mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-27 04:52:05 +08:00
1edb66d856
A following patch will want to take some action when a pending wait status is set on or removed from a thread. Add a getter and a setter on thread_info for the pending waitstatus, so that we can add some code in the setter later. The thing is, the pending wait status field is in the thread_suspend_state, along with other fields that we need to backup before and restore after the thread does an inferior function call. Therefore, make the thread_suspend_state member private (thread_info::suspend becomes thread_info::m_suspend), and add getters / setters for all of its fields: - pending wait status - stop signal - stop reason - stop pc For the pending wait status, add the additional has_pending_waitstatus and clear_pending_waitstatus methods. I think this makes the thread_info interface a bit nicer, because we now access the fields as: thread->stop_pc () rather than thread->suspend.stop_pc The stop_pc field being in the `suspend` structure is an implementation detail of thread_info that callers don't need to be aware of. For the backup / restore of the thread_suspend_state structure, add save_suspend_to and restore_suspend_from methods. You might wonder why `save_suspend_to`, as opposed to a simple getter like thread_suspend_state &suspend (); I want to make it clear that this is to be used only for backing up and restoring the suspend state, _not_ to access fields like: thread->suspend ()->stop_pc Adding some getters / setters allows adding some assertions. I find that this helps understand how things are supposed to work. Add: - When getting the pending status (pending_waitstatus method), ensure that there is a pending status. - When setting a pending status (set_pending_waitstatus method), ensure there is no pending status. There is one case I found where this wasn't true - in remote_target::process_initial_stop_replies - which needed adjustments to respect that contract. I think it's because process_initial_stop_replies is kind of (ab)using the thread_info::suspend::waitstatus to store some statuses temporarily, for its internal use (statuses it doesn't intent on leaving pending). process_initial_stop_replies pulls out stop replies received during the initial connection using target_wait. It always stores the received event in `evthread->suspend.waitstatus`. But it only sets waitstatus_pending_p, if it deems the event interesting enough to leave pending, to be reported to the core: if (ws.kind != TARGET_WAITKIND_STOPPED || ws.value.sig != GDB_SIGNAL_0) evthread->suspend.waitstatus_pending_p = 1; It later uses this flag a bit below, to choose which thread to make the "selected" one: if (selected == NULL && thread->suspend.waitstatus_pending_p) selected = thread; And ultimately that's used if the user-visible mode is all-stop, so that we print the stop for that interesting thread: /* In all-stop, we only print the status of one thread, and leave others with their status pending. */ if (!non_stop) { thread_info *thread = selected; if (thread == NULL) thread = lowest_stopped; if (thread == NULL) thread = first; print_one_stopped_thread (thread); } But in any case (all-stop or non-stop), print_one_stopped_thread needs to access the waitstatus value of these threads that don't have a pending waitstatus (those that had TARGET_WAITKIND_STOPPED + GDB_SIGNAL_0). This doesn't work with the assertions I've put. So, change the code to only set the thread's wait status if it is an interesting one that we are going to leave pending. If the thread stopped due to a non-interesting event (TARGET_WAITKIND_STOPPED + GDB_SIGNAL_0), don't store it. Adjust print_one_stopped_thread to understand that if a thread has no pending waitstatus, it's because it stopped with TARGET_WAITKIND_STOPPED + GDB_SIGNAL_0. The call to set_last_target_status also uses the pending waitstatus. However, given that the pending waitstatus for the thread may have been cleared in print_one_stopped_thread (and that there might not even be a pending waitstatus in the first place, as explained above), it is no longer possible to do it at this point. To fix that, move the call to set_last_target_status in print_one_stopped_thread. I think this will preserve the existing behavior, because set_last_target_status is currently using the current thread's wait status. And the current thread is the last one for which print_one_stopped_thread is called. So by calling set_last_target_status in print_one_stopped_thread, we'll get the same result. set_last_target_status will possibly be called multiple times, but only the last call will matter. It just means possibly more calls to set_last_target_status, but those are cheap. Change-Id: Iedab9653238eaf8231abcf0baa20145acc8b77a7
615 lines
18 KiB
C
615 lines
18 KiB
C
/* Generate a core file for the inferior process.
