mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-21 04:42:53 +08:00
1d506c26d9
This commit is the result of the following actions: - Running gdb/copyright.py to update all of the copyright headers to include 2024, - Manually updating a few files the copyright.py script told me to update, these files had copyright headers embedded within the file, - Regenerating gdbsupport/Makefile.in to refresh it's copyright date, - Using grep to find other files that still mentioned 2023. If these files were updated last year from 2022 to 2023 then I've updated them this year to 2024. I'm sure I've probably missed some dates. Feel free to fix them up as you spot them.
332 lines
10 KiB
C
332 lines
10 KiB
C
/* Displaced stepping related things.
|
|
|
|
Copyright (C) 2020-2024 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#include "defs.h"
|
|
#include "displaced-stepping.h"
|
|
|
|
#include "cli/cli-cmds.h"
|
|
#include "command.h"
|
|
#include "gdbarch.h"
|
|
#include "gdbcore.h"
|
|
#include "gdbthread.h"
|
|
#include "inferior.h"
|
|
#include "regcache.h"
|
|
#include "target/target.h"
|
|
|
|
/* Default destructor for displaced_step_copy_insn_closure. */
|
|
|
|
displaced_step_copy_insn_closure::~displaced_step_copy_insn_closure ()
|
|
= default;
|
|
|
|
bool debug_displaced = false;
|
|
|
|
static void
|
|
show_debug_displaced (struct ui_file *file, int from_tty,
|
|
struct cmd_list_element *c, const char *value)
|
|
{
|
|
gdb_printf (file, _("Displace stepping debugging is %s.\n"), value);
|
|
}
|
|
|
|
displaced_step_prepare_status
|
|
displaced_step_buffers::prepare (thread_info *thread, CORE_ADDR &displaced_pc)
|
|
{
|
|
gdb_assert (!thread->displaced_step_state.in_progress ());
|
|
|
|
/* Sanity check: the thread should not be using a buffer at this point. */
|
|
for (displaced_step_buffer &buf : m_buffers)
|
|
gdb_assert (buf.current_thread != thread);
|
|
|
|
regcache *regcache = get_thread_regcache (thread);
|
|
gdbarch *arch = regcache->arch ();
|
|
ULONGEST len = gdbarch_displaced_step_buffer_length (arch);
|
|
|
|
/* Search for an unused buffer. */
|
|
displaced_step_buffer *buffer = nullptr;
|
|
displaced_step_prepare_status fail_status
|
|
= DISPLACED_STEP_PREPARE_STATUS_CANT;
|
|
|
|
for (displaced_step_buffer &candidate : m_buffers)
|
|
{
|
|
bool bp_in_range = breakpoint_in_range_p (thread->inf->aspace.get (),
|
|
candidate.addr, len);
|
|
bool is_free = candidate.current_thread == nullptr;
|
|
|
|
if (!bp_in_range)
|
|
{
|
|
if (is_free)
|
|
{
|
|
buffer = &candidate;
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
/* This buffer would be suitable, but it's used right now. */
|
|
fail_status = DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* There's a breakpoint set in the scratch pad location range
|
|
(which is usually around the entry point). We'd either
|
|
install it before resuming, which would overwrite/corrupt the
|
|
scratch pad, or if it was already inserted, this displaced
|
|
step would overwrite it. The latter is OK in the sense that
|
|
we already assume that no thread is going to execute the code
|
|
in the scratch pad range (after initial startup) anyway, but
|
|
the former is unacceptable. Simply punt and fallback to
|
|
stepping over this breakpoint in-line. */
|
|
displaced_debug_printf ("breakpoint set in displaced stepping "
|
|
"buffer at %s, can't use.",
|
|
paddress (arch, candidate.addr));
|
|
}
|
|
}
|
|
|
|
if (buffer == nullptr)
|
|
return fail_status;
|
|
|
|
displaced_debug_printf ("selected buffer at %s",
|
|
paddress (arch, buffer->addr));
|
|
|
|
/* Save the original PC of the thread. */
|
|
buffer->original_pc = regcache_read_pc (regcache);
|
|
|
|
/* Return displaced step buffer address to caller. */
|
|
displaced_pc = buffer->addr;
|
|
|
|
/* Save the original contents of the displaced stepping buffer. */
|
|
buffer->saved_copy.resize (len);
|
|
|
|
int status = target_read_memory (buffer->addr,
|
|
buffer->saved_copy.data (), len);
|
|
if (status != 0)
|
|
throw_error (MEMORY_ERROR,
|
|
_("Error accessing memory address %s (%s) for "
|
|
"displaced-stepping scratch space."),
|
|
paddress (arch, buffer->addr), safe_strerror (status));
|
|
|
|
displaced_debug_printf ("saved %s: %s",
|
|
paddress (arch, buffer->addr),
|
|
bytes_to_string (buffer->saved_copy).c_str ());
|
|
|
|
/* Save this in a local variable first, so it's released if code below
|
|
throws. */
|
|
displaced_step_copy_insn_closure_up copy_insn_closure
|
|
= gdbarch_displaced_step_copy_insn (arch, buffer->original_pc,
|
|
buffer->addr, regcache);
|
|
|
|
if (copy_insn_closure == nullptr)
|
|
{
|
|
/* The architecture doesn't know how or want to displaced step
|
|
this instruction or instruction sequence. Fallback to
|
|
stepping over the breakpoint in-line. */
|
|
return DISPLACED_STEP_PREPARE_STATUS_CANT;
|
|
}
|
|
|
|
/* This marks the buffer as being in use. */
|
|
buffer->current_thread = thread;
|
|
|
|
/* Save this, now that we know everything went fine. */
|
|
buffer->copy_insn_closure = std::move (copy_insn_closure);
|
|
|
|
/* Reset the displaced step buffer state if we failed to write PC.
