if (match_quality == NON_STANDARD)
|
||
{
|
||
if (method == METHOD)
|
||
warning (_("Using non-standard conversion to match "
|
||
"method %s%s%s to supplied arguments"),
|
||
obj_type_name,
|
||
(obj_type_name && *obj_type_name) ? "::" : "",
|
||
name);
|
||
else
|
||
warning (_("Using non-standard conversion to match "
|
||
"function %s to supplied arguments"),
|
||
func_name);
|
||
}
|
||
|
||
if (staticp != NULL)
|
||
*staticp = oload_method_static_p (methods.data (), method_oload_champ);
|
||
|
||
if (method_oload_champ >= 0)
|
||
{
|
||
if (src_method_oload_champ >= 0)
|
||
{
|
||
if (TYPE_FN_FIELD_VIRTUAL_P (methods, method_oload_champ)
|
||
&& noside != EVAL_AVOID_SIDE_EFFECTS)
|
||
{
|
||
*valp = value_virtual_fn_field (&temp, methods.data (),
|
||
method_oload_champ, basetype,
|
||
boffset);
|
||
}
|
||
else
|
||
*valp = value_fn_field (&temp, methods.data (),
|
||
method_oload_champ, basetype, boffset);
|
||
}
|
||
else
|
||
*valp = value_from_xmethod
|
||
(std::move (xmethods[ext_method_oload_champ]));
|
||
}
|
||
else
|
||
*symp = functions[func_oload_champ];
|
||
|
||
if (objp)
|
||
{
|
||
struct type *temp_type = check_typedef (value_type (temp));
|
||
struct type *objtype = check_typedef (obj_type);
|
||
|
||
if (temp_type->code () != TYPE_CODE_PTR
|
||
&& (objtype->code () == TYPE_CODE_PTR
|
||
|| TYPE_IS_REFERENCE (objtype)))
|
||
{
|
||
temp = value_addr (temp);
|
||
}
|
||
*objp = temp;
|
||
}
|
||
|
||
switch (match_quality)
|
||
{
|
||
case INCOMPATIBLE:
|
||
return 100;
|
||
case NON_STANDARD:
|
||
return 10;
|
||
default: /* STANDARD */
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Find the best overload match, searching for FUNC_NAME in namespaces
|
||
contained in QUALIFIED_NAME until it either finds a good match or
|
||
runs out of namespaces. It stores the overloaded functions in
|
||
*OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. If NO_ADL,
|
||
argument dependent lookup is not performed. */
|
||
|
||
static int
|
||
find_oload_champ_namespace (gdb::array_view<value *> args,
|
||
const char *func_name,
|
||
const char *qualified_name,
|
||
std::vector<symbol *> *oload_syms,
|
||
badness_vector *oload_champ_bv,
|
||
const int no_adl)
|
||
{
|
||
int oload_champ;
|
||
|
||
find_oload_champ_namespace_loop (args,
|
||
func_name,
|
||
qualified_name, 0,
|
||
oload_syms, oload_champ_bv,
|
||
&oload_champ,
|
||
no_adl);
|
||
|
||
return oload_champ;
|
||
}
|
||
|
||
/* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
|
||
how deep we've looked for namespaces, and the champ is stored in
|
||
OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
|
||
if it isn't. Other arguments are the same as in
|
||
find_oload_champ_namespace. */
|
||
|
||
static int
|
||
find_oload_champ_namespace_loop (gdb::array_view<value *> args,
|
||
const char *func_name,
|
||
const char *qualified_name,
|
||
int namespace_len,
|
||
std::vector<symbol *> *oload_syms,
|
||
badness_vector *oload_champ_bv,
|
||
int *oload_champ,
|
||
const int no_adl)
|
||
{
|
||
int next_namespace_len = namespace_len;
|
||
int searched_deeper = 0;
|
||
int new_oload_champ;
|
||
char *new_namespace;
|
||
|
||
if (next_namespace_len != 0)
|
||
{
|
||
gdb_assert (qualified_name[next_namespace_len] == ':');
|
||
next_namespace_len += 2;
|
||
}
|
||
next_namespace_len +=
|
||
cp_find_first_component (qualified_name + next_namespace_len);
|
||
|
||
/* First, see if we have a deeper namespace we can search in.