|
|
|
|
Copyright (C) 2001-2021 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#include "defs.h"
|
|
#include "elf-bfd.h"
|
|
#include "infcall.h"
|
|
#include "inferior.h"
|
|
#include "gdbcore.h"
|
|
#include "objfiles.h"
|
|
#include "solib.h"
|
|
#include "symfile.h"
|
|
#include "arch-utils.h"
|
|
#include "completer.h"
|
|
#include "gcore.h"
|
|
#include "cli/cli-decode.h"
|
|
#include <fcntl.h>
|
|
#include "regcache.h"
|
|
#include "regset.h"
|
|
#include "gdb_bfd.h"
|
|
#include "readline/tilde.h"
|
|
#include <algorithm>
|
|
#include "gdbsupport/gdb_unlinker.h"
|
|
#include "gdbsupport/byte-vector.h"
|
|
#include "gdbsupport/scope-exit.h"
|
|
|
|
/* The largest amount of memory to read from the target at once. We
|
|
must throttle it to limit the amount of memory used by GDB during
|
|
generate-core-file for programs with large resident data. */
|
|
#define MAX_COPY_BYTES (1024 * 1024)
|
|
|
|
static const char *default_gcore_target (void);
|
|
static enum bfd_architecture default_gcore_arch (void);
|
|
static int gcore_memory_sections (bfd *);
|
|
|
|
/* create_gcore_bfd -- helper for gcore_command (exported).
|
|
Open a new bfd core file for output, and return the handle. */
|
|
|
|
gdb_bfd_ref_ptr
|
|
create_gcore_bfd (const char *filename)
|
|
{
|
|
gdb_bfd_ref_ptr obfd (gdb_bfd_openw (filename, default_gcore_target ()));
|
|
|
|
if (obfd == NULL)
|
|
error (_("Failed to open '%s' for output."), filename);
|
|
bfd_set_format (obfd.get (), bfd_core);
|
|
bfd_set_arch_mach (obfd.get (), default_gcore_arch (), 0);
|
|
return obfd;
|
|
}
|
|
|
|
/* write_gcore_file_1 -- do the actual work of write_gcore_file. */
|
|
|
|
static void
|
|
write_gcore_file_1 (bfd *obfd)
|
|
{
|
|
gdb::unique_xmalloc_ptr<char> note_data;
|
|
int note_size = 0;
|
|
asection *note_sec = NULL;
|
|
|
|
/* An external target method must build the notes section. */
|
|
/* FIXME: uweigand/2011-10-06: All architectures that support core file
|
|
generation should be converted to gdbarch_make_corefile_notes; at that
|
|
point, the target vector method can be removed. */
|
|
if (!gdbarch_make_corefile_notes_p (target_gdbarch ()))
|
|
note_data = target_make_corefile_notes (obfd, ¬e_size);
|
|
else
|
|
note_data = gdbarch_make_corefile_notes (target_gdbarch (), obfd,
|
|
¬e_size);
|
|
|
|
if (note_data == NULL || note_size == 0)
|
|
error (_("Target does not support core file generation."));
|
|
|
|
/* Create the note section. */
|
|
note_sec = bfd_make_section_anyway_with_flags (obfd, "note0",
|
|
SEC_HAS_CONTENTS
|
|
| SEC_READONLY
|
|
| SEC_ALLOC);
|
|
if (note_sec == NULL)
|
|
error (_("Failed to create 'note' section for corefile: %s"),
|
|
bfd_errmsg (bfd_get_error ()));
|
|
|
|
bfd_set_section_vma (note_sec, 0);
|
|
bfd_set_section_alignment (note_sec, 0);
|
|
bfd_set_section_size (note_sec, note_size);
|
|
|
|
/* Now create the memory/load sections. */
|
|
if (gcore_memory_sections (obfd) == 0)
|
|
error (_("gcore: failed to get corefile memory sections from target."));
|
|
|
|
/* Write out the contents of the note section. */
|
|
if (!bfd_set_section_contents (obfd, note_sec, note_data.get (), 0,
|
|
note_size))
|
|
warning (_("writing note section (%s)"), bfd_errmsg (bfd_get_error ()));
|
|
}
|
|
|
|
/* write_gcore_file -- helper for gcore_command (exported).
