mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-06 12:09:26 +08:00
18d2988e5d
Now that defs.h, server.h and common-defs.h are included via the `-include` option, it is no longer necessary for source files to include them. Remove all the inclusions of these files I could find. Update the generation scripts where relevant. Change-Id: Ia026cff269c1b7ae7386dd3619bc9bb6a5332837 Approved-By: Pedro Alves <pedro@palves.net>
2902 lines
84 KiB
C
2902 lines
84 KiB
C
/* Evaluate expressions for GDB.
|
||
|
||
Copyright (C) 1986-2024 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "symtab.h"
|
||
#include "gdbtypes.h"
|
||
#include "value.h"
|
||
#include "expression.h"
|
||
#include "target.h"
|
||
#include "frame.h"
|
||
#include "gdbthread.h"
|
||
#include "language.h"
|
||
#include "cp-abi.h"
|
||
#include "infcall.h"
|
||
#include "objc-lang.h"
|
||
#include "block.h"
|
||
#include "parser-defs.h"
|
||
#include "cp-support.h"
|
||
#include "ui-out.h"
|
||
#include "regcache.h"
|
||
#include "user-regs.h"
|
||
#include "valprint.h"
|
||
#include "gdbsupport/gdb_obstack.h"
|
||
#include "objfiles.h"
|
||
#include "typeprint.h"
|
||
#include <ctype.h>
|
||
#include "expop.h"
|
||
#include "c-exp.h"
|
||
#include "inferior.h"
|
||
|
||
|
||
/* Parse the string EXP as a C expression, evaluate it,
|
||
and return the result as a number. */
|
||
|
||
CORE_ADDR
|
||
parse_and_eval_address (const char *exp)
|
||
{
|
||
expression_up expr = parse_expression (exp);
|
||
|
||
return value_as_address (expr->evaluate ());
|
||
}
|
||
|
||
/* Like parse_and_eval_address, but treats the value of the expression
|
||
as an integer, not an address, returns a LONGEST, not a CORE_ADDR. */
|
||
LONGEST
|
||
parse_and_eval_long (const char *exp)
|
||
{
|
||
expression_up expr = parse_expression (exp);
|
||
|
||
return value_as_long (expr->evaluate ());
|
||
}
|
||
|
||
struct value *
|
||
parse_and_eval (const char *exp, parser_flags flags)
|
||
{
|
||
expression_up expr = parse_expression (exp, nullptr, flags);
|
||
|
||
return expr->evaluate ();
|
||
}
|
||
|
||
/* Parse up to a comma (or to a closeparen)
|
||
in the string EXPP as an expression, evaluate it, and return the value.
|
||
EXPP is advanced to point to the comma. */
|
||
|
||
struct value *
|
||
parse_to_comma_and_eval (const char **expp)
|
||
{
|
||
expression_up expr = parse_exp_1 (expp, 0, nullptr,
|
||
PARSER_COMMA_TERMINATES);
|
||
|
||
return expr->evaluate ();
|
||
}
|
||
|
||
|
||
/* See expression.h. */
|
||
|
||
bool
|
||
expression::uses_objfile (struct objfile *objfile) const
|
||
{
|
||
gdb_assert (objfile->separate_debug_objfile_backlink == nullptr);
|
||
return op->uses_objfile (objfile);
|
||
}
|
||
|
||
/* See expression.h. */
|
||
|
||
struct value *
|
||
expression::evaluate (struct type *expect_type, enum noside noside)
|
||
{
|
||
std::optional<enable_thread_stack_temporaries> stack_temporaries;
|
||
if (target_has_execution () && inferior_ptid != null_ptid
|
||
&& language_defn->la_language == language_cplus
|
||
&& !thread_stack_temporaries_enabled_p (inferior_thread ()))
|
||
stack_temporaries.emplace (inferior_thread ());
|
||
|
||
struct value *retval = op->evaluate (expect_type, this, noside);
|
||
|
||
if (stack_temporaries.has_value ()
|
||
&& value_in_thread_stack_temporaries (retval, inferior_thread ()))
|
||
retval = retval->non_lval ();
|
||
|
||
return retval;
|
||
}
|
||
|
||
/* Find the current value of a watchpoint on EXP. Return the value in
|
||
*VALP and *RESULTP and the chain of intermediate and final values
|
||
in *VAL_CHAIN. RESULTP and VAL_CHAIN may be NULL if the caller does
|
||
not need them.
|
||
|
||
If PRESERVE_ERRORS is true, then exceptions are passed through.
|
||
Otherwise, if PRESERVE_ERRORS is false, then if a memory error
|
||
occurs while evaluating the expression, *RESULTP will be set to
|
||
NULL. *RESULTP may be a lazy value, if the result could not be
|
||
read from memory. It is used to determine whether a value is
|
||
user-specified (we should watch the whole value) or intermediate
|
||
(we should watch only the bit used to locate the final value).
|
||
|
||
If the final value, or any intermediate value, could not be read
|
||
from memory, *VALP will be set to NULL. *VAL_CHAIN will still be
|
||
set to any referenced values. *VALP will never be a lazy value.
|
||
This is the value which we store in struct breakpoint.
|
||
|
||
If VAL_CHAIN is non-NULL, the values put into *VAL_CHAIN will be
|
||
released from the value chain. If VAL_CHAIN is NULL, all generated
|
||
values will be left on the value chain. */
|
||
|
||
void
|
||
fetch_subexp_value (struct expression *exp,
|
||
expr::operation *op,
|
||
struct value **valp, struct value **resultp,
|
||
std::vector<value_ref_ptr> *val_chain,
|
||
bool preserve_errors)
|
||
{
|
||
struct value *mark, *new_mark, *result;
|
||
|
||
*valp = NULL;
|
||
if (resultp)
|
||
*resultp = NULL;
|
||
if (val_chain)
|
||
val_chain->clear ();
|
||
|
||
/* Evaluate the expression. */
|
||
mark = value_mark ();
|
||
result = NULL;
|
||
|
||
try
|
||
{
|
||
result = op->evaluate (nullptr, exp, EVAL_NORMAL);
|
||
}
|
||
catch (const gdb_exception &ex)
|
||
{
|
||
/* Ignore memory errors if we want watchpoints pointing at
|
||
inaccessible memory to still be created; otherwise, throw the
|
||
error to some higher catcher. */
|
||
switch (ex.error)
|
||
{
|
||
case MEMORY_ERROR:
|
||
if (!preserve_errors)
|
||
break;
|
||
[[fallthrough]];
|
||
default:
|
||
throw;
|
||
break;
|
||
}
|
||
}
|
||
|
||
new_mark = value_mark ();
|
||
if (mark == new_mark)
|
||
return;
|
||
if (resultp)
|
||
*resultp = result;
|
||
|
||
/* Make sure it's not lazy, so that after the target stops again we
|
||
have a non-lazy previous value to compare with. */
|
||
if (result != NULL)
|
||
{
|
||
if (!result->lazy ())
|
||
*valp = result;
|
||
else
|
||
{
|
||
|
||
try
|
||
{
|
||
result->fetch_lazy ();
|
||
*valp = result;
|
||
}
|
||
catch (const gdb_exception_error &except)
|
||
{
|
||
}
|
||
}
|
||
}
|
||
|
||
if (val_chain)
|
||
{
|
||
/* Return the chain of intermediate values. We use this to
|
||
decide which addresses to watch. */
|
||
*val_chain = value_release_to_mark (mark);
|
||
}
|
||
}
|
||
|
||
/* Promote value ARG1 as appropriate before performing a unary operation
|
||
on this argument.
|
||
If the result is not appropriate for any particular language then it
|
||
needs to patch this function. */
|
||
|
||
void
|
||
unop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
|
||
struct value **arg1)
|
||
{
|
||
struct type *type1;
|
||
|
||
*arg1 = coerce_ref (*arg1);
|
||
type1 = check_typedef ((*arg1)->type ());
|
||
|
||
if (is_integral_type (type1))
|
||
{
|
||
switch (language->la_language)
|
||
{
|
||
default:
|
||
/* Perform integral promotion for ANSI C/C++.
|
||
If not appropriate for any particular language
|
||
it needs to modify this function. */
|
||
{
|
||
struct type *builtin_int = builtin_type (gdbarch)->builtin_int;
|
||
|
||
if (type1->length () < builtin_int->length ())
|
||
*arg1 = value_cast (builtin_int, *arg1);
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Promote values ARG1 and ARG2 as appropriate before performing a binary
|
||
operation on those two operands.
|
||
If the result is not appropriate for any particular language then it
|
||
needs to patch this function. */
|
||
|
||
void
|
||
binop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
|
||
struct value **arg1, struct value **arg2)
|
||
{
|
||
struct type *promoted_type = NULL;
|
||
struct type *type1;
|
||
struct type *type2;
|
||
|
||
*arg1 = coerce_ref (*arg1);
|
||
*arg2 = coerce_ref (*arg2);
|
||
|
||
type1 = check_typedef ((*arg1)->type ());
|
||
type2 = check_typedef ((*arg2)->type ());
|
||
|
||
if ((type1->code () != TYPE_CODE_FLT
|
||
&& type1->code () != TYPE_CODE_DECFLOAT
|
||
&& !is_integral_type (type1))
|
||
|| (type2->code () != TYPE_CODE_FLT
|
||
&& type2->code () != TYPE_CODE_DECFLOAT
|
||
&& !is_integral_type (type2)))
|
||
return;
|
||
|
||
if (is_fixed_point_type (type1) || is_fixed_point_type (type2))
|
||
return;
|
||
|
||
if (type1->code () == TYPE_CODE_DECFLOAT
|
||
|| type2->code () == TYPE_CODE_DECFLOAT)
|
||
{
|
||
/* No promotion required. */
|
||
}
|
||
else if (type1->code () == TYPE_CODE_FLT
|
||
|| type2->code () == TYPE_CODE_FLT)
|
||
{
|
||
switch (language->la_language)
|
||
{
|
||
case language_c:
|
||
case language_cplus:
|
||
case language_asm:
|
||
case language_objc:
|
||
case language_opencl:
|
||
/* No promotion required. */
|
||
break;
|
||
|
||
default:
|
||
/* For other languages the result type is unchanged from gdb
|
||
version 6.7 for backward compatibility.