|
||
If we get a good match there, use it. */
|
||
|
||
if (qualified_name[next_namespace_len] == ':')
|
||
{
|
||
searched_deeper = 1;
|
||
|
||
if (find_oload_champ_namespace_loop (args,
|
||
func_name, qualified_name,
|
||
next_namespace_len,
|
||
oload_syms, oload_champ_bv,
|
||
oload_champ, no_adl))
|
||
{
|
||
return 1;
|
||
}
|
||
};
|
||
|
||
/* If we reach here, either we're in the deepest namespace or we
|
||
didn't find a good match in a deeper namespace. But, in the
|
||
latter case, we still have a bad match in a deeper namespace;
|
||
note that we might not find any match at all in the current
|
||
namespace. (There's always a match in the deepest namespace,
|
||
because this overload mechanism only gets called if there's a
|
||
function symbol to start off with.) */
|
||
|
||
new_namespace = (char *) alloca (namespace_len + 1);
|
||
strncpy (new_namespace, qualified_name, namespace_len);
|
||
new_namespace[namespace_len] = '\0';
|
||
|
||
std::vector<symbol *> new_oload_syms
|
||
= make_symbol_overload_list (func_name, new_namespace);
|
||
|
||
/* If we have reached the deepest level perform argument
|
||
determined lookup. */
|
||
if (!searched_deeper && !no_adl)
|
||
{
|
||
int ix;
|
||
struct type **arg_types;
|
||
|
||
/* Prepare list of argument types for overload resolution. */
|
||
arg_types = (struct type **)
|
||
alloca (args.size () * (sizeof (struct type *)));
|
||
for (ix = 0; ix < args.size (); ix++)
|
||
arg_types[ix] = value_type (args[ix]);
|
||
add_symbol_overload_list_adl ({arg_types, args.size ()}, func_name,
|
||
&new_oload_syms);
|
||
}
|
||
|
||
badness_vector new_oload_champ_bv;
|
||
new_oload_champ = find_oload_champ (args,
|
||
new_oload_syms.size (),
|
||
NULL, NULL, new_oload_syms.data (),
|
||
&new_oload_champ_bv);
|
||
|
||
/* Case 1: We found a good match. Free earlier matches (if any),
|
||
and return it. Case 2: We didn't find a good match, but we're
|
||
not the deepest function. Then go with the bad match that the
|
||
deeper function found. Case 3: We found a bad match, and we're
|
||
the deepest function. Then return what we found, even though
|
||
it's a bad match. */
|
||
|
||
if (new_oload_champ != -1
|
||
&& classify_oload_match (new_oload_champ_bv, args.size (), 0) == STANDARD)
|
||
{
|
||
*oload_syms = std::move (new_oload_syms);
|
||
*oload_champ = new_oload_champ;
|
||
*oload_champ_bv = std::move (new_oload_champ_bv);
|
||
return 1;
|
||
}
|
||
else if (searched_deeper)
|
||
{
|
||
return 0;
|
||
}
|
||
else
|
||
{
|
||
*oload_syms = std::move (new_oload_syms);
|
||
*oload_champ = new_oload_champ;
|
||
*oload_champ_bv = std::move (new_oload_champ_bv);
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Look for a function to take ARGS. Find the best match from among
|
||
the overloaded methods or functions given by METHODS or FUNCTIONS
|
||
or XMETHODS, respectively. One, and only one of METHODS, FUNCTIONS
|
||
and XMETHODS can be non-NULL.
|
||
|
||
NUM_FNS is the length of the array pointed at by METHODS, FUNCTIONS
|
||
or XMETHODS, whichever is non-NULL.
|
||
|
||
Return the index of the best match; store an indication of the
|
||
quality of the match in OLOAD_CHAMP_BV. */
|
||
|
||
static int
|
||
find_oload_champ (gdb::array_view<value *> args,
|
||
size_t num_fns,
|
||
fn_field *methods,
|
||
xmethod_worker_up *xmethods,
|
||
symbol **functions,
|
||
badness_vector *oload_champ_bv)
|
||
{
|
||
/* A measure of how good an overloaded instance is. */
|
||
badness_vector bv;
|
||
/* Index of best overloaded function. */
|
||
int oload_champ = -1;
|
||
/* Current ambiguity state for overload resolution. */
|
||
int oload_ambiguous = 0;
|
||
/* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
|
||
|
||
/* A champion can be found among methods alone, or among functions
|
||
alone, or in xmethods alone, but not in more than one of these
|
||
groups. */
|
||
gdb_assert ((methods != NULL) + (functions != NULL) + (xmethods != NULL)
|
||
== 1);
|
||
|
||
/* Consider each candidate in turn. */
|
||
for (size_t ix = 0; ix < num_fns; ix++)
|
||
{
|
||
int jj;
|
||
int static_offset = 0;
|
||
std::vector<type *> parm_types;
|
||
|
||
if (xmethods != NULL)
|
||
parm_types = xmethods[ix]->get_arg_types ();
|
||
else
|
||
{
|
||
size_t nparms;
|
||
|
||
if (methods != NULL)
|
||
{
|
||
nparms = TYPE_FN_FIELD_TYPE (methods, ix)->num_fields ();
|
||
static_offset = oload_method_static_p (methods, ix);
|
||
}
|
||
else
|
||
nparms = SYMBOL_TYPE (functions[ix])->num_fields ();
|
||
|
||
parm_types.reserve (nparms);
|
||
for (jj = 0; jj < nparms; jj++)
|
||
{
|
||
type *t = (methods != NULL
|
||
? (TYPE_FN_FIELD_ARGS (methods, ix)[jj].type)
|
||
: TYPE_FIELD_TYPE (SYMBOL_TYPE (functions[ix]),
