mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-24 12:35:55 +08:00
6f860418d5
A number of backends want to return bfd_reloc_dangerous messaqes from relocation special_function, and construct the message using asprintf. Such messages are not freed anywhere, leading to small memory leaks inside libbfd. To limit the leaks, I'd implemented a static buffer in the ppc backends that was freed before use in asprintf output. This patch extends that scheme to other backends using a shared static buffer and goes further in freeing the buffer on any bfd_close. The patch also fixes a few other cases where asprintf output was not freed after use. bfd/ * bfd.c (_input_error_msg): Make global and rename to.. (_bfd_error_buf): ..this. (bfd_asprintf): New function. (bfd_errmsg): Use bfd_asprintf. * opncls.c (bfd_close_all_done): Free _buf_error_buf. * elf32-arm.c (find_thumb_glue, find_arm_glue): Use bfd_asprintf. * elf32-nios2.c (nios2_elf32_relocate_section): Likewise. * elf32-ppc.c (ppc_elf_unhandled_reloc): Likewise. * elf64-ppc.c (ppc64_elf_unhandled_reloc): Likewise. * elfnn-riscv.c (riscv_resolve_pcrel_lo_relocs): Likewise. (riscv_elf_relocate_section): Likewise. * libbfd.h: Regenerate. gas/ * read.c (read_end): Free current_name and current_label. (do_s_func): Likewise on error path. strdup label. ld/ * pe-dll.c (make_head, make_tail, make_one), (make_singleton_name_thunk, make_import_fixup_entry), (make_runtime_pseudo_reloc), (pe_create_runtime_relocator_reference: Free oname after use.
5585 lines
164 KiB
C
5585 lines
164 KiB
C
/* RISC-V-specific support for NN-bit ELF.
|
|
Copyright (C) 2011-2023 Free Software Foundation, Inc.
|
|
|
|
Contributed by Andrew Waterman (andrew@sifive.com).
|
|
Based on TILE-Gx and MIPS targets.
|
|
|
|
This file is part of BFD, the Binary File Descriptor library.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; see the file COPYING3. If not,
|
|
see <http://www.gnu.org/licenses/>. */
|
|
|
|
/* This file handles RISC-V ELF targets. */
|
|
|
|
#include "sysdep.h"
|
|
#include "bfd.h"
|
|
#include "libbfd.h"
|
|
#include "bfdlink.h"
|
|
#include "genlink.h"
|
|
#include "elf-bfd.h"
|
|
#include "elfxx-riscv.h"
|
|
#include "elf/riscv.h"
|
|
#include "opcode/riscv.h"
|
|
#include "objalloc.h"
|
|
|
|
#include <limits.h>
|
|
#ifndef CHAR_BIT
|
|
#define CHAR_BIT 8
|
|
#endif
|
|
|
|
/* True if dynamic relocation is needed. If we are creating a shared library,
|
|
and this is a reloc against a global symbol, or a non PC relative reloc
|
|
against a local symbol, then we need to copy the reloc into the shared
|
|
library. However, if we are linking with -Bsymbolic, we do not need to
|
|
copy a reloc against a global symbol which is defined in an object we are
|
|
including in the link (i.e., DEF_REGULAR is set).
|
|
|
|
At this point we have not seen all the input files, so it is possible that
|
|
DEF_REGULAR is not set now but will be set later (it is never cleared).
|
|
In case of a weak definition, DEF_REGULAR may be cleared later by a strong
|
|
definition in a shared library. We account for that possibility below by
|
|
storing information in the relocs_copied field of the hash table entry.
|
|
A similar situation occurs when creating shared libraries and symbol
|
|
visibility changes render the symbol local.
|
|
|
|
If on the other hand, we are creating an executable, we may need to keep
|
|
relocations for symbols satisfied by a dynamic library if we manage to
|
|
avoid copy relocs for the symbol.
|
|
|
|
Generate dynamic pointer relocation against STT_GNU_IFUNC symbol in the
|
|
non-code section (R_RISCV_32/R_RISCV_64). */
|
|
#define RISCV_NEED_DYNAMIC_RELOC(PCREL, INFO, H, SEC) \
|
|
((bfd_link_pic (INFO) \
|
|
&& ((SEC)->flags & SEC_ALLOC) != 0 \
|
|
&& (!(PCREL) \
|
|
|| ((H) != NULL \
|
|
&& (!(INFO)->symbolic \
|
|
|| (H)->root.type == bfd_link_hash_defweak \
|
|
|| !(H)->def_regular)))) \
|
|
|| (!bfd_link_pic (INFO) \
|
|
&& ((SEC)->flags & SEC_ALLOC) != 0 \
|
|
&& (H) != NULL \
|
|
&& ((H)->root.type == bfd_link_hash_defweak \
|
|
|| !(H)->def_regular)) \
|
|
|| (!bfd_link_pic (INFO) \
|
|
&& (H) != NULL \
|
|
&& (H)->type == STT_GNU_IFUNC \
|
|
&& ((SEC)->flags & SEC_CODE) == 0))
|
|
|
|
/* True if dynamic relocation should be generated. */
|
|
#define RISCV_GENERATE_DYNAMIC_RELOC(PCREL, INFO, H, RESOLVED_TO_ZERO) \
|
|
((bfd_link_pic (INFO) \
|
|
&& ((H) == NULL \
|
|
|| (ELF_ST_VISIBILITY ((H)->other) == STV_DEFAULT && !(RESOLVED_TO_ZERO)) \
|
|
|| (H)->root.type != bfd_link_hash_undefweak) \
|
|
&& (!(PCREL) \
|
|
|| !SYMBOL_CALLS_LOCAL ((INFO), (H)))) \
|
|
|| (!bfd_link_pic (INFO) \
|
|
&& (H) != NULL \
|
|
&& (H)->dynindx != -1 \
|
|
&& !(H)->non_got_ref \
|
|
&& (((H)->def_dynamic && !(H)->def_regular) \
|
|
|| (H)->root.type == bfd_link_hash_undefweak \
|
|
|| (H)->root.type == bfd_link_hash_undefined)))
|
|
|
|
/* True if this input relocation should be copied to output. H->dynindx
|
|
may be -1 if this symbol was marked to become local. */
|
|
#define RISCV_COPY_INPUT_RELOC(INFO, H) \
|
|
((H) != NULL \
|
|
&& (H)->dynindx != -1 \
|
|
&& (!bfd_link_pic (INFO) \
|
|
|| !SYMBOLIC_BIND ((INFO), (H)) \
|
|
|| !(H)->def_regular))
|
|
|
|
/* True if this is actually a static link, or it is a -Bsymbolic link
|
|
and the symbol is defined locally, or the symbol was forced to be
|
|
local because of a version file. */
|
|
#define RISCV_RESOLVED_LOCALLY(INFO, H) \
|
|
(!WILL_CALL_FINISH_DYNAMIC_SYMBOL (elf_hash_table (INFO)->dynamic_sections_created, \
|
|
bfd_link_pic (INFO), (H)) \
|
|
|| (bfd_link_pic (INFO) \
|
|
&& SYMBOL_REFERENCES_LOCAL ((INFO), (H))))
|
|
|
|
/* Set NEED_RELOC to true if TLS GD/IE needs dynamic relocations, and INDX will
|
|
be the dynamic index. PR22263, use the same check in allocate_dynrelocs and
|
|
riscv_elf_relocate_section for TLS GD/IE. */
|
|
#define RISCV_TLS_GD_IE_NEED_DYN_RELOC(INFO, DYN, H, INDX, NEED_RELOC) \
|
|
do \
|
|
{ \
|
|
if ((H) != NULL \
|
|
&& (H)->dynindx != -1 \
|
|
&& WILL_CALL_FINISH_DYNAMIC_SYMBOL ((DYN), bfd_link_pic (INFO), (H)) \
|
|
&& (bfd_link_dll (INFO) || !SYMBOL_REFERENCES_LOCAL ((INFO), (H)))) \
|
|
(INDX) = (H)->dynindx; \
|
|
if ((bfd_link_dll (INFO) || (INDX) != 0) \
|
|
&& ((H) == NULL \
|
|
|| ELF_ST_VISIBILITY ((H)->other) == STV_DEFAULT \
|
|
|| (H)->root.type != bfd_link_hash_undefweak)) \
|
|
(NEED_RELOC) = true; \
|
|
} \
|
|
while (0)
|
|
|
|
/* Internal relocations used exclusively by the relaxation pass. */
|
|
#define R_RISCV_DELETE (R_RISCV_max + 1)
|
|
|
|
#define ARCH_SIZE NN
|
|
|
|
#define MINUS_ONE ((bfd_vma)0 - 1)
|
|
|
|
#define RISCV_ELF_LOG_WORD_BYTES (ARCH_SIZE == 32 ? 2 : 3)
|
|
|
|
#define RISCV_ELF_WORD_BYTES (1 << RISCV_ELF_LOG_WORD_BYTES)
|
|
|
|
/* The name of the dynamic interpreter. This is put in the .interp
|
|
section. */
|
|
|
|
#define ELF64_DYNAMIC_INTERPRETER "/lib/ld.so.1"
|
|
#define ELF32_DYNAMIC_INTERPRETER "/lib32/ld.so.1"
|
|
|
|
#define ELF_ARCH bfd_arch_riscv
|
|
#define ELF_TARGET_ID RISCV_ELF_DATA
|
|
#define ELF_MACHINE_CODE EM_RISCV
|
|
#define ELF_MAXPAGESIZE 0x1000
|
|
#define ELF_COMMONPAGESIZE 0x1000
|
|
|
|
#define RISCV_ATTRIBUTES_SECTION_NAME ".riscv.attributes"
|
|
|
|
/* RISC-V ELF linker hash entry. */
|
|
|
|
struct riscv_elf_link_hash_entry
|
|
{
|
|
struct elf_link_hash_entry elf;
|
|
|
|
#define GOT_UNKNOWN 0
|
|
#define GOT_NORMAL 1
|
|
#define GOT_TLS_GD 2
|
|
#define GOT_TLS_IE 4
|
|
#define GOT_TLS_LE 8
|
|
char tls_type;
|
|
};
|
|
|
|
#define riscv_elf_hash_entry(ent) \
|
|
((struct riscv_elf_link_hash_entry *) (ent))
|
|
|
|
struct _bfd_riscv_elf_obj_tdata
|
|
{
|
|
struct elf_obj_tdata root;
|
|
|
|
/* tls_type for each local got entry. */
|
|
char *local_got_tls_type;
|
|
};
|
|
|
|
#define _bfd_riscv_elf_tdata(abfd) \
|
|
((struct _bfd_riscv_elf_obj_tdata *) (abfd)->tdata.any)
|
|
|
|
#define _bfd_riscv_elf_local_got_tls_type(abfd) \
|
|
(_bfd_riscv_elf_tdata (abfd)->local_got_tls_type)
|
|
|
|
#define _bfd_riscv_elf_tls_type(abfd, h, symndx) \
|
|
(*((h) != NULL ? &riscv_elf_hash_entry (h)->tls_type \
|
|
: &_bfd_riscv_elf_local_got_tls_type (abfd) [symndx]))
|
|
|
|
#define is_riscv_elf(bfd) \
|
|
(bfd_get_flavour (bfd) == bfd_target_elf_flavour \
|
|
&& elf_tdata (bfd) != NULL \
|
|
&& elf_object_id (bfd) == RISCV_ELF_DATA)
|
|
|
|
static bool
|
|
elfNN_riscv_mkobject (bfd *abfd)
|
|
{
|
|
return bfd_elf_allocate_object (abfd,
|
|
sizeof (struct _bfd_riscv_elf_obj_tdata),
|
|
RISCV_ELF_DATA);
|
|
}
|
|
|
|
#include "elf/common.h"
|
|
#include "elf/internal.h"
|
|
|
|
struct riscv_elf_link_hash_table
|
|
{
|
|
struct elf_link_hash_table elf;
|
|
|
|
/* Various options and other info passed from the linker. */
|
|
struct riscv_elf_params *params;
|
|
|
|
/* Short-cuts to get to dynamic linker sections. */
|
|
asection *sdyntdata;
|
|
|
|
/* The max alignment of output sections. */
|
|
bfd_vma max_alignment;
|
|
|
|
/* The max alignment of output sections in [gp-2K, gp+2K) range. */
|
|
bfd_vma max_alignment_for_gp;
|
|
|
|
/* Used by local STT_GNU_IFUNC symbols. */
|
|
htab_t loc_hash_table;
|
|
void * loc_hash_memory;
|
|
|
|
/* The index of the last unused .rel.iplt slot. */
|
|
bfd_vma last_iplt_index;
|
|
|
|
/* The data segment phase, don't relax the section
|
|
when it is exp_seg_relro_adjust. */
|
|
int *data_segment_phase;
|
|
|
|
/* Relocations for variant CC symbols may be present. */
|
|
int variant_cc;
|
|
};
|
|
|
|
/* Instruction access functions. */
|
|
#define riscv_get_insn(bits, ptr) \
|
|
((bits) == 16 ? bfd_getl16 (ptr) \
|
|
: (bits) == 32 ? bfd_getl32 (ptr) \
|
|
: (bits) == 64 ? bfd_getl64 (ptr) \
|
|
: (abort (), (bfd_vma) - 1))
|
|
#define riscv_put_insn(bits, val, ptr) \
|
|
((bits) == 16 ? bfd_putl16 (val, ptr) \
|
|
: (bits) == 32 ? bfd_putl32 (val, ptr) \
|
|
: (bits) == 64 ? bfd_putl64 (val, ptr) \
|
|
: (abort (), (void) 0))
|
|
|
|
/* Get the RISC-V ELF linker hash table from a link_info structure. */
|
|
#define riscv_elf_hash_table(p) \
|
|
((is_elf_hash_table ((p)->hash) \
|
|
&& elf_hash_table_id (elf_hash_table (p)) == RISCV_ELF_DATA) \
|
|
? (struct riscv_elf_link_hash_table *) (p)->hash : NULL)
|
|
|
|
void
|
|
riscv_elfNN_set_options (struct bfd_link_info *link_info,
|
|
struct riscv_elf_params *params)
|
|
{
|
|
riscv_elf_hash_table (link_info)->params = params;
|
|
}
|
|
|
|
static bool
|
|
riscv_info_to_howto_rela (bfd *abfd,
|
|
arelent *cache_ptr,
|
|
Elf_Internal_Rela *dst)
|
|
{
|
|
cache_ptr->howto = riscv_elf_rtype_to_howto (abfd, ELFNN_R_TYPE (dst->r_info));
|
|
return cache_ptr->howto != NULL;
|
|
}
|
|
|
|
static void
|
|
riscv_elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
|
|
{
|
|
const struct elf_backend_data *bed;
|
|
bfd_byte *loc;
|
|
|
|
bed = get_elf_backend_data (abfd);
|
|
loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
|
|
bed->s->swap_reloca_out (abfd, rel, loc);
|
|
}
|
|
|
|
/* Return true if a relocation is modifying an instruction. */
|
|
|
|
static bool
|
|
riscv_is_insn_reloc (const reloc_howto_type *howto)
|
|
{
|
|
/* Heuristic: A multibyte destination with a nontrivial mask
|
|
is an instruction */
|
|
return (howto->bitsize > 8
|
|
&& howto->dst_mask != 0
|
|
&& ~(howto->dst_mask | (howto->bitsize < sizeof(bfd_vma) * CHAR_BIT
|
|
? (MINUS_ONE << howto->bitsize) : (bfd_vma)0)) != 0);
|
|
}
|
|
|
|
/* PLT/GOT stuff. */
|
|
#define PLT_HEADER_INSNS 8
|
|
#define PLT_ENTRY_INSNS 4
|
|
#define PLT_HEADER_SIZE (PLT_HEADER_INSNS * 4)
|
|
#define PLT_ENTRY_SIZE (PLT_ENTRY_INSNS * 4)
|
|
#define GOT_ENTRY_SIZE RISCV_ELF_WORD_BYTES
|
|
/* Reserve two entries of GOTPLT for ld.so, one is used for PLT resolver,
|
|
the other is used for link map. Other targets also reserve one more
|
|
entry used for runtime profile? */
|
|
#define GOTPLT_HEADER_SIZE (2 * GOT_ENTRY_SIZE)
|
|
|
|
#define sec_addr(sec) ((sec)->output_section->vma + (sec)->output_offset)
|
|
|
|
#if ARCH_SIZE == 32
|
|
# define MATCH_LREG MATCH_LW
|
|
#else
|
|
# define MATCH_LREG MATCH_LD
|
|
#endif
|
|
|
|
/* Generate a PLT header. */
|
|
|
|
static bool
|
|
riscv_make_plt_header (bfd *output_bfd, bfd_vma gotplt_addr, bfd_vma addr,
|
|
uint32_t *entry)
|
|
{
|
|
bfd_vma gotplt_offset_high = RISCV_PCREL_HIGH_PART (gotplt_addr, addr);
|
|
bfd_vma gotplt_offset_low = RISCV_PCREL_LOW_PART (gotplt_addr, addr);
|
|
|
|
/* RVE has no t3 register, so this won't work, and is not supported. */
|
|
if (elf_elfheader (output_bfd)->e_flags & EF_RISCV_RVE)
|
|
{
|
|
_bfd_error_handler (_("%pB: warning: RVE PLT generation not supported"),
|
|
output_bfd);
|
|
return false;
|
|
}
|
|
|
|
/* auipc t2, %hi(.got.plt)
|
|
sub t1, t1, t3 # shifted .got.plt offset + hdr size + 12
|
|
l[w|d] t3, %lo(.got.plt)(t2) # _dl_runtime_resolve
|
|
addi t1, t1, -(hdr size + 12) # shifted .got.plt offset
|
|
addi t0, t2, %lo(.got.plt) # &.got.plt
|
|
srli t1, t1, log2(16/PTRSIZE) # .got.plt offset
|
|
l[w|d] t0, PTRSIZE(t0) # link map
|
|
jr t3 */
|
|
|
|
entry[0] = RISCV_UTYPE (AUIPC, X_T2, gotplt_offset_high);
|
|
entry[1] = RISCV_RTYPE (SUB, X_T1, X_T1, X_T3);
|
|
entry[2] = RISCV_ITYPE (LREG, X_T3, X_T2, gotplt_offset_low);
|
|
entry[3] = RISCV_ITYPE (ADDI, X_T1, X_T1, (uint32_t) -(PLT_HEADER_SIZE + 12));
|
|
entry[4] = RISCV_ITYPE (ADDI, X_T0, X_T2, gotplt_offset_low);
|
|
entry[5] = RISCV_ITYPE (SRLI, X_T1, X_T1, 4 - RISCV_ELF_LOG_WORD_BYTES);
|
|
entry[6] = RISCV_ITYPE (LREG, X_T0, X_T0, RISCV_ELF_WORD_BYTES);
|
|
entry[7] = RISCV_ITYPE (JALR, 0, X_T3, 0);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Generate a PLT entry. */
|
|
|
|
static bool
|
|
riscv_make_plt_entry (bfd *output_bfd, bfd_vma got, bfd_vma addr,
|
|
uint32_t *entry)
|
|
{
|
|
/* RVE has no t3 register, so this won't work, and is not supported. */
|
|
if (elf_elfheader (output_bfd)->e_flags & EF_RISCV_RVE)
|
|
{
|
|
_bfd_error_handler (_("%pB: warning: RVE PLT generation not supported"),
|
|
output_bfd);
|
|
return false;
|
|
}
|
|
|
|
/* auipc t3, %hi(.got.plt entry)
|
|
l[w|d] t3, %lo(.got.plt entry)(t3)
|
|
jalr t1, t3
|
|
nop */
|
|
|
|
entry[0] = RISCV_UTYPE (AUIPC, X_T3, RISCV_PCREL_HIGH_PART (got, addr));
|
|
entry[1] = RISCV_ITYPE (LREG, X_T3, X_T3, RISCV_PCREL_LOW_PART (got, addr));
|
|
entry[2] = RISCV_ITYPE (JALR, X_T1, X_T3, 0);
|
|
entry[3] = RISCV_NOP;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Create an entry in an RISC-V ELF linker hash table. */
|
|
|
|
static struct bfd_hash_entry *
|
|
link_hash_newfunc (struct bfd_hash_entry *entry,
|
|
struct bfd_hash_table *table, const char *string)
|
|
{
|
|
/* Allocate the structure if it has not already been allocated by a
|
|
subclass. */
|
|
if (entry == NULL)
|
|
{
|
|
entry =
|
|
bfd_hash_allocate (table,
|
|
sizeof (struct riscv_elf_link_hash_entry));
|
|
if (entry == NULL)
|
|
return entry;
|
|
}
|
|
|
|
/* Call the allocation method of the superclass. */
|
|
entry = _bfd_elf_link_hash_newfunc (entry, table, string);
|
|
if (entry != NULL)
|
|
{
|
|
struct riscv_elf_link_hash_entry *eh;
|
|
|
|
eh = (struct riscv_elf_link_hash_entry *) entry;
|
|
eh->tls_type = GOT_UNKNOWN;
|
|
}
|
|
|
|
return entry;
|
|
}
|
|
|
|
/* Compute a hash of a local hash entry. We use elf_link_hash_entry
|
|
for local symbol so that we can handle local STT_GNU_IFUNC symbols
|
|
as global symbol. We reuse indx and dynstr_index for local symbol
|
|
hash since they aren't used by global symbols in this backend. */
|
|
|
|
static hashval_t
|
|
riscv_elf_local_htab_hash (const void *ptr)
|
|
{
|
|
struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) ptr;
|
|
return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
|
|
}
|
|
|
|
/* Compare local hash entries. */
|
|
|
|
static int
|
|
riscv_elf_local_htab_eq (const void *ptr1, const void *ptr2)
|
|
{
|
|
struct elf_link_hash_entry *h1 = (struct elf_link_hash_entry *) ptr1;
|
|
struct elf_link_hash_entry *h2 = (struct elf_link_hash_entry *) ptr2;
|
|
|
|
return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
|
|
}
|
|
|
|
/* Find and/or create a hash entry for local symbol. */
|
|
|
|
static struct elf_link_hash_entry *
|
|
riscv_elf_get_local_sym_hash (struct riscv_elf_link_hash_table *htab,
|
|
bfd *abfd, const Elf_Internal_Rela *rel,
|
|
bool create)
|
|
{
|
|
struct riscv_elf_link_hash_entry eh, *ret;
|
|
asection *sec = abfd->sections;
|
|
hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
|
|
ELFNN_R_SYM (rel->r_info));
|
|
void **slot;
|
|
|
|
eh.elf.indx = sec->id;
|
|
eh.elf.dynstr_index = ELFNN_R_SYM (rel->r_info);
|
|
slot = htab_find_slot_with_hash (htab->loc_hash_table, &eh, h,
|
|
create ? INSERT : NO_INSERT);
|
|
|
|
if (!slot)
|
|
return NULL;
|
|
|
|
if (*slot)
|
|
{
|
|
ret = (struct riscv_elf_link_hash_entry *) *slot;
|
|
return &ret->elf;
|
|
}
|
|
|
|
ret = (struct riscv_elf_link_hash_entry *)
|
|
objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
|
|
sizeof (struct riscv_elf_link_hash_entry));
|
|
if (ret)
|
|
{
|
|
memset (ret, 0, sizeof (*ret));
|
|
ret->elf.indx = sec->id;
|
|
ret->elf.dynstr_index = ELFNN_R_SYM (rel->r_info);
|
|
ret->elf.dynindx = -1;
|
|
*slot = ret;
|
|
}
|
|
return &ret->elf;
|
|
}
|
|
|
|
/* Destroy a RISC-V elf linker hash table. */
|
|
|
|
static void
|
|
riscv_elf_link_hash_table_free (bfd *obfd)
|
|
{
|
|
struct riscv_elf_link_hash_table *ret
|
|
= (struct riscv_elf_link_hash_table *) obfd->link.hash;
|
|
|
|
if (ret->loc_hash_table)
|
|
htab_delete (ret->loc_hash_table);
|
|
if (ret->loc_hash_memory)
|
|
objalloc_free ((struct objalloc *) ret->loc_hash_memory);
|
|
|
|
_bfd_elf_link_hash_table_free (obfd);
|
|
}
|
|
|
|
/* Create a RISC-V ELF linker hash table. */
|
|
|
|
static struct bfd_link_hash_table *
|
|
riscv_elf_link_hash_table_create (bfd *abfd)
|
|
{
|
|
struct riscv_elf_link_hash_table *ret;
|
|
size_t amt = sizeof (struct riscv_elf_link_hash_table);
|
|
|
|
ret = (struct riscv_elf_link_hash_table *) bfd_zmalloc (amt);
|
|
if (ret == NULL)
|
|
return NULL;
|
|
|
|
if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc,
|
|
sizeof (struct riscv_elf_link_hash_entry),
|
|
RISCV_ELF_DATA))
|
|
{
|
|
free (ret);
|
|
return NULL;
|
|
}
|
|
|
|
ret->max_alignment = (bfd_vma) -1;
|
|
ret->max_alignment_for_gp = (bfd_vma) -1;
|
|
|
|
/* Create hash table for local ifunc. */
|
|
ret->loc_hash_table = htab_try_create (1024,
|
|
riscv_elf_local_htab_hash,
|
|
riscv_elf_local_htab_eq,
|
|
NULL);
|
|
ret->loc_hash_memory = objalloc_create ();
|
|
if (!ret->loc_hash_table || !ret->loc_hash_memory)
|
|
{
|
|
riscv_elf_link_hash_table_free (abfd);
|
|
return NULL;
|
|
}
|
|
ret->elf.root.hash_table_free = riscv_elf_link_hash_table_free;
|
|
|
|
return &ret->elf.root;
|
|
}
|
|
|
|
/* Create the .got section. */
|
|
|
|
static bool
|
|
riscv_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
|
|
{
|
|
flagword flags;
|
|
asection *s, *s_got;
|
|
struct elf_link_hash_entry *h;
|
|
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
|
struct elf_link_hash_table *htab = elf_hash_table (info);
|
|
|
|
/* This function may be called more than once. */
|
|
if (htab->sgot != NULL)
|
|
return true;
|
|
|
|
flags = bed->dynamic_sec_flags;
|
|
|
|
s = bfd_make_section_anyway_with_flags (abfd,
|
|
(bed->rela_plts_and_copies_p
|
|
? ".rela.got" : ".rel.got"),
|
|
(bed->dynamic_sec_flags
|
|
| SEC_READONLY));
|
|
if (s == NULL
|
|
|| !bfd_set_section_alignment (s, bed->s->log_file_align))
|
|
return false;
|
|
htab->srelgot = s;
|
|
|
|
s = s_got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
|
|
if (s == NULL
|
|
|| !bfd_set_section_alignment (s, bed->s->log_file_align))
|
|
return false;
|
|
htab->sgot = s;
|
|
|
|
/* The first bit of the global offset table is the header. */
|
|
s->size += bed->got_header_size;
|
|
|
|
if (bed->want_got_plt)
|
|
{
|
|
s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
|
|
if (s == NULL
|
|
|| !bfd_set_section_alignment (s, bed->s->log_file_align))
|
|
return false;
|
|
htab->sgotplt = s;
|
|
|
|
/* Reserve room for the header. */
|
|
s->size += GOTPLT_HEADER_SIZE;
|
|
}
|
|
|
|
if (bed->want_got_sym)
|
|
{
|
|
/* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
|
|
section. We don't do this in the linker script because we don't want
|
|
to define the symbol if we are not creating a global offset
|
|
table. */
|
|
h = _bfd_elf_define_linkage_sym (abfd, info, s_got,
|
|
"_GLOBAL_OFFSET_TABLE_");
|
|
elf_hash_table (info)->hgot = h;
|
|
if (h == NULL)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
|
|
.rela.bss sections in DYNOBJ, and set up shortcuts to them in our
|
|
hash table. */
|
|
|
|
static bool
|
|
riscv_elf_create_dynamic_sections (bfd *dynobj,
|
|
struct bfd_link_info *info)
|
|
{
|
|
struct riscv_elf_link_hash_table *htab;
|
|
|
|
htab = riscv_elf_hash_table (info);
|
|
BFD_ASSERT (htab != NULL);
|
|
|
|
if (!riscv_elf_create_got_section (dynobj, info))
|
|
return false;
|
|
|
|
if (!_bfd_elf_create_dynamic_sections (dynobj, info))
|
|
return false;
|
|
|
|
if (!bfd_link_pic (info))
|
|
{
|
|
/* Technically, this section doesn't have contents. It is used as the
|
|
target of TLS copy relocs, to copy TLS data from shared libraries into
|
|
the executable. However, if we don't mark it as loadable, then it
|
|
matches the IS_TBSS test in ldlang.c, and there is no run-time address
|
|
space allocated for it even though it has SEC_ALLOC. That test is
|
|
correct for .tbss, but not correct for this section. There is also
|
|
a second problem that having a section with no contents can only work
|
|
if it comes after all sections with contents in the same segment,
|
|
but the linker script does not guarantee that. This is just mixed in
|
|
with other .tdata.* sections. We can fix both problems by lying and
|
|
saying that there are contents. This section is expected to be small
|
|
so this should not cause a significant extra program startup cost. */
|
|
htab->sdyntdata =
|
|
bfd_make_section_anyway_with_flags (dynobj, ".tdata.dyn",
|
|
(SEC_ALLOC | SEC_THREAD_LOCAL
|
|
| SEC_LOAD | SEC_DATA
|
|
| SEC_HAS_CONTENTS
|
|
| SEC_LINKER_CREATED));
|
|
}
|
|
|
|
if (!htab->elf.splt || !htab->elf.srelplt || !htab->elf.sdynbss
|
|
|| (!bfd_link_pic (info) && (!htab->elf.srelbss || !htab->sdyntdata)))
|
|
abort ();
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Copy the extra info we tack onto an elf_link_hash_entry. */
|
|
|
|
static void
|
|
riscv_elf_copy_indirect_symbol (struct bfd_link_info *info,
|
|
struct elf_link_hash_entry *dir,
|
|
struct elf_link_hash_entry *ind)
|
|
{
|
|