|
||
If either arg was long double, make sure that value is also long
|
||
double. Otherwise use double. */
|
||
if (type1->length () * 8 > gdbarch_double_bit (gdbarch)
|
||
|| type2->length () * 8 > gdbarch_double_bit (gdbarch))
|
||
promoted_type = builtin_type (gdbarch)->builtin_long_double;
|
||
else
|
||
promoted_type = builtin_type (gdbarch)->builtin_double;
|
||
break;
|
||
}
|
||
}
|
||
else if (type1->code () == TYPE_CODE_BOOL
|
||
&& type2->code () == TYPE_CODE_BOOL)
|
||
{
|
||
/* No promotion required. */
|
||
}
|
||
else
|
||
/* Integral operations here. */
|
||
/* FIXME: Also mixed integral/booleans, with result an integer. */
|
||
{
|
||
const struct builtin_type *builtin = builtin_type (gdbarch);
|
||
unsigned int promoted_len1 = type1->length ();
|
||
unsigned int promoted_len2 = type2->length ();
|
||
int is_unsigned1 = type1->is_unsigned ();
|
||
int is_unsigned2 = type2->is_unsigned ();
|
||
unsigned int result_len;
|
||
int unsigned_operation;
|
||
|
||
/* Determine type length and signedness after promotion for
|
||
both operands. */
|
||
if (promoted_len1 < builtin->builtin_int->length ())
|
||
{
|
||
is_unsigned1 = 0;
|
||
promoted_len1 = builtin->builtin_int->length ();
|
||
}
|
||
if (promoted_len2 < builtin->builtin_int->length ())
|
||
{
|
||
is_unsigned2 = 0;
|
||
promoted_len2 = builtin->builtin_int->length ();
|
||
}
|
||
|
||
if (promoted_len1 > promoted_len2)
|
||
{
|
||
unsigned_operation = is_unsigned1;
|
||
result_len = promoted_len1;
|
||
}
|
||
else if (promoted_len2 > promoted_len1)
|
||
{
|
||
unsigned_operation = is_unsigned2;
|
||
result_len = promoted_len2;
|
||
}
|
||
else
|
||
{
|
||
unsigned_operation = is_unsigned1 || is_unsigned2;
|
||
result_len = promoted_len1;
|
||
}
|
||
|
||
switch (language->la_language)
|
||
{
|
||
case language_opencl:
|
||
if (result_len
|
||
<= lookup_signed_typename (language, "int")->length())
|
||
{
|
||
promoted_type =
|
||
(unsigned_operation
|
||
? lookup_unsigned_typename (language, "int")
|
||
: lookup_signed_typename (language, "int"));
|
||
}
|
||
else if (result_len
|
||
<= lookup_signed_typename (language, "long")->length())
|
||
{
|
||
promoted_type =
|
||
(unsigned_operation
|
||
? lookup_unsigned_typename (language, "long")
|
||
: lookup_signed_typename (language,"long"));
|
||
}
|
||
break;
|
||
default:
|
||
if (result_len <= builtin->builtin_int->length ())
|
||
{
|
||
promoted_type = (unsigned_operation
|
||
? builtin->builtin_unsigned_int
|
||
: builtin->builtin_int);
|
||
}
|
||
else if (result_len <= builtin->builtin_long->length ())
|
||
{
|
||
promoted_type = (unsigned_operation
|
||
? builtin->builtin_unsigned_long
|
||
: builtin->builtin_long);
|
||
}
|
||
else if (result_len <= builtin->builtin_long_long->length ())
|
||
{
|
||
promoted_type = (unsigned_operation
|
||
? builtin->builtin_unsigned_long_long
|
||
: builtin->builtin_long_long);
|
||
}
|
||
else
|
||
{
|
||
promoted_type = (unsigned_operation
|
||
? builtin->builtin_uint128
|
||
: builtin->builtin_int128);
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (promoted_type)
|
||
{
|
||
/* Promote both operands to common type. */
|
||
*arg1 = value_cast (promoted_type, *arg1);
|
||
*arg2 = value_cast (promoted_type, *arg2);
|
||
}
|
||
}
|
||
|
||
static int
|
||
ptrmath_type_p (const struct language_defn *lang, struct type *type)
|
||
{
|
||
type = check_typedef (type);
|
||
if (TYPE_IS_REFERENCE (type))
|
||
type = type->target_type ();
|
||
|
||
switch (type->code ())
|
||
{
|
||
case TYPE_CODE_PTR:
|
||
case TYPE_CODE_FUNC:
|
||
return 1;
|
||
|
||
case TYPE_CODE_ARRAY:
|
||
return type->is_vector () ? 0 : lang->c_style_arrays_p ();
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Represents a fake method with the given parameter types. This is
|
||
used by the parser to construct a temporary "expected" type for
|
||
method overload resolution. FLAGS is used as instance flags of the
|
||
new type, in order to be able to make the new type represent a
|
||
const/volatile overload. */
|
||
|
||
class fake_method
|
||
{
|
||
public:
|
||
fake_method (type_instance_flags flags,
|
||
int num_types, struct type **param_types);
|
||
~fake_method ();
|
||
|
||
/* The constructed type. */
|
||
struct type *type () { return &m_type; }
|
||
|
||
private:
|
||
struct type m_type {};
|
||
main_type m_main_type {};
|
||
};
|
||
|
||
fake_method::fake_method (type_instance_flags flags,
|
||
int num_types, struct type **param_types)
|
||
{
|
||
struct type *type = &m_type;
|
||
|
||
TYPE_MAIN_TYPE (type) = &m_main_type;
|
||
type->set_length (1);
|
||
type->set_code (TYPE_CODE_METHOD);
|
||
TYPE_CHAIN (type) = type;
|
||
type->set_instance_flags (flags);
|
||
if (num_types > 0)
|
||
{
|
||
if (param_types[num_types - 1] == NULL)
|
||
{
|
||
--num_types;
|
||
type->set_has_varargs (true);
|
||
}
|
||
else if (check_typedef (param_types[num_types - 1])->code ()
|
||
== TYPE_CODE_VOID)
|
||
{
|
||
--num_types;
|
||
/* Caller should have ensured this. */
|
||
gdb_assert (num_types == 0);
|
||
type->set_is_prototyped (true);
|
||
}
|
||
}
|
||
|
||
/* We don't use TYPE_ZALLOC here to allocate space as TYPE is owned by
|
||
neither an objfile nor a gdbarch. As a result we must manually
|
||
allocate memory for auxiliary fields, and free the memory ourselves
|
||
when we are done with it. */
|
||
type->set_num_fields (num_types);
|
||
type->set_fields
|
||
((struct field *) xzalloc (sizeof (struct field) * num_types));
|
||
|
||
while (num_types-- > 0)
|
||
type->field (num_types).set_type (param_types[num_types]);
|
||
}
|
||
|
||
fake_method::~fake_method ()
|
||
{
|
||
xfree (m_type.fields ());
|
||
}
|
||
|
||
namespace expr
|
||
{
|
||
|
||
value *
|
||
type_instance_operation::evaluate (struct type *expect_type,
|
||
struct expression *exp,
|
||
enum noside noside)
|
||
{
|
||
type_instance_flags flags = std::get<0> (m_storage);
|
||
std::vector<type *> &types = std::get<1> (m_storage);
|
||
|
||
fake_method fake_expect_type (flags, types.size (), types.data ());
|
||
return std::get<2> (m_storage)->evaluate (fake_expect_type.type (),
|
||
exp, noside);
|
||
}
|
||
|
||
}
|
||
|
||
/* Helper for evaluating an OP_VAR_VALUE. */
|
||
|
||
value *
|
||
evaluate_var_value (enum noside noside, const block *blk, symbol *var)
|
||
{
|
||
/* JYG: We used to just return value::zero of the symbol type if
|
||
we're asked to avoid side effects. Otherwise we return
|
||
value_of_variable (...). However I'm not sure if
|
||
value_of_variable () has any side effect. We need a full value
|
||
object returned here for whatis_exp () to call evaluate_type ()
|
||
and then pass the full value to value_rtti_target_type () if we
|
||
are dealing with a pointer or reference to a base class and print
|
||
object is on. */
|
||
|
||
struct value *ret = NULL;
|
||
|
||
try
|
||
{
|
||
ret = value_of_variable (var, blk);
|
||
}
|
||
|
||
catch (const gdb_exception_error &except)
|
||
{
|
||
if (noside != EVAL_AVOID_SIDE_EFFECTS)
|
||
throw;
|
||
|
||
ret = value::zero (var->type (), not_lval);
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
namespace expr
|
||
|
||
{
|
||
|
||
value *
|
||
var_value_operation::evaluate (struct type *expect_type,
|
||
struct expression *exp,
|
||
enum noside noside)
|
||
{
|
||
symbol *var = std::get<0> (m_storage).symbol;
|
||
if (var->type ()->code () == TYPE_CODE_ERROR)
|
||
error_unknown_type (var->print_name ());
|
||
return evaluate_var_value (noside, std::get<0> (m_storage).block, var);
|
||
}
|
||
|
||
} /* namespace expr */
|
||
|
||
/* Helper for evaluating an OP_VAR_MSYM_VALUE. */
|
||
|
||
value *
|
||
evaluate_var_msym_value (enum noside noside,
|
||
struct objfile *objfile, minimal_symbol *msymbol)
|
||
{
|
||
CORE_ADDR address;
|
||
type *the_type = find_minsym_type_and_address (msymbol, objfile, &address);
|
||
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS && !the_type->is_gnu_ifunc ())
|
||
return value::zero (the_type, not_lval);
|
||
else
|
||
return value_at_lazy (the_type, address);
|
||
}
|
||
|
||
/* See expression.h. */
|
||
|
||
value *
|
||
evaluate_subexp_do_call (expression *exp, enum noside noside,
|
||
value *callee,
|
||
gdb::array_view<value *> argvec,
|
||
const char *function_name,
|
||
type *default_return_type)
|
||
{
|
||
if (callee == NULL)
|
||
error (_("Cannot evaluate function -- may be inlined"));
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
{
|
||
/* If the return type doesn't look like a function type,
|
||
call an error. This can happen if somebody tries to turn
|
||
a variable into a function call. */
|
||
|
||
type *ftype = callee->type ();
|
||
|
||
if (ftype->code () == TYPE_CODE_INTERNAL_FUNCTION)
|
||
{
|
||
/* We don't know anything about what the internal
|
||
function might return, but we have to return
|
||
something. */
|
||
return value::zero (builtin_type (exp->gdbarch)->builtin_int,
|
||
not_lval);
|
||
}
|
||
else if (ftype->code () == TYPE_CODE_XMETHOD)
|
||
{
|
||
type *return_type = callee->result_type_of_xmethod (argvec);
|
||
|
||
if (return_type == NULL)
|
||
error (_("Xmethod is missing return type."));
|
||
return value::zero (return_type, not_lval);
|
||
}
|
||
else if (ftype->code () == TYPE_CODE_FUNC
|
||
|| ftype->code () == TYPE_CODE_METHOD)
|
||
{
|
||
if (ftype->is_gnu_ifunc ())
|
||
{
|
||
CORE_ADDR address = callee->address ();
|
||
type *resolved_type = find_gnu_ifunc_target_type (address);
|
||
|
||
if (resolved_type != NULL)
|
||
ftype = resolved_type;
|
||
}
|
||
|
||
type *return_type = ftype->target_type ();
|
||
|
||
if (return_type == NULL)
|
||
return_type = default_return_type;
|
||
|
||
if (return_type == NULL)
|
||
error_call_unknown_return_type (function_name);
|
||
|
||
return value::allocate (return_type);
|
||
}
|
||
else
|
||
error (_("Expression of type other than "
|
||
"\"Function returning ...\" used as function"));
|
||
}
|
||
switch (callee->type ()->code ())
|
||
{
|
||
case TYPE_CODE_INTERNAL_FUNCTION:
|
||
return call_internal_function (exp->gdbarch, exp->language_defn,
|
||
callee, argvec.size (), argvec.data ());
|
||
case TYPE_CODE_XMETHOD:
|
||
return callee->call_xmethod (argvec);
|
||
default:
|
||
return call_function_by_hand (callee, default_return_type, argvec);
|
||
}
|
||
}
|
||
|
||
namespace expr
|
||
{
|
||
|
||
value *
|
||
operation::evaluate_funcall (struct type *expect_type,
|
||
struct expression *exp,
|
||
enum noside noside,
|
||
const char *function_name,
|
||
const std::vector<operation_up> &args)
|
||
{
|
||
std::vector<value *> vals (args.size ());
|
||
|
||
value *callee = evaluate_with_coercion (exp, noside);
|
||
struct type *type = callee->type ();
|
||
if (type->code () == TYPE_CODE_PTR)
|
||
type = type->target_type ();
|
||
for (int i = 0; i < args.size (); ++i)
|
||
{
|
||
if (i < type->num_fields ())
|
||
vals[i] = args[i]->evaluate (type->field (i).type (), exp, noside);
|
||
else
|
||
vals[i] = args[i]->evaluate_with_coercion (exp, noside);
|
||
}
|
||
|
||
return evaluate_subexp_do_call (exp, noside, callee, vals,
|
||
function_name, expect_type);
|
||
}
|
||
|
||
value *
|
||
var_value_operation::evaluate_funcall (struct type *expect_type,
|
||
struct expression *exp,
|
||
enum noside noside,
|
||
const std::vector<operation_up> &args)
|
||
{
|
||
if (!overload_resolution
|
||
|| exp->language_defn->la_language != language_cplus)
|
||
return operation::evaluate_funcall (expect_type, exp, noside, args);
|
||
|
||
std::vector<value *> argvec (args.size ());
|
||
for (int i = 0; i < args.size (); ++i)
|
||
argvec[i] = args[i]->evaluate_with_coercion (exp, noside);
|
||
|
||
struct symbol *symp;
|
||
find_overload_match (argvec, NULL, NON_METHOD,
|
||
NULL, std::get<0> (m_storage).symbol,
|
||
NULL, &symp, NULL, 0, noside);
|
||
|
||
if (symp->type ()->code () == TYPE_CODE_ERROR)
|
||
error_unknown_type (symp->print_name ());
|
||
value *callee = evaluate_var_value (noside, std::get<0> (m_storage).block,
|
||
symp);
|
||
|
||
return evaluate_subexp_do_call (exp, noside, callee, argvec,
|
||
nullptr, expect_type);
|
||
}
|
||
|
||
value *
|
||
scope_operation::evaluate_funcall (struct type *expect_type,
|
||
struct expression *exp,
|
||
enum noside noside,
|
||
const std::vector<operation_up> &args)
|
||
{
|
||
if (!overload_resolution
|
||
|| exp->language_defn->la_language != language_cplus)
|
||
return operation::evaluate_funcall (expect_type, exp, noside, args);
|
||
|
||
/* Unpack it locally so we can properly handle overload
|
||
resolution. */
|
||
const std::string &name = std::get<1> (m_storage);
|
||
struct type *type = std::get<0> (m_storage);
|
||
|
||
symbol *function = NULL;
|
||
const char *function_name = NULL;
|
||
std::vector<value *> argvec (1 + args.size ());
|
||
if (type->code () == TYPE_CODE_NAMESPACE)
|
||
{
|
||
function = cp_lookup_symbol_namespace (type->name (),
|
||
name.c_str (),
