mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-21 04:42:53 +08:00
cbde90f25e
gdb/ChangeLog: * fbsd-nat.c: Include gdbarch.h.
1693 lines
45 KiB
C
1693 lines
45 KiB
C
/* Native-dependent code for FreeBSD.
|
|
|
|
Copyright (C) 2002-2019 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#include "defs.h"
|
|
#include "gdbsupport/byte-vector.h"
|
|
#include "gdbcore.h"
|
|
#include "inferior.h"
|
|
#include "regcache.h"
|
|
#include "regset.h"
|
|
#include "gdbarch.h"
|
|
#include "gdbcmd.h"
|
|
#include "gdbthread.h"
|
|
#include "gdbsupport/gdb_wait.h"
|
|
#include "inf-ptrace.h"
|
|
#include <sys/types.h>
|
|
#include <sys/procfs.h>
|
|
#include <sys/ptrace.h>
|
|
#include <sys/signal.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/user.h>
|
|
#if defined(HAVE_KINFO_GETFILE) || defined(HAVE_KINFO_GETVMMAP)
|
|
#include <libutil.h>
|
|
#endif
|
|
#if !defined(HAVE_KINFO_GETVMMAP)
|
|
#include "gdbsupport/filestuff.h"
|
|
#endif
|
|
|
|
#include "elf-bfd.h"
|
|
#include "fbsd-nat.h"
|
|
#include "fbsd-tdep.h"
|
|
|
|
#include <list>
|
|
|
|
/* Return the name of a file that can be opened to get the symbols for
|
|
the child process identified by PID. */
|
|
|
|
char *
|
|
fbsd_nat_target::pid_to_exec_file (int pid)
|
|
{
|
|
ssize_t len;
|
|
static char buf[PATH_MAX];
|
|
char name[PATH_MAX];
|
|
|
|
#ifdef KERN_PROC_PATHNAME
|
|
size_t buflen;
|
|
int mib[4];
|
|
|
|
mib[0] = CTL_KERN;
|
|
mib[1] = KERN_PROC;
|
|
mib[2] = KERN_PROC_PATHNAME;
|
|
mib[3] = pid;
|
|
buflen = sizeof buf;
|
|
if (sysctl (mib, 4, buf, &buflen, NULL, 0) == 0)
|
|
/* The kern.proc.pathname.<pid> sysctl returns a length of zero
|
|
for processes without an associated executable such as kernel
|
|
processes. */
|
|
return buflen == 0 ? NULL : buf;
|
|
#endif
|
|
|
|
xsnprintf (name, PATH_MAX, "/proc/%d/exe", pid);
|
|
len = readlink (name, buf, PATH_MAX - 1);
|
|
if (len != -1)
|
|
{
|
|
buf[len] = '\0';
|
|
return buf;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
#ifdef HAVE_KINFO_GETVMMAP
|
|
/* Iterate over all the memory regions in the current inferior,
|
|
calling FUNC for each memory region. OBFD is passed as the last
|
|
argument to FUNC. */
|
|
|
|
int
|
|
fbsd_nat_target::find_memory_regions (find_memory_region_ftype func,
|
|
void *obfd)
|
|
{
|
|
pid_t pid = inferior_ptid.pid ();
|
|
struct kinfo_vmentry *kve;
|
|
uint64_t size;
|
|
int i, nitems;
|
|
|
|
gdb::unique_xmalloc_ptr<struct kinfo_vmentry>
|
|
vmentl (kinfo_getvmmap (pid, &nitems));
|
|
if (vmentl == NULL)
|
|
perror_with_name (_("Couldn't fetch VM map entries."));
|
|
|
|
for (i = 0, kve = vmentl.get (); i < nitems; i++, kve++)
|
|
{
|
|
/* Skip unreadable segments and those where MAP_NOCORE has been set. */
|
|
if (!(kve->kve_protection & KVME_PROT_READ)
|
|
|| kve->kve_flags & KVME_FLAG_NOCOREDUMP)
|
|
continue;
|
|
|
|
/* Skip segments with an invalid type. */
|
|
if (kve->kve_type != KVME_TYPE_DEFAULT
|
|
&& kve->kve_type != KVME_TYPE_VNODE
|
|
&& kve->kve_type != KVME_TYPE_SWAP
|
|
&& kve->kve_type != KVME_TYPE_PHYS)
|
|
continue;
|
|
|
|
size = kve->kve_end - kve->kve_start;
|
|
if (info_verbose)
|
|
{
|
|
fprintf_filtered (gdb_stdout,
|
|
"Save segment, %ld bytes at %s (%c%c%c)\n",
|
|
(long) size,
|
|
paddress (target_gdbarch (), kve->kve_start),
|
|
kve->kve_protection & KVME_PROT_READ ? 'r' : '-',
|
|
kve->kve_protection & KVME_PROT_WRITE ? 'w' : '-',
|
|
kve->kve_protection & KVME_PROT_EXEC ? 'x' : '-');
|
|
}
|
|
|
|
/* Invoke the callback function to create the corefile segment.
|
|
Pass MODIFIED as true, we do not know the real modification state. */
|
|
func (kve->kve_start, size, kve->kve_protection & KVME_PROT_READ,
|
|
kve->kve_protection & KVME_PROT_WRITE,
|
|
kve->kve_protection & KVME_PROT_EXEC, 1, obfd);
|
|
}
|
|
return 0;
|
|
}
|
|
#else
|
|
static int
|
|
fbsd_read_mapping (FILE *mapfile, unsigned long *start, unsigned long *end,
|
|
char *protection)
|
|
{
|
|
/* FreeBSD 5.1-RELEASE uses a 256-byte buffer. */
|
|
char buf[256];
|
|
int resident, privateresident;
|
|
unsigned long obj;
|
|
int ret = EOF;
|
|
|
|
/* As of FreeBSD 5.0-RELEASE, the layout is described in
|
|
/usr/src/sys/fs/procfs/procfs_map.c. Somewhere in 5.1-CURRENT a
|
|
new column was added to the procfs map. Therefore we can't use
|
|
fscanf since we need to support older releases too. */
|
|
if (fgets (buf, sizeof buf, mapfile) != NULL)
|
|
ret = sscanf (buf, "%lx %lx %d %d %lx %s", start, end,
|
|
&resident, &privateresident, &obj, protection);
|
|
|
|
return (ret != 0 && ret != EOF);
|
|
}
|
|
|
|
/* Iterate over all the memory regions in the current inferior,
|
|
calling FUNC for each memory region. OBFD is passed as the last
|
|
argument to FUNC. */
|
|
|
|
int
|
|
fbsd_nat_target::find_memory_regions (find_memory_region_ftype func,
|
|
void *obfd)
|
|
{
|
|
pid_t pid = inferior_ptid.pid ();
|
|
unsigned long start, end, size;
|
|
char protection[4];
|
|
int read, write, exec;
|
|
|
|
std::string mapfilename = string_printf ("/proc/%ld/map", (long) pid);
|
|
gdb_file_up mapfile (fopen (mapfilename.c_str (), "r"));
|
|
if (mapfile == NULL)
|
|
error (_("Couldn't open %s."), mapfilename.c_str ());
|
|
|
|
if (info_verbose)
|
|
fprintf_filtered (gdb_stdout,
|
|
"Reading memory regions from %s\n", mapfilename.c_str ());
|
|
|
|
/* Now iterate until end-of-file. */
|
|
while (fbsd_read_mapping (mapfile.get (), &start, &end, &protection[0]))
|
|
{
|
|
size = end - start;
|
|
|
|
read = (strchr (protection, 'r') != 0);
|
|
write = (strchr (protection, 'w') != 0);
|
|
exec = (strchr (protection, 'x') != 0);
|
|
|
|
if (info_verbose)
|
|
{
|
|
fprintf_filtered (gdb_stdout,
|
|
"Save segment, %ld bytes at %s (%c%c%c)\n",
|
|
size, paddress (target_gdbarch (), start),
|
|
read ? 'r' : '-',
|
|
write ? 'w' : '-',
|
|
exec ? 'x' : '-');
|
|
}
|
|
|
|
/* Invoke the callback function to create the corefile segment.