struct riscv_elf_link_hash_entry *edir, *eind;
|
|
|
|
edir = (struct riscv_elf_link_hash_entry *) dir;
|
|
eind = (struct riscv_elf_link_hash_entry *) ind;
|
|
|
|
if (ind->root.type == bfd_link_hash_indirect
|
|
&& dir->got.refcount <= 0)
|
|
{
|
|
edir->tls_type = eind->tls_type;
|
|
eind->tls_type = GOT_UNKNOWN;
|
|
}
|
|
_bfd_elf_link_hash_copy_indirect (info, dir, ind);
|
|
}
|
|
|
|
static bool
|
|
riscv_elf_record_tls_type (bfd *abfd, struct elf_link_hash_entry *h,
|
|
unsigned long symndx, char tls_type)
|
|
{
|
|
char *new_tls_type = &_bfd_riscv_elf_tls_type (abfd, h, symndx);
|
|
|
|
*new_tls_type |= tls_type;
|
|
if ((*new_tls_type & GOT_NORMAL) && (*new_tls_type & ~GOT_NORMAL))
|
|
{
|
|
(*_bfd_error_handler)
|
|
(_("%pB: `%s' accessed both as normal and thread local symbol"),
|
|
abfd, h ? h->root.root.string : "<local>");
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
riscv_elf_record_got_reference (bfd *abfd, struct bfd_link_info *info,
|
|
struct elf_link_hash_entry *h, long symndx)
|
|
{
|
|
struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
|
|
Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
|
|
|
if (htab->elf.sgot == NULL)
|
|
{
|
|
if (!riscv_elf_create_got_section (htab->elf.dynobj, info))
|
|
return false;
|
|
}
|
|
|
|
if (h != NULL)
|
|
{
|
|
h->got.refcount += 1;
|
|
return true;
|
|
}
|
|
|
|
/* This is a global offset table entry for a local symbol. */
|
|
if (elf_local_got_refcounts (abfd) == NULL)
|
|
{
|
|
bfd_size_type size = symtab_hdr->sh_info * (sizeof (bfd_vma) + 1);
|
|
if (!(elf_local_got_refcounts (abfd) = bfd_zalloc (abfd, size)))
|
|
return false;
|
|
_bfd_riscv_elf_local_got_tls_type (abfd)
|
|
= (char *) (elf_local_got_refcounts (abfd) + symtab_hdr->sh_info);
|
|
}
|
|
elf_local_got_refcounts (abfd) [symndx] += 1;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
bad_static_reloc (bfd *abfd, unsigned r_type, struct elf_link_hash_entry *h)
|
|
{
|
|
reloc_howto_type * r = riscv_elf_rtype_to_howto (abfd, r_type);
|
|
|
|
/* We propably can improve the information to tell users that they
|
|
should be recompile the code with -fPIC or -fPIE, just like what
|
|
x86 does. */
|
|
(*_bfd_error_handler)
|
|
(_("%pB: relocation %s against `%s' can not be used when making a shared "
|
|
"object; recompile with -fPIC"),
|
|
abfd, r ? r->name : _("<unknown>"),
|
|
h != NULL ? h->root.root.string : "a local symbol");
|
|
bfd_set_error (bfd_error_bad_value);
|
|
return false;
|
|
}
|
|
|
|
/* Look through the relocs for a section during the first phase, and
|
|
allocate space in the global offset table or procedure linkage
|
|
table. */
|
|
|
|
static bool
|
|
riscv_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
|
|
asection *sec, const Elf_Internal_Rela *relocs)
|
|
{
|
|
struct riscv_elf_link_hash_table *htab;
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
struct elf_link_hash_entry **sym_hashes;
|
|
const Elf_Internal_Rela *rel;
|
|
asection *sreloc = NULL;
|
|
|
|
if (bfd_link_relocatable (info))
|
|
return true;
|
|
|
|
htab = riscv_elf_hash_table (info);
|
|
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
|
sym_hashes = elf_sym_hashes (abfd);
|
|
|
|
if (htab->elf.dynobj == NULL)
|
|
htab->elf.dynobj = abfd;
|
|
|
|
for (rel = relocs; rel < relocs + sec->reloc_count; rel++)
|
|
{
|
|
unsigned int r_type;
|
|
unsigned int r_symndx;
|
|
struct elf_link_hash_entry *h;
|
|
bool is_abs_symbol = false;
|
|
|
|
r_symndx = ELFNN_R_SYM (rel->r_info);
|
|
r_type = ELFNN_R_TYPE (rel->r_info);
|
|
|
|
if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
|
|
{
|
|
(*_bfd_error_handler) (_("%pB: bad symbol index: %d"),
|
|
abfd, r_symndx);
|
|
return false;
|
|
}
|
|
|
|
if (r_symndx < symtab_hdr->sh_info)
|
|
{
|
|
/* A local symbol. */
|
|
Elf_Internal_Sym *isym = bfd_sym_from_r_symndx (&htab->elf.sym_cache,
|
|
abfd, r_symndx);
|
|
if (isym == NULL)
|
|
return false;
|
|
|
|
is_abs_symbol = isym->st_shndx == SHN_ABS ? true : false;
|
|
|
|
/* Check relocation against local STT_GNU_IFUNC symbol. */
|
|
if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
|
|
{
|
|
h = riscv_elf_get_local_sym_hash (htab, abfd, rel, true);
|
|
if (h == NULL)
|
|
return false;
|
|
|
|
/* Fake STT_GNU_IFUNC global symbol. */
|
|
h->root.root.string = bfd_elf_sym_name (abfd, symtab_hdr,
|
|
isym, NULL);
|
|
h->type = STT_GNU_IFUNC;
|
|
h->def_regular = 1;
|
|
h->ref_regular = 1;
|
|
h->forced_local = 1;
|
|
h->root.type = bfd_link_hash_defined;
|
|
}
|
|
else
|
|
h = NULL;
|
|
}
|
|
else
|
|
{
|
|
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
|
|
while (h->root.type == bfd_link_hash_indirect
|
|
|| h->root.type == bfd_link_hash_warning)
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
|
|
|
is_abs_symbol = bfd_is_abs_symbol (&h->root) ? true : false;
|
|
}
|
|
|
|
if (h != NULL)
|
|
{
|
|
switch (r_type)
|
|
{
|
|
case R_RISCV_32:
|
|
case R_RISCV_64:
|
|
case R_RISCV_CALL:
|
|
case R_RISCV_CALL_PLT:
|
|
case R_RISCV_HI20:
|
|
case R_RISCV_GOT_HI20:
|
|
case R_RISCV_PCREL_HI20:
|
|
/* Create the ifunc sections, iplt and ipltgot, for static
|
|
executables. */
|
|
if (h->type == STT_GNU_IFUNC
|
|
&& !_bfd_elf_create_ifunc_sections (htab->elf.dynobj, info))
|
|
return false;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* It is referenced by a non-shared object. */
|
|
h->ref_regular = 1;
|
|
}
|
|
|
|
switch (r_type)
|
|
{
|
|
case R_RISCV_TLS_GD_HI20:
|
|
if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
|
|
|| !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_GD))
|
|
return false;
|
|
break;
|
|
|
|
case R_RISCV_TLS_GOT_HI20:
|
|
if (bfd_link_dll (info))
|
|
info->flags |= DF_STATIC_TLS;
|
|
if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
|
|
|| !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_IE))
|
|
return false;
|
|
break;
|
|
|
|
case R_RISCV_GOT_HI20:
|
|
if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
|
|
|| !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_NORMAL))
|
|
return false;
|
|
break;
|
|
|
|
case R_RISCV_CALL:
|
|
case R_RISCV_CALL_PLT:
|
|
/* These symbol requires a procedure linkage table entry.
|
|
We actually build the entry in adjust_dynamic_symbol,
|
|
because these might be a case of linking PIC code without
|
|
linking in any dynamic objects, in which case we don't
|
|
need to generate a procedure linkage table after all. */
|
|
|
|
/* If it is a local symbol, then we resolve it directly
|
|
without creating a PLT entry. */
|
|
if (h == NULL)
|
|
continue;
|
|
|
|
h->needs_plt = 1;
|
|
h->plt.refcount += 1;
|
|
break;
|
|
|
|
case R_RISCV_PCREL_HI20:
|
|
if (h != NULL
|
|
&& h->type == STT_GNU_IFUNC)
|
|
{
|
|
h->non_got_ref = 1;
|
|
h->pointer_equality_needed = 1;
|
|
|
|
/* We don't use the PCREL_HI20 in the data section,
|
|
so we always need the plt when it refers to
|
|
ifunc symbol. */
|
|
h->plt.refcount += 1;
|
|
}
|
|
|
|
/* The non-preemptible absolute symbol shouldn't be referneced with
|
|
pc-relative relocation when generating shared object. However,
|
|
PCREL_HI20/LO12 relocs are always bind locally when generating
|
|
shared object, so all absolute symbol referenced need to be
|
|
disallowed, except they are defined in linker script.
|
|
|
|
Maybe we should add this check for all pc-relative relocations,
|
|
please see pr28789 and pr25749 for details. */
|
|
if (bfd_link_pic (info)
|
|
/* (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)) */
|
|
&& is_abs_symbol)
|
|
{
|
|
if (h != NULL && (h)->root.ldscript_def)
|
|
/* Disallow the absolute symbol defined in linker script here
|
|
will cause the glibc-linux toolchain build failed, so regard
|
|
them as pc-relative symbols, just like what x86 did. */
|
|
;
|
|
else
|
|
{
|
|
const char *name;
|
|
if (h->root.root.string)
|
|
name = h->root.root.string;
|
|
else
|
|
{
|
|
Elf_Internal_Sym *sym;
|
|
sym = bfd_sym_from_r_symndx (&htab->elf.sym_cache, abfd,
|
|
r_symndx);
|
|
name = bfd_elf_sym_name (abfd, symtab_hdr, sym, NULL);
|
|
}
|
|
|
|
reloc_howto_type *r_t =
|
|
riscv_elf_rtype_to_howto (abfd, r_type);
|
|
_bfd_error_handler
|
|
(_("%pB: relocation %s against absolute symbol `%s' can "
|
|
"not be used when making a shared object"),
|
|
abfd, r_t ? r_t->name : _("<unknown>"), name);
|
|
bfd_set_error (bfd_error_bad_value);
|
|
return false;
|
|
}
|
|
}
|
|
/* Fall through. */
|
|
|
|
case R_RISCV_JAL:
|
|
case R_RISCV_BRANCH:
|
|
case R_RISCV_RVC_BRANCH:
|
|
case R_RISCV_RVC_JUMP:
|
|
/* In shared libraries and pie, these relocs are known
|
|
to bind locally. */
|
|
if (bfd_link_pic (info))
|
|
break;
|
|
goto static_reloc;
|
|
|
|
case R_RISCV_TPREL_HI20:
|
|
/* This is not allowed in the pic, but okay in pie. */
|
|
if (!bfd_link_executable (info))
|
|
return bad_static_reloc (abfd, r_type, h);
|
|
if (h != NULL)
|
|
riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_LE);
|
|
break;
|
|
|
|
case R_RISCV_HI20:
|
|
if (bfd_link_pic (info))
|
|
return bad_static_reloc (abfd, r_type, h);
|
|
goto static_reloc;
|
|
|
|
case R_RISCV_32:
|
|
if (ARCH_SIZE > 32
|
|
&& bfd_link_pic (info)
|
|
&& (sec->flags & SEC_ALLOC) != 0)
|
|
{
|
|
if (is_abs_symbol)
|
|
break;
|
|
|
|
reloc_howto_type *r_t = riscv_elf_rtype_to_howto (abfd, r_type);
|
|
_bfd_error_handler
|
|
(_("%pB: relocation %s against non-absolute symbol `%s' can "
|
|
"not be used in RVNN when making a shared object"),
|
|
abfd, r_t ? r_t->name : _("<unknown>"),
|
|
h != NULL ? h->root.root.string : "a local symbol");
|
|
bfd_set_error (bfd_error_bad_value);
|
|
return false;
|
|
}
|
|
goto static_reloc;
|
|
|
|
case R_RISCV_COPY:
|
|
case R_RISCV_JUMP_SLOT:
|
|
case R_RISCV_RELATIVE:
|
|
case R_RISCV_64:
|
|
/* Fall through. */
|
|
|
|
static_reloc:
|
|
|
|
if (h != NULL
|
|
&& (!bfd_link_pic (info)
|
|
|| h->type == STT_GNU_IFUNC))
|
|
{
|
|
/* This reloc might not bind locally. */
|
|
h->non_got_ref = 1;
|
|
h->pointer_equality_needed = 1;
|
|
|
|
if (!h->def_regular
|
|
|| (sec->flags & (SEC_CODE | SEC_READONLY)) != 0)
|
|
{
|
|
/* We may need a .plt entry if the symbol is a function
|
|
defined in a shared lib or is a function referenced
|
|
from the code or read-only section. */
|
|
h->plt.refcount += 1;
|
|
}
|
|
}
|
|
|
|
reloc_howto_type *r = riscv_elf_rtype_to_howto (abfd, r_type);
|
|
if (RISCV_NEED_DYNAMIC_RELOC (r->pc_relative, info, h, sec))
|
|
{
|
|
struct elf_dyn_relocs *p;
|
|
struct elf_dyn_relocs **head;
|
|
|
|
/* When creating a shared object, we must copy these
|
|
relocs into the output file. We create a reloc
|
|
section in dynobj and make room for the reloc. */
|
|
if (sreloc == NULL)
|
|
{
|
|
sreloc = _bfd_elf_make_dynamic_reloc_section
|
|
(sec, htab->elf.dynobj, RISCV_ELF_LOG_WORD_BYTES,
|
|
abfd, /*rela?*/ true);
|
|
|
|
if (sreloc == NULL)
|
|
return false;
|
|
}
|
|
|
|
/* If this is a global symbol, we count the number of
|
|
relocations we need for this symbol. */
|
|
if (h != NULL)
|
|
head = &h->dyn_relocs;
|
|
else
|
|
{
|
|
/* Track dynamic relocs needed for local syms too.
|
|
We really need local syms available to do this
|
|
easily. Oh well. */
|
|
|
|
asection *s;
|
|
void *vpp;
|
|
Elf_Internal_Sym *isym;
|
|
|
|
isym = bfd_sym_from_r_symndx (&htab->elf.sym_cache,
|
|
abfd, r_symndx);
|
|
if (isym == NULL)
|
|
return false;
|
|
|
|
s = bfd_section_from_elf_index (abfd, isym->st_shndx);
|
|
if (s == NULL)
|
|
s = sec;
|
|
|
|
vpp = &elf_section_data (s)->local_dynrel;
|
|
head = (struct elf_dyn_relocs **) vpp;
|
|
}
|
|
|
|
p = *head;
|
|
if (p == NULL || p->sec != sec)
|
|
{
|
|
size_t amt = sizeof *p;
|
|
p = ((struct elf_dyn_relocs *)
|
|
bfd_alloc (htab->elf.dynobj, amt));
|
|
if (p == NULL)
|
|
return false;
|
|
p->next = *head;
|
|
*head = p;
|
|
p->sec = sec;
|
|
p->count = 0;
|
|
p->pc_count = 0;
|
|
}
|
|
|
|
p->count += 1;
|
|
p->pc_count += r == NULL ? 0 : r->pc_relative;
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Adjust a symbol defined by a dynamic object and referenced by a
|
|
regular object. The current definition is in some section of the
|
|
dynamic object, but we're not including those sections. We have to
|
|
change the definition to something the rest of the link can
|
|
understand. */
|
|
|
|
static bool
|
|
riscv_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
|
|
struct elf_link_hash_entry *h)
|
|
{
|
|
struct riscv_elf_link_hash_table *htab;
|
|
struct riscv_elf_link_hash_entry * eh;
|
|
bfd *dynobj;
|
|
asection *s, *srel;
|
|
|
|
htab = riscv_elf_hash_table (info);
|
|
BFD_ASSERT (htab != NULL);
|
|
|
|
dynobj = htab->elf.dynobj;
|
|
|
|
/* Make sure we know what is going on here. */
|
|
BFD_ASSERT (dynobj != NULL
|
|
&& (h->needs_plt
|
|
|| h->type == STT_GNU_IFUNC
|
|
|| h->is_weakalias
|
|
|| (h->def_dynamic
|
|
&& h->ref_regular
|
|
&& !h->def_regular)));
|
|
|
|
/* If this is a function, put it in the procedure linkage table. We
|
|
will fill in the contents of the procedure linkage table later
|
|
(although we could actually do it here). */
|
|
if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
|
|
{
|
|
if (h->plt.refcount <= 0
|
|
|| (h->type != STT_GNU_IFUNC
|
|
&& (SYMBOL_CALLS_LOCAL (info, h)
|
|
|| (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
|
|
&& h->root.type == bfd_link_hash_undefweak))))
|
|
{
|
|
/* This case can occur if we saw a R_RISCV_CALL_PLT reloc in an
|
|
input file, but the symbol was never referred to by a dynamic
|
|
object, or if all references were garbage collected. In such
|
|
a case, we don't actually need to build a PLT entry. */
|
|
h->plt.offset = (bfd_vma) -1;
|
|
h->needs_plt = 0;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
else
|
|
h->plt.offset = (bfd_vma) -1;
|
|
|
|
/* If this is a weak symbol, and there is a real definition, the
|
|
processor independent code will have arranged for us to see the
|
|
real definition first, and we can just use the same value. */
|
|
if (h->is_weakalias)
|
|
{
|
|
struct elf_link_hash_entry *def = weakdef (h);
|
|
BFD_ASSERT (def->root.type == bfd_link_hash_defined);
|
|
h->root.u.def.section = def->root.u.def.section;
|
|
h->root.u.def.value = def->root.u.def.value;
|
|
return true;
|
|
}
|
|
|
|
/* This is a reference to a symbol defined by a dynamic object which
|
|
is not a function. */
|
|
|
|
/* If we are creating a shared library, we must presume that the
|
|
only references to the symbol are via the global offset table.
|
|
For such cases we need not do anything here; the relocations will
|
|
be handled correctly by relocate_section. */
|
|
if (bfd_link_pic (info))
|
|
return true;
|
|
|
|
/* If there are no references to this symbol that do not use the
|
|
GOT, we don't need to generate a copy reloc. */
|
|
if (!h->non_got_ref)
|
|
return true;
|
|
|
|
/* If -z nocopyreloc was given, we won't generate them either. */
|
|
if (info->nocopyreloc)
|
|
{
|
|
h->non_got_ref = 0;
|
|
return true;
|
|
}
|
|
|
|
/* If we don't find any dynamic relocs in read-only sections, then
|
|
we'll be keeping the dynamic relocs and avoiding the copy reloc. */
|
|
if (!_bfd_elf_readonly_dynrelocs (h))
|
|
{
|
|
h->non_got_ref = 0;
|
|
return true;
|
|
}
|
|
|
|
/* We must allocate the symbol in our .dynbss section, which will
|
|
become part of the .bss section of the executable. There will be
|
|
an entry for this symbol in the .dynsym section. The dynamic
|
|
object will contain position independent code, so all references
|
|
from the dynamic object to this symbol will go through the global
|
|
offset table. The dynamic linker will use the .dynsym entry to
|
|
determine the address it must put in the global offset table, so
|
|
both the dynamic object and the regular object will refer to the
|
|
same memory location for the variable. */
|
|
|
|
/* We must generate a R_RISCV_COPY reloc to tell the dynamic linker
|
|
to copy the initial value out of the dynamic object and into the
|
|
runtime process image. We need to remember the offset into the
|
|
.rel.bss section we are going to use. */
|
|
eh = (struct riscv_elf_link_hash_entry *) h;
|
|
if (eh->tls_type & ~GOT_NORMAL)
|
|
{
|
|
s = htab->sdyntdata;
|
|
srel = htab->elf.srelbss;
|
|
}
|
|
else if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
|
|
{
|
|
s = htab->elf.sdynrelro;
|
|
srel = htab->elf.sreldynrelro;
|
|
}
|
|
else
|
|
{
|
|
s = htab->elf.sdynbss;
|
|
srel = htab->elf.srelbss;
|
|
}
|
|
if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
|
|
{
|
|
srel->size += sizeof (ElfNN_External_Rela);
|
|
h->needs_copy = 1;
|
|
}
|
|
|
|
return _bfd_elf_adjust_dynamic_copy (info, h, s);
|
|
}
|
|
|
|
/* Allocate space in .plt, .got and associated reloc sections for
|
|
dynamic relocs. */
|
|
|
|
static bool
|
|
allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
|
|
{
|
|
struct bfd_link_info *info;
|
|
struct riscv_elf_link_hash_table *htab;
|
|
struct elf_dyn_relocs *p;
|
|
|
|
if (h->root.type == bfd_link_hash_indirect)
|
|
return true;
|
|
|
|
info = (struct bfd_link_info *) inf;
|
|
htab = riscv_elf_hash_table (info);
|
|
BFD_ASSERT (htab != NULL);
|
|
|
|
/* When we are generating pde, make sure gp symbol is output as a
|
|
dynamic symbol. Then ld.so can set the gp register earlier, before
|
|
resolving the ifunc. */
|
|
if (!bfd_link_pic (info)
|
|
&& htab->elf.dynamic_sections_created
|
|
&& strcmp (h->root.root.string, RISCV_GP_SYMBOL) == 0
|
|
&& !bfd_elf_link_record_dynamic_symbol (info, h))
|
|
return false;
|
|
|
|
/* Since STT_GNU_IFUNC symbols must go through PLT, we handle them
|
|
in the allocate_ifunc_dynrelocs and allocate_local_ifunc_dynrelocs,
|
|
if they are defined and referenced in a non-shared object. */
|
|
if (h->type == STT_GNU_IFUNC
|
|
&& h->def_regular)
|
|
return true;
|
|
else if (htab->elf.dynamic_sections_created
|
|
&& h->plt.refcount > 0)
|
|
{
|
|
/* Make sure this symbol is output as a dynamic symbol.
|
|
Undefined weak syms won't yet be marked as dynamic. */
|
|
if (h->dynindx == -1
|
|
&& !h->forced_local)
|
|
{
|
|
if (! bfd_elf_link_record_dynamic_symbol (info, h))
|
|
return false;
|
|
}
|
|
|
|
if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), h))
|
|
{
|
|
asection *s = htab->elf.splt;
|
|
|
|
if (s->size == 0)
|
|
s->size = PLT_HEADER_SIZE;
|
|
|
|
h->plt.offset = s->size;
|
|
|
|
/* Make room for this entry. */
|
|
s->size += PLT_ENTRY_SIZE;
|
|
|
|
/* We also need to make an entry in the .got.plt section. */
|
|
htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
|
|
|
|
/* We also need to make an entry in the .rela.plt section. */
|
|
htab->elf.srelplt->size += sizeof (ElfNN_External_Rela);
|
|
|
|
/* If this symbol is not defined in a regular file, and we are
|
|
not generating a shared library, then set the symbol to this
|
|
location in the .plt. This is required to make function
|
|
pointers compare as equal between the normal executable and
|
|
the shared library. */
|
|
if (! bfd_link_pic (info)
|
|
&& !h->def_regular)
|
|
{
|
|
h->root.u.def.section = s;
|
|
h->root.u.def.value = h->plt.offset;
|
|
}
|
|
|
|
/* If the symbol has STO_RISCV_VARIANT_CC flag, then raise the
|
|
variant_cc flag of riscv_elf_link_hash_table. */
|
|
if (h->other & STO_RISCV_VARIANT_CC)
|
|
htab->variant_cc = 1;
|
|
}
|
|
else
|
|
{
|
|
h->plt.offset = (bfd_vma) -1;
|
|
h->needs_plt = 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
h->plt.offset = (bfd_vma) -1;
|
|
h->needs_plt = 0;
|
|
}
|
|
|
|
if (h->got.refcount > 0)
|
|
{
|
|
asection *s;
|
|
bool dyn;
|
|
int tls_type = riscv_elf_hash_entry (h)->tls_type;
|
|
|
|
/* Make sure this symbol is output as a dynamic symbol.
|
|
Undefined weak syms won't yet be marked as dynamic. */
|
|
if (h->dynindx == -1
|
|
&& !h->forced_local)
|
|
{
|
|
if (! bfd_elf_link_record_dynamic_symbol (info, h))
|
|
return false;
|
|
}
|
|
|
|
s = htab->elf.sgot;
|
|
h->got.offset = s->size;
|
|
dyn = htab->elf.dynamic_sections_created;
|
|
if (tls_type & (GOT_TLS_GD | GOT_TLS_IE))
|
|
{
|
|
int indx = 0;
|
|
bool need_reloc = false;
|
|
RISCV_TLS_GD_IE_NEED_DYN_RELOC(info, dyn, h, indx, need_reloc);
|
|
|
|
/* TLS_GD needs two dynamic relocs and two GOT slots. */
|
|
if (tls_type & GOT_TLS_GD)
|
|
{
|
|
s->size += 2 * RISCV_ELF_WORD_BYTES;
|
|
if (need_reloc)
|
|
htab->elf.srelgot->size += 2 * sizeof (ElfNN_External_Rela);
|
|
}
|
|
|
|
/* TLS_IE needs one dynamic reloc and one GOT slot. */
|
|
if (tls_type & GOT_TLS_IE)
|
|
{
|
|
s->size += RISCV_ELF_WORD_BYTES;
|
|
if (need_reloc)
|
|
htab->elf.srelgot->size += sizeof (ElfNN_External_Rela);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
s->size += RISCV_ELF_WORD_BYTES;
|
|
if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
|
|
&& ! UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
|
|
htab->elf.srelgot->size += sizeof (ElfNN_External_Rela);
|
|
}
|
|
}
|
|
else
|
|
h->got.offset = (bfd_vma) -1;
|
|
|
|
if (h->dyn_relocs == NULL)
|
|
return true;
|
|
|
|
/* In the shared -Bsymbolic case, discard space allocated for
|
|
dynamic pc-relative relocs against symbols which turn out to be
|
|
defined in regular objects. For the normal shared case, discard
|
|
space for pc-relative relocs that have become local due to symbol
|
|
visibility changes. */
|
|
|
|
if (bfd_link_pic (info))
|
|
{
|
|
if (SYMBOL_CALLS_LOCAL (info, h))
|
|
{
|
|
struct elf_dyn_relocs **pp;
|
|
|
|
for (pp = &h->dyn_relocs; (p = *pp) != NULL; )
|
|
{
|
|
p->count -= p->pc_count;
|
|
p->pc_count = 0;
|
|
if (p->count == 0)
|
|
*pp = p->next;
|
|
else
|
|
pp = &p->next;
|
|
}
|
|
}
|
|
|
|
/* Also discard relocs on undefined weak syms with non-default
|
|
visibility. */
|
|
if (h->dyn_relocs != NULL
|
|
&& h->root.type == bfd_link_hash_undefweak)
|
|
{
|
|
if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
|
|
|| UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
|
|
h->dyn_relocs = NULL;
|
|
|
|
/* Make sure undefined weak symbols are output as a dynamic
|
|
symbol in PIEs. */
|
|
else if (h->dynindx == -1
|
|
&& !h->forced_local)
|
|
{
|
|
if (! bfd_elf_link_record_dynamic_symbol (info, h))
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* For the non-shared case, discard space for relocs against
|
|
symbols which turn out to need copy relocs or are not
|
|
dynamic. */
|
|
|
|
if (!h->non_got_ref
|
|
&& ((h->def_dynamic
|
|
&& !h->def_regular)
|
|
|| (htab->elf.dynamic_sections_created
|
|
&& (h->root.type == bfd_link_hash_undefweak
|
|
|| h->root.type == bfd_link_hash_undefined))))
|
|
{
|
|
/* Make sure this symbol is output as a dynamic symbol.