|
||
get_selected_block (0),
|
||
SEARCH_FUNCTION_DOMAIN).symbol;
|
||
if (function == NULL)
|
||
error (_("No symbol \"%s\" in namespace \"%s\"."),
|
||
name.c_str (), type->name ());
|
||
}
|
||
else
|
||
{
|
||
gdb_assert (type->code () == TYPE_CODE_STRUCT
|
||
|| type->code () == TYPE_CODE_UNION);
|
||
function_name = name.c_str ();
|
||
|
||
/* We need a properly typed value for method lookup. */
|
||
argvec[0] = value::zero (type, lval_memory);
|
||
}
|
||
|
||
for (int i = 0; i < args.size (); ++i)
|
||
argvec[i + 1] = args[i]->evaluate_with_coercion (exp, noside);
|
||
gdb::array_view<value *> arg_view = argvec;
|
||
|
||
value *callee = nullptr;
|
||
if (function_name != nullptr)
|
||
{
|
||
int static_memfuncp;
|
||
|
||
find_overload_match (arg_view, function_name, METHOD,
|
||
&argvec[0], nullptr, &callee, nullptr,
|
||
&static_memfuncp, 0, noside);
|
||
if (!static_memfuncp)
|
||
{
|
||
/* For the time being, we don't handle this. */
|
||
error (_("Call to overloaded function %s requires "
|
||
"`this' pointer"),
|
||
function_name);
|
||
}
|
||
|
||
arg_view = arg_view.slice (1);
|
||
}
|
||
else
|
||
{
|
||
symbol *symp;
|
||
arg_view = arg_view.slice (1);
|
||
find_overload_match (arg_view, nullptr,
|
||
NON_METHOD, nullptr, function,
|
||
nullptr, &symp, nullptr, 1, noside);
|
||
callee = value_of_variable (symp, get_selected_block (0));
|
||
}
|
||
|
||
return evaluate_subexp_do_call (exp, noside, callee, arg_view,
|
||
nullptr, expect_type);
|
||
}
|
||
|
||
value *
|
||
structop_member_base::evaluate_funcall (struct type *expect_type,
|
||
struct expression *exp,
|
||
enum noside noside,
|
||
const std::vector<operation_up> &args)
|
||
{
|
||
/* First, evaluate the structure into lhs. */
|
||
value *lhs;
|
||
if (opcode () == STRUCTOP_MEMBER)
|
||
lhs = std::get<0> (m_storage)->evaluate_for_address (exp, noside);
|
||
else
|
||
lhs = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
|
||
|
||
std::vector<value *> vals (args.size () + 1);
|
||
gdb::array_view<value *> val_view = vals;
|
||
/* If the function is a virtual function, then the aggregate
|
||
value (providing the structure) plays its part by providing
|
||
the vtable. Otherwise, it is just along for the ride: call
|
||
the function directly. */
|
||
value *rhs = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
|
||
value *callee;
|
||
|
||
type *a1_type = check_typedef (rhs->type ());
|
||
if (a1_type->code () == TYPE_CODE_METHODPTR)
|
||
{
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
callee = value::zero (a1_type->target_type (), not_lval);
|
||
else
|
||
callee = cplus_method_ptr_to_value (&lhs, rhs);
|
||
|
||
vals[0] = lhs;
|
||
}
|
||
else if (a1_type->code () == TYPE_CODE_MEMBERPTR)
|
||
{
|
||
struct type *type_ptr
|
||
= lookup_pointer_type (TYPE_SELF_TYPE (a1_type));
|
||
struct type *target_type_ptr
|
||
= lookup_pointer_type (a1_type->target_type ());
|
||
|
||
/* Now, convert this value to an address. */
|
||
lhs = value_cast (type_ptr, lhs);
|
||
|
||
long mem_offset = value_as_long (rhs);
|
||
|
||
callee = value_from_pointer (target_type_ptr,
|
||
value_as_long (lhs) + mem_offset);
|
||
callee = value_ind (callee);
|
||
|
||
val_view = val_view.slice (1);
|
||
}
|
||
else
|
||
error (_("Non-pointer-to-member value used in pointer-to-member "
|
||
"construct"));
|
||
|
||
for (int i = 0; i < args.size (); ++i)
|
||
vals[i + 1] = args[i]->evaluate_with_coercion (exp, noside);
|
||
|
||
return evaluate_subexp_do_call (exp, noside, callee, val_view,
|
||
nullptr, expect_type);
|
||
|
||
}
|
||
|
||
value *
|
||
structop_base_operation::evaluate_funcall
|
||
(struct type *expect_type, struct expression *exp, enum noside noside,
|
||
const std::vector<operation_up> &args)
|
||
{
|
||
/* Allocate space for the function call arguments, Including space for a
|
||
`this' pointer at the start. */
|
||
std::vector<value *> vals (args.size () + 1);
|
||
/* First, evaluate the structure into vals[0]. */
|
||
enum exp_opcode op = opcode ();
|
||
if (op == STRUCTOP_STRUCT)
|
||
{
|
||
/* If v is a variable in a register, and the user types
|
||
v.method (), this will produce an error, because v has no
|
||
address.
|
||
|
||
A possible way around this would be to allocate a copy of
|
||
the variable on the stack, copy in the contents, call the
|
||
function, and copy out the contents. I.e. convert this
|
||
from call by reference to call by copy-return (or
|
||
whatever it's called). However, this does not work
|
||
because it is not the same: the method being called could
|
||
stash a copy of the address, and then future uses through
|
||
that address (after the method returns) would be expected
|
||
to use the variable itself, not some copy of it. */
|
||
vals[0] = std::get<0> (m_storage)->evaluate_for_address (exp, noside);
|
||
}
|
||
else
|
||
{
|
||
vals[0] = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
|
||
/* Check to see if the operator '->' has been overloaded.
|
||
If the operator has been overloaded replace vals[0] with the
|
||
value returned by the custom operator and continue
|
||
evaluation. */
|
||
while (unop_user_defined_p (op, vals[0]))
|
||
{
|
||
struct value *value = nullptr;
|
||
try
|
||
{
|
||
value = value_x_unop (vals[0], op, noside);
|
||
}
|
||
catch (const gdb_exception_error &except)
|
||
{
|
||
if (except.error == NOT_FOUND_ERROR)
|
||
break;
|
||
else
|
||
throw;
|
||
}
|
||
|
||
vals[0] = value;
|
||
}
|
||
}
|
||
|
||
/* Evaluate the arguments. The '+ 1' here is to allow for the `this'
|
||
pointer we placed into vals[0]. */
|
||
for (int i = 0; i < args.size (); ++i)
|
||
vals[i + 1] = args[i]->evaluate_with_coercion (exp, noside);
|
||
|
||
/* The array view includes the `this' pointer. */
|
||
gdb::array_view<value *> arg_view (vals);
|
||
|
||
int static_memfuncp;
|
||
value *callee;
|
||
const char *tstr = std::get<1> (m_storage).c_str ();
|
||
if (overload_resolution
|
||
&& exp->language_defn->la_language == language_cplus)
|
||
{
|
||
/* Language is C++, do some overload resolution before
|
||
evaluation. */
|
||
value *val0 = vals[0];
|
||
find_overload_match (arg_view, tstr, METHOD,
|
||
&val0, nullptr, &callee, nullptr,
|
||
&static_memfuncp, 0, noside);
|
||
vals[0] = val0;
|
||
}
|
||
else
|
||
/* Non-C++ case -- or no overload resolution. */
|
||
{
|
||
struct value *temp = vals[0];
|
||
|
||
callee = value_struct_elt (&temp, arg_view, tstr,
|
||
&static_memfuncp,
|
||
op == STRUCTOP_STRUCT
|
||
? "structure" : "structure pointer");
|
||
/* value_struct_elt updates temp with the correct value of the
|
||
``this'' pointer if necessary, so modify it to reflect any
|
||
``this'' changes. */
|
||
vals[0] = value_from_longest (lookup_pointer_type (temp->type ()),
|
||
temp->address ()
|
||
+ temp->embedded_offset ());
|
||
}
|
||
|
||
/* Take out `this' if needed. */
|
||
if (static_memfuncp)
|
||
arg_view = arg_view.slice (1);
|
||
|
||
return evaluate_subexp_do_call (exp, noside, callee, arg_view,
|
||
nullptr, expect_type);
|
||
}
|
||
|
||
/* Helper for structop_base_operation::complete which recursively adds
|
||
field and method names from TYPE, a struct or union type, to the
|
||
OUTPUT list. PREFIX is prepended to each result. */
|
||
|
||
static void
|
||
add_struct_fields (struct type *type, completion_list &output,
|
||
const char *fieldname, int namelen, const char *prefix)
|
||
{
|
||
int i;
|
||
int computed_type_name = 0;
|
||
const char *type_name = NULL;
|
||
|
||
type = check_typedef (type);
|
||
for (i = 0; i < type->num_fields (); ++i)
|
||
{
|
||
if (i < TYPE_N_BASECLASSES (type))
|
||
add_struct_fields (TYPE_BASECLASS (type, i),
|
||
output, fieldname, namelen, prefix);
|
||
else if (type->field (i).name ())
|
||
{
|
||
if (type->field (i).name ()[0] != '\0')
|
||
{
|
||
if (! strncmp (type->field (i).name (),
|
||
fieldname, namelen))
|
||
output.emplace_back (concat (prefix, type->field (i).name (),
|
||
nullptr));
|
||
}
|
||
else if (type->field (i).type ()->code () == TYPE_CODE_UNION)
|
||
{
|
||
/* Recurse into anonymous unions. */
|
||
add_struct_fields (type->field (i).type (),
|
||
output, fieldname, namelen, prefix);
|
||
}
|
||
}
|
||
}
|
||
|
||
for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
|
||
{
|
||
const char *name = TYPE_FN_FIELDLIST_NAME (type, i);
|
||
|
||
if (name && ! strncmp (name, fieldname, namelen))
|
||
{
|
||
if (!computed_type_name)
|
||
{
|
||
type_name = type->name ();
|
||
computed_type_name = 1;
|
||
}
|
||
/* Omit constructors from the completion list. */
|
||
if (!type_name || strcmp (type_name, name))
|
||
output.emplace_back (concat (prefix, name, nullptr));
|
||
}
|
||
}
|
||
}
|
||
|
||
/* See expop.h. */
|
||
|
||
bool
|
||
structop_base_operation::complete (struct expression *exp,
|
||
completion_tracker &tracker,
|
||
const char *prefix)
|
||
{
|
||
const std::string &fieldname = std::get<1> (m_storage);
|
||
|
||
value *lhs = std::get<0> (m_storage)->evaluate (nullptr, exp,
|
||
EVAL_AVOID_SIDE_EFFECTS);
|
||
struct type *type = lhs->type ();
|
||
for (;;)
|
||
{
|
||
type = check_typedef (type);
|
||
if (!type->is_pointer_or_reference ())
|
||
break;
|
||
type = type->target_type ();
|
||
}
|
||
|
||
if (type->code () == TYPE_CODE_UNION
|
||
|| type->code () == TYPE_CODE_STRUCT)
|
||
{
|
||
completion_list result;
|
||
|
||
add_struct_fields (type, result, fieldname.c_str (),
|
||
fieldname.length (), prefix);
|
||
tracker.add_completions (std::move (result));
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
} /* namespace expr */
|
||
|
||
/* Return true if type is integral or reference to integral */
|
||
|
||
static bool
|
||
is_integral_or_integral_reference (struct type *type)
|
||
{
|
||
if (is_integral_type (type))
|
||
return true;
|
||
|
||
type = check_typedef (type);
|
||
return (type != nullptr
|
||
&& TYPE_IS_REFERENCE (type)
|
||
&& is_integral_type (type->target_type ()));
|
||
}
|
||
|
||
/* Helper function that implements the body of OP_SCOPE. */
|
||
|
||
struct value *
|
||
eval_op_scope (struct type *expect_type, struct expression *exp,
|
||
enum noside noside,
|
||
struct type *type, const char *string)
|
||
{
|
||
struct value *arg1 = value_aggregate_elt (type, string, expect_type,
|
||
0, noside);
|
||
if (arg1 == NULL)
|
||
error (_("There is no field named %s"), string);
|
||
return arg1;
|
||
}
|
||
|
||
/* Helper function that implements the body of OP_VAR_ENTRY_VALUE. */
|
||
|
||
struct value *
|
||
eval_op_var_entry_value (struct type *expect_type, struct expression *exp,
|
||
enum noside noside, symbol *sym)
|
||
{
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return value::zero (sym->type (), not_lval);
|
||
|
||
const symbol_computed_ops *computed_ops = sym->computed_ops ();
|
||
if (computed_ops == nullptr
|
||
|| computed_ops->read_variable_at_entry == nullptr)
|
||
error (_("Symbol \"%s\" does not have any specific entry value"),
|
||
sym->print_name ());
|
||
|
||
frame_info_ptr frame = get_selected_frame (NULL);
|
||
return computed_ops->read_variable_at_entry (sym, frame);
|
||
}
|
||
|
||
/* Helper function that implements the body of OP_VAR_MSYM_VALUE. */
|
||
|
||
struct value *
|
||
eval_op_var_msym_value (struct type *expect_type, struct expression *exp,
|
||
enum noside noside, bool outermost_p,
|
||
bound_minimal_symbol msymbol)
|
||
{
|
||
value *val = evaluate_var_msym_value (noside, msymbol.objfile,
|
||
msymbol.minsym);
|
||
|
||
struct type *type = val->type ();
|
||
if (type->code () == TYPE_CODE_ERROR
|
||
&& (noside != EVAL_AVOID_SIDE_EFFECTS || !outermost_p))
|
||
error_unknown_type (msymbol.minsym->print_name ());
|
||
return val;
|
||
}
|
||
|
||
/* Helper function that implements the body of OP_FUNC_STATIC_VAR. */
|
||
|
||
struct value *
|
||
eval_op_func_static_var (struct type *expect_type, struct expression *exp,
|
||
enum noside noside,
|
||
value *func, const char *var)
|
||
{
|
||
CORE_ADDR addr = func->address ();
|
||
const block *blk = block_for_pc (addr);
|
||
struct block_symbol sym = lookup_symbol (var, blk, SEARCH_VAR_DOMAIN,
|
||
nullptr);
|
||
if (sym.symbol == NULL)
|
||
error (_("No symbol \"%s\" in specified context."), var);
|
||
return evaluate_var_value (noside, sym.block, sym.symbol);
|
||
}
|
||
|
||
/* Helper function that implements the body of OP_REGISTER. */
|
||
|
||
struct value *
|
||
eval_op_register (struct type *expect_type, struct expression *exp,
|
||
enum noside noside, const char *name)
|
||
{
|
||
int regno;
|
||
struct value *val;
|
||
|
||
regno = user_reg_map_name_to_regnum (exp->gdbarch,
|
||
name, strlen (name));
|
||
if (regno == -1)
|
||
error (_("Register $%s not available."), name);
|
||
|
||
/* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
|
||
a value with the appropriate register type. Unfortunately,
|
||
we don't have easy access to the type of user registers.