|
|
Pass MODIFIED as true, we do not know the real modification state. */
|
|
func (start, size, read, write, exec, 1, obfd);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/* Fetch the command line for a running process. */
|
|
|
|
static gdb::unique_xmalloc_ptr<char>
|
|
fbsd_fetch_cmdline (pid_t pid)
|
|
{
|
|
size_t len;
|
|
int mib[4];
|
|
|
|
len = 0;
|
|
mib[0] = CTL_KERN;
|
|
mib[1] = KERN_PROC;
|
|
mib[2] = KERN_PROC_ARGS;
|
|
mib[3] = pid;
|
|
if (sysctl (mib, 4, NULL, &len, NULL, 0) == -1)
|
|
return nullptr;
|
|
|
|
if (len == 0)
|
|
return nullptr;
|
|
|
|
gdb::unique_xmalloc_ptr<char> cmdline ((char *) xmalloc (len));
|
|
if (sysctl (mib, 4, cmdline.get (), &len, NULL, 0) == -1)
|
|
return nullptr;
|
|
|
|
/* Join the arguments with spaces to form a single string. */
|
|
char *cp = cmdline.get ();
|
|
for (size_t i = 0; i < len - 1; i++)
|
|
if (cp[i] == '\0')
|
|
cp[i] = ' ';
|
|
cp[len - 1] = '\0';
|
|
|
|
return cmdline;
|
|
}
|
|
|
|
/* Fetch the external variant of the kernel's internal process
|
|
structure for the process PID into KP. */
|
|
|
|
static bool
|
|
fbsd_fetch_kinfo_proc (pid_t pid, struct kinfo_proc *kp)
|
|
{
|
|
size_t len;
|
|
int mib[4];
|
|
|
|
len = sizeof *kp;
|
|
mib[0] = CTL_KERN;
|
|
mib[1] = KERN_PROC;
|
|
mib[2] = KERN_PROC_PID;
|
|
mib[3] = pid;
|
|
return (sysctl (mib, 4, kp, &len, NULL, 0) == 0);
|
|
}
|
|
|
|
/* Implement the "info_proc" target_ops method. */
|
|
|
|
bool
|
|
fbsd_nat_target::info_proc (const char *args, enum info_proc_what what)
|
|
{
|
|
#ifdef HAVE_KINFO_GETFILE
|
|
gdb::unique_xmalloc_ptr<struct kinfo_file> fdtbl;
|
|
int nfd = 0;
|
|
#endif
|
|
struct kinfo_proc kp;
|
|
pid_t pid;
|
|
bool do_cmdline = false;
|
|
bool do_cwd = false;
|
|
bool do_exe = false;
|
|
#ifdef HAVE_KINFO_GETFILE
|
|
bool do_files = false;
|
|
#endif
|
|
#ifdef HAVE_KINFO_GETVMMAP
|
|
bool do_mappings = false;
|
|
#endif
|
|
bool do_status = false;
|
|
|
|
switch (what)
|
|
{
|
|
case IP_MINIMAL:
|
|
do_cmdline = true;
|
|
do_cwd = true;
|
|
do_exe = true;
|
|
break;
|
|
#ifdef HAVE_KINFO_GETVMMAP
|
|
case IP_MAPPINGS:
|
|
do_mappings = true;
|
|
break;
|
|
#endif
|
|
case IP_STATUS:
|
|
case IP_STAT:
|
|
do_status = true;
|
|
break;
|
|
case IP_CMDLINE:
|
|
do_cmdline = true;
|
|
break;
|
|
case IP_EXE:
|
|
do_exe = true;
|
|
break;
|
|
case IP_CWD:
|
|
do_cwd = true;
|
|
break;
|
|
#ifdef HAVE_KINFO_GETFILE
|
|
case IP_FILES:
|
|
do_files = true;
|
|
break;
|
|
#endif
|
|
case IP_ALL:
|
|
do_cmdline = true;
|
|
do_cwd = true;
|
|
do_exe = true;
|
|
#ifdef HAVE_KINFO_GETFILE
|
|
do_files = true;
|
|
#endif
|
|
#ifdef HAVE_KINFO_GETVMMAP
|
|
do_mappings = true;
|
|
#endif
|
|
do_status = true;
|
|
break;
|
|
default:
|
|
error (_("Not supported on this target."));
|
|
}
|
|
|
|
gdb_argv built_argv (args);
|
|
if (built_argv.count () == 0)
|
|
{
|
|
pid = inferior_ptid.pid ();
|
|
if (pid == 0)
|
|
error (_("No current process: you must name one."));
|
|
}
|
|
else if (built_argv.count () == 1 && isdigit (built_argv[0][0]))
|
|
pid = strtol (built_argv[0], NULL, 10);
|
|
else
|
|
error (_("Invalid arguments."));
|
|
|
|
printf_filtered (_("process %d\n"), pid);
|
|
#ifdef HAVE_KINFO_GETFILE
|
|
if (do_cwd || do_exe || do_files)
|
|
fdtbl.reset (kinfo_getfile (pid, &nfd));
|
|
#endif
|
|
|
|
if (do_cmdline)
|
|
{
|
|
gdb::unique_xmalloc_ptr<char> cmdline = fbsd_fetch_cmdline (pid);
|
|
if (cmdline != nullptr)
|
|
printf_filtered ("cmdline = '%s'\n", cmdline.get ());
|
|
else
|
|
warning (_("unable to fetch command line"));
|
|
}
|
|
if (do_cwd)
|
|
{
|
|
const char *cwd = NULL;
|
|
#ifdef HAVE_KINFO_GETFILE
|
|
struct kinfo_file *kf = fdtbl.get ();
|
|
for (int i = 0; i < nfd; i++, kf++)
|
|
{
|
|
if (kf->kf_type == KF_TYPE_VNODE && kf->kf_fd == KF_FD_TYPE_CWD)
|
|
{
|
|
cwd = kf->kf_path;
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
if (cwd != NULL)
|
|
printf_filtered ("cwd = '%s'\n", cwd);
|
|
else
|
|
warning (_("unable to fetch current working directory"));
|
|
}
|
|
if (do_exe)
|
|
{
|
|
const char *exe = NULL;
|
|
#ifdef HAVE_KINFO_GETFILE
|
|
struct kinfo_file *kf = fdtbl.get ();
|
|
for (int i = 0; i < nfd; i++, kf++)
|
|
{
|
|
if (kf->kf_type == KF_TYPE_VNODE && kf->kf_fd == KF_FD_TYPE_TEXT)
|
|
{
|
|
exe = kf->kf_path;
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
if (exe == NULL)
|
|
exe = pid_to_exec_file (pid);
|
|
if (exe != NULL)
|
|
printf_filtered ("exe = '%s'\n", exe);
|
|
else
|
|
warning (_("unable to fetch executable path name"));
|
|
}
|
|
#ifdef HAVE_KINFO_GETFILE
|
|
if (do_files)
|
|
{
|
|
struct kinfo_file *kf = fdtbl.get ();
|
|
|
|
if (nfd > 0)
|
|
{
|
|
fbsd_info_proc_files_header ();
|
|
for (int i = 0; i < nfd; i++, kf++)
|
|
fbsd_info_proc_files_entry (kf->kf_type, kf->kf_fd, kf->kf_flags,