|
|
Undefined weak syms won't yet be marked as dynamic. */
|
|
if (h->dynindx == -1
|
|
&& !h->forced_local)
|
|
{
|
|
if (! bfd_elf_link_record_dynamic_symbol (info, h))
|
|
return false;
|
|
}
|
|
|
|
/* If that succeeded, we know we'll be keeping all the
|
|
relocs. */
|
|
if (h->dynindx != -1)
|
|
goto keep;
|
|
}
|
|
|
|
h->dyn_relocs = NULL;
|
|
|
|
keep: ;
|
|
}
|
|
|
|
/* Finally, allocate space. */
|
|
for (p = h->dyn_relocs; p != NULL; p = p->next)
|
|
{
|
|
asection *sreloc = elf_section_data (p->sec)->sreloc;
|
|
sreloc->size += p->count * sizeof (ElfNN_External_Rela);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Allocate space in .plt, .got and associated reloc sections for
|
|
ifunc dynamic relocs. */
|
|
|
|
static bool
|
|
allocate_ifunc_dynrelocs (struct elf_link_hash_entry *h,
|
|
void *inf)
|
|
{
|
|
struct bfd_link_info *info;
|
|
|
|
if (h->root.type == bfd_link_hash_indirect)
|
|
return true;
|
|
|
|
if (h->root.type == bfd_link_hash_warning)
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
|
|
|
info = (struct bfd_link_info *) inf;
|
|
|
|
/* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
|
|
here if it is defined and referenced in a non-shared object. */
|
|
if (h->type == STT_GNU_IFUNC
|
|
&& h->def_regular)
|
|
return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
|
|
&h->dyn_relocs,
|
|
PLT_ENTRY_SIZE,
|
|
PLT_HEADER_SIZE,
|
|
GOT_ENTRY_SIZE,
|
|
true);
|
|
return true;
|
|
}
|
|
|
|
/* Allocate space in .plt, .got and associated reloc sections for
|
|
local ifunc dynamic relocs. */
|
|
|
|
static int
|
|
allocate_local_ifunc_dynrelocs (void **slot, void *inf)
|
|
{
|
|
struct elf_link_hash_entry *h
|
|
= (struct elf_link_hash_entry *) *slot;
|
|
|
|
if (h->type != STT_GNU_IFUNC
|
|
|| !h->def_regular
|
|
|| !h->ref_regular
|
|
|| !h->forced_local
|
|
|| h->root.type != bfd_link_hash_defined)
|
|
abort ();
|
|
|
|
return allocate_ifunc_dynrelocs (h, inf);
|
|
}
|
|
|
|
static bool
|
|
riscv_elf_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
|
|
{
|
|
struct riscv_elf_link_hash_table *htab;
|
|
bfd *dynobj;
|
|
asection *s;
|
|
bfd *ibfd;
|
|
|
|
htab = riscv_elf_hash_table (info);
|
|
BFD_ASSERT (htab != NULL);
|
|
dynobj = htab->elf.dynobj;
|
|
BFD_ASSERT (dynobj != NULL);
|
|
|
|
if (elf_hash_table (info)->dynamic_sections_created)
|
|
{
|
|
/* Set the contents of the .interp section to the interpreter. */
|
|
if (bfd_link_executable (info) && !info->nointerp)
|
|
{
|
|
s = bfd_get_linker_section (dynobj, ".interp");
|
|
BFD_ASSERT (s != NULL);
|
|
s->size = strlen (ELFNN_DYNAMIC_INTERPRETER) + 1;
|
|
s->contents = (unsigned char *) ELFNN_DYNAMIC_INTERPRETER;
|
|
}
|
|
}
|
|
|
|
/* Set up .got offsets for local syms, and space for local dynamic
|
|
relocs. */
|
|
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
|
|
{
|
|
bfd_signed_vma *local_got;
|
|
bfd_signed_vma *end_local_got;
|
|
char *local_tls_type;
|
|
bfd_size_type locsymcount;
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
asection *srel;
|
|
|
|
if (! is_riscv_elf (ibfd))
|
|
continue;
|
|
|
|
for (s = ibfd->sections; s != NULL; s = s->next)
|
|
{
|
|
struct elf_dyn_relocs *p;
|
|
|
|
for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
|
|
{
|
|
if (!bfd_is_abs_section (p->sec)
|
|
&& bfd_is_abs_section (p->sec->output_section))
|
|
{
|
|
/* Input section has been discarded, either because
|
|
it is a copy of a linkonce section or due to
|
|
linker script /DISCARD/, so we'll be discarding
|
|
the relocs too. */
|
|
}
|
|
else if (p->count != 0)
|
|
{
|
|
srel = elf_section_data (p->sec)->sreloc;
|
|
srel->size += p->count * sizeof (ElfNN_External_Rela);
|
|
if ((p->sec->output_section->flags & SEC_READONLY) != 0)
|
|
info->flags |= DF_TEXTREL;
|
|
}
|
|
}
|
|
}
|
|
|
|
local_got = elf_local_got_refcounts (ibfd);
|
|
if (!local_got)
|
|
continue;
|
|
|
|
symtab_hdr = &elf_symtab_hdr (ibfd);
|
|
locsymcount = symtab_hdr->sh_info;
|
|
end_local_got = local_got + locsymcount;
|
|
local_tls_type = _bfd_riscv_elf_local_got_tls_type (ibfd);
|
|
s = htab->elf.sgot;
|
|
srel = htab->elf.srelgot;
|
|
for (; local_got < end_local_got; ++local_got, ++local_tls_type)
|
|
{
|
|
if (*local_got > 0)
|
|
{
|
|
*local_got = s->size;
|
|
s->size += RISCV_ELF_WORD_BYTES;
|
|
if (*local_tls_type & GOT_TLS_GD)
|
|
s->size += RISCV_ELF_WORD_BYTES;
|
|
if (bfd_link_pic (info)
|
|
|| (*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)))
|
|
srel->size += sizeof (ElfNN_External_Rela);
|
|
}
|
|
else
|
|
*local_got = (bfd_vma) -1;
|
|
}
|
|
}
|
|
|
|
/* Allocate .plt and .got entries and space dynamic relocs for
|
|
global symbols. */
|
|
elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
|
|
|
|
/* Allocate .plt and .got entries and space dynamic relocs for
|
|
global ifunc symbols. */
|
|
elf_link_hash_traverse (&htab->elf, allocate_ifunc_dynrelocs, info);
|
|
|
|
/* Allocate .plt and .got entries and space dynamic relocs for
|
|
local ifunc symbols. */
|
|
htab_traverse (htab->loc_hash_table, allocate_local_ifunc_dynrelocs, info);
|
|
|
|
/* Used to resolve the dynamic relocs overwite problems when
|
|
generating static executable. */
|
|
if (htab->elf.irelplt)
|
|
htab->last_iplt_index = htab->elf.irelplt->reloc_count - 1;
|
|
|
|
if (htab->elf.sgotplt)
|
|
{
|
|
struct elf_link_hash_entry *got;
|
|
got = elf_link_hash_lookup (elf_hash_table (info),
|
|
"_GLOBAL_OFFSET_TABLE_",
|
|
false, false, false);
|
|
|
|
/* Don't allocate .got.plt section if there are no GOT nor PLT
|
|
entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */
|
|
if ((got == NULL
|
|
|| !got->ref_regular_nonweak)
|
|
&& (htab->elf.sgotplt->size == GOTPLT_HEADER_SIZE)
|
|
&& (htab->elf.splt == NULL
|
|
|| htab->elf.splt->size == 0)
|
|
&& (htab->elf.sgot == NULL
|
|
|| (htab->elf.sgot->size
|
|
== get_elf_backend_data (output_bfd)->got_header_size)))
|
|
htab->elf.sgotplt->size = 0;
|
|
}
|
|
|
|
/* The check_relocs and adjust_dynamic_symbol entry points have
|
|
determined the sizes of the various dynamic sections. Allocate
|
|
memory for them. */
|
|
for (s = dynobj->sections; s != NULL; s = s->next)
|
|
{
|
|
if ((s->flags & SEC_LINKER_CREATED) == 0)
|
|
continue;
|
|
|
|
if (s == htab->elf.splt
|
|
|| s == htab->elf.sgot
|
|
|| s == htab->elf.sgotplt
|
|
|| s == htab->elf.iplt
|
|
|| s == htab->elf.igotplt
|
|
|| s == htab->elf.sdynbss
|
|
|| s == htab->elf.sdynrelro
|
|
|| s == htab->sdyntdata)
|
|
{
|
|
/* Strip this section if we don't need it; see the
|
|
comment below. */
|
|
}
|
|
else if (startswith (s->name, ".rela"))
|
|
{
|
|
if (s->size != 0)
|
|
{
|
|
/* We use the reloc_count field as a counter if we need
|
|
to copy relocs into the output file. */
|
|
s->reloc_count = 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* It's not one of our sections. */
|
|
continue;
|
|
}
|
|
|
|
if (s->size == 0)
|
|
{
|
|
/* If we don't need this section, strip it from the
|
|
output file. This is mostly to handle .rela.bss and
|
|
.rela.plt. We must create both sections in
|
|
create_dynamic_sections, because they must be created
|
|
before the linker maps input sections to output
|
|
sections. The linker does that before
|
|
adjust_dynamic_symbol is called, and it is that
|
|
function which decides whether anything needs to go
|
|
into these sections. */
|
|
s->flags |= SEC_EXCLUDE;
|
|
continue;
|
|
}
|
|
|
|
if ((s->flags & SEC_HAS_CONTENTS) == 0)
|
|
continue;
|
|
|
|
/* Allocate memory for the section contents. Zero the memory
|
|
for the benefit of .rela.plt, which has 4 unused entries
|
|
at the beginning, and we don't want garbage. */
|
|
s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
|
|
if (s->contents == NULL)
|
|
return false;
|
|
}
|
|
|
|
/* Add dynamic entries. */
|
|
if (elf_hash_table (info)->dynamic_sections_created)
|
|
{
|
|
if (!_bfd_elf_add_dynamic_tags (output_bfd, info, true))
|
|
return false;
|
|
|
|
if (htab->variant_cc
|
|
&& !_bfd_elf_add_dynamic_entry (info, DT_RISCV_VARIANT_CC, 0))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
#define TP_OFFSET 0
|
|
#define DTP_OFFSET 0x800
|
|
|
|
/* Return the relocation value for a TLS dtp-relative reloc. */
|
|
|
|
static bfd_vma
|
|
dtpoff (struct bfd_link_info *info, bfd_vma address)
|
|
{
|
|
/* If tls_sec is NULL, we should have signalled an error already. */
|
|
if (elf_hash_table (info)->tls_sec == NULL)
|
|
return 0;
|
|
return address - elf_hash_table (info)->tls_sec->vma - DTP_OFFSET;
|
|
}
|
|
|
|
/* Return the relocation value for a static TLS tp-relative relocation. */
|
|
|
|
static bfd_vma
|
|
tpoff (struct bfd_link_info *info, bfd_vma address)
|
|
{
|
|
/* If tls_sec is NULL, we should have signalled an error already. */
|
|
if (elf_hash_table (info)->tls_sec == NULL)
|
|
return 0;
|
|
return address - elf_hash_table (info)->tls_sec->vma - TP_OFFSET;
|
|
}
|
|
|
|
/* Return the global pointer's value, or 0 if it is not in use. */
|
|
|
|
static bfd_vma
|
|
riscv_global_pointer_value (struct bfd_link_info *info)
|
|
{
|
|
struct bfd_link_hash_entry *h;
|
|
|
|
h = bfd_link_hash_lookup (info->hash, RISCV_GP_SYMBOL, false, false, true);
|
|
if (h == NULL || h->type != bfd_link_hash_defined)
|
|
return 0;
|
|
|
|
return h->u.def.value + sec_addr (h->u.def.section);
|
|
}
|
|
|
|
/* Emplace a static relocation. */
|
|
|
|
static bfd_reloc_status_type
|
|
perform_relocation (const reloc_howto_type *howto,
|
|
const Elf_Internal_Rela *rel,
|
|
bfd_vma value,
|
|
asection *input_section,
|
|
bfd *input_bfd,
|
|
bfd_byte *contents)
|
|
{
|
|
if (howto->pc_relative)
|
|
value -= sec_addr (input_section) + rel->r_offset;
|
|
value += rel->r_addend;
|
|
|
|
switch (ELFNN_R_TYPE (rel->r_info))
|
|
{
|
|
case R_RISCV_HI20:
|
|
case R_RISCV_TPREL_HI20:
|
|
case R_RISCV_PCREL_HI20:
|
|
case R_RISCV_GOT_HI20:
|
|
case R_RISCV_TLS_GOT_HI20:
|
|
case R_RISCV_TLS_GD_HI20:
|
|
if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value)))
|
|
return bfd_reloc_overflow;
|
|
value = ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value));
|
|
break;
|
|
|
|
case R_RISCV_LO12_I:
|
|
case R_RISCV_GPREL_I:
|
|
case R_RISCV_TPREL_LO12_I:
|
|
case R_RISCV_TPREL_I:
|
|
case R_RISCV_PCREL_LO12_I:
|
|
value = ENCODE_ITYPE_IMM (value);
|
|
break;
|
|
|
|
case R_RISCV_LO12_S:
|
|
case R_RISCV_GPREL_S:
|
|
case R_RISCV_TPREL_LO12_S:
|
|
case R_RISCV_TPREL_S:
|
|
case R_RISCV_PCREL_LO12_S:
|
|
value = ENCODE_STYPE_IMM (value);
|
|
break;
|
|
|
|
case R_RISCV_CALL:
|
|
case R_RISCV_CALL_PLT:
|
|
if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value)))
|
|
return bfd_reloc_overflow;
|
|
value = ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value))
|
|
| (ENCODE_ITYPE_IMM (value) << 32);
|
|
break;
|
|
|
|
case R_RISCV_JAL:
|
|
if (!VALID_JTYPE_IMM (value))
|
|
return bfd_reloc_overflow;
|
|
value = ENCODE_JTYPE_IMM (value);
|
|
break;
|
|
|
|
case R_RISCV_BRANCH:
|
|
if (!VALID_BTYPE_IMM (value))
|
|
return bfd_reloc_overflow;
|
|
value = ENCODE_BTYPE_IMM (value);
|
|
break;
|
|
|
|
case R_RISCV_RVC_BRANCH:
|
|
if (!VALID_CBTYPE_IMM (value))
|
|
return bfd_reloc_overflow;
|
|
value = ENCODE_CBTYPE_IMM (value);
|
|
break;
|
|
|
|
case R_RISCV_RVC_JUMP:
|
|
if (!VALID_CJTYPE_IMM (value))
|
|
return bfd_reloc_overflow;
|
|
value = ENCODE_CJTYPE_IMM (value);
|
|
break;
|
|
|
|
case R_RISCV_RVC_LUI:
|
|
if (RISCV_CONST_HIGH_PART (value) == 0)
|
|
{
|
|
/* Linker relaxation can convert an address equal to or greater than
|
|
0x800 to slightly below 0x800. C.LUI does not accept zero as a
|
|
valid immediate. We can fix this by converting it to a C.LI. */
|
|
bfd_vma insn = riscv_get_insn (howto->bitsize,
|
|
contents + rel->r_offset);
|
|
insn = (insn & ~MATCH_C_LUI) | MATCH_C_LI;
|
|
riscv_put_insn (howto->bitsize, insn, contents + rel->r_offset);
|
|
value = ENCODE_CITYPE_IMM (0);
|
|
}
|
|
else if (!VALID_CITYPE_LUI_IMM (RISCV_CONST_HIGH_PART (value)))
|
|
return bfd_reloc_overflow;
|
|
else
|
|
value = ENCODE_CITYPE_LUI_IMM (RISCV_CONST_HIGH_PART (value));
|
|
break;
|
|
|
|
/* SUB_ULEB128 must be applied after SET_ULEB128, so we only write the
|
|
value back for SUB_ULEB128 should be enough. */
|
|
case R_RISCV_SET_ULEB128:
|
|
break;
|
|
case R_RISCV_SUB_ULEB128:
|
|
{
|
|
unsigned int len = 0;
|
|
_bfd_read_unsigned_leb128 (input_bfd, contents + rel->r_offset, &len);
|
|
|
|
/* Clean the contents value to zero (0x80), but keep the original
|
|
length. */
|
|
bfd_byte *p = contents + rel->r_offset;
|
|
bfd_byte *endp = p + len - 1;
|
|
memset (p, 0x80, len - 1);
|
|
*(endp) = 0;
|
|
|
|
/* Make sure the length of the new uleb128 value within the
|
|
original (available) length. */
|
|
unsigned int new_len = 0;
|
|
unsigned int val_t = value;
|
|
do
|
|
{
|
|
new_len++;
|
|
val_t >>= 7;
|
|
}
|
|
while (val_t);
|
|
if (new_len > len)
|
|
{
|
|
_bfd_error_handler
|
|
(_("final size of uleb128 value at offset 0x%lx in %pA from "
|
|
"%pB exceeds available space"),
|
|
(long) rel->r_offset, input_section, input_bfd);
|
|
return bfd_reloc_dangerous;
|
|
}
|
|
else
|
|
{
|
|
p = _bfd_write_unsigned_leb128 (p, endp, value);
|
|
BFD_ASSERT (p);
|
|
|
|
/* If the length of the value is reduced and shorter than the
|
|
original uleb128 length, then _bfd_write_unsigned_leb128 may
|
|
clear the 0x80 to 0x0 for the last byte that was written.
|
|
So reset it to keep the the original uleb128 length. */
|
|
if (--p < endp)
|
|
*p |= 0x80;
|
|
}
|
|
return bfd_reloc_ok;
|
|
}
|
|
|
|
case R_RISCV_32:
|
|
case R_RISCV_64:
|
|
case R_RISCV_ADD8:
|
|
case R_RISCV_ADD16:
|
|
case R_RISCV_ADD32:
|
|
case R_RISCV_ADD64:
|
|
case R_RISCV_SUB6:
|
|
case R_RISCV_SUB8:
|
|
case R_RISCV_SUB16:
|
|
case R_RISCV_SUB32:
|
|
case R_RISCV_SUB64:
|
|
case R_RISCV_SET6:
|
|
case R_RISCV_SET8:
|
|
case R_RISCV_SET16:
|
|
case R_RISCV_SET32:
|
|
case R_RISCV_32_PCREL:
|
|
case R_RISCV_TLS_DTPREL32:
|
|
case R_RISCV_TLS_DTPREL64:
|
|
break;
|
|
|
|
case R_RISCV_DELETE:
|
|
return bfd_reloc_ok;
|
|
|
|
default:
|
|
return bfd_reloc_notsupported;
|
|
}
|
|
|
|
bfd_vma word;
|
|
if (riscv_is_insn_reloc (howto))
|
|
word = riscv_get_insn (howto->bitsize, contents + rel->r_offset);
|
|
else
|
|
word = bfd_get (howto->bitsize, input_bfd, contents + rel->r_offset);
|
|
word = (word & ~howto->dst_mask) | (value & howto->dst_mask);
|
|
if (riscv_is_insn_reloc (howto))
|
|
riscv_put_insn (howto->bitsize, word, contents + rel->r_offset);
|
|
else
|
|
bfd_put (howto->bitsize, input_bfd, word, contents + rel->r_offset);
|
|
|
|
return bfd_reloc_ok;
|
|
}
|
|
|
|
/* Remember all PC-relative high-part relocs we've encountered to help us
|
|
later resolve the corresponding low-part relocs. */
|
|
|
|
typedef struct
|
|
{
|
|
/* PC value. */
|
|
bfd_vma address;
|
|
/* Relocation value with addend. */
|
|
bfd_vma value;
|
|
/* Original reloc type. */
|
|
int type;
|
|
} riscv_pcrel_hi_reloc;
|
|
|
|
typedef struct riscv_pcrel_lo_reloc
|
|
{
|
|
/* PC value of auipc. */
|
|
bfd_vma address;
|
|
/* Internal relocation. */
|
|
const Elf_Internal_Rela *reloc;
|
|
/* Record the following information helps to resolve the %pcrel
|
|
which cross different input section. For now we build a hash
|
|
for pcrel at the start of riscv_elf_relocate_section, and then
|
|
free the hash at the end. But riscv_elf_relocate_section only
|
|
handles an input section at a time, so that means we can only
|
|
resolve the %pcrel_hi and %pcrel_lo which are in the same input
|
|
section. Otherwise, we will report dangerous relocation errors
|
|
for those %pcrel which are not in the same input section. */
|
|
asection *input_section;
|
|
struct bfd_link_info *info;
|
|
reloc_howto_type *howto;
|
|
bfd_byte *contents;
|
|
/* The next riscv_pcrel_lo_reloc. */
|
|
struct riscv_pcrel_lo_reloc *next;
|
|
} riscv_pcrel_lo_reloc;
|
|
|
|
typedef struct
|
|
{
|
|
/* Hash table for riscv_pcrel_hi_reloc. */
|
|
htab_t hi_relocs;
|
|
/* Linked list for riscv_pcrel_lo_reloc. */
|
|
riscv_pcrel_lo_reloc *lo_relocs;
|
|
} riscv_pcrel_relocs;
|
|
|
|
static hashval_t
|
|
riscv_pcrel_reloc_hash (const void *entry)
|
|
{
|
|
const riscv_pcrel_hi_reloc *e = entry;
|
|
return (hashval_t)(e->address >> 2);
|
|
}
|
|
|
|
static int
|
|
riscv_pcrel_reloc_eq (const void *entry1, const void *entry2)
|
|
{
|
|
const riscv_pcrel_hi_reloc *e1 = entry1, *e2 = entry2;
|
|
return e1->address == e2->address;
|
|
}
|
|
|
|
static bool
|
|
riscv_init_pcrel_relocs (riscv_pcrel_relocs *p)
|
|
{
|
|
p->lo_relocs = NULL;
|
|
p->hi_relocs = htab_create (1024, riscv_pcrel_reloc_hash,
|
|
riscv_pcrel_reloc_eq, free);
|
|
return p->hi_relocs != NULL;
|
|
}
|
|
|
|
static void
|
|
riscv_free_pcrel_relocs (riscv_pcrel_relocs *p)
|
|
{
|
|
riscv_pcrel_lo_reloc *cur = p->lo_relocs;
|
|
|
|
while (cur != NULL)
|
|
{
|
|
riscv_pcrel_lo_reloc *next = cur->next;
|
|
free (cur);
|
|
cur = next;
|
|
}
|
|
|
|
htab_delete (p->hi_relocs);
|
|
}
|
|
|
|
static bool
|
|
riscv_zero_pcrel_hi_reloc (Elf_Internal_Rela *rel,
|
|
struct bfd_link_info *info,
|
|
bfd_vma pc,
|
|
bfd_vma addr,
|
|
bfd_byte *contents,
|
|
const reloc_howto_type *howto)
|
|
{
|
|
/* We may need to reference low addreses in PC-relative modes even when the
|
|
PC is far away from these addresses. For example, undefweak references
|
|
need to produce the address 0 when linked. As 0 is far from the arbitrary
|
|
addresses that we can link PC-relative programs at, the linker can't
|
|
actually relocate references to those symbols. In order to allow these
|
|
programs to work we simply convert the PC-relative auipc sequences to
|
|
0-relative lui sequences. */
|
|
if (bfd_link_pic (info))
|
|
return false;
|
|
|
|
/* If it's possible to reference the symbol using auipc we do so, as that's
|
|
more in the spirit of the PC-relative relocations we're processing. */
|
|
bfd_vma offset = addr - pc;
|
|
if (ARCH_SIZE == 32 || VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (offset)))
|
|
return false;
|
|
|
|
/* If it's impossible to reference this with a LUI-based offset then don't
|
|
bother to convert it at all so users still see the PC-relative relocation
|
|
in the truncation message. */
|
|
if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (addr)))
|
|
return false;
|
|
|
|
rel->r_info = ELFNN_R_INFO (addr, R_RISCV_HI20);
|
|
|
|
bfd_vma insn = riscv_get_insn (howto->bitsize, contents + rel->r_offset);
|
|
insn = (insn & ~MASK_AUIPC) | MATCH_LUI;
|
|
riscv_put_insn (howto->bitsize, insn, contents + rel->r_offset);
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
riscv_record_pcrel_hi_reloc (riscv_pcrel_relocs *p,
|
|
bfd_vma addr,
|
|
bfd_vma value,
|
|
int type,
|
|
bool absolute)
|
|
{
|
|
bfd_vma offset = absolute ? value : value - addr;
|
|
riscv_pcrel_hi_reloc entry = {addr, offset, type};
|
|
riscv_pcrel_hi_reloc **slot =
|
|
(riscv_pcrel_hi_reloc **) htab_find_slot (p->hi_relocs, &entry, INSERT);
|
|
|
|
BFD_ASSERT (*slot == NULL);
|
|
*slot = (riscv_pcrel_hi_reloc *) bfd_malloc (sizeof (riscv_pcrel_hi_reloc));
|
|
if (*slot == NULL)
|
|
return false;
|
|
**slot = entry;
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
riscv_record_pcrel_lo_reloc (riscv_pcrel_relocs *p,
|
|
bfd_vma addr,
|
|
const Elf_Internal_Rela *reloc,
|
|
asection *input_section,
|
|
struct bfd_link_info *info,
|
|
reloc_howto_type *howto,
|
|
bfd_byte *contents)
|
|
{
|
|
riscv_pcrel_lo_reloc *entry;
|
|
entry = (riscv_pcrel_lo_reloc *) bfd_malloc (sizeof (riscv_pcrel_lo_reloc));
|
|
if (entry == NULL)
|
|
return false;
|
|
*entry = (riscv_pcrel_lo_reloc) {addr, reloc, input_section, info,
|
|
howto, contents, p->lo_relocs};
|
|
p->lo_relocs = entry;
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
riscv_resolve_pcrel_lo_relocs (riscv_pcrel_relocs *p)
|
|
{
|
|
riscv_pcrel_lo_reloc *r;
|
|
|
|
for (r = p->lo_relocs; r != NULL; r = r->next)
|
|
{
|
|
bfd *input_bfd = r->input_section->owner;
|
|
|
|
riscv_pcrel_hi_reloc search = {r->address, 0, 0};
|
|
riscv_pcrel_hi_reloc *entry = htab_find (p->hi_relocs, &search);
|
|
/* There may be a risk if the %pcrel_lo with addend refers to
|
|
an IFUNC symbol. The %pcrel_hi has been relocated to plt,
|
|
so the corresponding %pcrel_lo with addend looks wrong. */
|
|
char *string = NULL;
|
|
if (entry == NULL)
|
|
string = _("%pcrel_lo missing matching %pcrel_hi");
|
|
else if (entry->type == R_RISCV_GOT_HI20
|
|
&& r->reloc->r_addend != 0)
|
|
string = _("%pcrel_lo with addend isn't allowed for R_RISCV_GOT_HI20");
|
|
else if (RISCV_CONST_HIGH_PART (entry->value)
|
|
!= RISCV_CONST_HIGH_PART (entry->value + r->reloc->r_addend))
|
|
{
|
|
/* Check the overflow when adding reloc addend. */
|
|
string = bfd_asprintf (_("%%pcrel_lo overflow with an addend,"
|
|
" the value of %%pcrel_hi is 0x%" PRIx64
|
|
" without any addend, but may be 0x%" PRIx64
|
|
" after adding the %%pcrel_lo addend"),
|
|
(int64_t) RISCV_CONST_HIGH_PART (entry->value),
|
|
(int64_t) RISCV_CONST_HIGH_PART
|
|
(entry->value + r->reloc->r_addend));
|
|
if (string == NULL)
|
|
string = _("%pcrel_lo overflow with an addend");
|
|
}
|
|
|
|
if (string != NULL)
|
|
{
|
|
(*r->info->callbacks->reloc_dangerous)
|
|
(r->info, string, input_bfd, r->input_section, r->reloc->r_offset);
|
|
return true;
|
|
}
|
|
|
|
perform_relocation (r->howto, r->reloc, entry->value, r->input_section,
|
|
input_bfd, r->contents);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Relocate a RISC-V ELF section.