|
||
So for these registers, we fetch the register value regardless
|
||
of the evaluation mode. */
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS
|
||
&& regno < gdbarch_num_cooked_regs (exp->gdbarch))
|
||
val = value::zero (register_type (exp->gdbarch, regno), not_lval);
|
||
else
|
||
val = value_of_register
|
||
(regno, get_next_frame_sentinel_okay (get_selected_frame ()));
|
||
if (val == NULL)
|
||
error (_("Value of register %s not available."), name);
|
||
else
|
||
return val;
|
||
}
|
||
|
||
namespace expr
|
||
{
|
||
|
||
value *
|
||
string_operation::evaluate (struct type *expect_type,
|
||
struct expression *exp,
|
||
enum noside noside)
|
||
{
|
||
const std::string &str = std::get<0> (m_storage);
|
||
struct type *type = language_string_char_type (exp->language_defn,
|
||
exp->gdbarch);
|
||
return value_string (str.c_str (), str.size (), type);
|
||
}
|
||
|
||
struct value *
|
||
ternop_slice_operation::evaluate (struct type *expect_type,
|
||
struct expression *exp,
|
||
enum noside noside)
|
||
{
|
||
struct value *array
|
||
= std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
|
||
struct value *low
|
||
= std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
|
||
struct value *upper
|
||
= std::get<2> (m_storage)->evaluate (nullptr, exp, noside);
|
||
|
||
int lowbound = value_as_long (low);
|
||
int upperbound = value_as_long (upper);
|
||
return value_slice (array, lowbound, upperbound - lowbound + 1);
|
||
}
|
||
|
||
} /* namespace expr */
|
||
|
||
/* Helper function that implements the body of OP_OBJC_SELECTOR. */
|
||
|
||
struct value *
|
||
eval_op_objc_selector (struct type *expect_type, struct expression *exp,
|
||
enum noside noside,
|
||
const char *sel)
|
||
{
|
||
struct type *selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
|
||
return value_from_longest (selector_type,
|
||
lookup_child_selector (exp->gdbarch, sel));
|
||
}
|
||
|
||
/* A helper function for STRUCTOP_STRUCT. */
|
||
|
||
struct value *
|
||
eval_op_structop_struct (struct type *expect_type, struct expression *exp,
|
||
enum noside noside,
|
||
struct value *arg1, const char *string)
|
||
{
|
||
struct value *arg3 = value_struct_elt (&arg1, {}, string,
|
||
NULL, "structure");
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
arg3 = value::zero (arg3->type (), arg3->lval ());
|
||
return arg3;
|
||
}
|
||
|
||
/* A helper function for STRUCTOP_PTR. */
|
||
|
||
struct value *
|
||
eval_op_structop_ptr (struct type *expect_type, struct expression *exp,
|
||
enum noside noside,
|
||
struct value *arg1, const char *string)
|
||
{
|
||
/* Check to see if operator '->' has been overloaded. If so replace
|
||
arg1 with the value returned by evaluating operator->(). */
|
||
while (unop_user_defined_p (STRUCTOP_PTR, arg1))
|
||
{
|
||
struct value *value = NULL;
|
||
try
|
||
{
|
||
value = value_x_unop (arg1, STRUCTOP_PTR, noside);
|
||
}
|
||
|
||
catch (const gdb_exception_error &except)
|
||
{
|
||
if (except.error == NOT_FOUND_ERROR)
|
||
break;
|
||
else
|
||
throw;
|
||
}
|
||
|
||
arg1 = value;
|
||
}
|
||
|
||
/* JYG: if print object is on we need to replace the base type
|
||
with rtti type in order to continue on with successful
|
||
lookup of member / method only available in the rtti type. */
|
||
{
|
||
struct type *arg_type = arg1->type ();
|
||
struct type *real_type;
|
||
int full, using_enc;
|
||
LONGEST top;
|
||
struct value_print_options opts;
|
||
|
||
get_user_print_options (&opts);
|
||
if (opts.objectprint && arg_type->target_type ()
|
||
&& (arg_type->target_type ()->code () == TYPE_CODE_STRUCT))
|
||
{
|
||
real_type = value_rtti_indirect_type (arg1, &full, &top,
|
||
&using_enc);
|
||
if (real_type)
|
||
arg1 = value_cast (real_type, arg1);
|
||
}
|
||
}
|
||
|
||
struct value *arg3 = value_struct_elt (&arg1, {}, string,
|
||
NULL, "structure pointer");
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
arg3 = value::zero (arg3->type (), arg3->lval ());
|
||
return arg3;
|
||
}
|
||
|
||
/* A helper function for STRUCTOP_MEMBER. */
|
||
|
||
struct value *
|
||
eval_op_member (struct type *expect_type, struct expression *exp,
|
||
enum noside noside,
|
||
struct value *arg1, struct value *arg2)
|
||
{
|
||
long mem_offset;
|
||
|
||
struct value *arg3;
|
||
struct type *type = check_typedef (arg2->type ());
|
||
switch (type->code ())
|
||
{
|
||
case TYPE_CODE_METHODPTR:
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return value::zero (type->target_type (), not_lval);
|
||
else
|
||
{
|
||
arg2 = cplus_method_ptr_to_value (&arg1, arg2);
|
||
gdb_assert (arg2->type ()->code () == TYPE_CODE_PTR);
|
||
return value_ind (arg2);
|
||
}
|
||
|
||
case TYPE_CODE_MEMBERPTR:
|
||
/* Now, convert these values to an address. */
|
||
if (check_typedef (arg1->type ())->code () != TYPE_CODE_PTR)
|
||
arg1 = value_addr (arg1);
|
||
arg1 = value_cast_pointers (lookup_pointer_type (TYPE_SELF_TYPE (type)),
|
||
arg1, 1);
|
||
|
||
mem_offset = value_as_long (arg2);
|
||
|
||
arg3 = value_from_pointer (lookup_pointer_type (type->target_type ()),
|
||
value_as_long (arg1) + mem_offset);
|
||
return value_ind (arg3);
|
||
|
||
default:
|
||
error (_("non-pointer-to-member value used "
|
||
"in pointer-to-member construct"));
|
||
}
|
||
}
|
||
|
||
/* A helper function for BINOP_ADD. */
|
||
|
||
struct value *
|
||
eval_op_add (struct type *expect_type, struct expression *exp,
|
||
enum noside noside,
|
||
struct value *arg1, struct value *arg2)
|
||
{
|
||
if (binop_user_defined_p (BINOP_ADD, arg1, arg2))
|
||
return value_x_binop (arg1, arg2, BINOP_ADD, OP_NULL, noside);
|
||
else if (ptrmath_type_p (exp->language_defn, arg1->type ())
|
||
&& is_integral_or_integral_reference (arg2->type ()))
|
||
return value_ptradd (arg1, value_as_long (arg2));
|
||
else if (ptrmath_type_p (exp->language_defn, arg2->type ())
|
||
&& is_integral_or_integral_reference (arg1->type ()))
|
||
return value_ptradd (arg2, value_as_long (arg1));
|
||
else
|
||
{
|
||
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
|
||
return value_binop (arg1, arg2, BINOP_ADD);
|
||
}
|
||
}
|
||
|
||
/* A helper function for BINOP_SUB. */
|
||
|
||
struct value *
|
||
eval_op_sub (struct type *expect_type, struct expression *exp,
|
||
enum noside noside,
|
||
struct value *arg1, struct value *arg2)
|
||
{
|
||
if (binop_user_defined_p (BINOP_SUB, arg1, arg2))
|
||
return value_x_binop (arg1, arg2, BINOP_SUB, OP_NULL, noside);
|
||
else if (ptrmath_type_p (exp->language_defn, arg1->type ())
|
||
&& ptrmath_type_p (exp->language_defn, arg2->type ()))
|
||
{
|
||
/* FIXME -- should be ptrdiff_t */
|
||
struct type *type = builtin_type (exp->gdbarch)->builtin_long;
|
||
return value_from_longest (type, value_ptrdiff (arg1, arg2));
|
||
}
|
||
else if (ptrmath_type_p (exp->language_defn, arg1->type ())
|
||
&& is_integral_or_integral_reference (arg2->type ()))
|
||
return value_ptradd (arg1, - value_as_long (arg2));
|
||
else
|
||
{
|
||
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
|
||
return value_binop (arg1, arg2, BINOP_SUB);
|
||
}
|
||
}
|
||
|
||
/* Helper function for several different binary operations. */
|
||
|
||
struct value *
|
||
eval_op_binary (struct type *expect_type, struct expression *exp,
|
||
enum noside noside, enum exp_opcode op,
|
||
struct value *arg1, struct value *arg2)
|
||
{
|
||
if (binop_user_defined_p (op, arg1, arg2))
|
||
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
||
else
|
||
{
|
||
/* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
|
||
fudge arg2 to avoid division-by-zero, the caller is
|
||
(theoretically) only looking for the type of the result. */
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS
|
||
/* ??? Do we really want to test for BINOP_MOD here?