|
|
kf->kf_offset, kf->kf_vnode_type,
|
|
kf->kf_sock_domain, kf->kf_sock_type,
|
|
kf->kf_sock_protocol, &kf->kf_sa_local,
|
|
&kf->kf_sa_peer, kf->kf_path);
|
|
}
|
|
else
|
|
warning (_("unable to fetch list of open files"));
|
|
}
|
|
#endif
|
|
#ifdef HAVE_KINFO_GETVMMAP
|
|
if (do_mappings)
|
|
{
|
|
int nvment;
|
|
gdb::unique_xmalloc_ptr<struct kinfo_vmentry>
|
|
vmentl (kinfo_getvmmap (pid, &nvment));
|
|
|
|
if (vmentl != nullptr)
|
|
{
|
|
int addr_bit = TARGET_CHAR_BIT * sizeof (void *);
|
|
fbsd_info_proc_mappings_header (addr_bit);
|
|
|
|
struct kinfo_vmentry *kve = vmentl.get ();
|
|
for (int i = 0; i < nvment; i++, kve++)
|
|
fbsd_info_proc_mappings_entry (addr_bit, kve->kve_start,
|
|
kve->kve_end, kve->kve_offset,
|
|
kve->kve_flags, kve->kve_protection,
|
|
kve->kve_path);
|
|
}
|
|
else
|
|
warning (_("unable to fetch virtual memory map"));
|
|
}
|
|
#endif
|
|
if (do_status)
|
|
{
|
|
if (!fbsd_fetch_kinfo_proc (pid, &kp))
|
|
warning (_("Failed to fetch process information"));
|
|
else
|
|
{
|
|
const char *state;
|
|
int pgtok;
|
|
|
|
printf_filtered ("Name: %s\n", kp.ki_comm);
|
|
switch (kp.ki_stat)
|
|
{
|
|
case SIDL:
|
|
state = "I (idle)";
|
|
break;
|
|
case SRUN:
|
|
state = "R (running)";
|
|
break;
|
|
case SSTOP:
|
|
state = "T (stopped)";
|
|
break;
|
|
case SZOMB:
|
|
state = "Z (zombie)";
|
|
break;
|
|
case SSLEEP:
|
|
state = "S (sleeping)";
|
|
break;
|
|
case SWAIT:
|
|
state = "W (interrupt wait)";
|
|
break;
|
|
case SLOCK:
|
|
state = "L (blocked on lock)";
|
|
break;
|
|
default:
|
|
state = "? (unknown)";
|
|
break;
|
|
}
|
|
printf_filtered ("State: %s\n", state);
|
|
printf_filtered ("Parent process: %d\n", kp.ki_ppid);
|
|
printf_filtered ("Process group: %d\n", kp.ki_pgid);
|
|
printf_filtered ("Session id: %d\n", kp.ki_sid);
|
|
printf_filtered ("TTY: %ju\n", (uintmax_t) kp.ki_tdev);
|
|
printf_filtered ("TTY owner process group: %d\n", kp.ki_tpgid);
|
|
printf_filtered ("User IDs (real, effective, saved): %d %d %d\n",
|
|
kp.ki_ruid, kp.ki_uid, kp.ki_svuid);
|
|
printf_filtered ("Group IDs (real, effective, saved): %d %d %d\n",
|
|
kp.ki_rgid, kp.ki_groups[0], kp.ki_svgid);
|
|
printf_filtered ("Groups: ");
|
|
for (int i = 0; i < kp.ki_ngroups; i++)
|
|
printf_filtered ("%d ", kp.ki_groups[i]);
|
|
printf_filtered ("\n");
|
|
printf_filtered ("Minor faults (no memory page): %ld\n",
|
|
kp.ki_rusage.ru_minflt);
|
|
printf_filtered ("Minor faults, children: %ld\n",
|
|
kp.ki_rusage_ch.ru_minflt);
|
|
printf_filtered ("Major faults (memory page faults): %ld\n",
|
|
kp.ki_rusage.ru_majflt);
|
|
printf_filtered ("Major faults, children: %ld\n",
|
|
kp.ki_rusage_ch.ru_majflt);
|
|
printf_filtered ("utime: %jd.%06ld\n",
|
|
(intmax_t) kp.ki_rusage.ru_utime.tv_sec,
|
|
kp.ki_rusage.ru_utime.tv_usec);
|
|
printf_filtered ("stime: %jd.%06ld\n",
|
|
(intmax_t) kp.ki_rusage.ru_stime.tv_sec,
|
|
kp.ki_rusage.ru_stime.tv_usec);
|
|
printf_filtered ("utime, children: %jd.%06ld\n",
|
|
(intmax_t) kp.ki_rusage_ch.ru_utime.tv_sec,
|
|
kp.ki_rusage_ch.ru_utime.tv_usec);
|
|
printf_filtered ("stime, children: %jd.%06ld\n",
|
|
(intmax_t) kp.ki_rusage_ch.ru_stime.tv_sec,
|
|
kp.ki_rusage_ch.ru_stime.tv_usec);
|
|
printf_filtered ("'nice' value: %d\n", kp.ki_nice);
|
|
printf_filtered ("Start time: %jd.%06ld\n", kp.ki_start.tv_sec,
|
|
kp.ki_start.tv_usec);
|
|
pgtok = getpagesize () / 1024;
|
|
printf_filtered ("Virtual memory size: %ju kB\n",
|
|
(uintmax_t) kp.ki_size / 1024);
|
|
printf_filtered ("Data size: %ju kB\n",
|
|
(uintmax_t) kp.ki_dsize * pgtok);
|
|
printf_filtered ("Stack size: %ju kB\n",
|
|
(uintmax_t) kp.ki_ssize * pgtok);
|
|
printf_filtered ("Text size: %ju kB\n",
|
|
(uintmax_t) kp.ki_tsize * pgtok);
|
|
printf_filtered ("Resident set size: %ju kB\n",
|
|
(uintmax_t) kp.ki_rssize * pgtok);
|
|
printf_filtered ("Maximum RSS: %ju kB\n",
|
|
(uintmax_t) kp.ki_rusage.ru_maxrss);
|
|
printf_filtered ("Pending Signals: ");
|
|
for (int i = 0; i < _SIG_WORDS; i++)
|
|
printf_filtered ("%08x ", kp.ki_siglist.__bits[i]);
|
|
printf_filtered ("\n");
|
|
printf_filtered ("Ignored Signals: ");
|
|
for (int i = 0; i < _SIG_WORDS; i++)
|
|
printf_filtered ("%08x ", kp.ki_sigignore.__bits[i]);
|
|
printf_filtered ("\n");
|
|
printf_filtered ("Caught Signals: ");
|
|
for (int i = 0; i < _SIG_WORDS; i++)
|
|
printf_filtered ("%08x ", kp.ki_sigcatch.__bits[i]);
|
|
printf_filtered ("\n");
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* The current layout of siginfo_t on FreeBSD was adopted in SVN
|
|
* revision 153154 which shipped in FreeBSD versions 7.0 and later.
|
|
* Don't bother supporting the older layout on older kernels. The
|
|
* older format was also never used in core dump notes.