|
|
Compose and write the corefile data to the core file. */
|
|
|
|
void
|
|
write_gcore_file (bfd *obfd)
|
|
{
|
|
target_prepare_to_generate_core ();
|
|
SCOPE_EXIT { target_done_generating_core (); };
|
|
write_gcore_file_1 (obfd);
|
|
}
|
|
|
|
/* gcore_command -- implements the 'gcore' command.
|
|
Generate a core file from the inferior process. */
|
|
|
|
static void
|
|
gcore_command (const char *args, int from_tty)
|
|
{
|
|
gdb::unique_xmalloc_ptr<char> corefilename;
|
|
|
|
/* No use generating a corefile without a target process. */
|
|
if (!target_has_execution ())
|
|
noprocess ();
|
|
|
|
if (args && *args)
|
|
corefilename.reset (tilde_expand (args));
|
|
else
|
|
{
|
|
/* Default corefile name is "core.PID". */
|
|
corefilename.reset (xstrprintf ("core.%d", inferior_ptid.pid ()));
|
|
}
|
|
|
|
if (info_verbose)
|
|
fprintf_filtered (gdb_stdout,
|
|
"Opening corefile '%s' for output.\n",
|
|
corefilename.get ());
|
|
|
|
if (target_supports_dumpcore ())
|
|
target_dumpcore (corefilename.get ());
|
|
else
|
|
{
|
|
/* Open the output file. */
|
|
gdb_bfd_ref_ptr obfd (create_gcore_bfd (corefilename.get ()));
|
|
|
|
/* Arrange to unlink the file on failure. */
|
|
gdb::unlinker unlink_file (corefilename.get ());
|
|
|
|
/* Call worker function. */
|
|
write_gcore_file (obfd.get ());
|
|
|
|
/* Succeeded. */
|
|
unlink_file.keep ();
|
|
}
|
|
|
|
fprintf_filtered (gdb_stdout, "Saved corefile %s\n", corefilename.get ());
|
|
}
|
|
|
|
static enum bfd_architecture
|
|
default_gcore_arch (void)
|
|
{
|
|
const struct bfd_arch_info *bfdarch = gdbarch_bfd_arch_info (target_gdbarch ());
|
|
|
|
if (bfdarch != NULL)
|
|
return bfdarch->arch;
|
|
if (current_program_space->exec_bfd () == NULL)
|
|
error (_("Can't find bfd architecture for corefile (need execfile)."));
|
|
|
|
return bfd_get_arch (current_program_space->exec_bfd ());
|
|
}
|
|
|
|
static const char *
|
|
default_gcore_target (void)
|
|
{
|
|
/* The gdbarch may define a target to use for core files. */
|
|
if (gdbarch_gcore_bfd_target_p (target_gdbarch ()))
|
|
return gdbarch_gcore_bfd_target (target_gdbarch ());
|
|
|
|
/* Otherwise, try to fall back to the exec target. This will probably
|
|
not work for non-ELF targets. */
|
|
if (current_program_space->exec_bfd () == NULL)
|
|
return NULL;
|
|
else
|
|
return bfd_get_target (current_program_space->exec_bfd ());
|
|
}
|
|
|
|
/* Derive a reasonable stack segment by unwinding the target stack,
|
|
and store its limits in *BOTTOM and *TOP. Return non-zero if