|
|
|
|
The RELOCATE_SECTION function is called by the new ELF backend linker
|
|
to handle the relocations for a section.
|
|
|
|
The relocs are always passed as Rela structures.
|
|
|
|
This function is responsible for adjusting the section contents as
|
|
necessary, and (if generating a relocatable output file) adjusting
|
|
the reloc addend as necessary.
|
|
|
|
This function does not have to worry about setting the reloc
|
|
address or the reloc symbol index.
|
|
|
|
LOCAL_SYMS is a pointer to the swapped in local symbols.
|
|
|
|
LOCAL_SECTIONS is an array giving the section in the input file
|
|
corresponding to the st_shndx field of each local symbol.
|
|
|
|
The global hash table entry for the global symbols can be found
|
|
via elf_sym_hashes (input_bfd).
|
|
|
|
When generating relocatable output, this function must handle
|
|
STB_LOCAL/STT_SECTION symbols specially. The output symbol is
|
|
going to be the section symbol corresponding to the output
|
|
section, which means that the addend must be adjusted
|
|
accordingly. */
|
|
|
|
static int
|
|
riscv_elf_relocate_section (bfd *output_bfd,
|
|
struct bfd_link_info *info,
|
|
bfd *input_bfd,
|
|
asection *input_section,
|
|
bfd_byte *contents,
|
|
Elf_Internal_Rela *relocs,
|
|
Elf_Internal_Sym *local_syms,
|
|
asection **local_sections)
|
|
{
|
|
Elf_Internal_Rela *rel;
|
|
Elf_Internal_Rela *relend;
|
|
riscv_pcrel_relocs pcrel_relocs;
|
|
bool ret = false;
|
|
struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
|
|
Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_bfd);
|
|
struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
|
|
bfd_vma *local_got_offsets = elf_local_got_offsets (input_bfd);
|
|
bfd_vma uleb128_set_vma = 0;
|
|
Elf_Internal_Rela *uleb128_set_rel = NULL;
|
|
bool absolute;
|
|
|
|
if (!riscv_init_pcrel_relocs (&pcrel_relocs))
|
|
return false;
|
|
|
|
relend = relocs + input_section->reloc_count;
|
|
for (rel = relocs; rel < relend; rel++)
|
|
{
|
|
unsigned long r_symndx;
|
|
struct elf_link_hash_entry *h;
|
|
Elf_Internal_Sym *sym;
|
|
asection *sec;
|
|
bfd_vma relocation;
|
|
bfd_reloc_status_type r = bfd_reloc_ok;
|
|
const char *name = NULL;
|
|
bfd_vma off, ie_off;
|
|
bool unresolved_reloc, is_ie = false;
|
|
bfd_vma pc = sec_addr (input_section) + rel->r_offset;
|
|
int r_type = ELFNN_R_TYPE (rel->r_info), tls_type;
|
|
reloc_howto_type *howto = riscv_elf_rtype_to_howto (input_bfd, r_type);
|
|
const char *msg = NULL;
|
|
bool resolved_to_zero;
|
|
|
|
if (howto == NULL)
|
|
continue;
|
|
|
|
/* This is a final link. */
|
|
r_symndx = ELFNN_R_SYM (rel->r_info);
|
|
h = NULL;
|
|
sym = NULL;
|
|
sec = NULL;
|
|
unresolved_reloc = false;
|
|
if (r_symndx < symtab_hdr->sh_info)
|
|
{
|
|
sym = local_syms + r_symndx;
|
|
sec = local_sections[r_symndx];
|
|
relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
|
|
|
|
/* Relocate against local STT_GNU_IFUNC symbol. */
|
|
if (!bfd_link_relocatable (info)
|
|
&& ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
|
|
{
|
|
h = riscv_elf_get_local_sym_hash (htab, input_bfd, rel, false);
|
|
if (h == NULL)
|
|
abort ();
|
|
|
|
/* Set STT_GNU_IFUNC symbol value. */
|
|
h->root.u.def.value = sym->st_value;
|
|
h->root.u.def.section = sec;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
bool warned, ignored;
|
|
|
|
RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
|
|
r_symndx, symtab_hdr, sym_hashes,
|
|
h, sec, relocation,
|
|
unresolved_reloc, warned, ignored);
|
|
if (warned)
|
|
{
|
|
/* To avoid generating warning messages about truncated
|
|
relocations, set the relocation's address to be the same as
|
|
the start of this section. */
|
|
if (input_section->output_section != NULL)
|
|
relocation = input_section->output_section->vma;
|
|
else
|
|
relocation = 0;
|
|
}
|
|
}
|
|
|
|
if (sec != NULL && discarded_section (sec))
|
|
RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
|
|
rel, 1, relend, howto, 0, contents);
|
|
|
|
if (bfd_link_relocatable (info))
|
|
continue;
|
|
|
|
/* Since STT_GNU_IFUNC symbol must go through PLT, we handle
|
|
it here if it is defined in a non-shared object. */
|
|
if (h != NULL
|
|
&& h->type == STT_GNU_IFUNC
|
|
&& h->def_regular)
|
|
{
|
|
asection *plt, *base_got;
|
|
|
|
if ((input_section->flags & SEC_ALLOC) == 0)
|
|
{
|
|
/* If this is a SHT_NOTE section without SHF_ALLOC, treat
|
|
STT_GNU_IFUNC symbol as STT_FUNC. */
|
|
if (elf_section_type (input_section) == SHT_NOTE)
|
|
goto skip_ifunc;
|
|
|
|
/* Dynamic relocs are not propagated for SEC_DEBUGGING
|
|
sections because such sections are not SEC_ALLOC and
|
|
thus ld.so will not process them. */
|
|
if ((input_section->flags & SEC_DEBUGGING) != 0)
|
|
continue;
|
|
|
|
abort ();
|
|
}
|
|
else if (h->plt.offset == (bfd_vma) -1
|
|
/* The following relocation may not need the .plt entries
|
|
when all references to a STT_GNU_IFUNC symbols are done
|
|
via GOT or static function pointers. */
|
|
&& r_type != R_RISCV_32
|
|
&& r_type != R_RISCV_64
|
|
&& r_type != R_RISCV_HI20
|
|
&& r_type != R_RISCV_GOT_HI20
|
|
&& r_type != R_RISCV_LO12_I
|
|
&& r_type != R_RISCV_LO12_S)
|
|
goto bad_ifunc_reloc;
|
|
|
|
/* STT_GNU_IFUNC symbol must go through PLT. */
|
|
plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
|
|
relocation = plt->output_section->vma
|
|
+ plt->output_offset
|
|
+ h->plt.offset;
|
|
|
|
switch (r_type)
|
|
{
|
|
case R_RISCV_32:
|
|
case R_RISCV_64:
|
|
if (rel->r_addend != 0)
|
|
{
|
|
if (h->root.root.string)
|
|
name = h->root.root.string;
|
|
else
|
|
name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, NULL);
|
|
|
|
_bfd_error_handler
|
|
/* xgettext:c-format */
|
|
(_("%pB: relocation %s against STT_GNU_IFUNC "
|
|
"symbol `%s' has non-zero addend: %" PRId64),
|
|
input_bfd, howto->name, name, (int64_t) rel->r_addend);
|
|
bfd_set_error (bfd_error_bad_value);
|
|
return false;
|
|
}
|
|
|
|
/* Generate dynamic relocation only when there is a non-GOT
|
|
reference in a shared object or there is no PLT. */
|
|
if ((bfd_link_pic (info) && h->non_got_ref)
|
|
|| h->plt.offset == (bfd_vma) -1)
|
|
{
|
|
Elf_Internal_Rela outrel;
|
|
asection *sreloc;
|
|
|
|
/* Need a dynamic relocation to get the real function
|
|
address. */
|
|
outrel.r_offset = _bfd_elf_section_offset (output_bfd,
|
|
info,
|
|
input_section,
|
|
rel->r_offset);
|
|
if (outrel.r_offset == (bfd_vma) -1
|
|
|| outrel.r_offset == (bfd_vma) -2)
|
|
abort ();
|
|
|
|
outrel.r_offset += input_section->output_section->vma
|
|
+ input_section->output_offset;
|
|
|
|
if (h->dynindx == -1
|
|
|| h->forced_local
|
|
|| bfd_link_executable (info))
|
|
{
|
|
info->callbacks->minfo
|
|
(_("Local IFUNC function `%s' in %pB\n"),
|
|
h->root.root.string,
|
|
h->root.u.def.section->owner);
|
|
|
|
/* This symbol is resolved locally. */
|
|
outrel.r_info = ELFNN_R_INFO (0, R_RISCV_IRELATIVE);
|
|
outrel.r_addend = h->root.u.def.value
|
|
+ h->root.u.def.section->output_section->vma
|
|
+ h->root.u.def.section->output_offset;
|
|
}
|
|
else
|
|
{
|
|
outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
|
|
outrel.r_addend = 0;
|
|
}
|
|
|
|
/* Dynamic relocations are stored in
|
|
1. .rela.ifunc section in PIC object.
|
|
2. .rela.got section in dynamic executable.
|
|
3. .rela.iplt section in static executable. */
|
|
if (bfd_link_pic (info))
|
|
sreloc = htab->elf.irelifunc;
|
|
else if (htab->elf.splt != NULL)
|
|
sreloc = htab->elf.srelgot;
|
|
else
|
|
sreloc = htab->elf.irelplt;
|
|
|
|
riscv_elf_append_rela (output_bfd, sreloc, &outrel);
|
|
|
|
/* If this reloc is against an external symbol, we
|
|
do not want to fiddle with the addend. Otherwise,
|
|
we need to include the symbol value so that it
|
|
becomes an addend for the dynamic reloc. For an
|
|
internal symbol, we have updated addend. */
|
|
continue;
|
|
}
|
|
goto do_relocation;
|
|
|
|
case R_RISCV_GOT_HI20:
|
|
base_got = htab->elf.sgot;
|
|
off = h->got.offset;
|
|
|
|
if (base_got == NULL)
|
|
abort ();
|
|
|
|
if (off == (bfd_vma) -1)
|
|
{
|
|
bfd_vma plt_idx;
|
|
|
|
/* We can't use h->got.offset here to save state, or
|
|
even just remember the offset, as finish_dynamic_symbol
|
|
would use that as offset into .got. */
|
|
|
|
if (htab->elf.splt != NULL)
|
|
{
|
|
plt_idx = (h->plt.offset - PLT_HEADER_SIZE)
|
|
/ PLT_ENTRY_SIZE;
|
|
off = GOTPLT_HEADER_SIZE + (plt_idx * GOT_ENTRY_SIZE);
|
|
base_got = htab->elf.sgotplt;
|
|
}
|
|
else
|
|
{
|
|
plt_idx = h->plt.offset / PLT_ENTRY_SIZE;
|
|
off = plt_idx * GOT_ENTRY_SIZE;
|
|
base_got = htab->elf.igotplt;
|
|
}
|
|
|
|
if (h->dynindx == -1
|
|
|| h->forced_local
|
|
|| info->symbolic)
|
|
{
|
|
/* This references the local definition. We must
|
|
initialize this entry in the global offset table.
|
|
Since the offset must always be a multiple of 8,
|
|
we use the least significant bit to record
|
|
whether we have initialized it already.
|
|
|
|
When doing a dynamic link, we create a .rela.got
|
|
relocation entry to initialize the value. This
|
|
is done in the finish_dynamic_symbol routine. */
|
|
if ((off & 1) != 0)
|
|
off &= ~1;
|
|
else
|
|
{
|
|
bfd_put_NN (output_bfd, relocation,
|
|
base_got->contents + off);
|
|
/* Note that this is harmless for the case,
|
|
as -1 | 1 still is -1. */
|
|
h->got.offset |= 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
relocation = base_got->output_section->vma
|
|
+ base_got->output_offset + off;
|
|
|
|
if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
|
|
relocation, r_type,
|
|
false))
|
|
r = bfd_reloc_overflow;
|
|
goto do_relocation;
|
|
|
|
case R_RISCV_CALL:
|
|
case R_RISCV_CALL_PLT:
|
|
case R_RISCV_HI20:
|
|
case R_RISCV_LO12_I:
|
|
case R_RISCV_LO12_S:
|
|
goto do_relocation;
|
|
|
|
case R_RISCV_PCREL_HI20:
|
|
if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
|
|
relocation, r_type,
|
|
false))
|
|
r = bfd_reloc_overflow;
|
|
goto do_relocation;
|
|
|
|
default:
|
|
bad_ifunc_reloc:
|
|
if (h->root.root.string)
|
|
name = h->root.root.string;
|
|
else
|
|
/* The entry of local ifunc is fake in global hash table,
|
|
we should find the name by the original local symbol. */
|
|
name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, NULL);
|
|
|
|
_bfd_error_handler
|
|
/* xgettext:c-format */
|
|
(_("%pB: relocation %s against STT_GNU_IFUNC "
|
|
"symbol `%s' isn't supported"), input_bfd,
|
|
howto->name, name);
|
|
bfd_set_error (bfd_error_bad_value);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
skip_ifunc:
|
|
if (h != NULL)
|
|
name = h->root.root.string;
|
|
else
|
|
{
|
|
name = (bfd_elf_string_from_elf_section
|
|
(input_bfd, symtab_hdr->sh_link, sym->st_name));
|
|
if (name == NULL || *name == '\0')
|
|
name = bfd_section_name (sec);
|
|
}
|
|
|
|
resolved_to_zero = (h != NULL
|
|
&& UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
|
|
|
|
switch (r_type)
|
|
{
|
|
case R_RISCV_NONE:
|
|
case R_RISCV_RELAX:
|
|
case R_RISCV_TPREL_ADD:
|
|
case R_RISCV_COPY:
|
|
case R_RISCV_JUMP_SLOT:
|
|
case R_RISCV_RELATIVE:
|
|
/* These require nothing of us at all. */
|
|
continue;
|
|
|
|
case R_RISCV_HI20:
|
|
case R_RISCV_BRANCH:
|
|
case R_RISCV_RVC_BRANCH:
|
|
case R_RISCV_RVC_LUI:
|
|
case R_RISCV_LO12_I:
|
|
case R_RISCV_LO12_S:
|
|
case R_RISCV_SET6:
|
|
case R_RISCV_SET8:
|
|
case R_RISCV_SET16:
|
|
case R_RISCV_SET32:
|
|
case R_RISCV_32_PCREL:
|
|
case R_RISCV_DELETE:
|
|
/* These require no special handling beyond perform_relocation. */
|
|
break;
|
|
|
|
case R_RISCV_SET_ULEB128:
|
|
if (uleb128_set_rel == NULL)
|
|
{
|
|
/* Saved for later usage. */
|
|
uleb128_set_vma = relocation;
|
|
uleb128_set_rel = rel;
|
|
continue;
|
|
}
|
|
else
|
|
{
|
|
msg = ("Mismatched R_RISCV_SET_ULEB128, it must be paired with"
|
|
"and applied before R_RISCV_SUB_ULEB128");
|
|
r = bfd_reloc_dangerous;
|
|
}
|
|
break;
|
|
|
|
case R_RISCV_SUB_ULEB128:
|
|
if (uleb128_set_rel != NULL
|
|
&& uleb128_set_rel->r_offset == rel->r_offset)
|
|
{
|
|
relocation = uleb128_set_vma - relocation;
|
|
uleb128_set_vma = 0;
|
|
uleb128_set_rel = NULL;
|
|
}
|
|
else
|
|
{
|
|
msg = ("Mismatched R_RISCV_SUB_ULEB128, it must be paired with"
|
|
"and applied after R_RISCV_SET_ULEB128");
|
|
r = bfd_reloc_dangerous;
|
|
}
|
|
break;
|
|
|
|
case R_RISCV_GOT_HI20:
|
|
if (h != NULL)
|
|
{
|
|
off = h->got.offset;
|
|
BFD_ASSERT (off != (bfd_vma) -1);
|
|
|
|
if (RISCV_RESOLVED_LOCALLY (info, h))
|
|
{
|
|
/* We must initialize this entry in the global offset table.
|
|
Since the offset must always be a multiple of the word
|
|
size, we use the least significant bit to record whether
|
|
we have initialized it already.
|
|
|
|
When doing a dynamic link, we create a .rela.got
|
|
relocation entry to initialize the value. This
|
|
is done in the finish_dynamic_symbol routine. */
|
|
if ((off & 1) != 0)
|
|
off &= ~1;
|
|
else
|
|
{
|
|
bfd_put_NN (output_bfd, relocation,
|
|
htab->elf.sgot->contents + off);
|
|
h->got.offset |= 1;
|
|
}
|
|
}
|
|
else
|
|
unresolved_reloc = false;
|
|
}
|
|
else
|
|
{
|
|
BFD_ASSERT (local_got_offsets != NULL
|
|
&& local_got_offsets[r_symndx] != (bfd_vma) -1);
|
|
|
|
off = local_got_offsets[r_symndx];
|
|
|
|
/* The offset must always be a multiple of the word size.
|
|
So, we can use the least significant bit to record
|
|
whether we have already processed this entry. */
|
|
if ((off & 1) != 0)
|
|
off &= ~1;
|
|
else
|
|
{
|
|
if (bfd_link_pic (info))
|
|
{
|
|
asection *s;
|
|
Elf_Internal_Rela outrel;
|
|
|
|
/* We need to generate a R_RISCV_RELATIVE reloc
|
|
for the dynamic linker. */
|
|
s = htab->elf.srelgot;
|
|
BFD_ASSERT (s != NULL);
|
|
|
|
outrel.r_offset = sec_addr (htab->elf.sgot) + off;
|
|
outrel.r_info =
|
|
ELFNN_R_INFO (0, R_RISCV_RELATIVE);
|
|
outrel.r_addend = relocation;
|
|
relocation = 0;
|
|
riscv_elf_append_rela (output_bfd, s, &outrel);
|
|
}
|
|
|
|
bfd_put_NN (output_bfd, relocation,
|
|
htab->elf.sgot->contents + off);
|
|
local_got_offsets[r_symndx] |= 1;
|
|
}
|
|
}
|
|
|
|
if (rel->r_addend != 0)
|
|
{
|
|
msg = _("The addend isn't allowed for R_RISCV_GOT_HI20");
|
|
r = bfd_reloc_dangerous;
|
|
}
|
|
else
|
|
{
|
|
/* Address of got entry. */
|
|
relocation = sec_addr (htab->elf.sgot) + off;
|
|
absolute = riscv_zero_pcrel_hi_reloc (rel, info, pc,
|
|
relocation, contents,
|
|
howto);
|
|
/* Update howto if relocation is changed. */
|
|
howto = riscv_elf_rtype_to_howto (input_bfd,
|
|
ELFNN_R_TYPE (rel->r_info));
|
|
if (howto == NULL)
|
|
r = bfd_reloc_notsupported;
|
|
else if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
|
|
relocation, r_type,
|
|
absolute))
|
|
r = bfd_reloc_overflow;
|
|
}
|
|
break;
|
|
|
|
case R_RISCV_ADD8:
|
|
case R_RISCV_ADD16:
|
|
case R_RISCV_ADD32:
|
|
case R_RISCV_ADD64:
|
|
{
|
|
bfd_vma old_value = bfd_get (howto->bitsize, input_bfd,
|
|
contents + rel->r_offset);
|
|
relocation = old_value + relocation;
|
|
}
|
|
break;
|
|
|
|
case R_RISCV_SUB6:
|
|
{
|
|
bfd_vma old_value = bfd_get (howto->bitsize, input_bfd,
|
|
contents + rel->r_offset);
|
|
relocation = (old_value & ~howto->dst_mask)
|
|
| (((old_value & howto->dst_mask) - relocation)
|
|
& howto->dst_mask);
|
|
}
|
|
break;
|
|
|
|
case R_RISCV_SUB8:
|
|
case R_RISCV_SUB16:
|
|
case R_RISCV_SUB32:
|
|
case R_RISCV_SUB64:
|
|
{
|
|
bfd_vma old_value = bfd_get (howto->bitsize, input_bfd,
|
|
contents + rel->r_offset);
|
|
relocation = old_value - relocation;
|
|
}
|
|
break;
|
|
|
|
case R_RISCV_CALL:
|
|
case R_RISCV_CALL_PLT:
|
|
/* Handle a call to an undefined weak function. This won't be
|
|
relaxed, so we have to handle it here. */
|
|
if (h != NULL && h->root.type == bfd_link_hash_undefweak
|
|
&& (!bfd_link_pic (info) || h->plt.offset == MINUS_ONE))
|
|
{
|
|
/* We can use x0 as the base register. */
|
|
bfd_vma insn = bfd_getl32 (contents + rel->r_offset + 4);
|
|
insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
|
|
bfd_putl32 (insn, contents + rel->r_offset + 4);
|
|
/* Set the relocation value so that we get 0 after the pc
|
|
relative adjustment. */
|
|
relocation = sec_addr (input_section) + rel->r_offset;
|
|
}
|
|
/* Fall through. */
|
|
|
|
case R_RISCV_JAL:
|
|
case R_RISCV_RVC_JUMP:
|
|
if (bfd_link_pic (info) && h != NULL)
|
|
{
|
|
if (h->plt.offset != MINUS_ONE)
|
|
{
|
|
/* Refer to the PLT entry. This check has to match the
|
|
check in _bfd_riscv_relax_section. */
|
|
relocation = sec_addr (htab->elf.splt) + h->plt.offset;
|
|
unresolved_reloc = false;
|
|
}
|
|
else if (!SYMBOL_REFERENCES_LOCAL (info, h)
|
|
&& (input_section->flags & SEC_ALLOC) != 0
|
|
&& (input_section->flags & SEC_READONLY) != 0
|
|
&& ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
|
|
{
|
|
/* PR 28509, when generating the shared object, these
|
|
referenced symbols may bind externally, which means
|
|
they will be exported to the dynamic symbol table,
|
|
and are preemptible by default. These symbols cannot
|
|
be referenced by the non-pic relocations, like
|
|
R_RISCV_JAL and R_RISCV_RVC_JUMP relocations.
|
|
|
|
However, consider that linker may relax the R_RISCV_CALL
|
|
relocations to R_RISCV_JAL or R_RISCV_RVC_JUMP, if
|
|
these relocations are relocated to the plt entries,
|
|
then we won't report error for them.