|
||
The implementation of value_binop gives it a well-defined
|
||
value. */
|
||
&& (op == BINOP_DIV
|
||
|| op == BINOP_INTDIV
|
||
|| op == BINOP_REM
|
||
|| op == BINOP_MOD)
|
||
&& value_logical_not (arg2))
|
||
{
|
||
struct value *v_one;
|
||
|
||
v_one = value_one (arg2->type ());
|
||
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &v_one);
|
||
return value_binop (arg1, v_one, op);
|
||
}
|
||
else
|
||
{
|
||
/* For shift and integer exponentiation operations,
|
||
only promote the first argument. */
|
||
if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
|
||
&& is_integral_type (arg2->type ()))
|
||
unop_promote (exp->language_defn, exp->gdbarch, &arg1);
|
||
else
|
||
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
|
||
|
||
return value_binop (arg1, arg2, op);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* A helper function for BINOP_SUBSCRIPT. */
|
||
|
||
struct value *
|
||
eval_op_subscript (struct type *expect_type, struct expression *exp,
|
||
enum noside noside, enum exp_opcode op,
|
||
struct value *arg1, struct value *arg2)
|
||
{
|
||
if (binop_user_defined_p (op, arg1, arg2))
|
||
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
||
else
|
||
{
|
||
/* If the user attempts to subscript something that is not an
|
||
array or pointer type (like a plain int variable for example),
|
||
then report this as an error. */
|
||
|
||
arg1 = coerce_ref (arg1);
|
||
struct type *type = check_typedef (arg1->type ());
|
||
if (type->code () != TYPE_CODE_ARRAY
|
||
&& type->code () != TYPE_CODE_PTR)
|
||
{
|
||
if (type->name ())
|
||
error (_("cannot subscript something of type `%s'"),
|
||
type->name ());
|
||
else
|
||
error (_("cannot subscript requested type"));
|
||
}
|
||
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return value::zero (type->target_type (), arg1->lval ());
|
||
else
|
||
return value_subscript (arg1, value_as_long (arg2));
|
||
}
|
||
}
|
||
|
||
/* A helper function for BINOP_EQUAL. */
|
||
|
||
struct value *
|
||
eval_op_equal (struct type *expect_type, struct expression *exp,
|
||
enum noside noside, enum exp_opcode op,
|
||
struct value *arg1, struct value *arg2)
|
||
{
|
||
if (binop_user_defined_p (op, arg1, arg2))
|
||
{
|
||
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
||
}
|
||
else
|
||
{
|
||
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
|
||
int tem = value_equal (arg1, arg2);
|
||
struct type *type = language_bool_type (exp->language_defn,
|
||
exp->gdbarch);
|
||
return value_from_longest (type, (LONGEST) tem);
|
||
}
|
||
}
|
||
|
||
/* A helper function for BINOP_NOTEQUAL. */
|
||
|
||
struct value *
|
||
eval_op_notequal (struct type *expect_type, struct expression *exp,
|
||
enum noside noside, enum exp_opcode op,
|
||
struct value *arg1, struct value *arg2)
|
||
{
|
||
if (binop_user_defined_p (op, arg1, arg2))
|
||
{
|
||
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
||
}
|
||
else
|
||
{
|
||
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
|
||
int tem = value_equal (arg1, arg2);
|
||
struct type *type = language_bool_type (exp->language_defn,
|
||
exp->gdbarch);
|
||
return value_from_longest (type, (LONGEST) ! tem);
|
||
}
|
||
}
|
||
|
||
/* A helper function for BINOP_LESS. */
|
||
|
||
struct value *
|
||
eval_op_less (struct type *expect_type, struct expression *exp,
|
||
enum noside noside, enum exp_opcode op,
|
||
struct value *arg1, struct value *arg2)
|
||
{
|
||
if (binop_user_defined_p (op, arg1, arg2))
|
||
{
|
||
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
||
}
|
||
else
|
||
{
|
||
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
|
||
int tem = value_less (arg1, arg2);
|
||
struct type *type = language_bool_type (exp->language_defn,
|
||
exp->gdbarch);
|
||
return value_from_longest (type, (LONGEST) tem);
|
||
}
|
||
}
|
||
|
||
/* A helper function for BINOP_GTR. */
|
||
|
||
struct value *
|
||
eval_op_gtr (struct type *expect_type, struct expression *exp,
|
||
enum noside noside, enum exp_opcode op,
|
||
struct value *arg1, struct value *arg2)
|
||
{
|
||
if (binop_user_defined_p (op, arg1, arg2))
|
||
{
|
||
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
||
}
|
||
else
|
||
{
|
||
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
|
||
int tem = value_less (arg2, arg1);
|
||
struct type *type = language_bool_type (exp->language_defn,
|
||
exp->gdbarch);
|
||
return value_from_longest (type, (LONGEST) tem);
|
||
}
|
||
}
|
||
|
||
/* A helper function for BINOP_GEQ. */
|
||
|
||
struct value *
|
||
eval_op_geq (struct type *expect_type, struct expression *exp,
|
||
enum noside noside, enum exp_opcode op,
|
||
struct value *arg1, struct value *arg2)
|
||
{
|
||
if (binop_user_defined_p (op, arg1, arg2))
|
||
{
|
||
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
||
}
|
||
else
|
||
{
|
||
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
|
||
int tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
|
||
struct type *type = language_bool_type (exp->language_defn,
|
||
exp->gdbarch);
|
||
return value_from_longest (type, (LONGEST) tem);
|
||
}
|
||
}
|
||
|
||
/* A helper function for BINOP_LEQ. */
|
||
|
||
struct value *
|
||
eval_op_leq (struct type *expect_type, struct expression *exp,
|
||
enum noside noside, enum exp_opcode op,
|
||
struct value *arg1, struct value *arg2)
|
||
{
|
||
if (binop_user_defined_p (op, arg1, arg2))
|
||
{
|
||
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
||
}
|
||
else
|
||
{
|
||
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
|
||
int tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
|
||
struct type *type = language_bool_type (exp->language_defn,
|
||
exp->gdbarch);
|
||
return value_from_longest (type, (LONGEST) tem);
|
||
}
|
||
}
|
||
|
||
/* A helper function for BINOP_REPEAT. */
|
||
|
||
struct value *
|
||
eval_op_repeat (struct type *expect_type, struct expression *exp,
|
||
enum noside noside, enum exp_opcode op,
|
||
struct value *arg1, struct value *arg2)
|
||
{
|
||
struct type *type = check_typedef (arg2->type ());
|
||
if (type->code () != TYPE_CODE_INT
|
||
&& type->code () != TYPE_CODE_ENUM)
|
||
error (_("Non-integral right operand for \"@\" operator."));
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
{
|
||
return allocate_repeat_value (arg1->type (),
|
||
longest_to_int (value_as_long (arg2)));
|
||
}
|
||
else
|
||
return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
|
||
}
|
||
|
||
/* A helper function for UNOP_PLUS. */
|
||
|
||
struct value *
|
||
eval_op_plus (struct type *expect_type, struct expression *exp,
|
||
enum noside noside, enum exp_opcode op,
|
||
struct value *arg1)
|
||
{
|
||
if (unop_user_defined_p (op, arg1))
|
||
return value_x_unop (arg1, op, noside);
|
||
else
|
||
{
|
||
unop_promote (exp->language_defn, exp->gdbarch, &arg1);
|
||
return value_pos (arg1);
|
||
}
|
||
}
|
||
|
||
/* A helper function for UNOP_NEG. */
|
||
|
||
struct value *
|
||
eval_op_neg (struct type *expect_type, struct expression *exp,
|
||
enum noside noside, enum exp_opcode op,
|
||
struct value *arg1)
|
||
{
|
||
if (unop_user_defined_p (op, arg1))
|
||
return value_x_unop (arg1, op, noside);
|
||
else
|
||
{
|
||
unop_promote (exp->language_defn, exp->gdbarch, &arg1);
|
||
return value_neg (arg1);
|
||
}
|
||
}
|
||
|
||
/* A helper function for UNOP_COMPLEMENT. */
|
||
|
||
struct value *
|
||
eval_op_complement (struct type *expect_type, struct expression *exp,
|
||
enum noside noside, enum exp_opcode op,
|
||
struct value *arg1)
|
||
{
|
||
if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
|
||
return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
|
||
else
|
||
{
|
||
unop_promote (exp->language_defn, exp->gdbarch, &arg1);
|
||
return value_complement (arg1);
|
||
}
|
||
}
|
||
|
||
/* A helper function for UNOP_LOGICAL_NOT. */
|
||
|
||
struct value *
|
||
eval_op_lognot (struct type *expect_type, struct expression *exp,
|
||
enum noside noside, enum exp_opcode op,
|
||
struct value *arg1)
|
||
{
|
||
if (unop_user_defined_p (op, arg1))
|
||
return value_x_unop (arg1, op, noside);
|
||
else
|
||
{
|
||
struct type *type = language_bool_type (exp->language_defn,
|
||
exp->gdbarch);
|
||
return value_from_longest (type, (LONGEST) value_logical_not (arg1));
|
||
}
|
||
}
|
||
|
||
/* A helper function for UNOP_IND. */
|
||
|
||
struct value *
|
||
eval_op_ind (struct type *expect_type, struct expression *exp,
|
||
enum noside noside,
|
||
struct value *arg1)
|
||
{
|
||
struct type *type = check_typedef (arg1->type ());
|
||
if (type->code () == TYPE_CODE_METHODPTR
|
||
|| type->code () == TYPE_CODE_MEMBERPTR)
|
||
error (_("Attempt to dereference pointer "
|
||
"to member without an object"));
|
||
if (unop_user_defined_p (UNOP_IND, arg1))
|
||
return value_x_unop (arg1, UNOP_IND, noside);
|
||
else if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
{
|
||
type = check_typedef (arg1->type ());
|
||
|
||
/* If the type pointed to is dynamic then in order to resolve the
|
||
dynamic properties we must actually dereference the pointer.
|
||
There is a risk that this dereference will have side-effects
|
||
in the inferior, but being able to print accurate type
|
||
information seems worth the risk. */
|
||
if (!type->is_pointer_or_reference ()
|
||
|| !is_dynamic_type (type->target_type ()))
|
||
{
|
||
if (type->is_pointer_or_reference ()
|
||
/* In C you can dereference an array to get the 1st elt. */
|
||
|| type->code () == TYPE_CODE_ARRAY)
|
||
return value::zero (type->target_type (),
|
||
lval_memory);
|
||
else if (type->code () == TYPE_CODE_INT)
|
||
/* GDB allows dereferencing an int. */
|
||
return value::zero (builtin_type (exp->gdbarch)->builtin_int,
|
||
lval_memory);
|
||
else
|
||
error (_("Attempt to take contents of a non-pointer value."));
|
||
}
|
||
}
|
||
|
||
/* Allow * on an integer so we can cast it to whatever we want.
|
||
This returns an int, which seems like the most C-like thing to
|
||
do. "long long" variables are rare enough that
|
||
BUILTIN_TYPE_LONGEST would seem to be a mistake. */
|
||
if (type->code () == TYPE_CODE_INT)
|
||
return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
|
||
value_as_address (arg1));
|
||
return value_ind (arg1);
|
||
}
|
||
|
||
/* A helper function for UNOP_ALIGNOF. */
|
||
|
||
struct value *
|
||
eval_op_alignof (struct type *expect_type, struct expression *exp,
|
||
enum noside noside,
|
||
struct value *arg1)
|
||
{
|
||
struct type *type = arg1->type ();
|
||
/* FIXME: This should be size_t. */
|
||
struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
|
||
ULONGEST align = type_align (type);
|
||
if (align == 0)
|
||
error (_("could not determine alignment of type"));
|
||
return value_from_longest (size_type, align);
|
||
}
|
||
|
||
/* A helper function for UNOP_MEMVAL. */
|
||
|
||
struct value *
|
||
eval_op_memval (struct type *expect_type, struct expression *exp,
|
||
enum noside noside,
|
||
struct value *arg1, struct type *type)
|
||
{
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return value::zero (type, lval_memory);
|
||
else
|
||
return value_at_lazy (type, value_as_address (arg1));
|
||
}
|
||
|
||
/* A helper function for UNOP_PREINCREMENT. */
|
||
|
||
struct value *
|
||
eval_op_preinc (struct type *expect_type, struct expression *exp,
|
||
enum noside noside, enum exp_opcode op,
|
||
struct value *arg1)
|
||
{
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return arg1;
|
||
else if (unop_user_defined_p (op, arg1))
|
||
{
|
||
return value_x_unop (arg1, op, noside);
|
||
}
|
||
else
|
||
{
|
||
struct value *arg2;
|
||
if (ptrmath_type_p (exp->language_defn, arg1->type ()))
|
||
arg2 = value_ptradd (arg1, 1);
|
||
else
|
||
{
|
||
struct value *tmp = arg1;
|
||
|
||
arg2 = value_one (arg1->type ());
|
||
binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
|
||
arg2 = value_binop (tmp, arg2, BINOP_ADD);
|
||
}
|
||
|
||
return value_assign (arg1, arg2);
|
||
}
|
||
}
|
||
|
||
/* A helper function for UNOP_PREDECREMENT. */
|
||
|
||
struct value *
|
||
eval_op_predec (struct type *expect_type, struct expression *exp,
|
||
enum noside noside, enum exp_opcode op,
|
||
struct value *arg1)
|
||
{
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return arg1;
|
||
else if (unop_user_defined_p (op, arg1))
|
||
{
|