|
|
*/
|
|
#if __FreeBSD_version >= 700009
|
|
#define USE_SIGINFO
|
|
#endif
|
|
|
|
#ifdef USE_SIGINFO
|
|
/* Return the size of siginfo for the current inferior. */
|
|
|
|
#ifdef __LP64__
|
|
union sigval32 {
|
|
int sival_int;
|
|
uint32_t sival_ptr;
|
|
};
|
|
|
|
/* This structure matches the naming and layout of `siginfo_t' in
|
|
<sys/signal.h>. In particular, the `si_foo' macros defined in that
|
|
header can be used with both types to copy fields in the `_reason'
|
|
union. */
|
|
|
|
struct siginfo32
|
|
{
|
|
int si_signo;
|
|
int si_errno;
|
|
int si_code;
|
|
__pid_t si_pid;
|
|
__uid_t si_uid;
|
|
int si_status;
|
|
uint32_t si_addr;
|
|
union sigval32 si_value;
|
|
union
|
|
{
|
|
struct
|
|
{
|
|
int _trapno;
|
|
} _fault;
|
|
struct
|
|
{
|
|
int _timerid;
|
|
int _overrun;
|
|
} _timer;
|
|
struct
|
|
{
|
|
int _mqd;
|
|
} _mesgq;
|
|
struct
|
|
{
|
|
int32_t _band;
|
|
} _poll;
|
|
struct
|
|
{
|
|
int32_t __spare1__;
|
|
int __spare2__[7];
|
|
} __spare__;
|
|
} _reason;
|
|
};
|
|
#endif
|
|
|
|
static size_t
|
|
fbsd_siginfo_size ()
|
|
{
|
|
#ifdef __LP64__
|
|
struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
|
|
|
|
/* Is the inferior 32-bit? If so, use the 32-bit siginfo size. */
|
|
if (gdbarch_long_bit (gdbarch) == 32)
|
|
return sizeof (struct siginfo32);
|
|
#endif
|
|
return sizeof (siginfo_t);
|
|
}
|
|
|
|
/* Convert a native 64-bit siginfo object to a 32-bit object. Note
|
|
that FreeBSD doesn't support writing to $_siginfo, so this only
|
|
needs to convert one way. */
|
|
|
|
static void
|
|
fbsd_convert_siginfo (siginfo_t *si)
|
|
{
|
|
#ifdef __LP64__
|
|
struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
|
|
|
|
/* Is the inferior 32-bit? If not, nothing to do. */
|
|
if (gdbarch_long_bit (gdbarch) != 32)
|
|
return;
|
|
|
|
struct siginfo32 si32;
|
|
|
|
si32.si_signo = si->si_signo;
|
|
si32.si_errno = si->si_errno;
|
|
si32.si_code = si->si_code;
|
|
si32.si_pid = si->si_pid;
|
|
si32.si_uid = si->si_uid;
|
|
si32.si_status = si->si_status;
|
|
si32.si_addr = (uintptr_t) si->si_addr;
|
|
|
|
/* If sival_ptr is being used instead of sival_int on a big-endian
|
|
platform, then sival_int will be zero since it holds the upper
|
|
32-bits of the pointer value. */
|
|
#if _BYTE_ORDER == _BIG_ENDIAN
|
|
if (si->si_value.sival_int == 0)
|
|
si32.si_value.sival_ptr = (uintptr_t) si->si_value.sival_ptr;
|
|
else
|
|
si32.si_value.sival_int = si->si_value.sival_int;
|
|
#else
|
|
si32.si_value.sival_int = si->si_value.sival_int;
|
|
#endif
|
|
|
|
/* Always copy the spare fields and then possibly overwrite them for
|
|
signal-specific or code-specific fields. */
|
|
si32._reason.__spare__.__spare1__ = si->_reason.__spare__.__spare1__;
|
|
for (int i = 0; i < 7; i++)
|
|
si32._reason.__spare__.__spare2__[i] = si->_reason.__spare__.__spare2__[i];
|
|
switch (si->si_signo) {
|
|
case SIGILL:
|
|
case SIGFPE:
|
|
case SIGSEGV:
|
|
case SIGBUS:
|
|
si32.si_trapno = si->si_trapno;
|
|
break;
|
|
}
|
|
switch (si->si_code) {
|
|
case SI_TIMER:
|
|
si32.si_timerid = si->si_timerid;
|
|
si32.si_overrun = si->si_overrun;
|
|
break;
|
|
case SI_MESGQ:
|
|
si32.si_mqd = si->si_mqd;
|
|
break;
|
|
}
|
|
|
|
memcpy(si, &si32, sizeof (si32));
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
/* Implement the "xfer_partial" target_ops method. */
|
|
|
|
enum target_xfer_status
|
|
fbsd_nat_target::xfer_partial (enum target_object object,
|
|
const char *annex, gdb_byte *readbuf,
|
|
const gdb_byte *writebuf,
|
|
ULONGEST offset, ULONGEST len,
|
|
ULONGEST *xfered_len)
|
|
{
|
|
pid_t pid = inferior_ptid.pid ();
|
|
|
|
switch (object)
|
|
{
|
|
#ifdef USE_SIGINFO
|
|
case TARGET_OBJECT_SIGNAL_INFO:
|
|
{
|
|
struct ptrace_lwpinfo pl;
|
|
size_t siginfo_size;
|
|
|
|
/* FreeBSD doesn't support writing to $_siginfo. */
|
|
if (writebuf != NULL)
|
|
return TARGET_XFER_E_IO;
|
|
|
|
if (inferior_ptid.lwp_p ())
|
|
pid = inferior_ptid.lwp ();
|
|
|
|
siginfo_size = fbsd_siginfo_size ();
|
|
if (offset > siginfo_size)
|
|
return TARGET_XFER_E_IO;
|
|
|
|
if (ptrace (PT_LWPINFO, pid, (PTRACE_TYPE_ARG3) &pl, sizeof (pl)) == -1)
|
|
return TARGET_XFER_E_IO;
|
|
|
|
if (!(pl.pl_flags & PL_FLAG_SI))
|
|
return TARGET_XFER_E_IO;
|
|
|
|
fbsd_convert_siginfo (&pl.pl_siginfo);
|
|
if (offset + len > siginfo_size)
|
|
len = siginfo_size - offset;
|
|
|
|
memcpy (readbuf, ((gdb_byte *) &pl.pl_siginfo) + offset, len);
|
|
*xfered_len = len;
|
|
return TARGET_XFER_OK;
|
|
}
|
|
#endif
|
|
#ifdef KERN_PROC_AUXV
|
|
case TARGET_OBJECT_AUXV:
|
|
{
|
|
gdb::byte_vector buf_storage;
|
|
gdb_byte *buf;
|
|
size_t buflen;
|
|
int mib[4];
|
|
|
|
if (writebuf != NULL)
|
|
return TARGET_XFER_E_IO;
|
|
mib[0] = CTL_KERN;
|
|
mib[1] = KERN_PROC;
|
|
mib[2] = KERN_PROC_AUXV;
|
|
mib[3] = pid;
|
|
if (offset == 0)
|
|
{
|
|
buf = readbuf;
|
|
buflen = len;
|
|
}
|
|
else
|
|
{
|
|
buflen = offset + len;
|
|
buf_storage.resize (buflen);
|
|
buf = buf_storage.data ();
|
|
}
|
|
if (sysctl (mib, 4, buf, &buflen, NULL, 0) == 0)
|
|
{
|
|
if (offset != 0)
|
|
{
|
|
if (buflen > offset)
|
|
{
|
|
buflen -= offset;
|
|
memcpy (readbuf, buf + offset, buflen);
|
|
}
|
|
else
|
|
buflen = 0;
|
|
}
|
|
*xfered_len = buflen;
|
|
return (buflen == 0) ? TARGET_XFER_EOF : TARGET_XFER_OK;
|
|
}
|
|
return TARGET_XFER_E_IO;
|
|
}
|
|
#endif
|
|
#if defined(KERN_PROC_VMMAP) && defined(KERN_PROC_PS_STRINGS)
|
|
case TARGET_OBJECT_FREEBSD_VMMAP:
|
|
case TARGET_OBJECT_FREEBSD_PS_STRINGS:
|
|
{
|
|
gdb::byte_vector buf_storage;
|
|
gdb_byte *buf;
|
|
size_t buflen;
|
|
int mib[4];
|
|
|
|
int proc_target;
|
|
uint32_t struct_size;
|
|
switch (object)
|
|
{
|
|
case TARGET_OBJECT_FREEBSD_VMMAP:
|
|
proc_target = KERN_PROC_VMMAP;
|
|
struct_size = sizeof (struct kinfo_vmentry);
|
|
break;
|
|
case TARGET_OBJECT_FREEBSD_PS_STRINGS:
|
|
proc_target = KERN_PROC_PS_STRINGS;
|
|
struct_size = sizeof (void *);
|
|
break;
|
|
}
|
|
|
|
if (writebuf != NULL)
|
|
return TARGET_XFER_E_IO;
|
|
|
|
mib[0] = CTL_KERN;
|
|
mib[1] = KERN_PROC;
|
|
mib[2] = proc_target;
|
|
mib[3] = pid;
|
|
|
|
if (sysctl (mib, 4, NULL, &buflen, NULL, 0) != 0)
|
|
return TARGET_XFER_E_IO;
|
|
buflen += sizeof (struct_size);
|
|
|
|
if (offset >= buflen)
|
|
{
|
|
*xfered_len = 0;
|
|
return TARGET_XFER_EOF;
|
|
}
|
|
|
|
buf_storage.resize (buflen);
|
|
buf = buf_storage.data ();
|
|
|
|
memcpy (buf, &struct_size, sizeof (struct_size));
|
|
buflen -= sizeof (struct_size);
|
|
if (sysctl (mib, 4, buf + sizeof (struct_size), &buflen, NULL, 0) != 0)
|
|
return TARGET_XFER_E_IO;
|
|
buflen += sizeof (struct_size);
|
|
|
|
if (buflen - offset < len)
|
|
len = buflen - offset;
|
|
memcpy (readbuf, buf + offset, len);
|
|
*xfered_len = len;
|
|
return TARGET_XFER_OK;
|
|
}
|
|
#endif
|
|
default:
|
|
return inf_ptrace_target::xfer_partial (object, annex,
|
|
readbuf, writebuf, offset,
|
|
len, xfered_len);
|
|
}
|
|
}
|
|
|
|
#ifdef PT_LWPINFO
|
|
static int debug_fbsd_lwp;
|
|
static int debug_fbsd_nat;
|
|
|
|
static void
|
|
show_fbsd_lwp_debug (struct ui_file *file, int from_tty,
|
|
struct cmd_list_element *c, const char *value)
|
|
{
|
|
fprintf_filtered (file, _("Debugging of FreeBSD lwp module is %s.\n"), value);
|
|
}
|
|
|
|
static void
|
|
show_fbsd_nat_debug (struct ui_file *file, int from_tty,
|
|
struct cmd_list_element *c, const char *value)
|
|
{
|
|
fprintf_filtered (file, _("Debugging of FreeBSD native target is %s.\n"),
|
|
value);
|
|
}
|
|
|
|
/*
|
|
FreeBSD's first thread support was via a "reentrant" version of libc
|
|
(libc_r) that first shipped in 2.2.7. This library multiplexed all
|
|
of the threads in a process onto a single kernel thread. This
|
|
library was supported via the bsd-uthread target.