|
|
|
|
Perhaps we also need the similar checks for the
|
|
R_RISCV_BRANCH and R_RISCV_RVC_BRANCH relocations. */
|
|
msg = bfd_asprintf (_("%%X%%P: relocation %s against `%s'"
|
|
" which may bind externally"
|
|
" can not be used"
|
|
" when making a shared object;"
|
|
" recompile with -fPIC\n"),
|
|
howto->name, h->root.root.string);
|
|
r = bfd_reloc_notsupported;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case R_RISCV_TPREL_HI20:
|
|
relocation = tpoff (info, relocation);
|
|
break;
|
|
|
|
case R_RISCV_TPREL_LO12_I:
|
|
case R_RISCV_TPREL_LO12_S:
|
|
relocation = tpoff (info, relocation);
|
|
break;
|
|
|
|
case R_RISCV_TPREL_I:
|
|
case R_RISCV_TPREL_S:
|
|
relocation = tpoff (info, relocation);
|
|
if (VALID_ITYPE_IMM (relocation + rel->r_addend))
|
|
{
|
|
/* We can use tp as the base register. */
|
|
bfd_vma insn = bfd_getl32 (contents + rel->r_offset);
|
|
insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
|
|
insn |= X_TP << OP_SH_RS1;
|
|
bfd_putl32 (insn, contents + rel->r_offset);
|
|
}
|
|
else
|
|
r = bfd_reloc_overflow;
|
|
break;
|
|
|
|
case R_RISCV_GPREL_I:
|
|
case R_RISCV_GPREL_S:
|
|
{
|
|
bfd_vma gp = riscv_global_pointer_value (info);
|
|
bool x0_base = VALID_ITYPE_IMM (relocation + rel->r_addend);
|
|
if (x0_base || VALID_ITYPE_IMM (relocation + rel->r_addend - gp))
|
|
{
|
|
/* We can use x0 or gp as the base register. */
|
|
bfd_vma insn = bfd_getl32 (contents + rel->r_offset);
|
|
insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
|
|
if (!x0_base)
|
|
{
|
|
rel->r_addend -= gp;
|
|
insn |= X_GP << OP_SH_RS1;
|
|
}
|
|
bfd_putl32 (insn, contents + rel->r_offset);
|
|
}
|
|
else
|
|
r = bfd_reloc_overflow;
|
|
break;
|
|
}
|
|
|
|
case R_RISCV_PCREL_HI20:
|
|
absolute = riscv_zero_pcrel_hi_reloc (rel, info, pc, relocation,
|
|
contents, howto);
|
|
/* Update howto if relocation is changed. */
|
|
howto = riscv_elf_rtype_to_howto (input_bfd,
|
|
ELFNN_R_TYPE (rel->r_info));
|
|
if (howto == NULL)
|
|
r = bfd_reloc_notsupported;
|
|
else if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
|
|
relocation + rel->r_addend,
|
|
r_type, absolute))
|
|
r = bfd_reloc_overflow;
|
|
break;
|
|
|
|
case R_RISCV_PCREL_LO12_I:
|
|
case R_RISCV_PCREL_LO12_S:
|
|
/* We don't allow section symbols plus addends as the auipc address,
|
|
because then riscv_relax_delete_bytes would have to search through
|
|
all relocs to update these addends. This is also ambiguous, as
|
|
we do allow offsets to be added to the target address, which are
|
|
not to be used to find the auipc address. */
|
|
if (((sym != NULL && (ELF_ST_TYPE (sym->st_info) == STT_SECTION))
|
|
|| (h != NULL && h->type == STT_SECTION))
|
|
&& rel->r_addend)
|
|
{
|
|
msg = _("%pcrel_lo section symbol with an addend");
|
|
r = bfd_reloc_dangerous;
|
|
break;
|
|
}
|
|
|
|
if (riscv_record_pcrel_lo_reloc (&pcrel_relocs, relocation, rel,
|
|
input_section, info, howto,
|
|
contents))
|
|
continue;
|
|
r = bfd_reloc_overflow;
|
|
break;
|
|
|
|
case R_RISCV_TLS_DTPREL32:
|
|
case R_RISCV_TLS_DTPREL64:
|
|
relocation = dtpoff (info, relocation);
|
|
break;
|
|
|
|
case R_RISCV_32:
|
|
/* Non ABS symbol should be blocked in check_relocs. */
|
|
if (ARCH_SIZE > 32)
|
|
break;
|
|
/* Fall through. */
|
|
|
|
case R_RISCV_64:
|
|
if ((input_section->flags & SEC_ALLOC) == 0)
|
|
break;
|
|
|
|
if (RISCV_GENERATE_DYNAMIC_RELOC (howto->pc_relative, info, h,
|
|
resolved_to_zero))
|
|
{
|
|
Elf_Internal_Rela outrel;
|
|
asection *sreloc;
|
|
|
|
/* When generating a shared object, these relocations
|
|
are copied into the output file to be resolved at run
|
|
time. */
|
|
|
|
outrel.r_offset =
|
|
_bfd_elf_section_offset (output_bfd, info, input_section,
|
|
rel->r_offset);
|
|
bool skip = false;
|
|
bool relocate = false;
|
|
if (outrel.r_offset == (bfd_vma) -1)
|
|
skip = true;
|
|
else if (outrel.r_offset == (bfd_vma) -2)
|
|
{
|
|
skip = true;
|
|
relocate = true;
|
|
}
|
|
else if (h != NULL && bfd_is_abs_symbol (&h->root))
|
|
{
|
|
/* Don't need dynamic reloc when the ABS symbol is
|
|
non-dynamic or forced to local. Maybe just use
|
|
SYMBOL_REFERENCES_LOCAL to check? */
|
|
skip = (h->forced_local || (h->dynindx == -1));
|
|
relocate = skip;
|
|
}
|
|
|
|
outrel.r_offset += sec_addr (input_section);
|
|
|
|
if (skip)
|
|
memset (&outrel, 0, sizeof outrel); /* R_RISCV_NONE. */
|
|
else if (RISCV_COPY_INPUT_RELOC (info, h))
|
|
{
|
|
/* Maybe just use !SYMBOL_REFERENCES_LOCAL to check? */
|
|
outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
|
|
outrel.r_addend = rel->r_addend;
|
|
}
|
|
else
|
|
{
|
|
/* This symbol is local, or marked to become local. */
|
|
outrel.r_info = ELFNN_R_INFO (0, R_RISCV_RELATIVE);
|
|
outrel.r_addend = relocation + rel->r_addend;
|
|
}
|
|
|
|
sreloc = elf_section_data (input_section)->sreloc;
|
|
riscv_elf_append_rela (output_bfd, sreloc, &outrel);
|
|
if (!relocate)
|
|
continue;
|
|
}
|
|
break;
|
|
|
|
case R_RISCV_TLS_GOT_HI20:
|
|
is_ie = true;
|
|
/* Fall through. */
|
|
|
|
case R_RISCV_TLS_GD_HI20:
|
|
if (h != NULL)
|
|
{
|
|
off = h->got.offset;
|
|
h->got.offset |= 1;
|
|
}
|
|
else
|
|
{
|
|
off = local_got_offsets[r_symndx];
|
|
local_got_offsets[r_symndx] |= 1;
|
|
}
|
|
|
|
tls_type = _bfd_riscv_elf_tls_type (input_bfd, h, r_symndx);
|
|
BFD_ASSERT (tls_type & (GOT_TLS_IE | GOT_TLS_GD));
|
|
/* If this symbol is referenced by both GD and IE TLS, the IE
|
|
reference's GOT slot follows the GD reference's slots. */
|
|
ie_off = 0;
|
|
if ((tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_IE))
|
|
ie_off = 2 * GOT_ENTRY_SIZE;
|
|
|
|
if ((off & 1) != 0)
|
|
off &= ~1;
|
|
else
|
|
{
|
|
Elf_Internal_Rela outrel;
|
|
int indx = 0;
|
|
bool need_relocs = false;
|
|
|
|
if (htab->elf.srelgot == NULL)
|
|
abort ();
|
|
|
|
bool dyn = elf_hash_table (info)->dynamic_sections_created;
|
|
RISCV_TLS_GD_IE_NEED_DYN_RELOC (info, dyn, h, indx, need_relocs);
|
|
|
|
/* The GOT entries have not been initialized yet. Do it
|
|
now, and emit any relocations. */
|
|
if (tls_type & GOT_TLS_GD)
|
|
{
|
|
if (need_relocs)
|
|
{
|
|
outrel.r_offset = sec_addr (htab->elf.sgot) + off;
|
|
outrel.r_addend = 0;
|
|
outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_DTPMODNN);
|
|
bfd_put_NN (output_bfd, 0,
|
|
htab->elf.sgot->contents + off);
|
|
riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
|
|
if (indx == 0)
|
|
{
|
|
BFD_ASSERT (! unresolved_reloc);
|
|
bfd_put_NN (output_bfd,
|
|
dtpoff (info, relocation),
|
|
(htab->elf.sgot->contents
|
|
+ off + RISCV_ELF_WORD_BYTES));
|
|
}
|
|
else
|
|
{
|
|
bfd_put_NN (output_bfd, 0,
|
|
(htab->elf.sgot->contents
|
|
+ off + RISCV_ELF_WORD_BYTES));
|
|
outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_DTPRELNN);
|
|
outrel.r_offset += RISCV_ELF_WORD_BYTES;
|
|
riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* If we are not emitting relocations for a
|
|
general dynamic reference, then we must be in a
|
|
static link or an executable link with the
|
|
symbol binding locally. Mark it as belonging
|
|
to module 1, the executable. */
|
|
bfd_put_NN (output_bfd, 1,
|
|
htab->elf.sgot->contents + off);
|
|
bfd_put_NN (output_bfd,
|
|
dtpoff (info, relocation),
|
|
(htab->elf.sgot->contents
|
|
+ off + RISCV_ELF_WORD_BYTES));
|
|
}
|
|
}
|
|
|
|
if (tls_type & GOT_TLS_IE)
|
|
{
|
|
if (need_relocs)
|
|
{
|
|
bfd_put_NN (output_bfd, 0,
|
|
htab->elf.sgot->contents + off + ie_off);
|
|
outrel.r_offset = sec_addr (htab->elf.sgot)
|
|
+ off + ie_off;
|
|
outrel.r_addend = 0;
|
|
if (indx == 0)
|
|
outrel.r_addend = tpoff (info, relocation);
|
|
outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_TPRELNN);
|
|
riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
|
|
}
|
|
else
|
|
{
|
|
bfd_put_NN (output_bfd, tpoff (info, relocation),
|
|
htab->elf.sgot->contents + off + ie_off);
|
|
}
|
|
}
|
|
}
|
|
|
|
BFD_ASSERT (off < (bfd_vma) -2);
|
|
relocation = sec_addr (htab->elf.sgot) + off + (is_ie ? ie_off : 0);
|
|
if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
|
|
relocation, r_type,
|
|
false))
|
|
r = bfd_reloc_overflow;
|
|
unresolved_reloc = false;
|
|
break;
|
|
|
|
default:
|
|
r = bfd_reloc_notsupported;
|
|
}
|
|
|
|
/* Dynamic relocs are not propagated for SEC_DEBUGGING sections
|
|
because such sections are not SEC_ALLOC and thus ld.so will
|
|
not process them. */
|
|
if (unresolved_reloc
|
|
&& !((input_section->flags & SEC_DEBUGGING) != 0
|
|
&& h->def_dynamic)
|
|
&& _bfd_elf_section_offset (output_bfd, info, input_section,
|
|
rel->r_offset) != (bfd_vma) -1)
|
|
{
|
|
msg = bfd_asprintf (_("%%X%%P: unresolvable %s relocation against "
|
|
"symbol `%s'\n"),
|
|
howto->name,
|
|
h->root.root.string);
|
|
r = bfd_reloc_notsupported;
|
|
}
|
|
|
|
do_relocation:
|
|
if (r == bfd_reloc_ok)
|
|
r = perform_relocation (howto, rel, relocation, input_section,
|
|
input_bfd, contents);
|
|
|
|
/* We should have already detected the error and set message before.
|
|
If the error message isn't set since the linker runs out of memory
|
|
or we don't set it before, then we should set the default message
|
|
with the "internal error" string here. */
|
|
switch (r)
|
|
{
|
|
case bfd_reloc_ok:
|
|
continue;
|
|
|
|
case bfd_reloc_overflow:
|
|
info->callbacks->reloc_overflow
|
|
(info, (h ? &h->root : NULL), name, howto->name,
|
|
(bfd_vma) 0, input_bfd, input_section, rel->r_offset);
|
|
break;
|
|
|
|
case bfd_reloc_undefined:
|
|
info->callbacks->undefined_symbol
|
|
(info, name, input_bfd, input_section, rel->r_offset,
|
|
true);
|
|
break;
|
|
|
|
case bfd_reloc_outofrange:
|
|
if (msg == NULL)
|
|
msg = _("%X%P: internal error: out of range error\n");
|
|
break;
|
|
|
|
case bfd_reloc_notsupported:
|
|
if (msg == NULL)
|
|
msg = _("%X%P: internal error: unsupported relocation error\n");
|
|
break;
|
|
|
|
case bfd_reloc_dangerous:
|
|
/* The error message should already be set. */
|
|
if (msg == NULL)
|
|
msg = _("dangerous relocation error");
|
|
info->callbacks->reloc_dangerous
|
|
(info, msg, input_bfd, input_section, rel->r_offset);
|
|
break;
|
|
|
|
default:
|
|
msg = _("%X%P: internal error: unknown error\n");
|
|
break;
|
|
}
|
|
|
|
/* Do not report error message for the dangerous relocation again. */
|
|
if (msg && r != bfd_reloc_dangerous)
|
|
info->callbacks->einfo (msg);
|
|
|
|
/* We already reported the error via a callback, so don't try to report
|
|
it again by returning false. That leads to spurious errors. */
|
|
ret = true;
|
|
goto out;
|
|
}
|
|
|
|
ret = riscv_resolve_pcrel_lo_relocs (&pcrel_relocs);
|
|
out:
|
|
riscv_free_pcrel_relocs (&pcrel_relocs);
|
|
return ret;
|
|
}
|
|
|
|
/* Finish up dynamic symbol handling. We set the contents of various
|
|
dynamic sections here. */
|
|
|
|
static bool
|
|
riscv_elf_finish_dynamic_symbol (bfd *output_bfd,
|
|
struct bfd_link_info *info,
|
|
struct elf_link_hash_entry *h,
|
|
Elf_Internal_Sym *sym)
|
|
{
|
|
struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
|
|
const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
|
|
|
|
if (h->plt.offset != (bfd_vma) -1)
|
|
{
|
|
/* We've decided to create a PLT entry for this symbol. */
|
|
bfd_byte *loc;
|
|
bfd_vma i, header_address, plt_idx, got_offset, got_address;
|
|
uint32_t plt_entry[PLT_ENTRY_INSNS];
|
|
Elf_Internal_Rela rela;
|
|
asection *plt, *gotplt, *relplt;
|
|
|
|
/* When building a static executable, use .iplt, .igot.plt and
|
|
.rela.iplt sections for STT_GNU_IFUNC symbols. */
|
|
if (htab->elf.splt != NULL)
|
|
{
|
|
plt = htab->elf.splt;
|
|
gotplt = htab->elf.sgotplt;
|
|
relplt = htab->elf.srelplt;
|
|
}
|
|
else
|
|
{
|
|
plt = htab->elf.iplt;
|
|
gotplt = htab->elf.igotplt;
|
|
relplt = htab->elf.irelplt;
|
|
}
|
|
|
|
/* This symbol has an entry in the procedure linkage table. Set
|
|
it up. */
|
|
if ((h->dynindx == -1
|
|
&& !((h->forced_local || bfd_link_executable (info))
|
|
&& h->def_regular
|
|
&& h->type == STT_GNU_IFUNC))
|
|
|| plt == NULL
|
|
|| gotplt == NULL
|
|
|| relplt == NULL)
|
|
return false;
|
|
|
|
/* Calculate the address of the PLT header. */
|
|
header_address = sec_addr (plt);
|
|
|
|
/* Calculate the index of the entry and the offset of .got.plt entry.
|
|
For static executables, we don't reserve anything. */
|
|
if (plt == htab->elf.splt)
|
|
{
|
|
plt_idx = (h->plt.offset - PLT_HEADER_SIZE) / PLT_ENTRY_SIZE;
|
|
got_offset = GOTPLT_HEADER_SIZE + (plt_idx * GOT_ENTRY_SIZE);
|
|
}
|
|
else
|
|
{
|
|
plt_idx = h->plt.offset / PLT_ENTRY_SIZE;
|
|
got_offset = plt_idx * GOT_ENTRY_SIZE;
|
|
}
|
|
|
|
/* Calculate the address of the .got.plt entry. */
|
|
got_address = sec_addr (gotplt) + got_offset;
|
|
|
|
/* Find out where the .plt entry should go. */
|
|
loc = plt->contents + h->plt.offset;
|
|
|
|
/* Fill in the PLT entry itself. */
|
|
if (! riscv_make_plt_entry (output_bfd, got_address,
|
|
header_address + h->plt.offset,
|
|
plt_entry))
|
|
return false;
|
|
|
|
for (i = 0; i < PLT_ENTRY_INSNS; i++)
|
|
bfd_putl32 (plt_entry[i], loc + 4*i);
|
|
|
|
/* Fill in the initial value of the .got.plt entry. */
|
|
loc = gotplt->contents + (got_address - sec_addr (gotplt));
|
|
bfd_put_NN (output_bfd, sec_addr (plt), loc);
|
|
|
|
rela.r_offset = got_address;
|
|
|
|
if (h->dynindx == -1
|
|
|| ((bfd_link_executable (info)
|
|
|| ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
|
|
&& h->def_regular
|
|
&& h->type == STT_GNU_IFUNC))
|
|
{
|
|
info->callbacks->minfo (_("Local IFUNC function `%s' in %pB\n"),
|
|
h->root.root.string,
|
|
h->root.u.def.section->owner);
|
|
|
|
/* If an STT_GNU_IFUNC symbol is locally defined, generate
|
|
R_RISCV_IRELATIVE instead of R_RISCV_JUMP_SLOT. */
|
|
asection *sec = h->root.u.def.section;
|
|
rela.r_info = ELFNN_R_INFO (0, R_RISCV_IRELATIVE);
|
|
rela.r_addend = h->root.u.def.value
|
|
+ sec->output_section->vma
|
|
+ sec->output_offset;
|
|
}
|
|
else
|
|
{
|
|
/* Fill in the entry in the .rela.plt section. */
|
|
rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_JUMP_SLOT);
|
|
rela.r_addend = 0;
|
|
}
|
|
|
|
loc = relplt->contents + plt_idx * sizeof (ElfNN_External_Rela);
|
|
bed->s->swap_reloca_out (output_bfd, &rela, loc);
|
|
|
|
if (!h->def_regular)
|
|
{
|
|
/* Mark the symbol as undefined, rather than as defined in
|
|
the .plt section. Leave the value alone. */
|
|
sym->st_shndx = SHN_UNDEF;
|
|
/* If the symbol is weak, we do need to clear the value.
|
|
Otherwise, the PLT entry would provide a definition for
|
|
the symbol even if the symbol wasn't defined anywhere,
|
|
and so the symbol would never be NULL. */
|
|
if (!h->ref_regular_nonweak)
|
|
sym->st_value = 0;
|
|
}
|
|
}
|
|
|
|
if (h->got.offset != (bfd_vma) -1
|
|
&& !(riscv_elf_hash_entry (h)->tls_type & (GOT_TLS_GD | GOT_TLS_IE))
|
|
&& !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
|
|
{
|
|
asection *sgot;
|
|
asection *srela;
|
|
Elf_Internal_Rela rela;
|
|
bool use_elf_append_rela = true;
|
|
|
|
/* This symbol has an entry in the GOT. Set it up. */
|
|
|
|
sgot = htab->elf.sgot;
|
|
srela = htab->elf.srelgot;
|
|
BFD_ASSERT (sgot != NULL && srela != NULL);
|
|
|
|
rela.r_offset = sec_addr (sgot) + (h->got.offset &~ (bfd_vma) 1);
|
|
|
|
/* Handle the ifunc symbol in GOT entry. */
|
|
if (h->def_regular
|
|
&& h->type == STT_GNU_IFUNC)
|
|
{
|
|
if (h->plt.offset == (bfd_vma) -1)
|
|
{
|
|
/* STT_GNU_IFUNC is referenced without PLT. */
|
|
|
|
if (htab->elf.splt == NULL)
|
|
{
|
|
/* Use .rela.iplt section to store .got relocations
|
|
in static executable. */
|
|
srela = htab->elf.irelplt;
|
|
|
|
/* Do not use riscv_elf_append_rela to add dynamic
|
|
relocs. */
|
|
use_elf_append_rela = false;
|
|
}
|
|
|
|
if (SYMBOL_REFERENCES_LOCAL (info, h))
|
|
{
|
|
info->callbacks->minfo (_("Local IFUNC function `%s' in %pB\n"),
|
|
h->root.root.string,
|
|
h->root.u.def.section->owner);
|
|
|
|
rela.r_info = ELFNN_R_INFO (0, R_RISCV_IRELATIVE);
|
|
rela.r_addend = (h->root.u.def.value
|
|
+ h->root.u.def.section->output_section->vma
|
|
+ h->root.u.def.section->output_offset);
|
|
}
|
|
else
|
|
{
|
|
/* Generate R_RISCV_NN. */
|
|
BFD_ASSERT ((h->got.offset & 1) == 0);
|
|
BFD_ASSERT (h->dynindx != -1);
|
|
rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_NN);
|
|
rela.r_addend = 0;
|
|
}
|
|
}
|
|
else if (bfd_link_pic (info))
|
|
{
|
|
/* Generate R_RISCV_NN. */
|
|
BFD_ASSERT ((h->got.offset & 1) == 0);
|
|
BFD_ASSERT (h->dynindx != -1);
|
|
rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_NN);
|
|
rela.r_addend = 0;
|
|
}
|
|
else
|
|
{
|
|
asection *plt;
|
|
|
|
if (!h->pointer_equality_needed)
|
|
abort ();
|
|
|
|
/* For non-shared object, we can't use .got.plt, which
|
|
contains the real function address if we need pointer
|
|
equality. We load the GOT entry with the PLT entry. */
|
|
plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
|
|
bfd_put_NN (output_bfd, (plt->output_section->vma
|
|
+ plt->output_offset
|
|
+ h->plt.offset),
|
|
htab->elf.sgot->contents
|
|
+ (h->got.offset & ~(bfd_vma) 1));
|
|
return true;
|
|
}
|
|
}
|
|
else if (bfd_link_pic (info)
|
|
&& SYMBOL_REFERENCES_LOCAL (info, h))
|
|
{
|
|
/* If this is a local symbol reference, we just want to emit
|
|
a RELATIVE reloc. This can happen if it is a -Bsymbolic link,
|
|
or a pie link, or the symbol was forced to be local because
|
|
of a version file. The entry in the global offset table will
|
|
already have been initialized in the relocate_section function. */
|
|
BFD_ASSERT ((h->got.offset & 1) != 0);
|
|
asection *sec = h->root.u.def.section;
|
|
rela.r_info = ELFNN_R_INFO (0, R_RISCV_RELATIVE);
|
|
rela.r_addend = (h->root.u.def.value
|
|
+ sec->output_section->vma
|
|
+ sec->output_offset);
|
|
}
|
|
else
|
|
{
|
|
BFD_ASSERT ((h->got.offset & 1) == 0);
|
|
BFD_ASSERT (h->dynindx != -1);
|
|
rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_NN);
|
|
rela.r_addend = 0;
|
|
}
|
|
|
|
bfd_put_NN (output_bfd, 0,
|
|
sgot->contents + (h->got.offset & ~(bfd_vma) 1));
|
|
|
|
if (use_elf_append_rela)
|
|
riscv_elf_append_rela (output_bfd, srela, &rela);
|
|
else
|
|
{
|
|
/* Use riscv_elf_append_rela to add the dynamic relocs into
|
|
.rela.iplt may cause the overwrite problems. Since we insert
|
|
the relocs for PLT didn't handle the reloc_index of .rela.iplt,
|
|
but the riscv_elf_append_rela adds the relocs to the place
|
|
that are calculated from the reloc_index (in seqential).
|
|
|
|
One solution is that add these dynamic relocs (GOT IFUNC)
|
|
from the last of .rela.iplt section. */
|
|
bfd_vma iplt_idx = htab->last_iplt_index--;
|
|
bfd_byte *loc = srela->contents
|
|
+ iplt_idx * sizeof (ElfNN_External_Rela);
|
|
bed->s->swap_reloca_out (output_bfd, &rela, loc);
|
|
}
|
|
}
|
|
|
|
if (h->needs_copy)
|
|
{
|
|
Elf_Internal_Rela rela;
|
|
asection *s;
|
|
|
|
/* This symbols needs a copy reloc. Set it up. */
|
|
BFD_ASSERT (h->dynindx != -1);
|
|
|
|
rela.r_offset = sec_addr (h->root.u.def.section) + h->root.u.def.value;
|
|
rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_COPY);
|
|
rela.r_addend = 0;
|
|
if (h->root.u.def.section == htab->elf.sdynrelro)
|
|
s = htab->elf.sreldynrelro;
|
|
else
|
|
s = htab->elf.srelbss;
|
|
riscv_elf_append_rela (output_bfd, s, &rela);
|
|
}
|
|
|
|
/* Mark some specially defined symbols as absolute. */
|
|
if (h == htab->elf.hdynamic
|
|
|| (h == htab->elf.hgot || h == htab->elf.hplt))
|
|
sym->st_shndx = SHN_ABS;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Finish up local dynamic symbol handling. We set the contents of
|
|
various dynamic sections here. */
|
|
|
|
static int
|
|
riscv_elf_finish_local_dynamic_symbol (void **slot, void *inf)
|
|
{
|
|
struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) *slot;
|
|
struct bfd_link_info *info = (struct bfd_link_info *) inf;
|
|
|
|
return riscv_elf_finish_dynamic_symbol (info->output_bfd, info, h, NULL);
|
|
}
|
|
|
|
/* Finish up the dynamic sections. */
|
|
|
|
static bool
|
|
riscv_finish_dyn (bfd *output_bfd, struct bfd_link_info *info,
|
|
bfd *dynobj, asection *sdyn)
|
|
{
|
|
struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
|
|
const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
|
|
size_t dynsize = bed->s->sizeof_dyn;
|
|
bfd_byte *dyncon, *dynconend;
|
|
|
|
dynconend = sdyn->contents + sdyn->size;
|
|
for (dyncon = sdyn->contents; dyncon < dynconend; dyncon += dynsize)
|
|
{
|
|
Elf_Internal_Dyn dyn;
|
|
asection *s;
|
|
|
|
bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
|
|
|
|
switch (dyn.d_tag)
|
|
{
|
|
case DT_PLTGOT:
|
|
s = htab->elf.sgotplt;
|
|
dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
|
|
break;
|
|
case DT_JMPREL:
|
|
s = htab->elf.srelplt;
|
|
dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
|
|
break;
|
|
case DT_PLTRELSZ:
|
|
s = htab->elf.srelplt;
|
|
dyn.d_un.d_val = s->size;
|
|
break;
|
|
default:
|
|
continue;
|
|
}
|
|
|
|
bed->s->swap_dyn_out (output_bfd, &dyn, dyncon);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
riscv_elf_finish_dynamic_sections (bfd *output_bfd,
|
|
struct bfd_link_info *info)
|
|
{
|
|
bfd *dynobj;
|
|
asection *sdyn;
|
|
struct riscv_elf_link_hash_table *htab;
|
|
|
|
htab = riscv_elf_hash_table (info);
|
|
BFD_ASSERT (htab != NULL);
|
|
dynobj = htab->elf.dynobj;
|
|
|
|
sdyn = bfd_get_linker_section (dynobj, ".dynamic");
|
|
|
|
if (elf_hash_table (info)->dynamic_sections_created)
|
|
{
|
|
asection *splt;
|
|
bool ret;
|
|
|
|
splt = htab->elf.splt;
|
|
BFD_ASSERT (splt != NULL && sdyn != NULL);
|
|
|
|
ret = riscv_finish_dyn (output_bfd, info, dynobj, sdyn);
|
|
|
|
if (!ret)
|
|
return ret;
|
|
|
|
/* Fill in the head and tail entries in the procedure linkage table. */
|
|
if (splt->size > 0)
|
|
{
|
|
int i;
|
|
uint32_t plt_header[PLT_HEADER_INSNS];
|
|
ret = riscv_make_plt_header (output_bfd,
|
|
sec_addr (htab->elf.sgotplt),
|
|
sec_addr (splt), plt_header);
|
|
if (!ret)
|
|
return ret;
|
|
|
|
for (i = 0; i < PLT_HEADER_INSNS; i++)
|
|
bfd_putl32 (plt_header[i], splt->contents + 4*i);
|
|
|
|
elf_section_data (splt->output_section)->this_hdr.sh_entsize
|
|
= PLT_ENTRY_SIZE;
|
|
}
|
|
}
|
|
|
|
if (htab->elf.sgotplt)
|
|
{
|
|
asection *output_section = htab->elf.sgotplt->output_section;
|
|
|
|
if (bfd_is_abs_section (output_section))
|
|
{
|
|
(*_bfd_error_handler)
|
|
(_("discarded output section: `%pA'"), htab->elf.sgotplt);
|
|
return false;
|
|
}
|
|
|
|
if (htab->elf.sgotplt->size > 0)
|
|
{
|
|
/* Write the first two entries in .got.plt, needed for the dynamic
|
|
linker. */
|
|
bfd_put_NN (output_bfd, (bfd_vma) -1, htab->elf.sgotplt->contents);
|
|
bfd_put_NN (output_bfd, (bfd_vma) 0,
|
|
htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
|
|
}
|
|
|
|
elf_section_data (output_section)->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
|
|
}
|
|
|
|
if (htab->elf.sgot)
|
|
{
|
|
asection *output_section = htab->elf.sgot->output_section;
|
|
|
|
if (htab->elf.sgot->size > 0)
|
|
{
|
|
/* Set the first entry in the global offset table to the address of
|
|
the dynamic section. */
|
|
bfd_vma val = sdyn ? sec_addr (sdyn) : 0;
|
|
bfd_put_NN (output_bfd, val, htab->elf.sgot->contents);
|
|
}
|
|
|
|
elf_section_data (output_section)->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
|
|
}
|
|
|
|
/* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
|
|
htab_traverse (htab->loc_hash_table,
|
|
riscv_elf_finish_local_dynamic_symbol,
|
|
info);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Return address for Ith PLT stub in section PLT, for relocation REL
|
|
or (bfd_vma) -1 if it should not be included. */
|
|
|
|
static bfd_vma
|
|
riscv_elf_plt_sym_val (bfd_vma i, const asection *plt,
|
|
const arelent *rel ATTRIBUTE_UNUSED)
|
|
{
|
|
return plt->vma + PLT_HEADER_SIZE + i * PLT_ENTRY_SIZE;
|
|
}
|
|
|
|
static enum elf_reloc_type_class
|
|
riscv_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
|
|
const asection *rel_sec ATTRIBUTE_UNUSED,
|
|
const Elf_Internal_Rela *rela)
|
|
{
|
|
switch (ELFNN_R_TYPE (rela->r_info))
|
|
{
|
|
case R_RISCV_RELATIVE:
|
|
return reloc_class_relative;
|
|
case R_RISCV_JUMP_SLOT:
|
|
return reloc_class_plt;
|
|
case R_RISCV_COPY:
|
|
return reloc_class_copy;
|
|
default:
|
|
return reloc_class_normal;
|
|
}
|
|
}
|
|
|
|
/* Given the ELF header flags in FLAGS, it returns a string that describes the
|
|
float ABI. */
|
|
|
|
static const char *
|
|
riscv_float_abi_string (flagword flags)
|
|
{
|
|
switch (flags & EF_RISCV_FLOAT_ABI)
|
|
{
|
|
case EF_RISCV_FLOAT_ABI_SOFT:
|
|
return "soft-float";
|
|
break;
|
|
case EF_RISCV_FLOAT_ABI_SINGLE:
|
|
return "single-float";
|
|
break;
|
|
case EF_RISCV_FLOAT_ABI_DOUBLE:
|
|
return "double-float";
|
|
break;
|
|
case EF_RISCV_FLOAT_ABI_QUAD:
|
|
return "quad-float";
|
|
break;
|
|
default:
|
|
abort ();
|
|
}
|
|
}
|
|
|
|
/* The information of architecture elf attributes. */
|
|
static riscv_subset_list_t in_subsets;
|
|
static riscv_subset_list_t out_subsets;
|
|
static riscv_subset_list_t merged_subsets;
|
|
|
|
/* Predicator for standard extension. */
|
|
|
|
static bool
|
|
riscv_std_ext_p (const char *name)
|
|
{
|
|
return (strlen (name) == 1) && (name[0] != 'x') && (name[0] != 's');
|
|
}
|
|
|
|
/* Update the output subset's version to match the input when the input
|
|
subset's version is newer. */
|
|
|
|
static void
|
|
riscv_update_subset_version (struct riscv_subset_t *in,
|
|
struct riscv_subset_t *out)
|
|
{
|
|
if (in == NULL || out == NULL)
|
|
return;
|
|
|
|
/* Update the output ISA versions to the newest ones, but otherwise don't
|
|
provide any errors or warnings about mis-matched ISA versions as it's
|
|
generally too tricky to check for these at link time. */
|
|
if ((in->major_version > out->major_version)
|
|
|| (in->major_version == out->major_version
|
|
&& in->minor_version > out->minor_version)
|
|
|| (out->major_version == RISCV_UNKNOWN_VERSION))
|
|
{
|
|
out->major_version = in->major_version;
|
|
out->minor_version = in->minor_version;
|
|
}
|
|
}
|
|
|
|
/* Return true if subset is 'i' or 'e'. */
|
|
|
|
static bool
|
|
riscv_i_or_e_p (bfd *ibfd,
|
|
const char *arch,
|
|
struct riscv_subset_t *subset)
|
|
{
|
|
if ((strcasecmp (subset->name, "e") != 0)
|
|
&& (strcasecmp (subset->name, "i") != 0))
|
|
{
|
|
_bfd_error_handler
|
|
(_("error: %pB: corrupted ISA string '%s'. "
|
|
"First letter should be 'i' or 'e' but got '%s'"),
|
|
ibfd, arch, subset->name);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Merge standard extensions.