|
|
successful. */
|
|
|
|
static int
|
|
derive_stack_segment (bfd_vma *bottom, bfd_vma *top)
|
|
{
|
|
struct frame_info *fi, *tmp_fi;
|
|
|
|
gdb_assert (bottom);
|
|
gdb_assert (top);
|
|
|
|
/* Can't succeed without stack and registers. */
|
|
if (!target_has_stack () || !target_has_registers ())
|
|
return 0;
|
|
|
|
/* Can't succeed without current frame. */
|
|
fi = get_current_frame ();
|
|
if (fi == NULL)
|
|
return 0;
|
|
|
|
/* Save frame pointer of TOS frame. */
|
|
*top = get_frame_base (fi);
|
|
/* If current stack pointer is more "inner", use that instead. */
|
|
if (gdbarch_inner_than (get_frame_arch (fi), get_frame_sp (fi), *top))
|
|
*top = get_frame_sp (fi);
|
|
|
|
/* Find prev-most frame. */
|
|
while ((tmp_fi = get_prev_frame (fi)) != NULL)
|
|
fi = tmp_fi;
|
|
|
|
/* Save frame pointer of prev-most frame. */
|
|
*bottom = get_frame_base (fi);
|
|
|
|
/* Now canonicalize their order, so that BOTTOM is a lower address
|
|
(as opposed to a lower stack frame). */
|
|
if (*bottom > *top)
|
|
{
|
|
bfd_vma tmp_vma;
|
|
|
|
tmp_vma = *top;
|
|
*top = *bottom;
|
|
*bottom = tmp_vma;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* call_target_sbrk --
|
|
helper function for derive_heap_segment. */
|
|
|
|
static bfd_vma
|
|
call_target_sbrk (int sbrk_arg)
|
|
{
|
|
struct objfile *sbrk_objf;
|
|
struct gdbarch *gdbarch;
|
|
bfd_vma top_of_heap;
|
|
struct value *target_sbrk_arg;
|
|
struct value *sbrk_fn, *ret;
|
|
bfd_vma tmp;
|
|
|
|
if (lookup_minimal_symbol ("sbrk", NULL, NULL).minsym != NULL)
|
|
{
|
|
sbrk_fn = find_function_in_inferior ("sbrk", &sbrk_objf);
|
|
if (sbrk_fn == NULL)
|
|
return (bfd_vma) 0;
|
|
}
|
|
else if (lookup_minimal_symbol ("_sbrk", NULL, NULL).minsym != NULL)
|
|
{
|
|
sbrk_fn = find_function_in_inferior ("_sbrk", &sbrk_objf);
|
|
if (sbrk_fn == NULL)
|
|
return (bfd_vma) 0;
|
|
}
|
|
else
|
|
return (bfd_vma) 0;
|
|
|
|
gdbarch = sbrk_objf->arch ();
|
|
target_sbrk_arg = value_from_longest (builtin_type (gdbarch)->builtin_int,
|
|
sbrk_arg);
|
|
gdb_assert (target_sbrk_arg);
|
|
ret = call_function_by_hand (sbrk_fn, NULL, target_sbrk_arg);
|
|
if (ret == NULL)
|
|
return (bfd_vma) 0;
|
|
|
|
tmp = value_as_long (ret);
|
|
if ((LONGEST) tmp <= 0 || (LONGEST) tmp == 0xffffffff)
|
|
return (bfd_vma) 0;
|
|
|
|
top_of_heap = tmp;
|
|
return top_of_heap;
|
|
}
|
|
|
|
/* Derive a reasonable heap segment for ABFD by looking at sbrk and
|
|
the static data sections. Store its limits in *BOTTOM and *TOP.