|
||
jj));
|
||
parm_types.push_back (t);
|
||
}
|
||
}
|
||
|
||
/* Compare parameter types to supplied argument types. Skip
|
||
THIS for static methods. */
|
||
bv = rank_function (parm_types,
|
||
args.slice (static_offset));
|
||
|
||
if (overload_debug)
|
||
{
|
||
if (methods != NULL)
|
||
fprintf_filtered (gdb_stderr,
|
||
"Overloaded method instance %s, # of parms %d\n",
|
||
methods[ix].physname, (int) parm_types.size ());
|
||
else if (xmethods != NULL)
|
||
fprintf_filtered (gdb_stderr,
|
||
"Xmethod worker, # of parms %d\n",
|
||
(int) parm_types.size ());
|
||
else
|
||
fprintf_filtered (gdb_stderr,
|
||
"Overloaded function instance "
|
||
"%s # of parms %d\n",
|
||
functions[ix]->demangled_name (),
|
||
(int) parm_types.size ());
|
||
|
||
fprintf_filtered (gdb_stderr,
|
||
"...Badness of length : {%d, %d}\n",
|
||
bv[0].rank, bv[0].subrank);
|
||
|
||
for (jj = 1; jj < bv.size (); jj++)
|
||
fprintf_filtered (gdb_stderr,
|
||
"...Badness of arg %d : {%d, %d}\n",
|
||
jj, bv[jj].rank, bv[jj].subrank);
|
||
}
|
||
|
||
if (oload_champ_bv->empty ())
|
||
{
|
||
*oload_champ_bv = std::move (bv);
|
||
oload_champ = 0;
|
||
}
|
||
else /* See whether current candidate is better or worse than
|
||
previous best. */
|
||
switch (compare_badness (bv, *oload_champ_bv))
|
||
{
|
||
case 0: /* Top two contenders are equally good. */
|
||
oload_ambiguous = 1;
|
||
break;
|
||
case 1: /* Incomparable top contenders. */
|
||
oload_ambiguous = 2;
|
||
break;
|
||
case 2: /* New champion, record details. */
|
||
*oload_champ_bv = std::move (bv);
|
||
oload_ambiguous = 0;
|
||
oload_champ = ix;
|
||
break;
|
||
case 3:
|
||
default:
|
||
break;
|
||
}
|
||
if (overload_debug)
|
||
fprintf_filtered (gdb_stderr, "Overload resolution "
|
||
"champion is %d, ambiguous? %d\n",
|
||
oload_champ, oload_ambiguous);
|
||
}
|
||
|
||
return oload_champ;
|
||
}
|
||
|
||
/* Return 1 if we're looking at a static method, 0 if we're looking at
|
||
a non-static method or a function that isn't a method. */
|
||
|
||
static int
|
||
oload_method_static_p (struct fn_field *fns_ptr, int index)
|
||
{
|
||
if (fns_ptr && index >= 0 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
|
||
return 1;
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
/* Check how good an overload match OLOAD_CHAMP_BV represents. */
|
||
|
||
static enum oload_classification
|
||
classify_oload_match (const badness_vector &oload_champ_bv,
|
||
int nargs,
|
||
int static_offset)
|
||
{
|
||
int ix;
|
||
enum oload_classification worst = STANDARD;
|
||
|
||
for (ix = 1; ix <= nargs - static_offset; ix++)
|
||
{
|
||
/* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
|
||
or worse return INCOMPATIBLE. */
|
||
if (compare_ranks (oload_champ_bv[ix],
|
||
INCOMPATIBLE_TYPE_BADNESS) <= 0)
|
||
return INCOMPATIBLE; /* Truly mismatched types. */
|
||
/* Otherwise If this conversion is as bad as
|
||
NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
|
||
else if (compare_ranks (oload_champ_bv[ix],
|
||
NS_POINTER_CONVERSION_BADNESS) <= 0)
|
||
worst = NON_STANDARD; /* Non-standard type conversions
|
||
needed. */
|
||
}
|
||
|
||
/* If no INCOMPATIBLE classification was found, return the worst one
|
||
that was found (if any). */
|
||
return worst;
|
||
}
|
||
|
||
/* C++: return 1 is NAME is a legitimate name for the destructor of
|
||
type TYPE. If TYPE does not have a destructor, or if NAME is
|
||
inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet
|
||
have CHECK_TYPEDEF applied, this function will apply it itself. */
|
||
|
||
int
|
||
destructor_name_p (const char *name, struct type *type)
|
||
{
|
||
if (name[0] == '~')
|
||
{
|
||
const char *dname = type_name_or_error (type);
|
||
const char *cp = strchr (dname, '<');
|
||
unsigned int len;
|
||
|
||
/* Do not compare the template part for template classes. */
|
||
if (cp == NULL)
|
||
len = strlen (dname);
|
||
else
|
||
len = cp - dname;
|
||
if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
|
||
error (_("name of destructor must equal name of class"));
|
||
else
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Find an enum constant named NAME in TYPE. TYPE must be an "enum
|
||
class". If the name is found, return a value representing it;
|
||
otherwise throw an exception. */
|
||
|
||
static struct value *
|
||
enum_constant_from_type (struct type *type, const char *name)
|
||
{
|
||
int i;
|
||
int name_len = strlen (name);
|
||
|
||
gdb_assert (type->code () == TYPE_CODE_ENUM
|
||
&& TYPE_DECLARED_CLASS (type));
|
||
|
||
for (i = TYPE_N_BASECLASSES (type); i < type->num_fields (); ++i)
|
||
{
|
||
const char *fname = TYPE_FIELD_NAME (type, i);