||
return value_x_unop (arg1, op, noside);
|
||
}
|
||
else
|
||
{
|
||
struct value *arg2;
|
||
if (ptrmath_type_p (exp->language_defn, arg1->type ()))
|
||
arg2 = value_ptradd (arg1, -1);
|
||
else
|
||
{
|
||
struct value *tmp = arg1;
|
||
|
||
arg2 = value_one (arg1->type ());
|
||
binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
|
||
arg2 = value_binop (tmp, arg2, BINOP_SUB);
|
||
}
|
||
|
||
return value_assign (arg1, arg2);
|
||
}
|
||
}
|
||
|
||
/* A helper function for UNOP_POSTINCREMENT. */
|
||
|
||
struct value *
|
||
eval_op_postinc (struct type *expect_type, struct expression *exp,
|
||
enum noside noside, enum exp_opcode op,
|
||
struct value *arg1)
|
||
{
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return arg1;
|
||
else if (unop_user_defined_p (op, arg1))
|
||
{
|
||
return value_x_unop (arg1, op, noside);
|
||
}
|
||
else
|
||
{
|
||
struct value *arg3 = arg1->non_lval ();
|
||
struct value *arg2;
|
||
|
||
if (ptrmath_type_p (exp->language_defn, arg1->type ()))
|
||
arg2 = value_ptradd (arg1, 1);
|
||
else
|
||
{
|
||
struct value *tmp = arg1;
|
||
|
||
arg2 = value_one (arg1->type ());
|
||
binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
|
||
arg2 = value_binop (tmp, arg2, BINOP_ADD);
|
||
}
|
||
|
||
value_assign (arg1, arg2);
|
||
return arg3;
|
||
}
|
||
}
|
||
|
||
/* A helper function for UNOP_POSTDECREMENT. */
|
||
|
||
struct value *
|
||
eval_op_postdec (struct type *expect_type, struct expression *exp,
|
||
enum noside noside, enum exp_opcode op,
|
||
struct value *arg1)
|
||
{
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return arg1;
|
||
else if (unop_user_defined_p (op, arg1))
|
||
{
|
||
return value_x_unop (arg1, op, noside);
|
||
}
|
||
else
|
||
{
|
||
struct value *arg3 = arg1->non_lval ();
|
||
struct value *arg2;
|
||
|
||
if (ptrmath_type_p (exp->language_defn, arg1->type ()))
|
||
arg2 = value_ptradd (arg1, -1);
|
||
else
|
||
{
|
||
struct value *tmp = arg1;
|
||
|
||
arg2 = value_one (arg1->type ());
|
||
binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
|
||
arg2 = value_binop (tmp, arg2, BINOP_SUB);
|
||
}
|
||
|
||
value_assign (arg1, arg2);
|
||
return arg3;
|
||
}
|
||
}
|
||
|
||
/* A helper function for OP_TYPE. */
|
||
|
||
struct value *
|
||
eval_op_type (struct type *expect_type, struct expression *exp,
|
||
enum noside noside, struct type *type)
|
||
{
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return value::allocate (type);
|
||
else
|
||
error (_("Attempt to use a type name as an expression"));
|
||
}
|
||
|
||
/* A helper function for BINOP_ASSIGN_MODIFY. */
|
||
|
||
struct value *
|
||
eval_binop_assign_modify (struct type *expect_type, struct expression *exp,
|
||
enum noside noside, enum exp_opcode op,
|
||
struct value *arg1, struct value *arg2)
|
||
{
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return arg1;
|
||
if (binop_user_defined_p (op, arg1, arg2))
|
||
return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
|
||
else if (op == BINOP_ADD && ptrmath_type_p (exp->language_defn,
|
||
arg1->type ())
|
||
&& is_integral_type (arg2->type ()))
|
||
arg2 = value_ptradd (arg1, value_as_long (arg2));
|
||
else if (op == BINOP_SUB && ptrmath_type_p (exp->language_defn,
|
||
arg1->type ())
|
||
&& is_integral_type (arg2->type ()))
|
||
arg2 = value_ptradd (arg1, - value_as_long (arg2));
|
||
else
|
||
{
|
||
struct value *tmp = arg1;
|
||
|
||
/* For shift and integer exponentiation operations,
|
||
only promote the first argument. */
|
||
if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
|
||
&& is_integral_type (arg2->type ()))
|
||
unop_promote (exp->language_defn, exp->gdbarch, &tmp);
|
||
else
|
||
binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
|
||
|
||
arg2 = value_binop (tmp, arg2, op);
|
||
}
|
||
return value_assign (arg1, arg2);
|
||
}
|
||
|
||
/* Note that ARGS needs 2 empty slots up front and must end with a
|
||
null pointer. */
|
||
static struct value *
|
||
eval_op_objc_msgcall (struct type *expect_type, struct expression *exp,
|
||
enum noside noside, CORE_ADDR selector,
|
||
value *target, gdb::array_view<value *> args)
|
||
{
|
||
CORE_ADDR responds_selector = 0;
|
||
CORE_ADDR method_selector = 0;
|
||
|
||
int struct_return = 0;
|
||
|
||
struct value *msg_send = NULL;
|
||
struct value *msg_send_stret = NULL;
|
||
int gnu_runtime = 0;
|
||
|
||
struct value *method = NULL;
|
||
struct value *called_method = NULL;
|
||
|
||
struct type *selector_type = NULL;
|
||
struct type *long_type;
|
||
struct type *type;
|
||
|
||
struct value *ret = NULL;
|
||
CORE_ADDR addr = 0;
|
||
|
||
value *argvec[5];
|
||
|
||
long_type = builtin_type (exp->gdbarch)->builtin_long;
|
||
selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
|
||
|
||
if (value_as_long (target) == 0)
|
||
return value_from_longest (long_type, 0);
|
||
|
||
if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0).minsym)
|
||
gnu_runtime = 1;
|
||
|
||
/* Find the method dispatch (Apple runtime) or method lookup
|
||
(GNU runtime) function for Objective-C. These will be used
|
||
to lookup the symbol information for the method. If we
|
||
can't find any symbol information, then we'll use these to
|
||
call the method, otherwise we can call the method
|
||
directly. The msg_send_stret function is used in the special
|
||
case of a method that returns a structure (Apple runtime
|
||
only). */
|
||
if (gnu_runtime)
|
||
{
|
||
type = selector_type;
|
||
|
||
type = lookup_function_type (type);
|
||
type = lookup_pointer_type (type);
|
||
type = lookup_function_type (type);
|
||
type = lookup_pointer_type (type);
|
||
|
||
msg_send = find_function_in_inferior ("objc_msg_lookup", NULL);
|
||
msg_send_stret
|
||
= find_function_in_inferior ("objc_msg_lookup", NULL);
|
||
|
||
msg_send = value_from_pointer (type, value_as_address (msg_send));
|
||
msg_send_stret = value_from_pointer (type,
|
||
value_as_address (msg_send_stret));
|
||
}
|
||
else
|
||
{
|
||
msg_send = find_function_in_inferior ("objc_msgSend", NULL);
|
||
/* Special dispatcher for methods returning structs. */
|
||
msg_send_stret
|
||
= find_function_in_inferior ("objc_msgSend_stret", NULL);
|
||
}
|
||
|
||
/* Verify the target object responds to this method. The
|
||
standard top-level 'Object' class uses a different name for
|
||
the verification method than the non-standard, but more
|
||
often used, 'NSObject' class. Make sure we check for both. */
|
||
|
||
responds_selector
|
||
= lookup_child_selector (exp->gdbarch, "respondsToSelector:");
|
||
if (responds_selector == 0)
|
||
responds_selector
|
||
= lookup_child_selector (exp->gdbarch, "respondsTo:");
|
||
|
||
if (responds_selector == 0)
|
||
error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
|
||
|
||
method_selector
|
||
= lookup_child_selector (exp->gdbarch, "methodForSelector:");
|
||
if (method_selector == 0)
|
||
method_selector
|
||
= lookup_child_selector (exp->gdbarch, "methodFor:");
|
||
|
||
if (method_selector == 0)
|
||
error (_("no 'methodFor:' or 'methodForSelector:' method"));
|
||
|
||
/* Call the verification method, to make sure that the target
|
||
class implements the desired method. */
|
||
|
||
argvec[0] = msg_send;
|
||
argvec[1] = target;
|
||
argvec[2] = value_from_longest (long_type, responds_selector);
|
||
argvec[3] = value_from_longest (long_type, selector);
|
||
argvec[4] = 0;
|
||
|
||
ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
|
||
if (gnu_runtime)
|
||
{
|
||
/* Function objc_msg_lookup returns a pointer. */
|
||
argvec[0] = ret;
|
||
ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
|
||
}
|
||
if (value_as_long (ret) == 0)
|
||
error (_("Target does not respond to this message selector."));
|
||
|
||
/* Call "methodForSelector:" method, to get the address of a
|
||
function method that implements this selector for this
|
||
class. If we can find a symbol at that address, then we
|
||
know the return type, parameter types etc. (that's a good
|
||
thing). */
|
||
|
||
argvec[0] = msg_send;
|
||
argvec[1] = target;
|
||
argvec[2] = value_from_longest (long_type, method_selector);
|
||
argvec[3] = value_from_longest (long_type, selector);
|
||
argvec[4] = 0;
|
||
|
||
ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
|
||
if (gnu_runtime)
|
||
{
|
||
argvec[0] = ret;
|
||
ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
|
||
}
|
||
|
||
/* ret should now be the selector. */
|
||
|
||
addr = value_as_long (ret);
|
||
if (addr)
|
||
{
|
||
struct symbol *sym = NULL;
|
||
|
||
/* The address might point to a function descriptor;
|
||
resolve it to the actual code address instead. */
|
||
addr = gdbarch_convert_from_func_ptr_addr
|
||
(exp->gdbarch, addr, current_inferior ()->top_target ());
|
||
|
||
/* Is it a high_level symbol? */
|
||
sym = find_pc_function (addr);
|
||
if (sym != NULL)
|
||
method = value_of_variable (sym, 0);
|
||
}
|
||
|
||
/* If we found a method with symbol information, check to see
|
||
if it returns a struct. Otherwise assume it doesn't. */
|
||
|
||
if (method)
|
||
{
|
||
CORE_ADDR funaddr;
|
||
struct type *val_type;
|
||
|
||
funaddr = find_function_addr (method, &val_type);
|
||
|
||
block_for_pc (funaddr);
|
||
|
||
val_type = check_typedef (val_type);
|
||
|
||
if ((val_type == NULL)
|
||
|| (val_type->code () == TYPE_CODE_ERROR))
|
||
{
|
||
if (expect_type != NULL)
|
||
val_type = expect_type;
|
||
}
|
||
|
||
struct_return = using_struct_return (exp->gdbarch, method,
|
||
val_type);
|
||
}
|
||
else if (expect_type != NULL)
|
||
{
|
||
struct_return = using_struct_return (exp->gdbarch, NULL,
|
||
check_typedef (expect_type));
|
||
}
|
||
|
||
/* Found a function symbol. Now we will substitute its
|
||
value in place of the message dispatcher (obj_msgSend),
|
||
so that we call the method directly instead of thru
|
||
the dispatcher. The main reason for doing this is that
|
||
we can now evaluate the return value and parameter values
|
||
according to their known data types, in case we need to
|
||
do things like promotion, dereferencing, special handling
|
||
of structs and doubles, etc.
|
||
|
||
We want to use the type signature of 'method', but still
|
||
jump to objc_msgSend() or objc_msgSend_stret() to better
|
||
mimic the behavior of the runtime. */
|
||
|
||
if (method)
|
||
{
|
||
if (method->type ()->code () != TYPE_CODE_FUNC)
|
||
error (_("method address has symbol information "
|
||
"with non-function type; skipping"));
|
||
|
||
/* Create a function pointer of the appropriate type, and
|
||
replace its value with the value of msg_send or
|
||
msg_send_stret. We must use a pointer here, as
|
||
msg_send and msg_send_stret are of pointer type, and
|
||
the representation may be different on systems that use
|
||
function descriptors. */
|
||
if (struct_return)
|
||
called_method
|
||
= value_from_pointer (lookup_pointer_type (method->type ()),
|
||
value_as_address (msg_send_stret));
|
||
else
|
||
called_method
|
||
= value_from_pointer (lookup_pointer_type (method->type ()),
|
||
value_as_address (msg_send));
|
||
}
|
||
else
|
||
{
|
||
if (struct_return)
|
||
called_method = msg_send_stret;
|
||
else
|
||
called_method = msg_send;
|
||
}
|
||
|
||
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
{
|
||
/* If the return type doesn't look like a function type,
|
||
call an error. This can happen if somebody tries to
|
||
turn a variable into a function call. This is here
|
||
because people often want to call, eg, strcmp, which
|
||
gdb doesn't know is a function. If gdb isn't asked for
|
||
it's opinion (ie. through "whatis"), it won't offer
|
||
it. */
|
||
|
||
struct type *callee_type = called_method->type ();
|
||
|
||
if (callee_type && callee_type->code () == TYPE_CODE_PTR)
|
||
callee_type = callee_type->target_type ();
|
||
callee_type = callee_type->target_type ();
|
||
|
||
if (callee_type)
|
||
{
|
||
if ((callee_type->code () == TYPE_CODE_ERROR) && expect_type)
|
||
return value::allocate (expect_type);
|
||
else
|
||
return value::allocate (callee_type);
|
||
}
|
||
else
|
||
error (_("Expression of type other than "
|
||
"\"method returning ...\" used as a method"));
|
||
}
|
||
|
||
/* Now depending on whether we found a symbol for the method,
|
||
we will either call the runtime dispatcher or the method
|
||
directly. */
|
||