|
|
|
|
Return Value:
|
|
Return FALSE if failed to merge.
|
|
|
|
Arguments:
|
|
`bfd`: bfd handler.
|
|
`in_arch`: Raw ISA string for input object.
|
|
`out_arch`: Raw ISA string for output object.
|
|
`pin`: Subset list for input object.
|
|
`pout`: Subset list for output object. */
|
|
|
|
static bool
|
|
riscv_merge_std_ext (bfd *ibfd,
|
|
const char *in_arch,
|
|
const char *out_arch,
|
|
struct riscv_subset_t **pin,
|
|
struct riscv_subset_t **pout)
|
|
{
|
|
const char *standard_exts = "mafdqlcbjtpvnh";
|
|
const char *p;
|
|
struct riscv_subset_t *in = *pin;
|
|
struct riscv_subset_t *out = *pout;
|
|
|
|
/* First letter should be 'i' or 'e'. */
|
|
if (!riscv_i_or_e_p (ibfd, in_arch, in))
|
|
return false;
|
|
|
|
if (!riscv_i_or_e_p (ibfd, out_arch, out))
|
|
return false;
|
|
|
|
if (strcasecmp (in->name, out->name) != 0)
|
|
{
|
|
/* TODO: We might allow merge 'i' with 'e'. */
|
|
_bfd_error_handler
|
|
(_("error: %pB: mis-matched ISA string to merge '%s' and '%s'"),
|
|
ibfd, in->name, out->name);
|
|
return false;
|
|
}
|
|
|
|
riscv_update_subset_version(in, out);
|
|
riscv_add_subset (&merged_subsets,
|
|
out->name, out->major_version, out->minor_version);
|
|
|
|
in = in->next;
|
|
out = out->next;
|
|
|
|
/* Handle standard extension first. */
|
|
for (p = standard_exts; *p; ++p)
|
|
{
|
|
struct riscv_subset_t *ext_in, *ext_out, *ext_merged;
|
|
char find_ext[2] = {*p, '\0'};
|
|
bool find_in, find_out;
|
|
|
|
find_in = riscv_lookup_subset (&in_subsets, find_ext, &ext_in);
|
|
find_out = riscv_lookup_subset (&out_subsets, find_ext, &ext_out);
|
|
|
|
if (!find_in && !find_out)
|
|
continue;
|
|
|
|
if (find_in && find_out)
|
|
riscv_update_subset_version(ext_in, ext_out);
|
|
|
|
ext_merged = find_out ? ext_out : ext_in;
|
|
riscv_add_subset (&merged_subsets, ext_merged->name,
|
|
ext_merged->major_version, ext_merged->minor_version);
|
|
}
|
|
|
|
/* Skip all standard extensions. */
|
|
while ((in != NULL) && riscv_std_ext_p (in->name)) in = in->next;
|
|
while ((out != NULL) && riscv_std_ext_p (out->name)) out = out->next;
|
|
|
|
*pin = in;
|
|
*pout = out;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Merge multi letter extensions. PIN is a pointer to the head of the input
|
|
object subset list. Likewise for POUT and the output object. Return TRUE
|
|
on success and FALSE when a conflict is found. */
|
|
|
|
static bool
|
|
riscv_merge_multi_letter_ext (riscv_subset_t **pin,
|
|
riscv_subset_t **pout)
|
|
{
|
|
riscv_subset_t *in = *pin;
|
|
riscv_subset_t *out = *pout;
|
|
riscv_subset_t *tail;
|
|
|
|
int cmp;
|
|
|
|
while (in && out)
|
|
{
|
|
cmp = riscv_compare_subsets (in->name, out->name);
|
|
|
|
if (cmp < 0)
|
|
{
|
|
/* `in' comes before `out', append `in' and increment. */
|
|
riscv_add_subset (&merged_subsets, in->name, in->major_version,
|
|
in->minor_version);
|
|
in = in->next;
|
|
}
|
|
else if (cmp > 0)
|
|
{
|
|
/* `out' comes before `in', append `out' and increment. */
|
|
riscv_add_subset (&merged_subsets, out->name, out->major_version,
|
|
out->minor_version);
|
|
out = out->next;
|
|
}
|
|
else
|
|
{
|
|
/* Both present, check version and increment both. */
|
|
riscv_update_subset_version (in, out);
|
|
|
|
riscv_add_subset (&merged_subsets, out->name, out->major_version,
|
|
out->minor_version);
|
|
out = out->next;
|
|
in = in->next;
|
|
}
|
|
}
|
|
|
|
if (in || out)
|
|
{
|
|
/* If we're here, either `in' or `out' is running longer than
|
|
the other. So, we need to append the corresponding tail. */
|
|
tail = in ? in : out;
|
|
while (tail)
|
|
{
|
|
riscv_add_subset (&merged_subsets, tail->name, tail->major_version,
|
|
tail->minor_version);
|
|
tail = tail->next;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Merge Tag_RISCV_arch attribute. */
|
|
|
|
static char *
|
|
riscv_merge_arch_attr_info (bfd *ibfd, char *in_arch, char *out_arch)
|
|
{
|
|
riscv_subset_t *in, *out;
|
|
char *merged_arch_str;
|
|
|
|
unsigned xlen_in, xlen_out;
|
|
merged_subsets.head = NULL;
|
|
merged_subsets.tail = NULL;
|
|
|
|
riscv_parse_subset_t riscv_rps_ld_in =
|
|
{&in_subsets, _bfd_error_handler, &xlen_in, NULL, false};
|
|
riscv_parse_subset_t riscv_rps_ld_out =
|
|
{&out_subsets, _bfd_error_handler, &xlen_out, NULL, false};
|
|
|
|
if (in_arch == NULL && out_arch == NULL)
|
|
return NULL;
|
|
if (in_arch == NULL && out_arch != NULL)
|
|
return out_arch;
|
|
if (in_arch != NULL && out_arch == NULL)
|
|
return in_arch;
|
|
|
|
/* Parse subset from ISA string. */
|
|
if (!riscv_parse_subset (&riscv_rps_ld_in, in_arch))
|
|
return NULL;
|
|
if (!riscv_parse_subset (&riscv_rps_ld_out, out_arch))
|
|
return NULL;
|
|
|
|
/* Checking XLEN. */
|
|
if (xlen_out != xlen_in)
|
|
{
|
|
_bfd_error_handler
|
|
(_("error: %pB: ISA string of input (%s) doesn't match "
|
|
"output (%s)"), ibfd, in_arch, out_arch);
|
|
return NULL;
|
|
}
|
|
|
|
/* Merge subset list. */
|
|
in = in_subsets.head;
|
|
out = out_subsets.head;
|
|
|
|
/* Merge standard extension. */
|
|
if (!riscv_merge_std_ext (ibfd, in_arch, out_arch, &in, &out))
|
|
return NULL;
|
|
|
|
/* Merge all non-single letter extensions with single call. */
|
|
if (!riscv_merge_multi_letter_ext (&in, &out))
|
|
return NULL;
|
|
|
|
if (xlen_in != xlen_out)
|
|
{
|
|
_bfd_error_handler
|
|
(_("error: %pB: XLEN of input (%u) doesn't match "
|
|
"output (%u)"), ibfd, xlen_in, xlen_out);
|
|
return NULL;
|
|
}
|
|
|
|
if (xlen_in != ARCH_SIZE)
|
|
{
|
|
_bfd_error_handler
|
|
(_("error: %pB: unsupported XLEN (%u), you might be "
|
|
"using wrong emulation"), ibfd, xlen_in);
|
|
return NULL;
|
|
}
|
|
|
|
merged_arch_str = riscv_arch_str (ARCH_SIZE, &merged_subsets);
|
|
|
|
/* Release the subset lists. */
|
|
riscv_release_subset_list (&in_subsets);
|
|
riscv_release_subset_list (&out_subsets);
|
|
riscv_release_subset_list (&merged_subsets);
|
|
|
|
return merged_arch_str;
|
|
}
|
|
|
|
/* Merge object attributes from IBFD into output_bfd of INFO.
|
|
Raise an error if there are conflicting attributes. */
|
|
|
|
static bool
|
|
riscv_merge_attributes (bfd *ibfd, struct bfd_link_info *info)
|
|
{
|
|
bfd *obfd = info->output_bfd;
|
|
obj_attribute *in_attr;
|
|
obj_attribute *out_attr;
|
|
bool result = true;
|
|
bool priv_attrs_merged = false;
|
|
const char *sec_name = get_elf_backend_data (ibfd)->obj_attrs_section;
|
|
unsigned int i;
|
|
|
|
/* Skip linker created files. */
|
|
if (ibfd->flags & BFD_LINKER_CREATED)
|
|
return true;
|
|
|
|
/* Skip any input that doesn't have an attribute section.
|
|
This enables to link object files without attribute section with
|
|
any others. */
|
|
if (bfd_get_section_by_name (ibfd, sec_name) == NULL)
|
|
return true;
|
|
|
|
if (!elf_known_obj_attributes_proc (obfd)[0].i)
|
|
{
|
|
/* This is the first object. Copy the attributes. */
|
|
_bfd_elf_copy_obj_attributes (ibfd, obfd);
|
|
|
|
out_attr = elf_known_obj_attributes_proc (obfd);
|
|
|
|
/* Use the Tag_null value to indicate the attributes have been
|
|
initialized. */
|
|
out_attr[0].i = 1;
|
|
|
|
return true;
|
|
}
|
|
|
|
in_attr = elf_known_obj_attributes_proc (ibfd);
|
|
out_attr = elf_known_obj_attributes_proc (obfd);
|
|
|
|
for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
|
|
{
|
|
switch (i)
|
|
{
|
|
case Tag_RISCV_arch:
|
|
if (!out_attr[Tag_RISCV_arch].s)
|
|
out_attr[Tag_RISCV_arch].s = in_attr[Tag_RISCV_arch].s;
|
|
else if (in_attr[Tag_RISCV_arch].s
|
|
&& out_attr[Tag_RISCV_arch].s)
|
|
{
|
|
/* Check compatible. */
|
|
char *merged_arch =
|
|
riscv_merge_arch_attr_info (ibfd,
|
|
in_attr[Tag_RISCV_arch].s,
|
|
out_attr[Tag_RISCV_arch].s);
|
|
if (merged_arch == NULL)
|
|
{
|
|
result = false;
|
|
out_attr[Tag_RISCV_arch].s = "";
|
|
}
|
|
else
|
|
out_attr[Tag_RISCV_arch].s = merged_arch;
|
|
}
|
|
break;
|
|
|
|
case Tag_RISCV_priv_spec:
|
|
case Tag_RISCV_priv_spec_minor:
|
|
case Tag_RISCV_priv_spec_revision:
|
|
/* If we have handled the privileged elf attributes, then skip it. */
|
|
if (!priv_attrs_merged)
|
|
{
|
|
unsigned int Tag_a = Tag_RISCV_priv_spec;
|
|
unsigned int Tag_b = Tag_RISCV_priv_spec_minor;
|
|
unsigned int Tag_c = Tag_RISCV_priv_spec_revision;
|
|
enum riscv_spec_class in_priv_spec = PRIV_SPEC_CLASS_NONE;
|
|
enum riscv_spec_class out_priv_spec = PRIV_SPEC_CLASS_NONE;
|
|
|
|
/* Get the privileged spec class from elf attributes. */
|
|
riscv_get_priv_spec_class_from_numbers (in_attr[Tag_a].i,
|
|
in_attr[Tag_b].i,
|
|
in_attr[Tag_c].i,
|
|
&in_priv_spec);
|
|
riscv_get_priv_spec_class_from_numbers (out_attr[Tag_a].i,
|
|
out_attr[Tag_b].i,
|
|
out_attr[Tag_c].i,
|
|
&out_priv_spec);
|
|
|
|
/* Allow to link the object without the privileged specs. */
|
|
if (out_priv_spec == PRIV_SPEC_CLASS_NONE)
|
|
{
|
|
out_attr[Tag_a].i = in_attr[Tag_a].i;
|
|
out_attr[Tag_b].i = in_attr[Tag_b].i;
|
|
out_attr[Tag_c].i = in_attr[Tag_c].i;
|
|
}
|
|
else if (in_priv_spec != PRIV_SPEC_CLASS_NONE
|
|
&& in_priv_spec != out_priv_spec)
|
|
{
|
|
_bfd_error_handler
|
|
(_("warning: %pB use privileged spec version %u.%u.%u but "
|
|
"the output use version %u.%u.%u"),
|
|
ibfd,
|
|
in_attr[Tag_a].i,
|
|
in_attr[Tag_b].i,
|
|
in_attr[Tag_c].i,
|
|
out_attr[Tag_a].i,
|
|
out_attr[Tag_b].i,
|
|
out_attr[Tag_c].i);
|
|
|
|
/* The privileged spec v1.9.1 can not be linked with others
|
|
since the conflicts, so we plan to drop it in a year or
|
|
two. */
|
|
if (in_priv_spec == PRIV_SPEC_CLASS_1P9P1
|
|
|| out_priv_spec == PRIV_SPEC_CLASS_1P9P1)
|
|
{
|
|
_bfd_error_handler
|
|
(_("warning: privileged spec version 1.9.1 can not be "
|
|
"linked with other spec versions"));
|
|
}
|
|
|
|
/* Update the output privileged spec to the newest one. */
|
|
if (in_priv_spec > out_priv_spec)
|
|
{
|
|
out_attr[Tag_a].i = in_attr[Tag_a].i;
|
|
out_attr[Tag_b].i = in_attr[Tag_b].i;
|
|
out_attr[Tag_c].i = in_attr[Tag_c].i;
|
|
}
|
|
}
|
|
priv_attrs_merged = true;
|
|
}
|
|
break;
|
|
|
|
case Tag_RISCV_unaligned_access:
|
|
out_attr[i].i |= in_attr[i].i;
|
|
break;
|
|
|
|
case Tag_RISCV_stack_align:
|
|
if (out_attr[i].i == 0)
|
|
out_attr[i].i = in_attr[i].i;
|
|
else if (in_attr[i].i != 0
|
|
&& out_attr[i].i != 0
|
|
&& out_attr[i].i != in_attr[i].i)
|
|
{
|
|
_bfd_error_handler
|
|
(_("error: %pB use %u-byte stack aligned but the output "
|
|
"use %u-byte stack aligned"),
|
|
ibfd, in_attr[i].i, out_attr[i].i);
|
|
result = false;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
result &= _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
|
|
}
|
|
|
|
/* If out_attr was copied from in_attr then it won't have a type yet. */
|
|
if (in_attr[i].type && !out_attr[i].type)
|
|
out_attr[i].type = in_attr[i].type;
|
|
}
|
|
|
|
/* Merge Tag_compatibility attributes and any common GNU ones. */
|
|
if (!_bfd_elf_merge_object_attributes (ibfd, info))
|
|
return false;
|
|
|
|
/* Check for any attributes not known on RISC-V. */
|
|
result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
|
|
|
|
return result;
|
|
}
|
|
|
|
/* Merge backend specific data from an object file to the output
|
|
object file when linking. */
|
|
|
|
static bool
|
|
_bfd_riscv_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
|
|
{
|
|
bfd *obfd = info->output_bfd;
|
|
flagword new_flags, old_flags;
|
|
|
|
if (!is_riscv_elf (ibfd) || !is_riscv_elf (obfd))
|
|
return true;
|
|
|
|
if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
|
|
{
|
|
(*_bfd_error_handler)
|
|
(_("%pB: ABI is incompatible with that of the selected emulation:\n"
|
|
" target emulation `%s' does not match `%s'"),
|
|
ibfd, bfd_get_target (ibfd), bfd_get_target (obfd));
|
|
return false;
|
|
}
|
|
|
|
if (!_bfd_elf_merge_object_attributes (ibfd, info))
|
|
return false;
|
|
|
|
if (!riscv_merge_attributes (ibfd, info))
|
|
return false;
|
|
|
|
/* Check to see if the input BFD actually contains any sections. If not,
|
|
its flags may not have been initialized either, but it cannot actually
|
|
cause any incompatibility. Do not short-circuit dynamic objects; their
|
|
section list may be emptied by elf_link_add_object_symbols.
|
|
|
|
Also check to see if there are no code sections in the input. In this
|
|
case, there is no need to check for code specific flags. */
|
|
if (!(ibfd->flags & DYNAMIC))
|
|
{
|
|
bool null_input_bfd = true;
|
|
bool only_data_sections = true;
|
|
asection *sec;
|
|
|
|
for (sec = ibfd->sections; sec != NULL; sec = sec->next)
|
|
{
|
|
null_input_bfd = false;
|
|
|
|
if ((bfd_section_flags (sec)
|
|
& (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
|
|
== (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
|
|
{
|
|
only_data_sections = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (null_input_bfd || only_data_sections)
|
|
return true;
|
|
}
|
|
|
|
new_flags = elf_elfheader (ibfd)->e_flags;
|
|
old_flags = elf_elfheader (obfd)->e_flags;
|
|
|
|
if (!elf_flags_init (obfd))
|
|
{
|
|
elf_flags_init (obfd) = true;
|
|
elf_elfheader (obfd)->e_flags = new_flags;
|
|
return true;
|
|
}
|
|
|
|
/* Disallow linking different float ABIs. */
|
|
if ((old_flags ^ new_flags) & EF_RISCV_FLOAT_ABI)
|
|
{
|
|
(*_bfd_error_handler)
|
|
(_("%pB: can't link %s modules with %s modules"), ibfd,
|
|
riscv_float_abi_string (new_flags),
|
|
riscv_float_abi_string (old_flags));
|
|
goto fail;
|
|
}
|
|
|
|
/* Disallow linking RVE and non-RVE. */
|
|
if ((old_flags ^ new_flags) & EF_RISCV_RVE)
|
|
{
|
|
(*_bfd_error_handler)
|
|
(_("%pB: can't link RVE with other target"), ibfd);
|
|
goto fail;
|
|
}
|
|
|
|
/* Allow linking RVC and non-RVC, and keep the RVC flag. */
|
|
elf_elfheader (obfd)->e_flags |= new_flags & EF_RISCV_RVC;
|
|
|
|
/* Allow linking TSO and non-TSO, and keep the TSO flag. */
|
|
elf_elfheader (obfd)->e_flags |= new_flags & EF_RISCV_TSO;
|
|
|
|
return true;
|
|
|
|
fail:
|
|
bfd_set_error (bfd_error_bad_value);
|
|
return false;
|
|
}
|
|
|
|
/* A second format for recording PC-relative hi relocations. This stores the
|
|
information required to relax them to GP-relative addresses. */
|
|
|
|
typedef struct riscv_pcgp_hi_reloc riscv_pcgp_hi_reloc;
|
|
struct riscv_pcgp_hi_reloc
|
|
{
|
|
bfd_vma hi_sec_off;
|
|
bfd_vma hi_addend;
|
|
bfd_vma hi_addr;
|
|
unsigned hi_sym;
|
|
asection *sym_sec;
|
|
bool undefined_weak;
|
|
riscv_pcgp_hi_reloc *next;
|
|
};
|
|
|
|
typedef struct riscv_pcgp_lo_reloc riscv_pcgp_lo_reloc;
|
|
struct riscv_pcgp_lo_reloc
|
|
{
|
|
bfd_vma hi_sec_off;
|
|
riscv_pcgp_lo_reloc *next;
|
|
};
|
|
|
|
typedef struct
|
|
{
|
|
riscv_pcgp_hi_reloc *hi;
|
|
riscv_pcgp_lo_reloc *lo;
|
|
} riscv_pcgp_relocs;
|
|
|
|
/* Initialize the pcgp reloc info in P. */
|
|
|
|
static bool
|
|
riscv_init_pcgp_relocs (riscv_pcgp_relocs *p)
|
|
{
|
|
p->hi = NULL;
|
|
p->lo = NULL;
|
|
return true;
|
|
}
|
|
|
|
/* Free the pcgp reloc info in P. */
|
|
|
|
static void
|
|
riscv_free_pcgp_relocs (riscv_pcgp_relocs *p,
|
|
bfd *abfd ATTRIBUTE_UNUSED,
|
|
asection *sec ATTRIBUTE_UNUSED)
|
|
{
|
|
riscv_pcgp_hi_reloc *c;
|
|
riscv_pcgp_lo_reloc *l;
|
|
|
|
for (c = p->hi; c != NULL; )
|
|
{
|
|
riscv_pcgp_hi_reloc *next = c->next;
|
|
free (c);
|
|
c = next;
|
|
}
|
|
|
|
for (l = p->lo; l != NULL; )
|
|
{
|
|
riscv_pcgp_lo_reloc *next = l->next;
|
|
free (l);
|
|
l = next;
|
|
}
|
|
}
|
|
|
|
/* Record pcgp hi part reloc info in P, using HI_SEC_OFF as the lookup index.
|
|
The HI_ADDEND, HI_ADDR, HI_SYM, and SYM_SEC args contain info required to
|
|
relax the corresponding lo part reloc. */
|
|
|
|
static bool
|
|
riscv_record_pcgp_hi_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off,
|
|
bfd_vma hi_addend, bfd_vma hi_addr,
|
|
unsigned hi_sym, asection *sym_sec,
|
|
bool undefined_weak)
|
|
{
|
|
riscv_pcgp_hi_reloc *new = bfd_malloc (sizeof (*new));
|
|
if (!new)
|
|
return false;
|
|
new->hi_sec_off = hi_sec_off;
|
|
new->hi_addend = hi_addend;
|
|
new->hi_addr = hi_addr;
|
|
new->hi_sym = hi_sym;
|
|
new->sym_sec = sym_sec;
|
|
new->undefined_weak = undefined_weak;
|
|
new->next = p->hi;
|
|
p->hi = new;
|
|
return true;
|
|
}
|
|
|
|
/* Look up hi part pcgp reloc info in P, using HI_SEC_OFF as the lookup index.
|
|
This is used by a lo part reloc to find the corresponding hi part reloc. */
|
|
|
|
static riscv_pcgp_hi_reloc *
|
|
riscv_find_pcgp_hi_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
|
|
{
|
|
riscv_pcgp_hi_reloc *c;
|
|
|
|
for (c = p->hi; c != NULL; c = c->next)
|
|
if (c->hi_sec_off == hi_sec_off)
|
|
return c;
|
|
return NULL;
|
|
}
|
|
|
|
/* Record pcgp lo part reloc info in P, using HI_SEC_OFF as the lookup info.
|
|
This is used to record relocs that can't be relaxed. */
|
|
|
|
static bool
|
|
riscv_record_pcgp_lo_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
|
|
{
|
|
riscv_pcgp_lo_reloc *new = bfd_malloc (sizeof (*new));
|
|
if (!new)
|
|
return false;
|
|
new->hi_sec_off = hi_sec_off;
|
|
new->next = p->lo;
|
|
p->lo = new;
|
|
return true;
|
|
}
|
|
|
|
/* Look up lo part pcgp reloc info in P, using HI_SEC_OFF as the lookup index.
|
|
This is used by a hi part reloc to find the corresponding lo part reloc. */
|
|
|
|
static bool
|
|
riscv_find_pcgp_lo_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
|
|
{
|
|
riscv_pcgp_lo_reloc *c;
|
|
|
|
for (c = p->lo; c != NULL; c = c->next)
|
|
if (c->hi_sec_off == hi_sec_off)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static void
|
|
riscv_update_pcgp_relocs (riscv_pcgp_relocs *p, asection *deleted_sec,
|
|
bfd_vma deleted_addr, size_t deleted_count)
|
|
{
|
|
/* Bytes have already been deleted and toaddr should match the old section
|
|
size for our checks, so adjust it here. */
|
|
bfd_vma toaddr = deleted_sec->size + deleted_count;
|
|
riscv_pcgp_lo_reloc *l;
|
|
riscv_pcgp_hi_reloc *h;
|
|
|
|
/* Update section offsets of corresponding pcrel_hi relocs for the pcrel_lo
|
|
entries where they occur after the deleted bytes. */
|
|
for (l = p->lo; l != NULL; l = l->next)
|
|
if (l->hi_sec_off > deleted_addr
|
|
&& l->hi_sec_off < toaddr)
|
|
l->hi_sec_off -= deleted_count;
|
|
|
|
/* Update both section offsets, and symbol values of pcrel_hi relocs where
|
|
these values occur after the deleted bytes. */
|
|
for (h = p->hi; h != NULL; h = h->next)
|
|
{
|
|
if (h->hi_sec_off > deleted_addr
|
|
&& h->hi_sec_off < toaddr)
|
|
h->hi_sec_off -= deleted_count;
|
|
if (h->sym_sec == deleted_sec
|
|
&& h->hi_addr > deleted_addr
|
|
&& h->hi_addr < toaddr)
|
|
h->hi_addr -= deleted_count;
|
|
}
|
|
}
|
|
|
|
/* Delete some bytes, adjust relcocations and symbol table from a section. */
|
|
|
|
static bool
|
|
_riscv_relax_delete_bytes (bfd *abfd,
|
|
asection *sec,
|
|
bfd_vma addr,
|
|
size_t count,
|
|
struct bfd_link_info *link_info,
|
|
riscv_pcgp_relocs *p,
|
|
bfd_vma delete_total,
|
|
bfd_vma toaddr)
|
|
{
|
|
unsigned int i, symcount;
|
|
struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (abfd);
|
|
Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
|
unsigned int sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
|
|
struct bfd_elf_section_data *data = elf_section_data (sec);
|
|
bfd_byte *contents = data->this_hdr.contents;
|
|
size_t bytes_to_move = toaddr - addr - count;
|
|
|
|
/* Actually delete the bytes. */
|
|
sec->size -= count;
|
|
memmove (contents + addr, contents + addr + count + delete_total, bytes_to_move);
|
|
|
|
/* Still adjust relocations and symbols in non-linear times. */
|
|
toaddr = sec->size + count;
|
|
|
|
/* Adjust the location of all of the relocs. Note that we need not
|
|
adjust the addends, since all PC-relative references must be against
|
|
symbols, which we will adjust below. */
|
|
for (i = 0; i < sec->reloc_count; i++)
|
|
if (data->relocs[i].r_offset > addr && data->relocs[i].r_offset < toaddr)
|
|
data->relocs[i].r_offset -= count;
|
|
|
|
/* Adjust the hi_sec_off, and the hi_addr of any entries in the pcgp relocs
|
|
table for which these values occur after the deleted bytes. */
|
|
if (p)
|
|
riscv_update_pcgp_relocs (p, sec, addr, count);
|
|
|
|
/* Adjust the local symbols defined in this section. */
|
|
for (i = 0; i < symtab_hdr->sh_info; i++)
|
|
{
|
|
Elf_Internal_Sym *sym = (Elf_Internal_Sym *) symtab_hdr->contents + i;
|
|
if (sym->st_shndx == sec_shndx)
|
|
{
|
|
/* If the symbol is in the range of memory we just moved, we
|
|
have to adjust its value. */
|
|
if (sym->st_value > addr && sym->st_value <= toaddr)
|
|
sym->st_value -= count;
|
|
|
|
/* If the symbol *spans* the bytes we just deleted (i.e. its
|
|
*end* is in the moved bytes but its *start* isn't), then we
|
|
must adjust its size.