|
||
int len;
|
||
|
||
if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_ENUMVAL
|
||
|| fname == NULL)
|
||
continue;
|
||
|
||
/* Look for the trailing "::NAME", since enum class constant
|
||
names are qualified here. */
|
||
len = strlen (fname);
|
||
if (len + 2 >= name_len
|
||
&& fname[len - name_len - 2] == ':'
|
||
&& fname[len - name_len - 1] == ':'
|
||
&& strcmp (&fname[len - name_len], name) == 0)
|
||
return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, i));
|
||
}
|
||
|
||
error (_("no constant named \"%s\" in enum \"%s\""),
|
||
name, type->name ());
|
||
}
|
||
|
||
/* C++: Given an aggregate type CURTYPE, and a member name NAME,
|
||
return the appropriate member (or the address of the member, if
|
||
WANT_ADDRESS). This function is used to resolve user expressions
|
||
of the form "DOMAIN::NAME". For more details on what happens, see
|
||
the comment before value_struct_elt_for_reference. */
|
||
|
||
struct value *
|
||
value_aggregate_elt (struct type *curtype, const char *name,
|
||
struct type *expect_type, int want_address,
|
||
enum noside noside)
|
||
{
|
||
switch (curtype->code ())
|
||
{
|
||
case TYPE_CODE_STRUCT:
|
||
case TYPE_CODE_UNION:
|
||
return value_struct_elt_for_reference (curtype, 0, curtype,
|
||
name, expect_type,
|
||
want_address, noside);
|
||
case TYPE_CODE_NAMESPACE:
|
||
return value_namespace_elt (curtype, name,
|
||
want_address, noside);
|
||
|
||
case TYPE_CODE_ENUM:
|
||
return enum_constant_from_type (curtype, name);
|
||
|
||
default:
|
||
internal_error (__FILE__, __LINE__,
|
||
_("non-aggregate type in value_aggregate_elt"));
|
||
}
|
||
}
|
||
|
||
/* Compares the two method/function types T1 and T2 for "equality"
|
||
with respect to the methods' parameters. If the types of the
|
||
two parameter lists are the same, returns 1; 0 otherwise. This
|
||
comparison may ignore any artificial parameters in T1 if
|
||
SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
|
||
the first artificial parameter in T1, assumed to be a 'this' pointer.
|
||
|
||
The type T2 is expected to have come from make_params (in eval.c). */
|
||
|
||
static int
|
||
compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
|
||
{
|
||
int start = 0;
|
||
|
||
if (t1->num_fields () > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
|
||
++start;
|
||
|
||
/* If skipping artificial fields, find the first real field
|
||
in T1. */
|
||
if (skip_artificial)
|
||
{
|
||
while (start < t1->num_fields ()
|
||
&& TYPE_FIELD_ARTIFICIAL (t1, start))
|
||
++start;
|
||
}
|
||
|
||
/* Now compare parameters. */
|
||
|
||
/* Special case: a method taking void. T1 will contain no
|
||
non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
|
||
if ((t1->num_fields () - start) == 0 && t2->num_fields () == 1
|
||
&& TYPE_FIELD_TYPE (t2, 0)->code () == TYPE_CODE_VOID)
|
||
return 1;
|
||
|
||
if ((t1->num_fields () - start) == t2->num_fields ())
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < t2->num_fields (); ++i)
|
||
{
|
||
if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
|
||
TYPE_FIELD_TYPE (t2, i), NULL),
|
||
EXACT_MATCH_BADNESS) != 0)
|
||
return 0;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* C++: Given an aggregate type VT, and a class type CLS, search
|
||
recursively for CLS using value V; If found, store the offset
|
||
which is either fetched from the virtual base pointer if CLS
|
||
is virtual or accumulated offset of its parent classes if
|
||
CLS is non-virtual in *BOFFS, set ISVIRT to indicate if CLS
|
||
is virtual, and return true. If not found, return false. */
|
||
|
||
static bool
|
||
get_baseclass_offset (struct type *vt, struct type *cls,
|
||
struct value *v, int *boffs, bool *isvirt)
|
||
{
|
||
for (int i = 0; i < TYPE_N_BASECLASSES (vt); i++)
|
||
{
|
||
struct type *t = TYPE_FIELD_TYPE (vt, i);
|
||
if (types_equal (t, cls))
|
||
{
|
||
if (BASETYPE_VIA_VIRTUAL (vt, i))
|
||
{
|
||
const gdb_byte *adr = value_contents_for_printing (v);
|
||
*boffs = baseclass_offset (vt, i, adr, value_offset (v),
|
||
value_as_long (v), v);
|
||
*isvirt = true;
|
||
}
|
||
else
|
||
*isvirt = false;
|
||
return true;
|
||
}
|
||
|
||
if (get_baseclass_offset (check_typedef (t), cls, v, boffs, isvirt))
|
||
{
|
||
if (*isvirt == false) /* Add non-virtual base offset. */
|
||
{
|
||
const gdb_byte *adr = value_contents_for_printing (v);
|
||
*boffs += baseclass_offset (vt, i, adr, value_offset (v),
|
||
value_as_long (v), v);
|
||
}
|
||
return true;
|
||
}
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* C++: Given an aggregate type CURTYPE, and a member name NAME,
|
||
return the address of this member as a "pointer to member" type.