|
|
|
|
FreeBSD 5.1 introduced two new threading libraries that made use of
|
|
multiple kernel threads. The first (libkse) scheduled M user
|
|
threads onto N (<= M) kernel threads (LWPs). The second (libthr)
|
|
bound each user thread to a dedicated kernel thread. libkse shipped
|
|
as the default threading library (libpthread).
|
|
|
|
FreeBSD 5.3 added a libthread_db to abstract the interface across
|
|
the various thread libraries (libc_r, libkse, and libthr).
|
|
|
|
FreeBSD 7.0 switched the default threading library from from libkse
|
|
to libpthread and removed libc_r.
|
|
|
|
FreeBSD 8.0 removed libkse and the in-kernel support for it. The
|
|
only threading library supported by 8.0 and later is libthr which
|
|
ties each user thread directly to an LWP. To simplify the
|
|
implementation, this target only supports LWP-backed threads using
|
|
ptrace directly rather than libthread_db.
|
|
|
|
FreeBSD 11.0 introduced LWP event reporting via PT_LWP_EVENTS.
|
|
*/
|
|
|
|
/* Return true if PTID is still active in the inferior. */
|
|
|
|
bool
|
|
fbsd_nat_target::thread_alive (ptid_t ptid)
|
|
{
|
|
if (ptid.lwp_p ())
|
|
{
|
|
struct ptrace_lwpinfo pl;
|
|
|
|
if (ptrace (PT_LWPINFO, ptid.lwp (), (caddr_t) &pl, sizeof pl)
|
|
== -1)
|
|
return false;
|
|
#ifdef PL_FLAG_EXITED
|
|
if (pl.pl_flags & PL_FLAG_EXITED)
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Convert PTID to a string. */
|
|
|
|
std::string
|
|
fbsd_nat_target::pid_to_str (ptid_t ptid)
|
|
{
|
|
lwpid_t lwp;
|
|
|
|
lwp = ptid.lwp ();
|
|
if (lwp != 0)
|
|
{
|
|
int pid = ptid.pid ();
|
|
|
|
return string_printf ("LWP %d of process %d", lwp, pid);
|
|
}
|
|
|
|
return normal_pid_to_str (ptid);
|
|
}
|
|
|
|
#ifdef HAVE_STRUCT_PTRACE_LWPINFO_PL_TDNAME
|
|
/* Return the name assigned to a thread by an application. Returns
|
|
the string in a static buffer. */
|
|
|
|
const char *
|
|
fbsd_nat_target::thread_name (struct thread_info *thr)
|
|
{
|
|
struct ptrace_lwpinfo pl;
|
|
struct kinfo_proc kp;
|
|
int pid = thr->ptid.pid ();
|
|
long lwp = thr->ptid.lwp ();
|
|
static char buf[sizeof pl.pl_tdname + 1];
|
|
|
|
/* Note that ptrace_lwpinfo returns the process command in pl_tdname
|
|
if a name has not been set explicitly. Return a NULL name in
|
|
that case. */
|
|
if (!fbsd_fetch_kinfo_proc (pid, &kp))
|
|
perror_with_name (_("Failed to fetch process information"));
|
|
if (ptrace (PT_LWPINFO, lwp, (caddr_t) &pl, sizeof pl) == -1)
|
|
perror_with_name (("ptrace"));
|
|
if (strcmp (kp.ki_comm, pl.pl_tdname) == 0)
|
|
return NULL;
|
|
xsnprintf (buf, sizeof buf, "%s", pl.pl_tdname);
|
|
return buf;
|
|
}
|
|
#endif
|
|
|
|
/* Enable additional event reporting on new processes.
|
|
|
|
To catch fork events, PTRACE_FORK is set on every traced process
|
|
to enable stops on returns from fork or vfork. Note that both the
|
|
parent and child will always stop, even if system call stops are
|
|
not enabled.
|
|
|
|
To catch LWP events, PTRACE_EVENTS is set on every traced process.
|
|
This enables stops on the birth for new LWPs (excluding the "main" LWP)
|
|
and the death of LWPs (excluding the last LWP in a process). Note
|
|
that unlike fork events, the LWP that creates a new LWP does not
|
|
report an event. */
|
|
|
|
static void
|
|
fbsd_enable_proc_events (pid_t pid)
|
|
{
|
|
#ifdef PT_GET_EVENT_MASK
|
|
int events;
|
|
|
|
if (ptrace (PT_GET_EVENT_MASK, pid, (PTRACE_TYPE_ARG3)&events,
|
|
sizeof (events)) == -1)
|
|
perror_with_name (("ptrace"));
|
|
events |= PTRACE_FORK | PTRACE_LWP;
|
|
#ifdef PTRACE_VFORK
|
|
events |= PTRACE_VFORK;
|
|
#endif
|
|
if (ptrace (PT_SET_EVENT_MASK, pid, (PTRACE_TYPE_ARG3)&events,
|
|
sizeof (events)) == -1)
|
|
perror_with_name (("ptrace"));
|
|
#else
|
|
#ifdef TDP_RFPPWAIT
|
|
if (ptrace (PT_FOLLOW_FORK, pid, (PTRACE_TYPE_ARG3)0, 1) == -1)
|
|
perror_with_name (("ptrace"));
|
|
#endif
|
|
#ifdef PT_LWP_EVENTS
|
|
if (ptrace (PT_LWP_EVENTS, pid, (PTRACE_TYPE_ARG3)0, 1) == -1)
|
|
perror_with_name (("ptrace"));
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
/* Add threads for any new LWPs in a process.
|
|
|
|
When LWP events are used, this function is only used to detect existing
|
|
threads when attaching to a process. On older systems, this function is
|
|
called to discover new threads each time the thread list is updated. */
|
|
|
|
static void
|
|
fbsd_add_threads (pid_t pid)
|
|
{
|
|
int i, nlwps;
|
|
|
|
gdb_assert (!in_thread_list (ptid_t (pid)));
|
|
nlwps = ptrace (PT_GETNUMLWPS, pid, NULL, 0);
|
|
if (nlwps == -1)
|
|
perror_with_name (("ptrace"));
|
|
|
|
gdb::unique_xmalloc_ptr<lwpid_t[]> lwps (XCNEWVEC (lwpid_t, nlwps));
|
|
|
|
nlwps = ptrace (PT_GETLWPLIST, pid, (caddr_t) lwps.get (), nlwps);
|
|
if (nlwps == -1)
|
|
perror_with_name (("ptrace"));
|
|
|
|
for (i = 0; i < nlwps; i++)
|
|
{
|
|
ptid_t ptid = ptid_t (pid, lwps[i], 0);
|
|
|
|
if (!in_thread_list (ptid))
|
|
{
|
|
#ifdef PT_LWP_EVENTS
|
|
struct ptrace_lwpinfo pl;
|
|
|
|
/* Don't add exited threads. Note that this is only called
|
|
when attaching to a multi-threaded process. */
|
|
if (ptrace (PT_LWPINFO, lwps[i], (caddr_t) &pl, sizeof pl) == -1)
|
|
perror_with_name (("ptrace"));
|
|
if (pl.pl_flags & PL_FLAG_EXITED)
|
|
continue;
|
|
#endif
|
|
if (debug_fbsd_lwp)
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"FLWP: adding thread for LWP %u\n",
|
|
lwps[i]);
|
|
add_thread (ptid);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Implement the "update_thread_list" target_ops method. */
|
|
|
|
void
|
|
fbsd_nat_target::update_thread_list ()
|
|
{
|
|
#ifdef PT_LWP_EVENTS
|
|
/* With support for thread events, threads are added/deleted from the
|
|
list as events are reported, so just try deleting exited threads. */
|
|
delete_exited_threads ();
|
|
#else
|
|
prune_threads ();
|
|
|
|
fbsd_add_threads (inferior_ptid.pid ());
|
|
#endif
|
|
}
|
|
|
|
#ifdef TDP_RFPPWAIT
|
|
/*
|
|
To catch fork events, PT_FOLLOW_FORK is set on every traced process
|
|
to enable stops on returns from fork or vfork. Note that both the
|
|
parent and child will always stop, even if system call stops are not
|
|
enabled.