|
|
Return non-zero if successful. */
|
|
|
|
static int
|
|
derive_heap_segment (bfd *abfd, bfd_vma *bottom, bfd_vma *top)
|
|
{
|
|
bfd_vma top_of_data_memory = 0;
|
|
bfd_vma top_of_heap = 0;
|
|
bfd_size_type sec_size;
|
|
bfd_vma sec_vaddr;
|
|
asection *sec;
|
|
|
|
gdb_assert (bottom);
|
|
gdb_assert (top);
|
|
|
|
/* This function depends on being able to call a function in the
|
|
inferior. */
|
|
if (!target_has_execution ())
|
|
return 0;
|
|
|
|
/* The following code assumes that the link map is arranged as
|
|
follows (low to high addresses):
|
|
|
|
---------------------------------
|
|
| text sections |
|
|
---------------------------------
|
|
| data sections (including bss) |
|
|
---------------------------------
|
|
| heap |
|
|
--------------------------------- */
|
|
|
|
for (sec = abfd->sections; sec; sec = sec->next)
|
|
{
|
|
if (bfd_section_flags (sec) & SEC_DATA
|
|
|| strcmp (".bss", bfd_section_name (sec)) == 0)
|
|
{
|
|
sec_vaddr = bfd_section_vma (sec);
|
|
sec_size = bfd_section_size (sec);
|
|
if (sec_vaddr + sec_size > top_of_data_memory)
|
|
top_of_data_memory = sec_vaddr + sec_size;
|
|
}
|
|
}
|
|
|
|
top_of_heap = call_target_sbrk (0);
|
|
if (top_of_heap == (bfd_vma) 0)
|
|
return 0;
|
|
|
|
/* Return results. */
|
|
if (top_of_heap > top_of_data_memory)
|
|
{
|
|
*bottom = top_of_data_memory;
|
|
*top = top_of_heap;
|
|
return 1;
|
|
}
|
|
|
|
/* No additional heap space needs to be saved. */
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
make_output_phdrs (bfd *obfd, asection *osec)
|
|
{
|
|
int p_flags = 0;
|
|
int p_type = 0;
|
|
|
|
/* FIXME: these constants may only be applicable for ELF. */
|
|
if (startswith (bfd_section_name (osec), "load"))
|
|
p_type = PT_LOAD;
|
|
else if (startswith (bfd_section_name (osec), "note"))
|
|
p_type = PT_NOTE;
|
|
else
|
|
p_type = PT_NULL;
|
|
|
|
p_flags |= PF_R; /* Segment is readable. */
|
|
if (!(bfd_section_flags (osec) & SEC_READONLY))
|
|
p_flags |= PF_W; /* Segment is writable. */
|
|
if (bfd_section_flags (osec) & SEC_CODE)
|
|
p_flags |= PF_X; /* Segment is executable. */
|
|
|
|
bfd_record_phdr (obfd, p_type, 1, p_flags, 0, 0, 0, 0, 1, &osec);
|
|
}
|
|
|
|
/* find_memory_region_ftype implementation. DATA is 'bfd *' for the core file
|
|
GDB is creating. */
|
|
|
|
static int
|
|
gcore_create_callback (CORE_ADDR vaddr, unsigned long size, int read,
|
|
int write, int exec, int modified, void *data)
|
|
{
|
|
bfd *obfd = (bfd *) data;
|
|
asection *osec;
|
|
flagword flags = SEC_ALLOC | SEC_HAS_CONTENTS | SEC_LOAD;
|
|
|
|
/* If the memory segment has no permissions set, ignore it, otherwise
|
|
when we later try to access it for read/write, we'll get an error
|
|
or jam the kernel. */
|
|
if (read == 0 && write == 0 && exec == 0 && modified == 0)
|
|
{
|
|
if (info_verbose)
|
|
{
|
|
fprintf_filtered (gdb_stdout, "Ignore segment, %s bytes at %s\n",
|
|
plongest (size), paddress (target_gdbarch (), vaddr));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (write == 0 && modified == 0 && !solib_keep_data_in_core (vaddr, size))
|
|
{
|
|
/* See if this region of memory lies inside a known file on disk.
|
|
If so, we can avoid copying its contents by clearing SEC_LOAD. */
|
|
struct obj_section *objsec;
|
|
|
|
for (objfile *objfile : current_program_space->objfiles ())
|
|
ALL_OBJFILE_OSECTIONS (objfile, objsec)
|
|
{
|
|
bfd *abfd = objfile->obfd;
|
|
asection *asec = objsec->the_bfd_section;
|
|
bfd_vma align = (bfd_vma) 1 << bfd_section_alignment (asec);
|
|
bfd_vma start = objsec->addr () & -align;
|
|
bfd_vma end = (objsec->endaddr () + align - 1) & -align;
|
|
|
|
/* Match if either the entire memory region lies inside the
|
|
section (i.e. a mapping covering some pages of a large
|
|
segment) or the entire section lies inside the memory region
|
|
(i.e. a mapping covering multiple small sections).