|
|
|
|
This test needs to use the original value of st_value, otherwise
|
|
we might accidentally decrease size when deleting bytes right
|
|
before the symbol. But since deleted relocs can't span across
|
|
symbols, we can't have both a st_value and a st_size decrease,
|
|
so it is simpler to just use an else. */
|
|
else if (sym->st_value <= addr
|
|
&& sym->st_value + sym->st_size > addr
|
|
&& sym->st_value + sym->st_size <= toaddr)
|
|
sym->st_size -= count;
|
|
}
|
|
}
|
|
|
|
/* Now adjust the global symbols defined in this section. */
|
|
symcount = ((symtab_hdr->sh_size / sizeof (ElfNN_External_Sym))
|
|
- symtab_hdr->sh_info);
|
|
|
|
for (i = 0; i < symcount; i++)
|
|
{
|
|
struct elf_link_hash_entry *sym_hash = sym_hashes[i];
|
|
|
|
/* The '--wrap SYMBOL' option is causing a pain when the object file,
|
|
containing the definition of __wrap_SYMBOL, includes a direct
|
|
call to SYMBOL as well. Since both __wrap_SYMBOL and SYMBOL reference
|
|
the same symbol (which is __wrap_SYMBOL), but still exist as two
|
|
different symbols in 'sym_hashes', we don't want to adjust
|
|
the global symbol __wrap_SYMBOL twice.
|
|
|
|
The same problem occurs with symbols that are versioned_hidden, as
|
|
foo becomes an alias for foo@BAR, and hence they need the same
|
|
treatment. */
|
|
if (link_info->wrap_hash != NULL
|
|
|| sym_hash->versioned != unversioned)
|
|
{
|
|
struct elf_link_hash_entry **cur_sym_hashes;
|
|
|
|
/* Loop only over the symbols which have already been checked. */
|
|
for (cur_sym_hashes = sym_hashes; cur_sym_hashes < &sym_hashes[i];
|
|
cur_sym_hashes++)
|
|
{
|
|
/* If the current symbol is identical to 'sym_hash', that means
|
|
the symbol was already adjusted (or at least checked). */
|
|
if (*cur_sym_hashes == sym_hash)
|
|
break;
|
|
}
|
|
/* Don't adjust the symbol again. */
|
|
if (cur_sym_hashes < &sym_hashes[i])
|
|
continue;
|
|
}
|
|
|
|
if ((sym_hash->root.type == bfd_link_hash_defined
|
|
|| sym_hash->root.type == bfd_link_hash_defweak)
|
|
&& sym_hash->root.u.def.section == sec)
|
|
{
|
|
/* As above, adjust the value if needed. */
|
|
if (sym_hash->root.u.def.value > addr
|
|
&& sym_hash->root.u.def.value <= toaddr)
|
|
sym_hash->root.u.def.value -= count;
|
|
|
|
/* As above, adjust the size if needed. */
|
|
else if (sym_hash->root.u.def.value <= addr
|
|
&& sym_hash->root.u.def.value + sym_hash->size > addr
|
|
&& sym_hash->root.u.def.value + sym_hash->size <= toaddr)
|
|
sym_hash->size -= count;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
typedef bool (*relax_delete_t) (bfd *, asection *,
|
|
bfd_vma, size_t,
|
|
struct bfd_link_info *,
|
|
riscv_pcgp_relocs *,
|
|
Elf_Internal_Rela *);
|
|
|
|
static relax_delete_t riscv_relax_delete_bytes;
|
|
|
|
/* Do not delete some bytes from a section while relaxing.
|
|
Just mark the deleted bytes as R_RISCV_DELETE. */
|
|
|
|
static bool
|
|
_riscv_relax_delete_piecewise (bfd *abfd ATTRIBUTE_UNUSED,
|
|
asection *sec ATTRIBUTE_UNUSED,
|
|
bfd_vma addr,
|
|
size_t count,
|
|
struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
|
|
riscv_pcgp_relocs *p ATTRIBUTE_UNUSED,
|
|
Elf_Internal_Rela *rel)
|
|
{
|
|
if (rel == NULL)
|
|
return false;
|
|
rel->r_info = ELFNN_R_INFO (0, R_RISCV_DELETE);
|
|
rel->r_offset = addr;
|
|
rel->r_addend = count;
|
|
return true;
|
|
}
|
|
|
|
/* Delete some bytes from a section while relaxing. */
|
|
|
|
static bool
|
|
_riscv_relax_delete_immediate (bfd *abfd,
|
|
asection *sec,
|
|
bfd_vma addr,
|
|
size_t count,
|
|
struct bfd_link_info *link_info,
|
|
riscv_pcgp_relocs *p,
|
|
Elf_Internal_Rela *rel)
|
|
{
|
|
if (rel != NULL)
|
|
rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
|
|
return _riscv_relax_delete_bytes (abfd, sec, addr, count,
|
|
link_info, p, 0, sec->size);
|
|
}
|
|
|
|
/* Delete the bytes for R_RISCV_DELETE relocs. */
|
|
|
|
static bool
|
|
riscv_relax_resolve_delete_relocs (bfd *abfd,
|
|
asection *sec,
|
|
struct bfd_link_info *link_info,
|
|
Elf_Internal_Rela *relocs)
|
|
{
|
|
bfd_vma delete_total = 0;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < sec->reloc_count; i++)
|
|
{
|
|
Elf_Internal_Rela *rel = relocs + i;
|
|
if (ELFNN_R_TYPE (rel->r_info) != R_RISCV_DELETE)
|
|
continue;
|
|
|
|
/* Find the next R_RISCV_DELETE reloc if possible. */
|
|
Elf_Internal_Rela *rel_next = NULL;
|
|
unsigned int start = rel - relocs;
|
|
for (i = start; i < sec->reloc_count; i++)
|
|
{
|
|
/* Since we only replace existing relocs and don't add new relocs, the
|
|
relocs are in sequential order. We can skip the relocs prior to this
|
|
one, making this search linear time. */
|
|
rel_next = relocs + i;
|
|
if (ELFNN_R_TYPE ((rel_next)->r_info) == R_RISCV_DELETE
|
|
&& (rel_next)->r_offset > rel->r_offset)
|
|
{
|
|
BFD_ASSERT (rel_next - rel > 0);
|
|
break;
|
|
}
|
|
else
|
|
rel_next = NULL;
|
|
}
|
|
|
|
bfd_vma toaddr = rel_next == NULL ? sec->size : rel_next->r_offset;
|
|
if (!_riscv_relax_delete_bytes (abfd, sec, rel->r_offset, rel->r_addend,
|
|
link_info, NULL, delete_total, toaddr))
|
|
return false;
|
|
|
|
delete_total += rel->r_addend;
|
|
rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
|
|
|
|
/* Skip ahead to the next delete reloc. */
|
|
i = rel_next != NULL ? (unsigned int) (rel_next - relocs - 1)
|
|
: sec->reloc_count;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
typedef bool (*relax_func_t) (bfd *, asection *, asection *,
|
|
struct bfd_link_info *,
|
|
Elf_Internal_Rela *,
|
|
bfd_vma, bfd_vma, bfd_vma, bool *,
|
|
riscv_pcgp_relocs *,
|
|
bool undefined_weak);
|
|
|
|
/* Relax AUIPC + JALR into JAL. */
|
|
|
|
static bool
|
|
_bfd_riscv_relax_call (bfd *abfd, asection *sec, asection *sym_sec,
|
|
struct bfd_link_info *link_info,
|
|
Elf_Internal_Rela *rel,
|
|
bfd_vma symval,
|
|
bfd_vma max_alignment,
|
|
bfd_vma reserve_size ATTRIBUTE_UNUSED,
|
|
bool *again,
|
|
riscv_pcgp_relocs *pcgp_relocs,
|
|
bool undefined_weak ATTRIBUTE_UNUSED)
|
|
{
|
|
bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
|
|
bfd_vma foff = symval - (sec_addr (sec) + rel->r_offset);
|
|
bool near_zero = (symval + RISCV_IMM_REACH / 2) < RISCV_IMM_REACH;
|
|
bfd_vma auipc, jalr;
|
|
int rd, r_type, len = 4, rvc = elf_elfheader (abfd)->e_flags & EF_RISCV_RVC;
|
|
|
|
/* If the call crosses section boundaries, an alignment directive could
|
|
cause the PC-relative offset to later increase, so we need to add in the
|
|
max alignment of any section inclusive from the call to the target.
|
|
Otherwise, we only need to use the alignment of the current section. */
|
|
if (VALID_JTYPE_IMM (foff))
|
|
{
|
|
if (sym_sec->output_section == sec->output_section
|
|
&& sym_sec->output_section != bfd_abs_section_ptr)
|
|
max_alignment = (bfd_vma) 1 << sym_sec->output_section->alignment_power;
|
|
foff += ((bfd_signed_vma) foff < 0 ? -max_alignment : max_alignment);
|
|
}
|
|
|
|
/* See if this function call can be shortened. */
|
|
if (!VALID_JTYPE_IMM (foff) && !(!bfd_link_pic (link_info) && near_zero))
|
|
return true;
|
|
|
|
/* Shorten the function call. */
|
|
BFD_ASSERT (rel->r_offset + 8 <= sec->size);
|
|
|
|
auipc = bfd_getl32 (contents + rel->r_offset);
|
|
jalr = bfd_getl32 (contents + rel->r_offset + 4);
|
|
rd = (jalr >> OP_SH_RD) & OP_MASK_RD;
|
|
rvc = rvc && VALID_CJTYPE_IMM (foff);
|
|
|
|
/* C.J exists on RV32 and RV64, but C.JAL is RV32-only. */
|
|
rvc = rvc && (rd == 0 || (rd == X_RA && ARCH_SIZE == 32));
|
|
|
|
if (rvc)
|
|
{
|
|
/* Relax to C.J[AL] rd, addr. */
|
|
r_type = R_RISCV_RVC_JUMP;
|
|
auipc = rd == 0 ? MATCH_C_J : MATCH_C_JAL;
|
|
len = 2;
|
|
}
|
|
else if (VALID_JTYPE_IMM (foff))
|
|
{
|
|
/* Relax to JAL rd, addr. */
|
|
r_type = R_RISCV_JAL;
|
|
auipc = MATCH_JAL | (rd << OP_SH_RD);
|
|
}
|
|
else
|
|
{
|
|
/* Near zero, relax to JALR rd, x0, addr. */
|
|
r_type = R_RISCV_LO12_I;
|
|
auipc = MATCH_JALR | (rd << OP_SH_RD);
|
|
}
|
|
|
|
/* Replace the R_RISCV_CALL reloc. */
|
|
rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), r_type);
|
|
/* Replace the AUIPC. */
|
|
riscv_put_insn (8 * len, auipc, contents + rel->r_offset);
|
|
|
|
/* Delete unnecessary JALR and reuse the R_RISCV_RELAX reloc. */
|
|
*again = true;
|
|
return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + len, 8 - len,
|
|
link_info, pcgp_relocs, rel + 1);
|
|
}
|
|
|
|
/* Traverse all output sections and return the max alignment.
|
|
|
|
If gp is zero, then all the output section alignments are
|
|
possible candidates; Otherwise, only the output sections
|
|
which are in the [gp-2K, gp+2K) range need to be considered. */
|
|
|
|
static bfd_vma
|
|
_bfd_riscv_get_max_alignment (asection *sec, bfd_vma gp)
|
|
{
|
|
unsigned int max_alignment_power = 0;
|
|
asection *o;
|
|
|
|
for (o = sec->output_section->owner->sections; o != NULL; o = o->next)
|
|
{
|
|
bool valid = true;
|
|
if (gp
|
|
&& !(VALID_ITYPE_IMM (sec_addr (o) - gp)
|
|
|| VALID_ITYPE_IMM (sec_addr (o) + o->size - gp)))
|
|
valid = false;
|
|
|
|
if (valid && o->alignment_power > max_alignment_power)
|
|
max_alignment_power = o->alignment_power;
|
|
}
|
|
|
|
return (bfd_vma) 1 << max_alignment_power;
|
|
}
|
|
|
|
/* Relax non-PIC global variable references to GP-relative references. */
|
|
|
|
static bool
|
|
_bfd_riscv_relax_lui (bfd *abfd,
|
|
asection *sec,
|
|
asection *sym_sec,
|
|
struct bfd_link_info *link_info,
|
|
Elf_Internal_Rela *rel,
|
|
bfd_vma symval,
|
|
bfd_vma max_alignment,
|
|
bfd_vma reserve_size,
|
|
bool *again,
|
|
riscv_pcgp_relocs *pcgp_relocs,
|
|
bool undefined_weak)
|
|
{
|
|
struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (link_info);
|
|
bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
|
|
/* Can relax to x0 even when gp relaxation is disabled. */
|
|
bfd_vma gp = htab->params->relax_gp
|
|
? riscv_global_pointer_value (link_info)
|
|
: 0;
|
|
int use_rvc = elf_elfheader (abfd)->e_flags & EF_RISCV_RVC;
|
|
|
|
BFD_ASSERT (rel->r_offset + 4 <= sec->size);
|
|
|
|
if (!undefined_weak && gp)
|
|
{
|
|
/* If gp and the symbol are in the same output section, which is not the
|
|
abs section, then consider only that output section's alignment. */
|
|
struct bfd_link_hash_entry *h =
|
|
bfd_link_hash_lookup (link_info->hash, RISCV_GP_SYMBOL, false, false,
|
|
true);
|
|
if (h->u.def.section->output_section == sym_sec->output_section
|
|
&& sym_sec->output_section != bfd_abs_section_ptr)
|
|
max_alignment = (bfd_vma) 1 << sym_sec->output_section->alignment_power;
|
|
else
|
|
{
|
|
/* Consider output section alignments which are in [gp-2K, gp+2K). */
|
|
max_alignment = htab->max_alignment_for_gp;
|
|
if (max_alignment == (bfd_vma) -1)
|
|
{
|
|
max_alignment = _bfd_riscv_get_max_alignment (sec, gp);
|
|
htab->max_alignment_for_gp = max_alignment;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Is the reference in range of x0 or gp?
|
|
Valid gp range conservatively because of alignment issue.
|
|
|
|
Should we also consider the alignment issue for x0 base? */
|
|
if (undefined_weak
|
|
|| VALID_ITYPE_IMM (symval)
|
|
|| (symval >= gp
|
|
&& VALID_ITYPE_IMM (symval - gp + max_alignment + reserve_size))
|
|
|| (symval < gp
|
|
&& VALID_ITYPE_IMM (symval - gp - max_alignment - reserve_size)))
|
|
{
|
|
unsigned sym = ELFNN_R_SYM (rel->r_info);
|
|
switch (ELFNN_R_TYPE (rel->r_info))
|
|
{
|
|
case R_RISCV_LO12_I:
|
|
rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_I);
|
|
return true;
|
|
|
|
case R_RISCV_LO12_S:
|
|
rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_S);
|
|
return true;
|
|
|
|
case R_RISCV_HI20:
|
|
/* Delete unnecessary LUI and reuse the reloc. */
|
|
*again = true;
|
|
return riscv_relax_delete_bytes (abfd, sec, rel->r_offset, 4,
|
|
link_info, pcgp_relocs, rel);
|
|
|
|
default:
|
|
abort ();
|
|
}
|
|
}
|
|
|
|
/* Can we relax LUI to C.LUI? Alignment might move the section forward;
|
|
account for this assuming page alignment at worst. In the presence of
|
|
RELRO segment the linker aligns it by one page size, therefore sections
|
|
after the segment can be moved more than one page. */
|
|
|
|
if (use_rvc
|
|
&& ELFNN_R_TYPE (rel->r_info) == R_RISCV_HI20
|
|
&& VALID_CITYPE_LUI_IMM (RISCV_CONST_HIGH_PART (symval))
|
|
&& VALID_CITYPE_LUI_IMM (RISCV_CONST_HIGH_PART (symval)
|
|
+ (link_info->relro ? 2 * ELF_MAXPAGESIZE
|
|
: ELF_MAXPAGESIZE)))
|
|
{
|
|
/* Replace LUI with C.LUI if legal (i.e., rd != x0 and rd != x2/sp). */
|
|
bfd_vma lui = bfd_getl32 (contents + rel->r_offset);
|
|
unsigned rd = ((unsigned)lui >> OP_SH_RD) & OP_MASK_RD;
|
|
if (rd == 0 || rd == X_SP)
|
|
return true;
|
|
|
|
lui = (lui & (OP_MASK_RD << OP_SH_RD)) | MATCH_C_LUI;
|
|
bfd_putl32 (lui, contents + rel->r_offset);
|
|
|
|
/* Replace the R_RISCV_HI20 reloc. */
|
|
rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_RVC_LUI);
|
|
|
|
/* Delete extra bytes and reuse the R_RISCV_RELAX reloc. */
|
|
*again = true;
|
|
return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + 2, 2,
|
|
link_info, pcgp_relocs, rel + 1);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Relax non-PIC TLS references to TP-relative references. */
|
|
|
|
static bool
|
|
_bfd_riscv_relax_tls_le (bfd *abfd,
|
|
asection *sec,
|
|
asection *sym_sec ATTRIBUTE_UNUSED,
|
|
struct bfd_link_info *link_info,
|
|
Elf_Internal_Rela *rel,
|
|
bfd_vma symval,
|
|
bfd_vma max_alignment ATTRIBUTE_UNUSED,
|
|
bfd_vma reserve_size ATTRIBUTE_UNUSED,
|
|
bool *again,
|
|
riscv_pcgp_relocs *pcgp_relocs,
|
|
bool undefined_weak ATTRIBUTE_UNUSED)
|
|
{
|
|
/* See if this symbol is in range of tp. */
|
|
if (RISCV_CONST_HIGH_PART (tpoff (link_info, symval)) != 0)
|
|
return true;
|
|
|
|
BFD_ASSERT (rel->r_offset + 4 <= sec->size);
|
|
switch (ELFNN_R_TYPE (rel->r_info))
|
|
{
|
|
case R_RISCV_TPREL_LO12_I:
|
|
rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_TPREL_I);
|
|
return true;
|
|
|
|
case R_RISCV_TPREL_LO12_S:
|
|
rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_TPREL_S);
|
|
return true;
|
|
|
|
case R_RISCV_TPREL_HI20:
|
|
case R_RISCV_TPREL_ADD:
|
|
/* Delete unnecessary instruction and reuse the reloc. */
|
|
*again = true;
|
|
return riscv_relax_delete_bytes (abfd, sec, rel->r_offset, 4, link_info,
|
|
pcgp_relocs, rel);
|
|
|
|
default:
|
|
abort ();
|
|
}
|
|
}
|
|
|
|
/* Implement R_RISCV_ALIGN by deleting excess alignment NOPs.
|
|
Once we've handled an R_RISCV_ALIGN, we can't relax anything else. */
|
|
|
|
static bool
|
|
_bfd_riscv_relax_align (bfd *abfd, asection *sec,
|
|
asection *sym_sec,
|
|
struct bfd_link_info *link_info,
|
|
Elf_Internal_Rela *rel,
|
|
bfd_vma symval,
|
|
bfd_vma max_alignment ATTRIBUTE_UNUSED,
|
|
bfd_vma reserve_size ATTRIBUTE_UNUSED,
|
|
bool *again ATTRIBUTE_UNUSED,
|
|
riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED,
|
|
bool undefined_weak ATTRIBUTE_UNUSED)
|
|
{
|
|
bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
|
|
bfd_vma alignment = 1, pos;
|
|
while (alignment <= rel->r_addend)
|
|
alignment *= 2;
|
|
|
|
symval -= rel->r_addend;
|
|
bfd_vma aligned_addr = ((symval - 1) & ~(alignment - 1)) + alignment;
|
|
bfd_vma nop_bytes = aligned_addr - symval;
|
|
|
|
/* Once we've handled an R_RISCV_ALIGN, we can't relax anything else. */
|
|
sec->sec_flg0 = true;
|
|
|
|
/* Make sure there are enough NOPs to actually achieve the alignment. */
|
|
if (rel->r_addend < nop_bytes)
|
|
{
|
|
_bfd_error_handler
|
|
(_("%pB(%pA+%#" PRIx64 "): %" PRId64 " bytes required for alignment "
|
|
"to %" PRId64 "-byte boundary, but only %" PRId64 " present"),
|
|
abfd, sym_sec, (uint64_t) rel->r_offset,
|
|
(int64_t) nop_bytes, (int64_t) alignment, (int64_t) rel->r_addend);
|
|
bfd_set_error (bfd_error_bad_value);
|
|
return false;
|
|
}
|
|
|
|
/* Delete the reloc. */
|
|
rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
|
|
|
|
/* If the number of NOPs is already correct, there's nothing to do. */
|
|
if (nop_bytes == rel->r_addend)
|
|
return true;
|
|
|
|
/* Write as many RISC-V NOPs as we need. */
|
|
for (pos = 0; pos < (nop_bytes & -4); pos += 4)
|
|
bfd_putl32 (RISCV_NOP, contents + rel->r_offset + pos);
|
|
|
|
/* Write a final RVC NOP if need be. */
|
|
if (nop_bytes % 4 != 0)
|
|
bfd_putl16 (RVC_NOP, contents + rel->r_offset + pos);
|
|
|
|
/* Delete excess bytes. */
|
|
return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + nop_bytes,
|
|
rel->r_addend - nop_bytes, link_info,
|
|
NULL, NULL);
|
|
}
|
|
|
|
/* Relax PC-relative references to GP-relative references. */
|
|
|
|
static bool
|
|
_bfd_riscv_relax_pc (bfd *abfd ATTRIBUTE_UNUSED,
|
|
asection *sec,
|
|
asection *sym_sec,
|
|
struct bfd_link_info *link_info,
|
|
Elf_Internal_Rela *rel,
|
|
bfd_vma symval,
|
|
bfd_vma max_alignment,
|
|
bfd_vma reserve_size,
|
|
bool *again,
|
|
riscv_pcgp_relocs *pcgp_relocs,
|
|
bool undefined_weak)
|
|
{
|
|
struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (link_info);
|
|
/* Can relax to x0 even when gp relaxation is disabled. */
|
|
bfd_vma gp = htab->params->relax_gp
|
|
? riscv_global_pointer_value (link_info)
|
|
: 0;
|
|
|
|
BFD_ASSERT (rel->r_offset + 4 <= sec->size);
|
|
|
|
/* Chain the _LO relocs to their cooresponding _HI reloc to compute the
|
|
actual target address. */
|
|
riscv_pcgp_hi_reloc hi_reloc;
|
|
memset (&hi_reloc, 0, sizeof (hi_reloc));
|
|
switch (ELFNN_R_TYPE (rel->r_info))
|
|
{
|
|
case R_RISCV_PCREL_LO12_I:
|
|
case R_RISCV_PCREL_LO12_S:
|
|
{
|
|
/* If the %lo has an addend, it isn't for the label pointing at the
|
|
hi part instruction, but rather for the symbol pointed at by the
|
|
hi part instruction. So we must subtract it here for the lookup.
|
|
It is still used below in the final symbol address. */
|
|
bfd_vma hi_sec_off = symval - sec_addr (sym_sec) - rel->r_addend;
|
|
riscv_pcgp_hi_reloc *hi = riscv_find_pcgp_hi_reloc (pcgp_relocs,
|
|
hi_sec_off);
|
|
if (hi == NULL)
|
|
{
|
|
riscv_record_pcgp_lo_reloc (pcgp_relocs, hi_sec_off);
|
|
return true;
|
|
}
|
|
|
|
hi_reloc = *hi;
|
|
symval = hi_reloc.hi_addr;
|
|
sym_sec = hi_reloc.sym_sec;
|
|
|
|
/* We can not know whether the undefined weak symbol is referenced
|
|
according to the information of R_RISCV_PCREL_LO12_I/S. Therefore,
|
|
we have to record the 'undefined_weak' flag when handling the
|
|
corresponding R_RISCV_HI20 reloc in riscv_record_pcgp_hi_reloc. */
|
|
undefined_weak = hi_reloc.undefined_weak;
|
|
}
|
|
break;
|
|
|
|
case R_RISCV_PCREL_HI20:
|
|
/* Mergeable symbols and code might later move out of range. */
|
|
if (! undefined_weak
|
|
&& sym_sec->flags & (SEC_MERGE | SEC_CODE))
|
|
return true;
|
|
|
|
/* If the cooresponding lo relocation has already been seen then it's not
|
|
safe to relax this relocation. */
|
|
if (riscv_find_pcgp_lo_reloc (pcgp_relocs, rel->r_offset))
|
|
return true;
|
|
|
|
break;
|
|
|
|
default:
|
|
abort ();
|
|
}
|
|
|
|
if (!undefined_weak && gp)
|
|
{
|
|
/* If gp and the symbol are in the same output section, which is not the
|
|
abs section, then consider only that output section's alignment. */
|
|
struct bfd_link_hash_entry *h =
|
|
bfd_link_hash_lookup (link_info->hash, RISCV_GP_SYMBOL, false, false,
|
|
true);
|
|
if (h->u.def.section->output_section == sym_sec->output_section
|
|
&& sym_sec->output_section != bfd_abs_section_ptr)
|
|
max_alignment = (bfd_vma) 1 << sym_sec->output_section->alignment_power;
|
|
else
|
|
{
|
|
/* Consider output section alignments which are in [gp-2K, gp+2K). */
|
|
max_alignment = htab->max_alignment_for_gp;
|
|
if (max_alignment == (bfd_vma) -1)
|
|
{
|
|
max_alignment = _bfd_riscv_get_max_alignment (sec, gp);
|
|
htab->max_alignment_for_gp = max_alignment;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Is the reference in range of x0 or gp?
|
|
Valid gp range conservatively because of alignment issue.
|
|
|
|
Should we also consider the alignment issue for x0 base? */
|
|
if (undefined_weak
|
|
|| VALID_ITYPE_IMM (symval)
|
|
|| (symval >= gp
|
|
&& VALID_ITYPE_IMM (symval - gp + max_alignment + reserve_size))
|
|
|| (symval < gp
|
|
&& VALID_ITYPE_IMM (symval - gp - max_alignment - reserve_size)))
|
|
{
|
|
unsigned sym = hi_reloc.hi_sym;
|
|
switch (ELFNN_R_TYPE (rel->r_info))
|
|
{
|
|
case R_RISCV_PCREL_LO12_I:
|
|
rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_I);
|
|
rel->r_addend += hi_reloc.hi_addend;
|
|
return true;
|
|
|
|
case R_RISCV_PCREL_LO12_S:
|
|
rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_S);
|
|
rel->r_addend += hi_reloc.hi_addend;
|
|
return true;
|
|
|
|
case R_RISCV_PCREL_HI20:
|
|
riscv_record_pcgp_hi_reloc (pcgp_relocs,
|
|
rel->r_offset,
|
|
rel->r_addend,
|
|
symval,
|
|
ELFNN_R_SYM(rel->r_info),
|
|
sym_sec,
|
|
undefined_weak);
|
|
/* Delete unnecessary AUIPC and reuse the reloc. */
|
|
*again = true;
|
|
riscv_relax_delete_bytes (abfd, sec, rel->r_offset, 4, link_info,
|
|
pcgp_relocs, rel);
|
|
return true;
|
|
|
|
default:
|
|
abort ();
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Called by after_allocation to set the information of data segment
|
|
before relaxing. */
|
|
|
|
void
|
|
bfd_elfNN_riscv_set_data_segment_info (struct bfd_link_info *info,
|
|
int *data_segment_phase)
|
|
{
|
|
struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
|
|
htab->data_segment_phase = data_segment_phase;
|
|
}
|
|
|
|
/* Relax a section.