|
|
|
|
After a fork, both the child and parent process will stop and report
|
|
an event. However, there is no guarantee of order. If the parent
|
|
reports its stop first, then fbsd_wait explicitly waits for the new
|
|
child before returning. If the child reports its stop first, then
|
|
the event is saved on a list and ignored until the parent's stop is
|
|
reported. fbsd_wait could have been changed to fetch the parent PID
|
|
of the new child and used that to wait for the parent explicitly.
|
|
However, if two threads in the parent fork at the same time, then
|
|
the wait on the parent might return the "wrong" fork event.
|
|
|
|
The initial version of PT_FOLLOW_FORK did not set PL_FLAG_CHILD for
|
|
the new child process. This flag could be inferred by treating any
|
|
events for an unknown pid as a new child.
|
|
|
|
In addition, the initial version of PT_FOLLOW_FORK did not report a
|
|
stop event for the parent process of a vfork until after the child
|
|
process executed a new program or exited. The kernel was changed to
|
|
defer the wait for exit or exec of the child until after posting the
|
|
stop event shortly after the change to introduce PL_FLAG_CHILD.
|
|
This could be worked around by reporting a vfork event when the
|
|
child event posted and ignoring the subsequent event from the
|
|
parent.
|
|
|
|
This implementation requires both of these fixes for simplicity's
|
|
sake. FreeBSD versions newer than 9.1 contain both fixes.
|
|
*/
|
|
|
|
static std::list<ptid_t> fbsd_pending_children;
|
|
|
|
/* Record a new child process event that is reported before the
|
|
corresponding fork event in the parent. */
|
|
|
|
static void
|
|
fbsd_remember_child (ptid_t pid)
|
|
{
|
|
fbsd_pending_children.push_front (pid);
|
|
}
|
|
|
|
/* Check for a previously-recorded new child process event for PID.
|
|
If one is found, remove it from the list and return the PTID. */
|
|
|
|
static ptid_t
|
|
fbsd_is_child_pending (pid_t pid)
|
|
{
|
|
for (auto it = fbsd_pending_children.begin ();
|
|
it != fbsd_pending_children.end (); it++)
|
|
if (it->pid () == pid)
|
|
{
|
|
ptid_t ptid = *it;
|
|
fbsd_pending_children.erase (it);
|
|
return ptid;
|
|
}
|
|
return null_ptid;
|
|
}
|
|
|
|
#ifndef PTRACE_VFORK
|
|
static std::forward_list<ptid_t> fbsd_pending_vfork_done;
|
|
|
|
/* Record a pending vfork done event. */
|
|
|
|
static void
|
|
fbsd_add_vfork_done (ptid_t pid)
|
|
{
|
|
fbsd_pending_vfork_done.push_front (pid);
|
|
}
|
|
|
|
/* Check for a pending vfork done event for a specific PID. */
|
|
|
|
static int
|
|
fbsd_is_vfork_done_pending (pid_t pid)
|
|
{
|
|
for (auto it = fbsd_pending_vfork_done.begin ();
|
|
it != fbsd_pending_vfork_done.end (); it++)
|
|
if (it->pid () == pid)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/* Check for a pending vfork done event. If one is found, remove it
|
|
from the list and return the PTID. */
|
|
|
|
static ptid_t
|
|
fbsd_next_vfork_done (void)
|
|
{
|
|
if (!fbsd_pending_vfork_done.empty ())
|
|
{
|
|
ptid_t ptid = fbsd_pending_vfork_done.front ();
|
|
fbsd_pending_vfork_done.pop_front ();
|
|
return ptid;
|
|
}
|
|
return null_ptid;
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
/* Implement the "resume" target_ops method. */
|
|
|
|
void
|
|
fbsd_nat_target::resume (ptid_t ptid, int step, enum gdb_signal signo)
|
|
{
|
|
#if defined(TDP_RFPPWAIT) && !defined(PTRACE_VFORK)
|
|
pid_t pid;
|
|
|
|
/* Don't PT_CONTINUE a process which has a pending vfork done event. */
|
|
if (minus_one_ptid == ptid)
|
|
pid = inferior_ptid.pid ();
|
|
else
|
|
pid = ptid.pid ();
|
|
if (fbsd_is_vfork_done_pending (pid))
|
|
return;
|
|
#endif
|
|
|
|
if (debug_fbsd_lwp)
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"FLWP: fbsd_resume for ptid (%d, %ld, %ld)\n",
|
|
ptid.pid (), ptid.lwp (),
|
|
ptid.tid ());
|
|
if (ptid.lwp_p ())
|
|
{
|
|
/* If ptid is a specific LWP, suspend all other LWPs in the process. */
|
|
inferior *inf = find_inferior_ptid (ptid);
|
|
|
|
for (thread_info *tp : inf->non_exited_threads ())
|
|
{
|
|
int request;
|
|
|
|
if (tp->ptid.lwp () == ptid.lwp ())
|
|
request = PT_RESUME;
|
|
else
|
|
request = PT_SUSPEND;
|
|
|
|
if (ptrace (request, tp->ptid.lwp (), NULL, 0) == -1)
|
|
perror_with_name (("ptrace"));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* If ptid is a wildcard, resume all matching threads (they won't run
|
|
until the process is continued however). */
|
|
for (thread_info *tp : all_non_exited_threads (ptid))
|
|
if (ptrace (PT_RESUME, tp->ptid.lwp (), NULL, 0) == -1)
|
|
perror_with_name (("ptrace"));
|
|
ptid = inferior_ptid;
|
|
}
|
|
|
|
#if __FreeBSD_version < 1200052
|
|
/* When multiple threads within a process wish to report STOPPED
|
|
events from wait(), the kernel picks one thread event as the
|
|
thread event to report. The chosen thread event is retrieved via
|
|
PT_LWPINFO by passing the process ID as the request pid. If
|
|
multiple events are pending, then the subsequent wait() after
|
|
resuming a process will report another STOPPED event after
|
|
resuming the process to handle the next thread event and so on.
|
|
|
|
A single thread event is cleared as a side effect of resuming the
|
|
process with PT_CONTINUE, PT_STEP, etc. In older kernels,
|
|
however, the request pid was used to select which thread's event
|
|
was cleared rather than always clearing the event that was just
|
|
reported. To avoid clearing the event of the wrong LWP, always
|
|
pass the process ID instead of an LWP ID to PT_CONTINUE or
|
|
PT_SYSCALL.
|
|
|
|
In the case of stepping, the process ID cannot be used with
|
|
PT_STEP since it would step the thread that reported an event
|
|
which may not be the thread indicated by PTID. For stepping, use
|
|
PT_SETSTEP to enable stepping on the desired thread before
|
|
resuming the process via PT_CONTINUE instead of using
|
|
PT_STEP. */
|
|
if (step)
|
|
{
|
|
if (ptrace (PT_SETSTEP, get_ptrace_pid (ptid), NULL, 0) == -1)
|
|
perror_with_name (("ptrace"));
|
|
step = 0;
|
|
}
|
|
ptid = ptid_t (ptid.pid ());
|
|
#endif
|
|
inf_ptrace_target::resume (ptid, step, signo);
|
|
}
|
|
|
|
#ifdef USE_SIGTRAP_SIGINFO
|
|
/* Handle breakpoint and trace traps reported via SIGTRAP. If the
|
|
trap was a breakpoint or trace trap that should be reported to the
|
|
core, return true. */
|
|
|
|
static bool
|
|
fbsd_handle_debug_trap (ptid_t ptid, const struct ptrace_lwpinfo &pl)
|
|
{
|
|
|
|
/* Ignore traps without valid siginfo or for signals other than
|
|
SIGTRAP.