|
|
|
|
This BFD was synthesized from reading target memory,
|
|
we don't want to omit that. */
|
|
if (objfile->separate_debug_objfile_backlink == NULL
|
|
&& ((vaddr >= start && vaddr + size <= end)
|
|
|| (start >= vaddr && end <= vaddr + size))
|
|
&& !(bfd_get_file_flags (abfd) & BFD_IN_MEMORY))
|
|
{
|
|
flags &= ~(SEC_LOAD | SEC_HAS_CONTENTS);
|
|
goto keep; /* Break out of two nested for loops. */
|
|
}
|
|
}
|
|
|
|
keep:;
|
|
}
|
|
|
|
if (write == 0)
|
|
flags |= SEC_READONLY;
|
|
|
|
if (exec)
|
|
flags |= SEC_CODE;
|
|
else
|
|
flags |= SEC_DATA;
|
|
|
|
osec = bfd_make_section_anyway_with_flags (obfd, "load", flags);
|
|
if (osec == NULL)
|
|
{
|
|
warning (_("Couldn't make gcore segment: %s"),
|
|
bfd_errmsg (bfd_get_error ()));
|
|
return 1;
|
|
}
|
|
|
|
if (info_verbose)
|
|
{
|
|
fprintf_filtered (gdb_stdout, "Save segment, %s bytes at %s\n",
|
|
plongest (size), paddress (target_gdbarch (), vaddr));
|
|
}
|
|
|
|
bfd_set_section_size (osec, size);
|
|
bfd_set_section_vma (osec, vaddr);
|
|
bfd_set_section_lma (osec, 0);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
objfile_find_memory_regions (struct target_ops *self,
|
|
find_memory_region_ftype func, void *obfd)
|
|
{
|
|
/* Use objfile data to create memory sections. */
|
|
struct obj_section *objsec;
|
|
bfd_vma temp_bottom, temp_top;
|
|
|
|
/* Call callback function for each objfile section. */
|
|
for (objfile *objfile : current_program_space->objfiles ())
|
|
ALL_OBJFILE_OSECTIONS (objfile, objsec)
|
|
{
|
|
asection *isec = objsec->the_bfd_section;
|
|
flagword flags = bfd_section_flags (isec);
|
|
|
|
/* Separate debug info files are irrelevant for gcore. */
|
|
if (objfile->separate_debug_objfile_backlink != NULL)
|
|
continue;
|
|
|
|
if ((flags & SEC_ALLOC) || (flags & SEC_LOAD))
|
|
{
|
|
int size = bfd_section_size (isec);
|
|
int ret;
|
|
|
|
ret = (*func) (objsec->addr (), size,
|
|
1, /* All sections will be readable. */
|
|
(flags & SEC_READONLY) == 0, /* Writable. */
|
|
(flags & SEC_CODE) != 0, /* Executable. */
|
|
1, /* MODIFIED is unknown, pass it as true. */
|
|
obfd);
|
|
if (ret != 0)
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* Make a stack segment. */
|
|
if (derive_stack_segment (&temp_bottom, &temp_top))
|
|
(*func) (temp_bottom, temp_top - temp_bottom,
|
|
1, /* Stack section will be readable. */
|
|
1, /* Stack section will be writable. */
|
|
0, /* Stack section will not be executable. */
|
|
1, /* Stack section will be modified. */
|
|
obfd);
|
|
|
|
/* Make a heap segment. */
|
|
if (derive_heap_segment (current_program_space->exec_bfd (), &temp_bottom,
|
|
&temp_top))
|
|
(*func) (temp_bottom, temp_top - temp_bottom,
|
|
1, /* Heap section will be readable. */
|
|
1, /* Heap section will be writable. */
|
|
0, /* Heap section will not be executable. */
|
|
1, /* Heap section will be modified. */
|
|
obfd);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