|
|
|
|
Pass 0: Shortens code sequences for LUI/CALL/TPREL/PCREL relocs and
|
|
deletes the obsolete bytes.
|
|
Pass 1: Which cannot be disabled, handles code alignment directives. */
|
|
|
|
static bool
|
|
_bfd_riscv_relax_section (bfd *abfd, asection *sec,
|
|
struct bfd_link_info *info,
|
|
bool *again)
|
|
{
|
|
Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (abfd);
|
|
struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
|
|
struct bfd_elf_section_data *data = elf_section_data (sec);
|
|
Elf_Internal_Rela *relocs;
|
|
bool ret = false;
|
|
unsigned int i;
|
|
bfd_vma max_alignment, reserve_size = 0;
|
|
riscv_pcgp_relocs pcgp_relocs;
|
|
static asection *first_section = NULL;
|
|
|
|
*again = false;
|
|
|
|
if (bfd_link_relocatable (info)
|
|
|| sec->sec_flg0
|
|
|| sec->reloc_count == 0
|
|
|| (sec->flags & SEC_RELOC) == 0
|
|
|| (sec->flags & SEC_HAS_CONTENTS) == 0
|
|
|| (info->disable_target_specific_optimizations
|
|
&& info->relax_pass == 0)
|
|
/* The exp_seg_relro_adjust is enum phase_enum (0x4),
|
|
and defined in ld/ldexp.h. */
|
|
|| *(htab->data_segment_phase) == 4)
|
|
return true;
|
|
|
|
/* Record the first relax section, so that we can reset the
|
|
max_alignment_for_gp for the repeated relax passes. */
|
|
if (first_section == NULL)
|
|
first_section = sec;
|
|
else if (first_section == sec)
|
|
htab->max_alignment_for_gp = -1;
|
|
|
|
riscv_init_pcgp_relocs (&pcgp_relocs);
|
|
|
|
/* Read this BFD's relocs if we haven't done so already. */
|
|
if (data->relocs)
|
|
relocs = data->relocs;
|
|
else if (!(relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
|
|
info->keep_memory)))
|
|
goto fail;
|
|
|
|
/* Estimate the maximum alignment for all output sections once time
|
|
should be enough. */
|
|
max_alignment = htab->max_alignment;
|
|
if (max_alignment == (bfd_vma) -1)
|
|
{
|
|
max_alignment = _bfd_riscv_get_max_alignment (sec, 0/* gp */);
|
|
htab->max_alignment = max_alignment;
|
|
}
|
|
|
|
/* Examine and consider relaxing each reloc. */
|
|
for (i = 0; i < sec->reloc_count; i++)
|
|
{
|
|
asection *sym_sec;
|
|
Elf_Internal_Rela *rel = relocs + i;
|
|
relax_func_t relax_func;
|
|
int type = ELFNN_R_TYPE (rel->r_info);
|
|
bfd_vma symval;
|
|
char symtype;
|
|
bool undefined_weak = false;
|
|
|
|
relax_func = NULL;
|
|
riscv_relax_delete_bytes = NULL;
|
|
if (info->relax_pass == 0)
|
|
{
|
|
if (type == R_RISCV_CALL
|
|
|| type == R_RISCV_CALL_PLT)
|
|
relax_func = _bfd_riscv_relax_call;
|
|
else if (type == R_RISCV_HI20
|
|
|| type == R_RISCV_LO12_I
|
|
|| type == R_RISCV_LO12_S)
|
|
relax_func = _bfd_riscv_relax_lui;
|
|
else if (type == R_RISCV_TPREL_HI20
|
|
|| type == R_RISCV_TPREL_ADD
|
|
|| type == R_RISCV_TPREL_LO12_I
|
|
|| type == R_RISCV_TPREL_LO12_S)
|
|
relax_func = _bfd_riscv_relax_tls_le;
|
|
else if (!bfd_link_pic (info)
|
|
&& (type == R_RISCV_PCREL_HI20
|
|
|| type == R_RISCV_PCREL_LO12_I
|
|
|| type == R_RISCV_PCREL_LO12_S))
|
|
relax_func = _bfd_riscv_relax_pc;
|
|
else
|
|
continue;
|
|
riscv_relax_delete_bytes = _riscv_relax_delete_piecewise;
|
|
|
|
/* Only relax this reloc if it is paired with R_RISCV_RELAX. */
|
|
if (i == sec->reloc_count - 1
|
|
|| ELFNN_R_TYPE ((rel + 1)->r_info) != R_RISCV_RELAX
|
|
|| rel->r_offset != (rel + 1)->r_offset)
|
|
continue;
|
|
|
|
/* Skip over the R_RISCV_RELAX. */
|
|
i++;
|
|
}
|
|
else if (info->relax_pass == 1 && type == R_RISCV_ALIGN)
|
|
{
|
|
relax_func = _bfd_riscv_relax_align;
|
|
riscv_relax_delete_bytes = _riscv_relax_delete_immediate;
|
|
}
|
|
else
|
|
continue;
|
|
|
|
data->relocs = relocs;
|
|
|
|
/* Read this BFD's contents if we haven't done so already. */
|
|
if (!data->this_hdr.contents
|
|
&& !bfd_malloc_and_get_section (abfd, sec, &data->this_hdr.contents))
|
|
goto fail;
|
|
|
|
/* Read this BFD's symbols if we haven't done so already. */
|
|
if (symtab_hdr->sh_info != 0
|
|
&& !symtab_hdr->contents
|
|
&& !(symtab_hdr->contents =
|
|
(unsigned char *) bfd_elf_get_elf_syms (abfd, symtab_hdr,
|
|
symtab_hdr->sh_info,
|
|
0, NULL, NULL, NULL)))
|
|
goto fail;
|
|
|
|
/* Get the value of the symbol referred to by the reloc. */
|
|
if (ELFNN_R_SYM (rel->r_info) < symtab_hdr->sh_info)
|
|
{
|
|
/* A local symbol. */
|
|
Elf_Internal_Sym *isym = ((Elf_Internal_Sym *) symtab_hdr->contents
|
|
+ ELFNN_R_SYM (rel->r_info));
|
|
reserve_size = (isym->st_size - rel->r_addend) > isym->st_size
|
|
? 0 : isym->st_size - rel->r_addend;
|
|
|
|
/* Relocate against local STT_GNU_IFUNC symbol. we have created
|
|
a fake global symbol entry for this, so deal with the local ifunc
|
|
as a global. */
|
|
if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
|
|
continue;
|
|
|
|
if (isym->st_shndx == SHN_UNDEF)
|
|
sym_sec = sec, symval = rel->r_offset;
|
|
else
|
|
{
|
|
BFD_ASSERT (isym->st_shndx < elf_numsections (abfd));
|
|
sym_sec = elf_elfsections (abfd)[isym->st_shndx]->bfd_section;
|
|
#if 0
|
|
/* The purpose of this code is unknown. It breaks linker scripts
|
|
for embedded development that place sections at address zero.
|
|
This code is believed to be unnecessary. Disabling it but not
|
|
yet removing it, in case something breaks. */
|
|
if (sec_addr (sym_sec) == 0)
|
|
continue;
|
|
#endif
|
|
symval = isym->st_value;
|
|
}
|
|
symtype = ELF_ST_TYPE (isym->st_info);
|
|
}
|
|
else
|
|
{
|
|
unsigned long indx;
|
|
struct elf_link_hash_entry *h;
|
|
|
|
indx = ELFNN_R_SYM (rel->r_info) - symtab_hdr->sh_info;
|
|
h = elf_sym_hashes (abfd)[indx];
|
|
|
|
while (h->root.type == bfd_link_hash_indirect
|
|
|| h->root.type == bfd_link_hash_warning)
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
|
|
|
/* Disable the relaxation for ifunc. */
|
|
if (h != NULL && h->type == STT_GNU_IFUNC)
|
|
continue;
|
|
|
|
if (h->root.type == bfd_link_hash_undefweak
|
|
&& (relax_func == _bfd_riscv_relax_lui
|
|
|| relax_func == _bfd_riscv_relax_pc))
|
|
{
|
|
/* For the lui and auipc relaxations, since the symbol
|
|
value of an undefined weak symbol is always be zero,
|
|
we can optimize the patterns into a single LI/MV/ADDI
|
|
instruction.
|
|
|
|
Note that, creating shared libraries and pie output may
|
|
break the rule above. Fortunately, since we do not relax
|
|
pc relocs when creating shared libraries and pie output,
|
|
and the absolute address access for R_RISCV_HI20 isn't
|
|
allowed when "-fPIC" is set, the problem of creating shared
|
|
libraries can not happen currently. Once we support the
|
|
auipc relaxations when creating shared libraries, then we will
|
|
need the more rigorous checking for this optimization. */
|
|
undefined_weak = true;
|
|
}
|
|
|
|
/* This line has to match the check in riscv_elf_relocate_section
|
|
in the R_RISCV_CALL[_PLT] case. */
|
|
if (bfd_link_pic (info) && h->plt.offset != MINUS_ONE)
|
|
{
|
|
sym_sec = htab->elf.splt;
|
|
symval = h->plt.offset;
|
|
}
|
|
else if (undefined_weak)
|
|
{
|
|
symval = 0;
|
|
sym_sec = bfd_und_section_ptr;
|
|
}
|
|
else if ((h->root.type == bfd_link_hash_defined
|
|
|| h->root.type == bfd_link_hash_defweak)
|
|
&& h->root.u.def.section != NULL
|
|
&& h->root.u.def.section->output_section != NULL)
|
|
{
|
|
symval = h->root.u.def.value;
|
|
sym_sec = h->root.u.def.section;
|
|
}
|
|
else
|
|
continue;
|
|
|
|
if (h->type != STT_FUNC)
|
|
reserve_size =
|
|
(h->size - rel->r_addend) > h->size ? 0 : h->size - rel->r_addend;
|
|
symtype = h->type;
|
|
}
|
|
|
|
if (sym_sec->sec_info_type == SEC_INFO_TYPE_MERGE
|
|
&& (sym_sec->flags & SEC_MERGE))
|
|
{
|
|
/* At this stage in linking, no SEC_MERGE symbol has been
|
|
adjusted, so all references to such symbols need to be
|
|
passed through _bfd_merged_section_offset. (Later, in
|
|
relocate_section, all SEC_MERGE symbols *except* for
|
|
section symbols have been adjusted.)
|
|
|
|
gas may reduce relocations against symbols in SEC_MERGE
|
|
sections to a relocation against the section symbol when
|
|
the original addend was zero. When the reloc is against
|
|
a section symbol we should include the addend in the
|
|
offset passed to _bfd_merged_section_offset, since the
|
|
location of interest is the original symbol. On the
|
|
other hand, an access to "sym+addend" where "sym" is not
|
|
a section symbol should not include the addend; Such an
|
|
access is presumed to be an offset from "sym"; The
|
|
location of interest is just "sym". */
|
|
if (symtype == STT_SECTION)
|
|
symval += rel->r_addend;
|
|
|
|
symval = _bfd_merged_section_offset (abfd, &sym_sec,
|
|
elf_section_data (sym_sec)->sec_info,
|
|
symval);
|
|
|
|
if (symtype != STT_SECTION)
|
|
symval += rel->r_addend;
|
|
}
|
|
else
|
|
symval += rel->r_addend;
|
|
|
|
symval += sec_addr (sym_sec);
|
|
|
|
if (!relax_func (abfd, sec, sym_sec, info, rel, symval,
|
|
max_alignment, reserve_size, again,
|
|
&pcgp_relocs, undefined_weak))
|
|
goto fail;
|
|
}
|
|
|
|
/* Resolve R_RISCV_DELETE relocations. */
|
|
if (!riscv_relax_resolve_delete_relocs (abfd, sec, info, relocs))
|
|
goto fail;
|
|
|
|
ret = true;
|
|
|
|
fail:
|
|
if (relocs != data->relocs)
|
|
free (relocs);
|
|
riscv_free_pcgp_relocs (&pcgp_relocs, abfd, sec);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#if ARCH_SIZE == 32
|
|
# define PRSTATUS_SIZE 204
|
|
# define PRSTATUS_OFFSET_PR_CURSIG 12
|
|
# define PRSTATUS_OFFSET_PR_PID 24
|
|
# define PRSTATUS_OFFSET_PR_REG 72
|
|
# define ELF_GREGSET_T_SIZE 128
|
|
# define PRPSINFO_SIZE 128
|
|
# define PRPSINFO_OFFSET_PR_PID 16
|
|
# define PRPSINFO_OFFSET_PR_FNAME 32
|
|
# define PRPSINFO_OFFSET_PR_PSARGS 48
|
|
# define PRPSINFO_PR_FNAME_LENGTH 16
|
|
# define PRPSINFO_PR_PSARGS_LENGTH 80
|
|
#else
|
|
# define PRSTATUS_SIZE 376
|
|
# define PRSTATUS_OFFSET_PR_CURSIG 12
|
|
# define PRSTATUS_OFFSET_PR_PID 32
|
|
# define PRSTATUS_OFFSET_PR_REG 112
|
|
# define ELF_GREGSET_T_SIZE 256
|
|
# define PRPSINFO_SIZE 136
|
|
# define PRPSINFO_OFFSET_PR_PID 24
|
|
# define PRPSINFO_OFFSET_PR_FNAME 40
|
|
# define PRPSINFO_OFFSET_PR_PSARGS 56
|
|
# define PRPSINFO_PR_FNAME_LENGTH 16
|
|
# define PRPSINFO_PR_PSARGS_LENGTH 80
|
|
#endif
|
|
|
|
/* Write PRSTATUS and PRPSINFO note into core file. This will be called
|
|
before the generic code in elf.c. By checking the compiler defines we
|
|
only perform any action here if the generic code would otherwise not be
|
|
able to help us. The intention is that bare metal core dumps (where the
|
|
prstatus_t and/or prpsinfo_t might not be available) will use this code,
|
|
while non bare metal tools will use the generic elf code. */
|
|
|
|
static char *
|
|
riscv_write_core_note (bfd *abfd ATTRIBUTE_UNUSED,
|
|
char *buf ATTRIBUTE_UNUSED,
|
|
int *bufsiz ATTRIBUTE_UNUSED,
|
|
int note_type ATTRIBUTE_UNUSED, ...)
|
|
{
|
|
switch (note_type)
|
|
{
|
|
default:
|
|
return NULL;
|
|
|
|
#if !defined (HAVE_PRPSINFO_T)
|
|
case NT_PRPSINFO:
|
|
{
|
|
char data[PRPSINFO_SIZE] ATTRIBUTE_NONSTRING;
|
|
va_list ap;
|
|
|
|
va_start (ap, note_type);
|
|
memset (data, 0, sizeof (data));
|
|
strncpy (data + PRPSINFO_OFFSET_PR_FNAME, va_arg (ap, const char *),
|
|
PRPSINFO_PR_FNAME_LENGTH);
|
|
#if GCC_VERSION == 8000 || GCC_VERSION == 8001
|
|
DIAGNOSTIC_PUSH;
|
|
/* GCC 8.0 and 8.1 warn about 80 equals destination size with
|
|
-Wstringop-truncation:
|
|
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85643
|
|
*/
|
|
DIAGNOSTIC_IGNORE_STRINGOP_TRUNCATION;
|
|
#endif
|
|
strncpy (data + PRPSINFO_OFFSET_PR_PSARGS, va_arg (ap, const char *),
|
|
PRPSINFO_PR_PSARGS_LENGTH);
|
|
#if GCC_VERSION == 8000 || GCC_VERSION == 8001
|
|
DIAGNOSTIC_POP;
|
|
#endif
|
|
va_end (ap);
|
|
return elfcore_write_note (abfd, buf, bufsiz,
|
|
"CORE", note_type, data, sizeof (data));
|
|
}
|
|
#endif /* !HAVE_PRPSINFO_T */
|
|
|
|
#if !defined (HAVE_PRSTATUS_T)
|
|
case NT_PRSTATUS:
|
|
{
|
|
char data[PRSTATUS_SIZE];
|
|
va_list ap;
|
|
long pid;
|
|
int cursig;
|
|
const void *greg;
|
|
|
|
va_start (ap, note_type);
|
|
memset (data, 0, sizeof(data));
|
|
pid = va_arg (ap, long);
|
|
bfd_put_32 (abfd, pid, data + PRSTATUS_OFFSET_PR_PID);
|
|
cursig = va_arg (ap, int);
|
|
bfd_put_16 (abfd, cursig, data + PRSTATUS_OFFSET_PR_CURSIG);
|
|
greg = va_arg (ap, const void *);
|
|
memcpy (data + PRSTATUS_OFFSET_PR_REG, greg,
|
|
PRSTATUS_SIZE - PRSTATUS_OFFSET_PR_REG - ARCH_SIZE / 8);
|
|
va_end (ap);
|
|
return elfcore_write_note (abfd, buf, bufsiz,
|
|
"CORE", note_type, data, sizeof (data));
|
|
}
|
|
#endif /* !HAVE_PRSTATUS_T */
|
|
}
|
|
}
|
|
|
|
/* Support for core dump NOTE sections. */
|
|
|
|
static bool
|
|
riscv_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
|
|
{
|
|
switch (note->descsz)
|
|
{
|
|
default:
|
|
return false;
|
|
|
|
case PRSTATUS_SIZE: /* sizeof(struct elf_prstatus) on Linux/RISC-V. */
|
|
/* pr_cursig */
|
|
elf_tdata (abfd)->core->signal
|
|
= bfd_get_16 (abfd, note->descdata + PRSTATUS_OFFSET_PR_CURSIG);
|
|
|
|
/* pr_pid */
|
|
elf_tdata (abfd)->core->lwpid
|
|
= bfd_get_32 (abfd, note->descdata + PRSTATUS_OFFSET_PR_PID);
|
|
break;
|
|
}
|
|
|
|
/* Make a ".reg/999" section. */
|
|
return _bfd_elfcore_make_pseudosection (abfd, ".reg", ELF_GREGSET_T_SIZE,
|
|
note->descpos + PRSTATUS_OFFSET_PR_REG);
|
|
}
|
|
|
|
static bool
|
|
riscv_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
|
|
{
|
|
switch (note->descsz)
|
|
{
|
|
default:
|
|
return false;
|
|
|
|
case PRPSINFO_SIZE: /* sizeof(struct elf_prpsinfo) on Linux/RISC-V. */
|
|
/* pr_pid */
|
|
elf_tdata (abfd)->core->pid
|
|
= bfd_get_32 (abfd, note->descdata + PRPSINFO_OFFSET_PR_PID);
|
|
|
|
/* pr_fname */
|
|
elf_tdata (abfd)->core->program = _bfd_elfcore_strndup
|
|
(abfd, note->descdata + PRPSINFO_OFFSET_PR_FNAME,
|
|
PRPSINFO_PR_FNAME_LENGTH);
|
|
|
|
/* pr_psargs */
|
|
elf_tdata (abfd)->core->command = _bfd_elfcore_strndup
|
|
(abfd, note->descdata + PRPSINFO_OFFSET_PR_PSARGS,
|
|
PRPSINFO_PR_PSARGS_LENGTH);
|
|
break;
|
|
}
|
|
|
|
/* Note that for some reason, a spurious space is tacked
|
|
onto the end of the args in some (at least one anyway)
|
|
implementations, so strip it off if it exists. */
|
|
|
|
{
|
|
char *command = elf_tdata (abfd)->core->command;
|
|
int n = strlen (command);
|
|
|
|
if (0 < n && command[n - 1] == ' ')
|
|
command[n - 1] = '\0';
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Set the right mach type. */
|
|
|
|
static bool
|
|
riscv_elf_object_p (bfd *abfd)
|
|
{
|
|
/* There are only two mach types in RISCV currently. */
|
|
if (strcmp (abfd->xvec->name, "elf32-littleriscv") == 0
|
|
|| strcmp (abfd->xvec->name, "elf32-bigriscv") == 0)
|
|
bfd_default_set_arch_mach (abfd, bfd_arch_riscv, bfd_mach_riscv32);
|
|
else
|
|
bfd_default_set_arch_mach (abfd, bfd_arch_riscv, bfd_mach_riscv64);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Determine whether an object attribute tag takes an integer, a
|
|
string or both. */
|
|
|
|
static int
|
|
riscv_elf_obj_attrs_arg_type (int tag)
|
|
{
|
|
return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
|
|
}
|
|
|
|
/* Do not choose mapping symbols as a function name. */
|
|
|
|
static bfd_size_type
|
|
riscv_maybe_function_sym (const asymbol *sym,
|
|
asection *sec,
|
|
bfd_vma *code_off)
|
|
{
|
|
if (sym->flags & BSF_LOCAL
|
|
&& riscv_elf_is_mapping_symbols (sym->name))
|
|
return 0;
|
|
|
|
return _bfd_elf_maybe_function_sym (sym, sec, code_off);
|
|
}
|
|
|
|
/* Treat the following cases as target special symbols, they are
|
|
usually omitted. */
|
|
|
|
static bool
|
|
riscv_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
|
|
{
|
|
/* PR27584, local and empty symbols. Since they are usually
|
|
generated for pcrel relocations. */
|
|
return (!strcmp (sym->name, "")
|
|
|| _bfd_elf_is_local_label_name (abfd, sym->name)
|
|
/* PR27916, mapping symbols. */
|
|
|| riscv_elf_is_mapping_symbols (sym->name));
|
|
}
|
|
|
|
static int
|
|
riscv_elf_additional_program_headers (bfd *abfd,
|
|
struct bfd_link_info *info ATTRIBUTE_UNUSED)
|
|
{
|
|
int ret = 0;
|
|
|
|
/* See if we need a PT_RISCV_ATTRIBUTES segment. */
|
|
if (bfd_get_section_by_name (abfd, RISCV_ATTRIBUTES_SECTION_NAME))
|
|
++ret;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool
|
|
riscv_elf_modify_segment_map (bfd *abfd,
|
|
struct bfd_link_info *info ATTRIBUTE_UNUSED)
|
|
{
|
|
asection *s;
|
|
struct elf_segment_map *m, **pm;
|
|
size_t amt;
|
|
|
|
/* If there is a .riscv.attributes section, we need a PT_RISCV_ATTRIBUTES
|
|
segment. */
|
|
s = bfd_get_section_by_name (abfd, RISCV_ATTRIBUTES_SECTION_NAME);
|
|
if (s != NULL)
|
|
{
|
|
for (m = elf_seg_map (abfd); m != NULL; m = m->next)
|
|
if (m->p_type == PT_RISCV_ATTRIBUTES)
|
|
break;
|
|
/* If there is already a PT_RISCV_ATTRIBUTES header, avoid adding
|
|
another. */
|
|
if (m == NULL)
|
|
{
|
|
amt = sizeof (*m);
|
|
m = bfd_zalloc (abfd, amt);
|
|
if (m == NULL)
|
|
return false;
|
|
|
|
m->p_type = PT_RISCV_ATTRIBUTES;
|
|
m->count = 1;
|
|
m->sections[0] = s;
|
|
|
|
/* We want to put it after the PHDR and INTERP segments. */
|
|
pm = &elf_seg_map (abfd);
|
|
while (*pm != NULL
|
|
&& ((*pm)->p_type == PT_PHDR
|
|
|| (*pm)->p_type == PT_INTERP))
|
|
pm = &(*pm)->next;
|
|
|
|
m->next = *pm;
|
|
*pm = m;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Merge non-visibility st_other attributes. */
|
|
|
|
static void
|
|
riscv_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
|
|
unsigned int st_other,
|
|
bool definition ATTRIBUTE_UNUSED,
|
|
bool dynamic ATTRIBUTE_UNUSED)
|
|
{
|
|
unsigned int isym_sto = st_other & ~ELF_ST_VISIBILITY (-1);
|
|
unsigned int h_sto = h->other & ~ELF_ST_VISIBILITY (-1);
|
|
|
|
if (isym_sto == h_sto)
|
|
return;
|
|
|
|
if (isym_sto & ~STO_RISCV_VARIANT_CC)
|
|
_bfd_error_handler (_("unknown attribute for symbol `%s': 0x%02x"),
|
|
h->root.root.string, isym_sto);
|
|
|
|
if (isym_sto & STO_RISCV_VARIANT_CC)
|
|
h->other |= STO_RISCV_VARIANT_CC;
|
|
}
|
|
|
|
#define TARGET_LITTLE_SYM riscv_elfNN_vec
|
|
#define TARGET_LITTLE_NAME "elfNN-littleriscv"
|
|
#define TARGET_BIG_SYM riscv_elfNN_be_vec
|
|
#define TARGET_BIG_NAME "elfNN-bigriscv"
|
|
|
|
#define elf_backend_reloc_type_class riscv_reloc_type_class
|
|
|
|
#define bfd_elfNN_bfd_reloc_name_lookup riscv_reloc_name_lookup
|
|
#define bfd_elfNN_bfd_link_hash_table_create riscv_elf_link_hash_table_create
|
|
#define bfd_elfNN_bfd_reloc_type_lookup riscv_reloc_type_lookup
|
|
#define bfd_elfNN_bfd_merge_private_bfd_data \
|
|
_bfd_riscv_elf_merge_private_bfd_data
|
|
#define bfd_elfNN_bfd_is_target_special_symbol riscv_elf_is_target_special_symbol
|
|
|
|
#define elf_backend_copy_indirect_symbol riscv_elf_copy_indirect_symbol
|
|
#define elf_backend_create_dynamic_sections riscv_elf_create_dynamic_sections
|
|
#define elf_backend_check_relocs riscv_elf_check_relocs
|
|
#define elf_backend_adjust_dynamic_symbol riscv_elf_adjust_dynamic_symbol
|
|
#define elf_backend_size_dynamic_sections riscv_elf_size_dynamic_sections
|
|
#define elf_backend_relocate_section riscv_elf_relocate_section
|
|
#define elf_backend_finish_dynamic_symbol riscv_elf_finish_dynamic_symbol
|
|
#define elf_backend_finish_dynamic_sections riscv_elf_finish_dynamic_sections
|
|
#define elf_backend_plt_sym_val riscv_elf_plt_sym_val
|
|
#define elf_backend_grok_prstatus riscv_elf_grok_prstatus
|
|
#define elf_backend_grok_psinfo riscv_elf_grok_psinfo
|
|
#define elf_backend_object_p riscv_elf_object_p
|
|
#define elf_backend_write_core_note riscv_write_core_note
|
|
#define elf_backend_maybe_function_sym riscv_maybe_function_sym
|
|
#define elf_info_to_howto_rel NULL
|
|
#define elf_info_to_howto riscv_info_to_howto_rela
|
|
#define bfd_elfNN_bfd_relax_section _bfd_riscv_relax_section
|
|
#define bfd_elfNN_mkobject elfNN_riscv_mkobject
|
|
#define elf_backend_additional_program_headers \
|
|
riscv_elf_additional_program_headers
|
|
#define elf_backend_modify_segment_map riscv_elf_modify_segment_map
|
|
#define elf_backend_merge_symbol_attribute riscv_elf_merge_symbol_attribute
|
|
|
|
#define elf_backend_init_index_section _bfd_elf_init_1_index_section
|
|
|
|
#define elf_backend_can_gc_sections 1
|
|
#define elf_backend_can_refcount 1
|
|
#define elf_backend_want_got_plt 1
|
|
#define elf_backend_plt_readonly 1
|
|
#define elf_backend_plt_alignment 4
|
|
#define elf_backend_want_plt_sym 1
|
|
#define elf_backend_got_header_size (ARCH_SIZE / 8)
|
|
#define elf_backend_want_dynrelro 1
|
|
#define elf_backend_rela_normal 1
|
|
#define elf_backend_default_execstack 0
|
|
|
|
#undef elf_backend_obj_attrs_vendor
|
|
#define elf_backend_obj_attrs_vendor "riscv"
|
|
#undef elf_backend_obj_attrs_arg_type
|
|
#define elf_backend_obj_attrs_arg_type riscv_elf_obj_attrs_arg_type
|
|
#undef elf_backend_obj_attrs_section_type
|
|
#define elf_backend_obj_attrs_section_type SHT_RISCV_ATTRIBUTES
|
|
#undef elf_backend_obj_attrs_section
|
|
#define elf_backend_obj_attrs_section RISCV_ATTRIBUTES_SECTION_NAME
|
|
|
|
#include "elfNN-target.h"
|