|
|
|
|
FreeBSD kernels prior to r341800 can return stale siginfo for at
|
|
least some events, but those events can be identified by
|
|
additional flags set in pl_flags. True breakpoint and
|
|
single-step traps should not have other flags set in
|
|
pl_flags. */
|
|
if (pl.pl_flags != PL_FLAG_SI || pl.pl_siginfo.si_signo != SIGTRAP)
|
|
return false;
|
|
|
|
/* Trace traps are either a single step or a hardware watchpoint or
|
|
breakpoint. */
|
|
if (pl.pl_siginfo.si_code == TRAP_TRACE)
|
|
{
|
|
if (debug_fbsd_nat)
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"FNAT: trace trap for LWP %ld\n", ptid.lwp ());
|
|
return true;
|
|
}
|
|
|
|
if (pl.pl_siginfo.si_code == TRAP_BRKPT)
|
|
{
|
|
/* Fixup PC for the software breakpoint. */
|
|
struct regcache *regcache = get_thread_regcache (ptid);
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
int decr_pc = gdbarch_decr_pc_after_break (gdbarch);
|
|
|
|
if (debug_fbsd_nat)
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"FNAT: sw breakpoint trap for LWP %ld\n",
|
|
ptid.lwp ());
|
|
if (decr_pc != 0)
|
|
{
|
|
CORE_ADDR pc;
|
|
|
|
pc = regcache_read_pc (regcache);
|
|
regcache_write_pc (regcache, pc - decr_pc);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
/* Wait for the child specified by PTID to do something. Return the
|
|
process ID of the child, or MINUS_ONE_PTID in case of error; store
|
|
the status in *OURSTATUS. */
|
|
|
|
ptid_t
|
|
fbsd_nat_target::wait (ptid_t ptid, struct target_waitstatus *ourstatus,
|
|
int target_options)
|
|
{
|
|
ptid_t wptid;
|
|
|
|
while (1)
|
|
{
|
|
#ifndef PTRACE_VFORK
|
|
wptid = fbsd_next_vfork_done ();
|
|
if (wptid != null_ptid)
|
|
{
|
|
ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
|
|
return wptid;
|
|
}
|
|
#endif
|
|
wptid = inf_ptrace_target::wait (ptid, ourstatus, target_options);
|
|
if (ourstatus->kind == TARGET_WAITKIND_STOPPED)
|
|
{
|
|
struct ptrace_lwpinfo pl;
|
|
pid_t pid;
|
|
int status;
|
|
|
|
pid = wptid.pid ();
|
|
if (ptrace (PT_LWPINFO, pid, (caddr_t) &pl, sizeof pl) == -1)
|
|
perror_with_name (("ptrace"));
|
|
|
|
wptid = ptid_t (pid, pl.pl_lwpid, 0);
|
|
|
|
if (debug_fbsd_nat)
|
|
{
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"FNAT: stop for LWP %u event %d flags %#x\n",
|
|
pl.pl_lwpid, pl.pl_event, pl.pl_flags);
|
|
if (pl.pl_flags & PL_FLAG_SI)
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"FNAT: si_signo %u si_code %u\n",
|
|
pl.pl_siginfo.si_signo,
|
|
pl.pl_siginfo.si_code);
|
|
}
|
|
|
|
#ifdef PT_LWP_EVENTS
|
|
if (pl.pl_flags & PL_FLAG_EXITED)
|
|
{
|
|
/* If GDB attaches to a multi-threaded process, exiting
|
|
threads might be skipped during post_attach that
|
|
have not yet reported their PL_FLAG_EXITED event.
|
|
Ignore EXITED events for an unknown LWP. */
|
|
thread_info *thr = find_thread_ptid (wptid);
|
|
if (thr != nullptr)
|
|
{
|
|
if (debug_fbsd_lwp)
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"FLWP: deleting thread for LWP %u\n",
|
|
pl.pl_lwpid);
|
|
if (print_thread_events)
|
|
printf_unfiltered (_("[%s exited]\n"),
|
|
target_pid_to_str (wptid).c_str ());
|
|
delete_thread (thr);
|
|
}
|
|
if (ptrace (PT_CONTINUE, pid, (caddr_t) 1, 0) == -1)
|
|
perror_with_name (("ptrace"));
|
|
continue;
|
|
}
|
|
#endif
|
|
|
|
/* Switch to an LWP PTID on the first stop in a new process.
|
|
This is done after handling PL_FLAG_EXITED to avoid
|
|
switching to an exited LWP. It is done before checking
|
|
PL_FLAG_BORN in case the first stop reported after
|
|
attaching to an existing process is a PL_FLAG_BORN
|
|
event. */
|
|
if (in_thread_list (ptid_t (pid)))
|
|
{
|
|
if (debug_fbsd_lwp)
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"FLWP: using LWP %u for first thread\n",
|
|
pl.pl_lwpid);
|
|
thread_change_ptid (ptid_t (pid), wptid);
|
|
}
|
|
|
|
#ifdef PT_LWP_EVENTS
|
|
if (pl.pl_flags & PL_FLAG_BORN)
|
|
{
|
|
/* If GDB attaches to a multi-threaded process, newborn
|
|
threads might be added by fbsd_add_threads that have
|
|
not yet reported their PL_FLAG_BORN event. Ignore
|
|
BORN events for an already-known LWP. */
|
|
if (!in_thread_list (wptid))
|
|
{
|
|
if (debug_fbsd_lwp)
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"FLWP: adding thread for LWP %u\n",
|
|
pl.pl_lwpid);
|
|
add_thread (wptid);
|
|
}
|
|
ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
|
|
return wptid;
|
|
}
|
|
#endif
|
|
|
|
#ifdef TDP_RFPPWAIT
|
|
if (pl.pl_flags & PL_FLAG_FORKED)
|
|
{
|
|
#ifndef PTRACE_VFORK
|
|
struct kinfo_proc kp;
|
|
#endif
|
|
ptid_t child_ptid;
|
|
pid_t child;
|
|
|
|
child = pl.pl_child_pid;
|
|
ourstatus->kind = TARGET_WAITKIND_FORKED;
|
|
#ifdef PTRACE_VFORK
|
|
if (pl.pl_flags & PL_FLAG_VFORKED)
|
|
ourstatus->kind = TARGET_WAITKIND_VFORKED;
|
|
#endif
|
|
|
|
/* Make sure the other end of the fork is stopped too. */
|
|
child_ptid = fbsd_is_child_pending (child);
|
|
if (child_ptid == null_ptid)
|
|
{
|
|
pid = waitpid (child, &status, 0);
|
|
if (pid == -1)
|
|
perror_with_name (("waitpid"));
|
|
|
|
gdb_assert (pid == child);
|
|
|
|
if (ptrace (PT_LWPINFO, child, (caddr_t)&pl, sizeof pl) == -1)
|
|
perror_with_name (("ptrace"));
|
|
|
|
gdb_assert (pl.pl_flags & PL_FLAG_CHILD);
|
|
child_ptid = ptid_t (child, pl.pl_lwpid, 0);
|
|
}
|
|
|
|
/* Enable additional events on the child process. */
|
|
fbsd_enable_proc_events (child_ptid.pid ());
|
|
|
|
#ifndef PTRACE_VFORK
|
|
/* For vfork, the child process will have the P_PPWAIT
|
|
flag set. */
|
|
if (fbsd_fetch_kinfo_proc (child, &kp))
|
|
{
|
|
if (kp.ki_flag & P_PPWAIT)
|
|
ourstatus->kind = TARGET_WAITKIND_VFORKED;
|
|
}
|
|
else
|
|
warning (_("Failed to fetch process information"));
|
|
#endif
|
|
ourstatus->value.related_pid = child_ptid;
|
|
|
|
return wptid;
|
|
}
|
|
|
|
if (pl.pl_flags & PL_FLAG_CHILD)
|
|
{
|
|
/* Remember that this child forked, but do not report it
|
|
until the parent reports its corresponding fork
|
|
event. */
|
|
fbsd_remember_child (wptid);
|
|
continue;
|
|
}
|
|
|
|
#ifdef PTRACE_VFORK
|
|
if (pl.pl_flags & PL_FLAG_VFORK_DONE)
|
|
{
|
|
ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
|
|
return wptid;
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef PL_FLAG_EXEC
|
|
if (pl.pl_flags & PL_FLAG_EXEC)
|
|