|
||
If INTYPE is non-null, then it will be the type of the member we
|
||
are looking for. This will help us resolve "pointers to member
|
||
functions". This function is used to resolve user expressions of
|
||
the form "DOMAIN::NAME". */
|
||
|
||
static struct value *
|
||
value_struct_elt_for_reference (struct type *domain, int offset,
|
||
struct type *curtype, const char *name,
|
||
struct type *intype,
|
||
int want_address,
|
||
enum noside noside)
|
||
{
|
||
struct type *t = check_typedef (curtype);
|
||
int i;
|
||
struct value *result;
|
||
|
||
if (t->code () != TYPE_CODE_STRUCT
|
||
&& t->code () != TYPE_CODE_UNION)
|
||
error (_("Internal error: non-aggregate type "
|
||
"to value_struct_elt_for_reference"));
|
||
|
||
for (i = t->num_fields () - 1; i >= TYPE_N_BASECLASSES (t); i--)
|
||
{
|
||
const char *t_field_name = TYPE_FIELD_NAME (t, i);
|
||
|
||
if (t_field_name && strcmp (t_field_name, name) == 0)
|
||
{
|
||
if (field_is_static (&t->field (i)))
|
||
{
|
||
struct value *v = value_static_field (t, i);
|
||
if (want_address)
|
||
v = value_addr (v);
|
||
return v;
|
||
}
|
||
if (TYPE_FIELD_PACKED (t, i))
|
||
error (_("pointers to bitfield members not allowed"));
|
||
|
||
if (want_address)
|
||
return value_from_longest
|
||
(lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
|
||
offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
|
||
else if (noside != EVAL_NORMAL)
|
||
return allocate_value (TYPE_FIELD_TYPE (t, i));
|
||
else
|
||
{
|
||
/* Try to evaluate NAME as a qualified name with implicit
|
||
this pointer. In this case, attempt to return the
|
||
equivalent to `this->*(&TYPE::NAME)'. */
|
||
struct value *v = value_of_this_silent (current_language);
|
||
if (v != NULL)
|
||
{
|
||
struct value *ptr, *this_v = v;
|
||
long mem_offset;
|
||
struct type *type, *tmp;
|
||
|
||
ptr = value_aggregate_elt (domain, name, NULL, 1, noside);
|
||
type = check_typedef (value_type (ptr));
|
||
gdb_assert (type != NULL
|
||
&& type->code () == TYPE_CODE_MEMBERPTR);
|
||
tmp = lookup_pointer_type (TYPE_SELF_TYPE (type));
|
||
v = value_cast_pointers (tmp, v, 1);
|
||
mem_offset = value_as_long (ptr);
|
||
if (domain != curtype)
|
||
{
|
||
/* Find class offset of type CURTYPE from either its
|
||
parent type DOMAIN or the type of implied this. */
|
||
int boff = 0;
|
||
bool isvirt = false;
|
||
if (get_baseclass_offset (domain, curtype, v, &boff,
|
||
&isvirt))
|
||
mem_offset += boff;
|
||
else
|
||
{
|
||
struct type *p = check_typedef (value_type (this_v));
|
||
p = check_typedef (TYPE_TARGET_TYPE (p));
|
||
if (get_baseclass_offset (p, curtype, this_v,
|
||
&boff, &isvirt))
|
||
mem_offset += boff;
|
||
}
|
||
}
|
||
tmp = lookup_pointer_type (TYPE_TARGET_TYPE (type));
|
||
result = value_from_pointer (tmp,
|
||
value_as_long (v) + mem_offset);
|
||
return value_ind (result);
|
||
}
|
||
|
||
error (_("Cannot reference non-static field \"%s\""), name);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* C++: If it was not found as a data field, then try to return it
|
||
as a pointer to a method. */
|
||
|
||
/* Perform all necessary dereferencing. */
|
||
while (intype && intype->code () == TYPE_CODE_PTR)
|
||
intype = TYPE_TARGET_TYPE (intype);
|
||
|
||
for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
|
||
{
|
||
const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
|
||
|
||
if (t_field_name && strcmp (t_field_name, name) == 0)
|
||
{
|
||
int j;
|
||
int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
|
||
struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
|
||
|
||
check_stub_method_group (t, i);
|
||
|
||
if (intype)
|
||
{
|
||
for (j = 0; j < len; ++j)
|
||
{
|
||
if (TYPE_CONST (intype) != TYPE_FN_FIELD_CONST (f, j))
|
||
continue;
|
||
if (TYPE_VOLATILE (intype) != TYPE_FN_FIELD_VOLATILE (f, j))
|
||
continue;
|
||
|
||
if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
|
||
|| compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
|
||
intype, 1))
|
||
break;
|
||
}
|
||
|
||
if (j == len)
|
||
error (_("no member function matches "
|
||
"that type instantiation"));
|
||
}
|
||
else
|
||
{
|
||
int ii;
|
||
|
||
j = -1;
|
||
for (ii = 0; ii < len; ++ii)
|
||
{
|
||
/* Skip artificial methods. This is necessary if,
|
||
for example, the user wants to "print
|
||
subclass::subclass" with only one user-defined
|
||
constructor. There is no ambiguity in this case.