gcore_copy_callback (bfd *obfd, asection *osec)
|
|
{
|
|
bfd_size_type size, total_size = bfd_section_size (osec);
|
|
file_ptr offset = 0;
|
|
|
|
/* Read-only sections are marked; we don't have to copy their contents. */
|
|
if ((bfd_section_flags (osec) & SEC_LOAD) == 0)
|
|
return;
|
|
|
|
/* Only interested in "load" sections. */
|
|
if (!startswith (bfd_section_name (osec), "load"))
|
|
return;
|
|
|
|
size = std::min (total_size, (bfd_size_type) MAX_COPY_BYTES);
|
|
gdb::byte_vector memhunk (size);
|
|
|
|
while (total_size > 0)
|
|
{
|
|
if (size > total_size)
|
|
size = total_size;
|
|
|
|
if (target_read_memory (bfd_section_vma (osec) + offset,
|
|
memhunk.data (), size) != 0)
|
|
{
|
|
warning (_("Memory read failed for corefile "
|
|
"section, %s bytes at %s."),
|
|
plongest (size),
|
|
paddress (target_gdbarch (), bfd_section_vma (osec)));
|
|
break;
|
|
}
|
|
if (!bfd_set_section_contents (obfd, osec, memhunk.data (),
|
|
offset, size))
|
|
{
|
|
warning (_("Failed to write corefile contents (%s)."),
|
|
bfd_errmsg (bfd_get_error ()));
|
|
break;
|
|
}
|
|
|
|
total_size -= size;
|
|
offset += size;
|
|
}
|
|
}
|
|
|
|
static int
|
|
gcore_memory_sections (bfd *obfd)
|
|
{
|
|
/* Try gdbarch method first, then fall back to target method. */
|
|
if (!gdbarch_find_memory_regions_p (target_gdbarch ())
|
|
|| gdbarch_find_memory_regions (target_gdbarch (),
|
|
gcore_create_callback, obfd) != 0)
|
|
{
|
|
if (target_find_memory_regions (gcore_create_callback, obfd) != 0)
|
|
return 0; /* FIXME: error return/msg? */
|
|
}
|
|
|
|
/* Record phdrs for section-to-segment mapping. */
|
|
for (asection *sect : gdb_bfd_sections (obfd))
|
|
make_output_phdrs (obfd, sect);
|
|
|
|
/* Copy memory region contents. */
|
|
for (asection *sect : gdb_bfd_sections (obfd))
|
|
gcore_copy_callback (obfd, sect);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* See gcore.h. */
|
|
|
|
thread_info *
|
|
gcore_find_signalled_thread ()
|
|
{
|
|
thread_info *curr_thr = inferior_thread ();
|
|
if (curr_thr->state != THREAD_EXITED
|
|
&& curr_thr->stop_signal () != GDB_SIGNAL_0)
|
|
return curr_thr;
|
|
|
|
for (thread_info *thr : current_inferior ()->non_exited_threads ())
|
|
if (thr->stop_signal () != GDB_SIGNAL_0)
|
|
return thr;
|
|
|
|
/* Default to the current thread, unless it has exited. */
|
|
if (curr_thr->state != THREAD_EXITED)
|
|
return curr_thr;
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
void _initialize_gcore ();
|
|
void
|
|
_initialize_gcore ()
|
|
{
|
|
cmd_list_element *generate_core_file_cmd
|
|
= add_com ("generate-core-file", class_files, gcore_command, _("\
|
|
Save a core file with the current state of the debugged process.\n\
|
|
Usage: generate-core-file [FILENAME]\n\
|
|
Argument is optional filename. Default filename is 'core.PROCESS_ID'."));
|
|
|
|
add_com_alias ("gcore", generate_core_file_cmd, class_files, 1);
|
|
}
|