|
||
args[0] = target;
|
||
args[1] = value_from_longest (long_type, selector);
|
||
|
||
if (gnu_runtime && (method != NULL))
|
||
{
|
||
/* Function objc_msg_lookup returns a pointer. */
|
||
struct type *tem_type = called_method->type ();
|
||
tem_type = lookup_pointer_type (lookup_function_type (tem_type));
|
||
called_method->deprecated_set_type (tem_type);
|
||
called_method = call_function_by_hand (called_method, NULL, args);
|
||
}
|
||
|
||
return call_function_by_hand (called_method, NULL, args);
|
||
}
|
||
|
||
/* Helper function for MULTI_SUBSCRIPT. */
|
||
|
||
static struct value *
|
||
eval_multi_subscript (struct type *expect_type, struct expression *exp,
|
||
enum noside noside, value *arg1,
|
||
gdb::array_view<value *> args)
|
||
{
|
||
for (value *arg2 : args)
|
||
{
|
||
if (binop_user_defined_p (MULTI_SUBSCRIPT, arg1, arg2))
|
||
{
|
||
arg1 = value_x_binop (arg1, arg2, MULTI_SUBSCRIPT, OP_NULL, noside);
|
||
}
|
||
else
|
||
{
|
||
arg1 = coerce_ref (arg1);
|
||
struct type *type = check_typedef (arg1->type ());
|
||
|
||
switch (type->code ())
|
||
{
|
||
case TYPE_CODE_PTR:
|
||
case TYPE_CODE_ARRAY:
|
||
case TYPE_CODE_STRING:
|
||
arg1 = value_subscript (arg1, value_as_long (arg2));
|
||
break;
|
||
|
||
default:
|
||
if (type->name ())
|
||
error (_("cannot subscript something of type `%s'"),
|
||
type->name ());
|
||
else
|
||
error (_("cannot subscript requested type"));
|
||
}
|
||
}
|
||
}
|
||
return (arg1);
|
||
}
|
||
|
||
namespace expr
|
||
{
|
||
|
||
value *
|
||
objc_msgcall_operation::evaluate (struct type *expect_type,
|
||
struct expression *exp,
|
||
enum noside noside)
|
||
{
|
||
enum noside sub_no_side = EVAL_NORMAL;
|
||
struct type *selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
|
||
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
sub_no_side = EVAL_NORMAL;
|
||
else
|
||
sub_no_side = noside;
|
||
value *target
|
||
= std::get<1> (m_storage)->evaluate (selector_type, exp, sub_no_side);
|
||
|
||
if (value_as_long (target) == 0)
|
||
sub_no_side = EVAL_AVOID_SIDE_EFFECTS;
|
||
else
|
||
sub_no_side = noside;
|
||
std::vector<operation_up> &args = std::get<2> (m_storage);
|
||
value **argvec = XALLOCAVEC (struct value *, args.size () + 3);
|
||
argvec[0] = nullptr;
|
||
argvec[1] = nullptr;
|
||
for (int i = 0; i < args.size (); ++i)
|
||
argvec[i + 2] = args[i]->evaluate_with_coercion (exp, sub_no_side);
|
||
argvec[args.size () + 2] = nullptr;
|
||
|
||
return eval_op_objc_msgcall (expect_type, exp, noside, std::
|
||
get<0> (m_storage), target,
|
||
gdb::make_array_view (argvec,
|
||
args.size () + 3));
|
||
}
|
||
|
||
value *
|
||
multi_subscript_operation::evaluate (struct type *expect_type,
|
||
struct expression *exp,
|
||
enum noside noside)
|
||
{
|
||
value *arg1 = std::get<0> (m_storage)->evaluate_with_coercion (exp, noside);
|
||
std::vector<operation_up> &values = std::get<1> (m_storage);
|
||
value **argvec = XALLOCAVEC (struct value *, values.size ());
|
||
for (int ix = 0; ix < values.size (); ++ix)
|
||
argvec[ix] = values[ix]->evaluate_with_coercion (exp, noside);
|
||
return eval_multi_subscript (expect_type, exp, noside, arg1,
|
||
gdb::make_array_view (argvec, values.size ()));
|
||
}
|
||
|
||
value *
|
||
logical_and_operation::evaluate (struct type *expect_type,
|
||
struct expression *exp,
|
||
enum noside noside)
|
||
{
|
||
value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
|
||
|
||
value *arg2 = std::get<1> (m_storage)->evaluate (nullptr, exp,
|
||
EVAL_AVOID_SIDE_EFFECTS);
|
||
|
||
if (binop_user_defined_p (BINOP_LOGICAL_AND, arg1, arg2))
|
||
{
|
||
arg2 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
|
||
return value_x_binop (arg1, arg2, BINOP_LOGICAL_AND, OP_NULL, noside);
|
||
}
|
||
else
|
||
{
|
||
bool tem = value_logical_not (arg1);
|
||
if (!tem)
|
||
{
|
||
arg2 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
|
||
tem = value_logical_not (arg2);
|
||
}
|
||
struct type *type = language_bool_type (exp->language_defn,
|
||
exp->gdbarch);
|
||
return value_from_longest (type, !tem);
|
||
}
|
||
}
|
||
|
||
value *
|
||
logical_or_operation::evaluate (struct type *expect_type,
|
||
struct expression *exp,
|
||
enum noside noside)
|
||
{
|
||
value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
|
||
|
||
value *arg2 = std::get<1> (m_storage)->evaluate (nullptr, exp,
|
||
EVAL_AVOID_SIDE_EFFECTS);
|
||
|
||
if (binop_user_defined_p (BINOP_LOGICAL_OR, arg1, arg2))
|
||
{
|
||
arg2 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
|
||
return value_x_binop (arg1, arg2, BINOP_LOGICAL_OR, OP_NULL, noside);
|
||
}
|
||
else
|
||
{
|
||
bool tem = value_logical_not (arg1);
|
||
if (tem)
|
||
{
|
||
arg2 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
|
||
tem = value_logical_not (arg2);
|
||
}
|
||
|
||
struct type *type = language_bool_type (exp->language_defn,
|
||
exp->gdbarch);
|
||
return value_from_longest (type, !tem);
|
||
}
|
||
}
|
||
|
||
value *
|
||
adl_func_operation::evaluate (struct type *expect_type,
|
||
struct expression *exp,
|
||
enum noside noside)
|
||
{
|
||
std::vector<operation_up> &arg_ops = std::get<2> (m_storage);
|
||
std::vector<value *> args (arg_ops.size ());
|
||
for (int i = 0; i < arg_ops.size (); ++i)
|
||
args[i] = arg_ops[i]->evaluate_with_coercion (exp, noside);
|
||
|
||
struct symbol *symp;
|
||
find_overload_match (args, std::get<0> (m_storage).c_str (),
|
||
NON_METHOD,
|
||
nullptr, nullptr,
|
||
nullptr, &symp, nullptr, 0, noside);
|
||
if (symp->type ()->code () == TYPE_CODE_ERROR)
|
||
error_unknown_type (symp->print_name ());
|
||
value *callee = evaluate_var_value (noside, std::get<1> (m_storage), symp);
|
||
return evaluate_subexp_do_call (exp, noside, callee, args,
|
||
nullptr, expect_type);
|
||
|
||
}
|
||
|
||
/* This function evaluates brace-initializers (in C/C++) for
|
||
structure types. */
|
||
|
||
struct value *
|
||
array_operation::evaluate_struct_tuple (struct value *struct_val,
|
||
struct expression *exp,
|
||
enum noside noside, int nargs)
|
||
{
|
||
const std::vector<operation_up> &in_args = std::get<2> (m_storage);
|
||
struct type *struct_type = check_typedef (struct_val->type ());
|
||
struct type *field_type;
|
||
int fieldno = -1;
|
||
|
||
int idx = 0;
|
||
while (--nargs >= 0)
|
||
{
|
||
struct value *val = NULL;
|
||
int bitpos, bitsize;
|
||
bfd_byte *addr;
|
||
|
||
fieldno++;
|
||
/* Skip static fields. */
|
||
while (fieldno < struct_type->num_fields ()
|
||
&& struct_type->field (fieldno).is_static ())
|
||
fieldno++;
|
||
if (fieldno >= struct_type->num_fields ())
|
||
error (_("too many initializers"));
|
||
field_type = struct_type->field (fieldno).type ();
|
||
if (field_type->code () == TYPE_CODE_UNION
|
||
&& struct_type->field (fieldno).name ()[0] == '0')
|
||
error (_("don't know which variant you want to set"));
|
||
|
||
/* Here, struct_type is the type of the inner struct,
|
||
while substruct_type is the type of the inner struct.
|
||
These are the same for normal structures, but a variant struct
|
||
contains anonymous union fields that contain substruct fields.
|
||
The value fieldno is the index of the top-level (normal or
|
||
anonymous union) field in struct_field, while the value
|
||
subfieldno is the index of the actual real (named inner) field
|
||
in substruct_type. */
|
||
|
||
field_type = struct_type->field (fieldno).type ();
|
||
if (val == 0)
|
||
val = in_args[idx++]->evaluate (field_type, exp, noside);
|
||
|
||
/* Now actually set the field in struct_val. */
|
||
|
||
/* Assign val to field fieldno. */
|
||
if (val->type () != field_type)
|
||
val = value_cast (field_type, val);
|
||
|
||
bitsize = struct_type->field (fieldno).bitsize ();
|
||
bitpos = struct_type->field (fieldno).loc_bitpos ();
|
||
addr = struct_val->contents_writeable ().data () + bitpos / 8;
|
||
if (bitsize)
|
||
modify_field (struct_type, addr,
|
||
value_as_long (val), bitpos % 8, bitsize);
|
||
else
|
||
memcpy (addr, val->contents ().data (),
|
||
val->type ()->length ());
|
||
|
||
}
|
||
return struct_val;
|
||
}
|
||
|
||
value *
|
||
array_operation::evaluate (struct type *expect_type,
|
||
struct expression *exp,
|
||
enum noside noside)
|
||
{
|
||
const int provided_low_bound = std::get<0> (m_storage);
|
||
const std::vector<operation_up> &in_args = std::get<2> (m_storage);
|
||
const int nargs = std::get<1> (m_storage) - provided_low_bound + 1;
|
||
struct type *type = expect_type ? check_typedef (expect_type) : nullptr;
|
||
|
||
if (expect_type != nullptr
|
||
&& type->code () == TYPE_CODE_STRUCT)
|
||
{
|
||
struct value *rec = value::allocate (expect_type);
|
||
|
||
memset (rec->contents_raw ().data (), '\0', type->length ());
|
||
return evaluate_struct_tuple (rec, exp, noside, nargs);
|
||
}
|
||
|
||
if (expect_type != nullptr
|
||
&& type->code () == TYPE_CODE_ARRAY)
|
||
{
|
||
struct type *range_type = type->index_type ();
|
||
struct type *element_type = type->target_type ();
|
||
struct value *array = value::allocate (expect_type);
|
||
int element_size = check_typedef (element_type)->length ();
|
||
LONGEST low_bound, high_bound;
|
||
|
||
if (!get_discrete_bounds (range_type, &low_bound, &high_bound))
|
||
{
|
||
low_bound = 0;
|
||
high_bound = (type->length () / element_size) - 1;
|
||
}
|
||
if (low_bound + nargs - 1 > high_bound)
|
||
error (_("Too many array elements"));
|
||
memset (array->contents_raw ().data (), 0, expect_type->length ());
|
||
for (int idx = 0; idx < nargs; ++idx)
|
||
{
|
||
struct value *element;
|
||
|
||
element = in_args[idx]->evaluate (element_type, exp, noside);
|
||
if (element->type () != element_type)
|
||
element = value_cast (element_type, element);
|
||
memcpy (array->contents_raw ().data () + idx * element_size,
|
||
element->contents ().data (),
|
||
element_size);
|
||
}
|
||
return array;
|
||
}
|
||
|
||
if (expect_type != nullptr
|
||
&& type->code () == TYPE_CODE_SET)
|
||
{
|
||
struct value *set = value::allocate (expect_type);
|
||
gdb_byte *valaddr = set->contents_raw ().data ();
|
||
struct type *element_type = type->index_type ();
|
||
struct type *check_type = element_type;
|
||
LONGEST low_bound, high_bound;
|
||
|
||
/* Get targettype of elementtype. */
|
||
while (check_type->code () == TYPE_CODE_RANGE
|
||
|| check_type->code () == TYPE_CODE_TYPEDEF)
|
||
check_type = check_type->target_type ();
|
||
|
||
if (!get_discrete_bounds (element_type, &low_bound, &high_bound))
|
||
error (_("(power)set type with unknown size"));
|
||
memset (valaddr, '\0', type->length ());
|
||
for (int idx = 0; idx < nargs; idx++)
|
||
{
|
||
LONGEST range_low, range_high;
|
||
struct type *range_low_type, *range_high_type;
|
||
struct value *elem_val;
|
||
|
||
elem_val = in_args[idx]->evaluate (element_type, exp, noside);
|
||
range_low_type = range_high_type = elem_val->type ();
|
||
range_low = range_high = value_as_long (elem_val);
|
||
|
||
/* Check types of elements to avoid mixture of elements from
|
||
different types. Also check if type of element is "compatible"
|
||
with element type of powerset. */
|
||
if (range_low_type->code () == TYPE_CODE_RANGE)
|
||
range_low_type = range_low_type->target_type ();
|
||
if (range_high_type->code () == TYPE_CODE_RANGE)
|
||
range_high_type = range_high_type->target_type ();
|
||
if ((range_low_type->code () != range_high_type->code ())
|
||
|| (range_low_type->code () == TYPE_CODE_ENUM
|
||
&& (range_low_type != range_high_type)))
|
||
/* different element modes. */
|
||
error (_("POWERSET tuple elements of different mode"));
|
||
if ((check_type->code () != range_low_type->code ())
|
||
|| (check_type->code () == TYPE_CODE_ENUM
|
||
&& range_low_type != check_type))
|
||
error (_("incompatible POWERSET tuple elements"));
|
||
if (range_low > range_high)
|
||
{
|
||
warning (_("empty POWERSET tuple range"));
|
||
continue;
|
||
}
|
||
if (range_low < low_bound || range_high > high_bound)
|
||
error (_("POWERSET tuple element out of range"));
|
||
range_low -= low_bound;
|
||
range_high -= low_bound;
|
||
for (; range_low <= range_high; range_low++)
|
||
{
|
||
int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
|
||
|
||
if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG)
|
||
bit_index = TARGET_CHAR_BIT - 1 - bit_index;
|
||
valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