|
||
We are careful here to allow artificial methods
|
||
if they are the unique result. */
|
||
if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
|
||
{
|
||
if (j == -1)
|
||
j = ii;
|
||
continue;
|
||
}
|
||
|
||
/* Desired method is ambiguous if more than one
|
||
method is defined. */
|
||
if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
|
||
error (_("non-unique member `%s' requires "
|
||
"type instantiation"), name);
|
||
|
||
j = ii;
|
||
}
|
||
|
||
if (j == -1)
|
||
error (_("no matching member function"));
|
||
}
|
||
|
||
if (TYPE_FN_FIELD_STATIC_P (f, j))
|
||
{
|
||
struct symbol *s =
|
||
lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
|
||
0, VAR_DOMAIN, 0).symbol;
|
||
|
||
if (s == NULL)
|
||
return NULL;
|
||
|
||
if (want_address)
|
||
return value_addr (read_var_value (s, 0, 0));
|
||
else
|
||
return read_var_value (s, 0, 0);
|
||
}
|
||
|
||
if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
|
||
{
|
||
if (want_address)
|
||
{
|
||
result = allocate_value
|
||
(lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
|
||
cplus_make_method_ptr (value_type (result),
|
||
value_contents_writeable (result),
|
||
TYPE_FN_FIELD_VOFFSET (f, j), 1);
|
||
}
|
||
else if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
|
||
else
|
||
error (_("Cannot reference virtual member function \"%s\""),
|
||
name);
|
||
}
|
||
else
|
||
{
|
||
struct symbol *s =
|
||
lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
|
||
0, VAR_DOMAIN, 0).symbol;
|
||
|
||
if (s == NULL)
|
||
return NULL;
|
||
|
||
struct value *v = read_var_value (s, 0, 0);
|
||
if (!want_address)
|
||
result = v;
|
||
else
|
||
{
|
||
result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
|
||
cplus_make_method_ptr (value_type (result),
|
||
value_contents_writeable (result),
|
||
value_address (v), 0);
|
||
}
|
||
}
|
||
return result;
|
||
}
|
||
}
|
||
for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
|
||
{
|
||
struct value *v;
|
||
int base_offset;
|
||
|
||
if (BASETYPE_VIA_VIRTUAL (t, i))
|
||
base_offset = 0;
|
||
else
|
||
base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
|
||
v = value_struct_elt_for_reference (domain,
|
||
offset + base_offset,
|
||
TYPE_BASECLASS (t, i),
|
||
name, intype,
|
||
want_address, noside);
|
||
if (v)
|
||
return v;
|
||
}
|
||
|
||
/* As a last chance, pretend that CURTYPE is a namespace, and look
|
||
it up that way; this (frequently) works for types nested inside
|
||
classes. */
|
||
|
||
return value_maybe_namespace_elt (curtype, name,
|
||
want_address, noside);
|
||
}
|
||
|
||
/* C++: Return the member NAME of the namespace given by the type
|
||
CURTYPE. */
|
||
|
||
static struct value *
|
||
value_namespace_elt (const struct type *curtype,
|
||
const char *name, int want_address,
|
||
enum noside noside)
|
||
{
|
||
struct value *retval = value_maybe_namespace_elt (curtype, name,
|
||
want_address,
|
||
noside);
|
||
|
||
if (retval == NULL)
|
||
error (_("No symbol \"%s\" in namespace \"%s\"."),
|
||
name, curtype->name ());
|
||
|
||
return retval;
|
||
}
|
||
|
||
/* A helper function used by value_namespace_elt and
|
||
value_struct_elt_for_reference. It looks up NAME inside the
|
||
context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
|
||
is a class and NAME refers to a type in CURTYPE itself (as opposed
|
||
to, say, some base class of CURTYPE). */
|
||
|
||
static struct value *
|
||
value_maybe_namespace_elt (const struct type *curtype,
|
||
const char *name, int want_address,
|
||
enum noside noside)
|
||
{
|
||
const char *namespace_name = curtype->name ();
|
||
struct block_symbol sym;
|
||
struct value *result;
|
||
|
||
sym = cp_lookup_symbol_namespace (namespace_name, name,
|
||
get_selected_block (0), VAR_DOMAIN);
|
||
|
||
if (sym.symbol == NULL)
|
||
return NULL;
|
||
else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
&& (SYMBOL_CLASS (sym.symbol) == LOC_TYPEDEF))
|
||
result = allocate_value (SYMBOL_TYPE (sym.symbol));
|
||
else
|
||
result = value_of_variable (sym.symbol, sym.block);
|
||
|
||
if (want_address)
|
||
result = value_addr (result);
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Given a pointer or a reference value V, find its real (RTTI) type.