{
|
|
ourstatus->kind = TARGET_WAITKIND_EXECD;
|
|
ourstatus->value.execd_pathname
|
|
= xstrdup (pid_to_exec_file (pid));
|
|
return wptid;
|
|
}
|
|
#endif
|
|
|
|
#ifdef USE_SIGTRAP_SIGINFO
|
|
if (fbsd_handle_debug_trap (wptid, pl))
|
|
return wptid;
|
|
#endif
|
|
|
|
/* Note that PL_FLAG_SCE is set for any event reported while
|
|
a thread is executing a system call in the kernel. In
|
|
particular, signals that interrupt a sleep in a system
|
|
call will report this flag as part of their event. Stops
|
|
explicitly for system call entry and exit always use
|
|
SIGTRAP, so only treat SIGTRAP events as system call
|
|
entry/exit events. */
|
|
if (pl.pl_flags & (PL_FLAG_SCE | PL_FLAG_SCX)
|
|
&& ourstatus->value.sig == SIGTRAP)
|
|
{
|
|
#ifdef HAVE_STRUCT_PTRACE_LWPINFO_PL_SYSCALL_CODE
|
|
if (catch_syscall_enabled ())
|
|
{
|
|
if (catching_syscall_number (pl.pl_syscall_code))
|
|
{
|
|
if (pl.pl_flags & PL_FLAG_SCE)
|
|
ourstatus->kind = TARGET_WAITKIND_SYSCALL_ENTRY;
|
|
else
|
|
ourstatus->kind = TARGET_WAITKIND_SYSCALL_RETURN;
|
|
ourstatus->value.syscall_number = pl.pl_syscall_code;
|
|
return wptid;
|
|
}
|
|
}
|
|
#endif
|
|
/* If the core isn't interested in this event, just
|
|
continue the process explicitly and wait for another
|
|
event. Note that PT_SYSCALL is "sticky" on FreeBSD
|
|
and once system call stops are enabled on a process
|
|
it stops for all system call entries and exits. */
|
|
if (ptrace (PT_CONTINUE, pid, (caddr_t) 1, 0) == -1)
|
|
perror_with_name (("ptrace"));
|
|
continue;
|
|
}
|
|
}
|
|
return wptid;
|
|
}
|
|
}
|
|
|
|
#ifdef USE_SIGTRAP_SIGINFO
|
|
/* Implement the "stopped_by_sw_breakpoint" target_ops method. */
|
|
|
|
bool
|
|
fbsd_nat_target::stopped_by_sw_breakpoint ()
|
|
{
|
|
struct ptrace_lwpinfo pl;
|
|
|
|
if (ptrace (PT_LWPINFO, get_ptrace_pid (inferior_ptid), (caddr_t) &pl,
|
|
sizeof pl) == -1)
|
|
return false;
|
|
|
|
return (pl.pl_flags == PL_FLAG_SI
|
|
&& pl.pl_siginfo.si_signo == SIGTRAP
|
|
&& pl.pl_siginfo.si_code == TRAP_BRKPT);
|
|
}
|
|
|
|
/* Implement the "supports_stopped_by_sw_breakpoint" target_ops
|
|
method. */
|
|
|
|
bool
|
|
fbsd_nat_target::supports_stopped_by_sw_breakpoint ()
|
|
{
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
#ifdef TDP_RFPPWAIT
|
|
/* Target hook for follow_fork. On entry and at return inferior_ptid is
|
|
the ptid of the followed inferior. */
|
|
|
|
int
|
|
fbsd_nat_target::follow_fork (int follow_child, int detach_fork)
|
|
{
|
|
if (!follow_child && detach_fork)
|
|
{
|
|
struct thread_info *tp = inferior_thread ();
|
|
pid_t child_pid = tp->pending_follow.value.related_pid.pid ();
|
|
|
|
/* Breakpoints have already been detached from the child by
|
|
infrun.c. */
|
|
|
|
if (ptrace (PT_DETACH, child_pid, (PTRACE_TYPE_ARG3)1, 0) == -1)
|
|
perror_with_name (("ptrace"));
|
|
|
|
#ifndef PTRACE_VFORK
|
|
if (tp->pending_follow.kind == TARGET_WAITKIND_VFORKED)
|
|
{
|
|
/* We can't insert breakpoints until the child process has
|
|
finished with the shared memory region. The parent
|
|
process doesn't wait for the child process to exit or
|
|
exec until after it has been resumed from the ptrace stop
|
|
to report the fork. Once it has been resumed it doesn't
|
|
stop again before returning to userland, so there is no
|
|
reliable way to wait on the parent.
|
|
|
|
We can't stay attached to the child to wait for an exec
|
|
or exit because it may invoke ptrace(PT_TRACE_ME)
|
|
(e.g. if the parent process is a debugger forking a new
|
|
child process).
|
|
|
|
In the end, the best we can do is to make sure it runs
|
|
for a little while. Hopefully it will be out of range of
|
|
any breakpoints we reinsert. Usually this is only the
|
|
single-step breakpoint at vfork's return point. */
|
|
|
|
usleep (10000);
|
|
|
|
/* Schedule a fake VFORK_DONE event to report on the next
|
|
wait. */
|
|
fbsd_add_vfork_done (inferior_ptid);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
fbsd_nat_target::insert_fork_catchpoint (int pid)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
fbsd_nat_target::remove_fork_catchpoint (int pid)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
fbsd_nat_target::insert_vfork_catchpoint (int pid)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
fbsd_nat_target::remove_vfork_catchpoint (int pid)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/* Implement the "post_startup_inferior" target_ops method. */
|
|
|
|
void
|
|
fbsd_nat_target::post_startup_inferior (ptid_t pid)
|
|
{
|
|
fbsd_enable_proc_events (pid.pid ());
|
|
}
|
|
|
|
/* Implement the "post_attach" target_ops method. */
|
|
|
|
void
|
|
fbsd_nat_target::post_attach (int pid)
|
|
{
|
|
fbsd_enable_proc_events (pid);
|
|
fbsd_add_threads (pid);
|
|
}
|
|
|
|
#ifdef PL_FLAG_EXEC
|
|
/* If the FreeBSD kernel supports PL_FLAG_EXEC, then traced processes
|
|
will always stop after exec. */
|
|
|
|
int
|
|
fbsd_nat_target::insert_exec_catchpoint (int pid)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
fbsd_nat_target::remove_exec_catchpoint (int pid)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#ifdef HAVE_STRUCT_PTRACE_LWPINFO_PL_SYSCALL_CODE
|
|
int
|
|
fbsd_nat_target::set_syscall_catchpoint (int pid, bool needed,
|
|
int any_count,
|
|
gdb::array_view<const int> syscall_counts)
|
|
{
|
|
|
|
/* Ignore the arguments. inf-ptrace.c will use PT_SYSCALL which
|
|
will catch all system call entries and exits. The system calls
|
|
are filtered by GDB rather than the kernel. */
|
|
return 0;
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
void
|
|
_initialize_fbsd_nat (void)
|
|
{
|
|
#ifdef PT_LWPINFO
|
|
add_setshow_boolean_cmd ("fbsd-lwp", class_maintenance,
|
|
&debug_fbsd_lwp, _("\
|
|
Set debugging of FreeBSD lwp module."), _("\
|
|
Show debugging of FreeBSD lwp module."), _("\
|
|
Enables printf debugging output."),
|
|
NULL,
|
|
&show_fbsd_lwp_debug,
|
|
&setdebuglist, &showdebuglist);
|
|
add_setshow_boolean_cmd ("fbsd-nat", class_maintenance,
|
|
&debug_fbsd_nat, _("\
|
|
Set debugging of FreeBSD native target."), _("\
|
|
Show debugging of FreeBSD native target."), _("\
|
|
Enables printf debugging output."),
|
|
NULL,
|
|
&show_fbsd_nat_debug,
|
|
&setdebuglist, &showdebuglist);
|
|
#endif
|
|
}
|