|
||
|= 1 << bit_index;
|
||
}
|
||
}
|
||
return set;
|
||
}
|
||
|
||
std::vector<value *> argvec (nargs);
|
||
for (int tem = 0; tem < nargs; tem++)
|
||
{
|
||
/* Ensure that array expressions are coerced into pointer
|
||
objects. */
|
||
argvec[tem] = in_args[tem]->evaluate_with_coercion (exp, noside);
|
||
}
|
||
return value_array (provided_low_bound, argvec);
|
||
}
|
||
|
||
value *
|
||
unop_extract_operation::evaluate (struct type *expect_type,
|
||
struct expression *exp,
|
||
enum noside noside)
|
||
{
|
||
value *old_value = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
|
||
struct type *type = get_type ();
|
||
|
||
if (type->length () > old_value->type ()->length ())
|
||
error (_("length type is larger than the value type"));
|
||
|
||
struct value *result = value::allocate (type);
|
||
old_value->contents_copy (result, 0, 0, type->length ());
|
||
return result;
|
||
}
|
||
|
||
}
|
||
|
||
|
||
/* Helper for evaluate_subexp_for_address. */
|
||
|
||
static value *
|
||
evaluate_subexp_for_address_base (struct expression *exp, enum noside noside,
|
||
value *x)
|
||
{
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
{
|
||
struct type *type = check_typedef (x->type ());
|
||
|
||
if (TYPE_IS_REFERENCE (type))
|
||
return value::zero (lookup_pointer_type (type->target_type ()),
|
||
not_lval);
|
||
else if (x->lval () == lval_memory || value_must_coerce_to_target (x))
|
||
return value::zero (lookup_pointer_type (x->type ()),
|
||
not_lval);
|
||
else
|
||
error (_("Attempt to take address of "
|
||
"value not located in memory."));
|
||
}
|
||
return value_addr (x);
|
||
}
|
||
|
||
namespace expr
|
||
{
|
||
|
||
value *
|
||
operation::evaluate_for_cast (struct type *expect_type,
|
||
struct expression *exp,
|
||
enum noside noside)
|
||
{
|
||
value *val = evaluate (expect_type, exp, noside);
|
||
return value_cast (expect_type, val);
|
||
}
|
||
|
||
value *
|
||
operation::evaluate_for_address (struct expression *exp, enum noside noside)
|
||
{
|
||
value *val = evaluate (nullptr, exp, noside);
|
||
return evaluate_subexp_for_address_base (exp, noside, val);
|
||
}
|
||
|
||
value *
|
||
scope_operation::evaluate_for_address (struct expression *exp,
|
||
enum noside noside)
|
||
{
|
||
value *x = value_aggregate_elt (std::get<0> (m_storage),
|
||
std::get<1> (m_storage).c_str (),
|
||
NULL, 1, noside);
|
||
if (x == NULL)
|
||
error (_("There is no field named %s"), std::get<1> (m_storage).c_str ());
|
||
return x;
|
||
}
|
||
|
||
value *
|
||
unop_ind_base_operation::evaluate_for_address (struct expression *exp,
|
||
enum noside noside)
|
||
{
|
||
value *x = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
|
||
|
||
/* We can't optimize out "&*" if there's a user-defined operator*. */
|
||
if (unop_user_defined_p (UNOP_IND, x))
|
||
{
|
||
x = value_x_unop (x, UNOP_IND, noside);
|
||
return evaluate_subexp_for_address_base (exp, noside, x);
|
||
}
|
||
|
||
return coerce_array (x);
|
||
}
|
||
|
||
value *
|
||
var_msym_value_operation::evaluate_for_address (struct expression *exp,
|
||
enum noside noside)
|
||
{
|
||
const bound_minimal_symbol &b = std::get<0> (m_storage);
|
||
value *val = evaluate_var_msym_value (noside, b.objfile, b.minsym);
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
{
|
||
struct type *type = lookup_pointer_type (val->type ());
|
||
return value::zero (type, not_lval);
|
||
}
|
||
else
|
||
return value_addr (val);
|
||
}
|
||
|
||
value *
|
||
unop_memval_operation::evaluate_for_address (struct expression *exp,
|
||
enum noside noside)
|
||
{
|
||
return value_cast (lookup_pointer_type (std::get<1> (m_storage)),
|
||
std::get<0> (m_storage)->evaluate (nullptr, exp, noside));
|
||
}
|
||
|
||
value *
|
||
unop_memval_type_operation::evaluate_for_address (struct expression *exp,
|
||
enum noside noside)
|
||
{
|
||
value *typeval = std::get<0> (m_storage)->evaluate (nullptr, exp,
|
||
EVAL_AVOID_SIDE_EFFECTS);
|
||
struct type *type = typeval->type ();
|
||
return value_cast (lookup_pointer_type (type),
|
||
std::get<1> (m_storage)->evaluate (nullptr, exp, noside));
|
||
}
|
||
|
||
value *
|
||
var_value_operation::evaluate_for_address (struct expression *exp,
|
||
enum noside noside)
|
||
{
|
||
symbol *var = std::get<0> (m_storage).symbol;
|
||
|
||
/* C++: The "address" of a reference should yield the address
|
||
* of the object pointed to. Let value_addr() deal with it. */
|
||
if (TYPE_IS_REFERENCE (var->type ()))
|
||
return operation::evaluate_for_address (exp, noside);
|
||
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
{
|
||
struct type *type = lookup_pointer_type (var->type ());
|
||
enum address_class sym_class = var->aclass ();
|
||
|
||
if (sym_class == LOC_CONST
|
||
|| sym_class == LOC_CONST_BYTES
|
||
|| sym_class == LOC_REGISTER)
|
||
error (_("Attempt to take address of register or constant."));
|
||
|
||
return value::zero (type, not_lval);
|
||
}
|
||
else
|
||
return address_of_variable (var, std::get<0> (m_storage).block);
|
||
}
|
||
|
||
value *
|
||
var_value_operation::evaluate_with_coercion (struct expression *exp,
|
||
enum noside noside)
|
||
{
|
||
struct symbol *var = std::get<0> (m_storage).symbol;
|
||
struct type *type = check_typedef (var->type ());
|
||
if (type->code () == TYPE_CODE_ARRAY
|
||
&& !type->is_vector ()
|
||
&& CAST_IS_CONVERSION (exp->language_defn))
|
||
{
|
||
struct value *val = address_of_variable (var,
|
||
std::get<0> (m_storage).block);
|
||
return value_cast (lookup_pointer_type (type->target_type ()), val);
|
||
}
|
||
return evaluate (nullptr, exp, noside);
|
||
}
|
||
|
||
}
|
||
|
||
/* Helper function for evaluating the size of a type. */
|
||
|
||
static value *
|
||
evaluate_subexp_for_sizeof_base (struct expression *exp, struct type *type)
|
||
{
|
||
/* FIXME: This should be size_t. */
|
||
struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
|
||
/* $5.3.3/2 of the C++ Standard (n3290 draft) says of sizeof:
|
||
"When applied to a reference or a reference type, the result is
|
||
the size of the referenced type." */
|
||
type = check_typedef (type);
|
||
if (exp->language_defn->la_language == language_cplus
|
||
&& (TYPE_IS_REFERENCE (type)))
|
||
type = check_typedef (type->target_type ());
|
||
else if (exp->language_defn->la_language == language_fortran
|
||
&& type->code () == TYPE_CODE_PTR)
|
||
{
|
||
/* Dereference Fortran pointer types to allow them for the Fortran
|
||
sizeof intrinsic. */
|
||
type = check_typedef (type->target_type ());
|
||
}
|
||
return value_from_longest (size_type, (LONGEST) type->length ());
|
||
}
|
||
|
||
namespace expr
|
||
{
|
||
|
||
value *
|
||
operation::evaluate_for_sizeof (struct expression *exp, enum noside noside)
|
||
{
|
||
value *val = evaluate (nullptr, exp, EVAL_AVOID_SIDE_EFFECTS);
|
||
return evaluate_subexp_for_sizeof_base (exp, val->type ());
|
||
}
|
||
|
||
value *
|
||
var_msym_value_operation::evaluate_for_sizeof (struct expression *exp,
|
||
enum noside noside)
|
||
|
||
{
|
||
const bound_minimal_symbol &b = std::get<0> (m_storage);
|
||
value *mval = evaluate_var_msym_value (noside, b.objfile, b.minsym);
|
||
|
||
struct type *type = mval->type ();
|
||
if (type->code () == TYPE_CODE_ERROR)
|
||
error_unknown_type (b.minsym->print_name ());
|
||
|
||
/* FIXME: This should be size_t. */
|
||
struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
|
||
return value_from_longest (size_type, type->length ());
|
||
}
|
||
|
||
value *
|
||
subscript_operation::evaluate_for_sizeof (struct expression *exp,
|
||
enum noside noside)
|
||
{
|
||
if (noside == EVAL_NORMAL)
|
||
{
|
||
value *val = std::get<0> (m_storage)->evaluate (nullptr, exp,
|
||
EVAL_AVOID_SIDE_EFFECTS);
|
||
struct type *type = check_typedef (val->type ());
|
||
if (type->code () == TYPE_CODE_ARRAY)
|
||
{
|
||
type = check_typedef (type->target_type ());
|
||
if (type->code () == TYPE_CODE_ARRAY)
|
||
{
|
||
type = type->index_type ();
|
||
/* Only re-evaluate the right hand side if the resulting type
|
||
is a variable length type. */
|
||
if (type->bounds ()->flag_bound_evaluated)
|
||
{
|
||
val = evaluate (nullptr, exp, EVAL_NORMAL);
|
||
/* FIXME: This should be size_t. */
|
||
struct type *size_type
|
||
= builtin_type (exp->gdbarch)->builtin_int;
|
||
return value_from_longest
|
||
(size_type, (LONGEST) val->type ()->length ());
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
return operation::evaluate_for_sizeof (exp, noside);
|
||
}
|
||
|
||
value *
|
||
unop_ind_base_operation::evaluate_for_sizeof (struct expression *exp,
|
||
enum noside noside)
|
||
{
|
||
value *val = std::get<0> (m_storage)->evaluate (nullptr, exp,
|
||
EVAL_AVOID_SIDE_EFFECTS);
|
||
struct type *type = check_typedef (val->type ());
|
||
if (!type->is_pointer_or_reference ()
|
||
&& type->code () != TYPE_CODE_ARRAY)
|
||
error (_("Attempt to take contents of a non-pointer value."));
|
||
type = type->target_type ();
|
||
if (is_dynamic_type (type))
|
||
type = value_ind (val)->type ();
|
||
/* FIXME: This should be size_t. */
|
||
struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
|
||
return value_from_longest (size_type, (LONGEST) type->length ());
|
||
}
|
||
|
||
value *
|
||
unop_memval_operation::evaluate_for_sizeof (struct expression *exp,
|
||
enum noside noside)
|
||
{
|
||
return evaluate_subexp_for_sizeof_base (exp, std::get<1> (m_storage));
|
||
}
|
||
|
||
value *
|
||
unop_memval_type_operation::evaluate_for_sizeof (struct expression *exp,
|
||
enum noside noside)
|
||
{
|
||
value *typeval = std::get<0> (m_storage)->evaluate (nullptr, exp,
|
||
EVAL_AVOID_SIDE_EFFECTS);
|
||
return evaluate_subexp_for_sizeof_base (exp, typeval->type ());
|
||
}
|
||
|
||
value *
|
||
var_value_operation::evaluate_for_sizeof (struct expression *exp,
|
||
enum noside noside)
|
||
{
|
||
struct type *type = std::get<0> (m_storage).symbol->type ();
|
||
if (is_dynamic_type (type))
|
||
{
|
||
value *val = evaluate (nullptr, exp, EVAL_NORMAL);
|
||
type = val->type ();
|
||
if (type->code () == TYPE_CODE_ARRAY)
|
||
{
|
||
/* FIXME: This should be size_t. */
|
||
struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
|
||
if (type_not_allocated (type) || type_not_associated (type))
|
||
return value::zero (size_type, not_lval);
|
||
else if (is_dynamic_type (type->index_type ())
|
||
&& !type->bounds ()->high.is_available ())
|
||
return value::allocate_optimized_out (size_type);
|
||
}
|
||
}
|
||
return evaluate_subexp_for_sizeof_base (exp, type);
|
||
}
|
||
|
||
value *
|
||
var_msym_value_operation::evaluate_for_cast (struct type *to_type,
|
||
struct expression *exp,
|
||
enum noside noside)
|
||
{
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return value::zero (to_type, not_lval);
|
||
|
||
const bound_minimal_symbol &b = std::get<0> (m_storage);
|
||
value *val = evaluate_var_msym_value (noside, b.objfile, b.minsym);
|
||
|
||
val = value_cast (to_type, val);
|
||
|
||
/* Don't allow e.g. '&(int)var_with_no_debug_info'. */
|
||
if (val->lval () == lval_memory)
|
||
{
|
||
if (val->lazy ())
|
||
val->fetch_lazy ();
|
||
val->set_lval (not_lval);
|
||
}
|
||
return val;
|
||
}
|
||
|
||
value *
|
||
var_value_operation::evaluate_for_cast (struct type *to_type,
|
||
struct expression *exp,
|
||
enum noside noside)
|
||
{
|
||
value *val = evaluate_var_value (noside,
|
||
std::get<0> (m_storage).block,
|
||
std::get<0> (m_storage).symbol);
|
||
|
||
val = value_cast (to_type, val);
|
||
|
||
/* Don't allow e.g. '&(int)var_with_no_debug_info'. */
|
||
if (val->lval () == lval_memory)
|
||
{
|
||
if (val->lazy ())
|
||
val->fetch_lazy ();
|
||
val->set_lval (not_lval);
|
||
}
|
||
return val;
|
||
}
|
||
|
||
}
|
||
|
||
/* Parse a type expression in the string [P..P+LENGTH). */
|
||
|
||
struct type *
|
||
parse_and_eval_type (const char *p, int length)
|
||
{
|
||
char *tmp = (char *) alloca (length + 4);
|
||
|
||
tmp[0] = '(';
|
||
memcpy (tmp + 1, p, length);
|
||
tmp[length + 1] = ')';
|
||
tmp[length + 2] = '0';
|
||
tmp[length + 3] = '\0';
|
||
expression_up expr = parse_expression (tmp);
|
||
expr::unop_cast_operation *op
|
||
= dynamic_cast<expr::unop_cast_operation *> (expr->op.get ());
|
||
if (op == nullptr)
|
||
error (_("Internal error in eval_type."));
|
||
return op->get_type ();
|
||
}
|