|
||
|
||
Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
|
||
and refer to the values computed for the object pointed to. */
|
||
|
||
struct type *
|
||
value_rtti_indirect_type (struct value *v, int *full,
|
||
LONGEST *top, int *using_enc)
|
||
{
|
||
struct value *target = NULL;
|
||
struct type *type, *real_type, *target_type;
|
||
|
||
type = value_type (v);
|
||
type = check_typedef (type);
|
||
if (TYPE_IS_REFERENCE (type))
|
||
target = coerce_ref (v);
|
||
else if (type->code () == TYPE_CODE_PTR)
|
||
{
|
||
|
||
try
|
||
{
|
||
target = value_ind (v);
|
||
}
|
||
catch (const gdb_exception_error &except)
|
||
{
|
||
if (except.error == MEMORY_ERROR)
|
||
{
|
||
/* value_ind threw a memory error. The pointer is NULL or
|
||
contains an uninitialized value: we can't determine any
|
||
type. */
|
||
return NULL;
|
||
}
|
||
throw;
|
||
}
|
||
}
|
||
else
|
||
return NULL;
|
||
|
||
real_type = value_rtti_type (target, full, top, using_enc);
|
||
|
||
if (real_type)
|
||
{
|
||
/* Copy qualifiers to the referenced object. */
|
||
target_type = value_type (target);
|
||
real_type = make_cv_type (TYPE_CONST (target_type),
|
||
TYPE_VOLATILE (target_type), real_type, NULL);
|
||
if (TYPE_IS_REFERENCE (type))
|
||
real_type = lookup_reference_type (real_type, type->code ());
|
||
else if (type->code () == TYPE_CODE_PTR)
|
||
real_type = lookup_pointer_type (real_type);
|
||
else
|
||
internal_error (__FILE__, __LINE__, _("Unexpected value type."));
|
||
|
||
/* Copy qualifiers to the pointer/reference. */
|
||
real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type),
|
||
real_type, NULL);
|
||
}
|
||
|
||
return real_type;
|
||
}
|
||
|
||
/* Given a value pointed to by ARGP, check its real run-time type, and
|
||
if that is different from the enclosing type, create a new value
|
||
using the real run-time type as the enclosing type (and of the same
|
||
type as ARGP) and return it, with the embedded offset adjusted to
|
||
be the correct offset to the enclosed object. RTYPE is the type,
|
||
and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
|
||
by value_rtti_type(). If these are available, they can be supplied
|
||
and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
|
||
NULL if they're not available. */
|
||
|
||
struct value *
|
||
value_full_object (struct value *argp,
|
||
struct type *rtype,
|
||
int xfull, int xtop,
|
||
int xusing_enc)
|
||
{
|
||
struct type *real_type;
|
||
int full = 0;
|
||
LONGEST top = -1;
|
||
int using_enc = 0;
|
||
struct value *new_val;
|
||
|
||
if (rtype)
|
||
{
|
||
real_type = rtype;
|
||
full = xfull;
|
||
top = xtop;
|
||
using_enc = xusing_enc;
|
||
}
|
||
else
|
||
real_type = value_rtti_type (argp, &full, &top, &using_enc);
|
||
|
||
/* If no RTTI data, or if object is already complete, do nothing. */
|
||
if (!real_type || real_type == value_enclosing_type (argp))
|
||
return argp;
|
||
|
||
/* In a destructor we might see a real type that is a superclass of
|
||
the object's type. In this case it is better to leave the object
|
||
as-is. */
|
||
if (full
|
||
&& TYPE_LENGTH (real_type) < TYPE_LENGTH (value_enclosing_type (argp)))
|
||
return argp;
|
||
|
||
/* If we have the full object, but for some reason the enclosing
|
||
type is wrong, set it. */
|
||
/* pai: FIXME -- sounds iffy */
|
||
if (full)
|
||
{
|
||
argp = value_copy (argp);
|
||
set_value_enclosing_type (argp, real_type);
|
||
return argp;
|
||
}
|
||
|
||
/* Check if object is in memory. */
|
||
if (VALUE_LVAL (argp) != lval_memory)
|
||
{
|
||
warning (_("Couldn't retrieve complete object of RTTI "
|
||
"type %s; object may be in register(s)."),
|
||
real_type->name ());
|
||
|
||
return argp;
|
||
}
|
||
|
||
/* All other cases -- retrieve the complete object. */
|
||
/* Go back by the computed top_offset from the beginning of the
|
||
object, adjusting for the embedded offset of argp if that's what
|
||
value_rtti_type used for its computation. */
|
||
new_val = value_at_lazy (real_type, value_address (argp) - top +
|
||
(using_enc ? 0 : value_embedded_offset (argp)));
|
||
deprecated_set_value_type (new_val, value_type (argp));
|
||
set_value_embedded_offset (new_val, (using_enc
|
||
? top + value_embedded_offset (argp)
|
||
: top));
|
||
return new_val;
|
||
}
|
||
|
||
|
||
/* Return the value of the local variable, if one exists. Throw error
|
||
otherwise, such as if the request is made in an inappropriate context. */
|
||
|
||
struct value *
|
||
value_of_this (const struct language_defn *lang)
|
||
{
|
||
struct block_symbol sym;
|
||
const struct block *b;
|
||
struct frame_info *frame;
|
||
|
||
if (!lang->la_name_of_this)
|
||
error (_("no `this' in current language"));
|
||
|
||
frame = get_selected_frame (_("no frame selected"));
|
||
|
||
b = get_frame_block (frame, NULL);
|
||
|
||
sym = lookup_language_this (lang, b);
|
||
if (sym.symbol == NULL)
|
||
error (_("current stack frame does not contain a variable named `%s'"),
|
||
lang->la_name_of_this);
|
||
|
||
return read_var_value (sym.symbol, sym.block, frame);
|
||
}
|
||
|
||
/* Return the value of the local variable, if one exists. Return NULL
|
||
otherwise. Never throw error. */
|
||
|
||
struct value *
|
||
value_of_this_silent (const struct language_defn *lang)
|
||
{
|
||
struct value *ret = NULL;
|
||
|
||
try
|
||
{
|
||
ret = value_of_this (lang);
|
||
}
|
||
catch (const gdb_exception_error &except)
|
||
{
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
|
||
elements long, starting at LOWBOUND. The result has the same lower
|
||
bound as the original ARRAY. */
|
||
|
||
struct value *
|
||
value_slice (struct value *array, int lowbound, int length)
|
||
{
|
||
struct type *slice_range_type, *slice_type, *range_type;
|
||
LONGEST lowerbound, upperbound;
|
||
struct value *slice;
|
||
struct type *array_type;
|
||
|
||
array_type = check_typedef (value_type (array));
|
||
if (array_type->code () != TYPE_CODE_ARRAY
|
||
&& array_type->code () != TYPE_CODE_STRING)
|
||
error (_("cannot take slice of non-array"));
|
||
|
||
if (type_not_allocated (array_type))
|
||
error (_("array not allocated"));
|
||
if (type_not_associated (array_type))
|
||
error (_("array not associated"));
|
||
|
||
range_type = TYPE_INDEX_TYPE (array_type);
|
||
if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
|
||
error (_("slice from bad array or bitstring"));
|
||
|
||
if (lowbound < lowerbound || length < 0
|
||
|| lowbound + length - 1 > upperbound)
|
||
error (_("slice out of range"));
|
||
|
||
/* FIXME-type-allocation: need a way to free this type when we are
|
||
done with it. */
|
||
slice_range_type = create_static_range_type (NULL,
|
||
TYPE_TARGET_TYPE (range_type),
|
||
lowbound,
|
||
lowbound + length - 1);
|
||
|
||
{
|
||
struct type *element_type = TYPE_TARGET_TYPE (array_type);
|
||
LONGEST offset
|
||
= (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
|
||
|
||
slice_type = create_array_type (NULL,
|
||
element_type,
|
||
slice_range_type);
|
||
slice_type->set_code (array_type->code ());
|
||
|
||
if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
|
||
slice = allocate_value_lazy (slice_type);
|
||
else
|
||
{
|
||
slice = allocate_value (slice_type);
|
||
value_contents_copy (slice, 0, array, offset,
|
||
type_length_units (slice_type));
|
||
}
|
||
|
||
set_value_component_location (slice, array);
|
||
set_value_offset (slice, value_offset (array) + offset);
|
||
}
|
||
|
||
return slice;
|
||
}
|
||
|
||
/* See value.h. */
|
||
|
||
struct value *
|
||
value_literal_complex (struct value *arg1,
|
||
struct value *arg2,
|
||
struct type *type)
|
||
{
|
||
struct value *val;
|
||
struct type *real_type = TYPE_TARGET_TYPE (type);
|
||
|
||
val = allocate_value (type);
|
||
arg1 = value_cast (real_type, arg1);
|
||
arg2 = value_cast (real_type, arg2);
|
||
|
||
memcpy (value_contents_raw (val),
|
||
value_contents (arg1), TYPE_LENGTH (real_type));
|
||
memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
|
||
value_contents (arg2), TYPE_LENGTH (real_type));
|
||
return val;
|
||
}
|
||
|
||
/* See value.h. */
|
||
|
||
struct value *
|
||
value_real_part (struct value *value)
|
||
{
|
||
struct type *type = check_typedef (value_type (value));
|
||
struct type *ttype = TYPE_TARGET_TYPE (type);
|
||
|
||
gdb_assert (type->code () == TYPE_CODE_COMPLEX);
|
||
return value_from_component (value, ttype, 0);
|
||
}
|
||
|
||
/* See value.h. */
|
||
|
||
struct value *
|
||
value_imaginary_part (struct value *value)
|
||
{
|
||
struct type *type = check_typedef (value_type (value));
|
||
struct type *ttype = TYPE_TARGET_TYPE (type);
|
||
|
||
gdb_assert (type->code () == TYPE_CODE_COMPLEX);
|
||
return value_from_component (value, ttype,
|
||
TYPE_LENGTH (check_typedef (ttype)));
|
||
}
|
||
|
||
/* Cast a value into the appropriate complex data type. */
|
||
|
||
static struct value *
|
||
cast_into_complex (struct type *type, struct value *val)
|
||
{
|
||
struct type *real_type = TYPE_TARGET_TYPE (type);
|
||
|
||
if (value_type (val)->code () == TYPE_CODE_COMPLEX)
|
||
{
|
||
struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
|
||
struct value *re_val = allocate_value (val_real_type);
|
||
struct value *im_val = allocate_value (val_real_type);
|
||
|
||
memcpy (value_contents_raw (re_val),
|
||
value_contents (val), TYPE_LENGTH (val_real_type));
|
||
memcpy (value_contents_raw (im_val),
|
||
value_contents (val) + TYPE_LENGTH (val_real_type),
|
||
TYPE_LENGTH (val_real_type));
|
||
|
||
return value_literal_complex (re_val, im_val, type);
|
||
}
|
||
else if (value_type (val)->code () == TYPE_CODE_FLT
|
||
|| value_type (val)->code () == TYPE_CODE_INT)
|
||
return value_literal_complex (val,
|
||
value_zero (real_type, not_lval),
|
||
type);
|
||
else
|
||
error (_("cannot cast non-number to complex"));
|
||
}
|
||
|
||
void _initialize_valops ();
|
||
void
|
||
_initialize_valops ()
|
||
{
|
||
add_setshow_boolean_cmd ("overload-resolution", class_support,
|
||
&overload_resolution, _("\
|
||
Set overload resolution in evaluating C++ functions."), _("\
|
||
Show overload resolution in evaluating C++ functions."),
|
||
NULL, NULL,
|
||
show_overload_resolution,
|
||
&setlist, &showlist);
|
||
overload_resolution = 1;
|
||
}
|