|
|
Otherwise we will prevent this buffer from being used, as it will
|
|
always have a thread in buffer->current_thread. */
|
|
auto reset_buffer = make_scope_exit
|
|
([buffer] ()
|
|
{
|
|
buffer->current_thread = nullptr;
|
|
buffer->copy_insn_closure.reset ();
|
|
});
|
|
|
|
/* Adjust the PC so it points to the displaced step buffer address that will
|
|
be used. This needs to be done after we save the copy_insn_closure, as
|
|
some architectures (Arm, for one) need that information so they can adjust
|
|
other data as needed. In particular, Arm needs to know if the instruction
|
|
being executed in the displaced step buffer is thumb or not. Without that
|
|
information, things will be very wrong in a random way. */
|
|
regcache_write_pc (regcache, buffer->addr);
|
|
|
|
/* PC update successful. Discard the displaced step state rollback. */
|
|
reset_buffer.release ();
|
|
|
|
/* Tell infrun not to try preparing a displaced step again for this inferior if
|
|
all buffers are taken. */
|
|
thread->inf->displaced_step_state.unavailable = true;
|
|
for (const displaced_step_buffer &buf : m_buffers)
|
|
{
|
|
if (buf.current_thread == nullptr)
|
|
{
|
|
thread->inf->displaced_step_state.unavailable = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return DISPLACED_STEP_PREPARE_STATUS_OK;
|
|
}
|
|
|
|
static void
|
|
write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
|
|
const gdb_byte *myaddr, int len)
|
|
{
|
|
scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
|
|
|
|
inferior_ptid = ptid;
|
|
write_memory (memaddr, myaddr, len);
|
|
}
|
|
|
|
static bool
|
|
displaced_step_instruction_executed_successfully
|
|
(gdbarch *arch, const target_waitstatus &status)
|
|
{
|
|
if (status.kind () == TARGET_WAITKIND_STOPPED
|
|
&& status.sig () != GDB_SIGNAL_TRAP)
|
|
return false;
|
|
|
|
/* All other (thread event) waitkinds can only happen if the
|
|
instruction fully executed. For example, a fork, or a syscall
|
|
entry can only happen if the syscall instruction actually
|
|
executed. */
|
|
|
|
if (target_stopped_by_watchpoint ())
|
|
{
|
|
if (gdbarch_have_nonsteppable_watchpoint (arch)
|
|
|| target_have_steppable_watchpoint ())
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
displaced_step_finish_status
|
|
displaced_step_buffers::finish (gdbarch *arch, thread_info *thread,
|
|
const target_waitstatus &status)
|
|
{
|
|
gdb_assert (thread->displaced_step_state.in_progress ());
|
|
|
|
/* Find the buffer this thread was using. */
|
|
displaced_step_buffer *buffer = nullptr;
|
|
|
|
for (displaced_step_buffer &candidate : m_buffers)
|
|
{
|
|
if (candidate.current_thread == thread)
|
|
{
|
|
buffer = &candidate;
|
|
break;
|
|
}
|
|
}
|
|
|
|
gdb_assert (buffer != nullptr);
|
|
|
|
/* Move this to a local variable so it's released in case something goes
|
|
wrong. */
|
|
displaced_step_copy_insn_closure_up copy_insn_closure
|
|
= std::move (buffer->copy_insn_closure);
|
|
gdb_assert (copy_insn_closure != nullptr);
|
|
|
|
/* Reset BUFFER->CURRENT_THREAD immediately to mark the buffer as available,
|
|
in case something goes wrong below. */
|
|
buffer->current_thread = nullptr;
|
|
|
|
/* Now that a buffer gets freed, tell infrun it can ask us to prepare a displaced
|
|
step again for this inferior. Do that here in case something goes wrong
|
|
below. */
|
|
thread->inf->displaced_step_state.unavailable = false;
|
|
|
|
ULONGEST len = gdbarch_displaced_step_buffer_length (arch);
|
|
|
|
/* Restore memory of the buffer. */
|
|
write_memory_ptid (thread->ptid, buffer->addr,
|
|
buffer->saved_copy.data (), len);
|
|
|
|
displaced_debug_printf ("restored %s %s",
|
|
thread->ptid.to_string ().c_str (),
|
|
paddress (arch, buffer->addr));
|
|
|
|
/* If the thread exited while stepping, we are done. The code above
|
|
made the buffer available again, and we restored the bytes in the
|
|
buffer. We don't want to run the fixup: since the thread is now
|
|
dead there's nothing to adjust. */
|
|
if (status.kind () == TARGET_WAITKIND_THREAD_EXITED)
|
|
return DISPLACED_STEP_FINISH_STATUS_OK;
|
|
|
|
regcache *rc = get_thread_regcache (thread);
|
|
|
|
bool instruction_executed_successfully
|
|
= displaced_step_instruction_executed_successfully (arch, status);
|
|
|
|
gdbarch_displaced_step_fixup (arch, copy_insn_closure.get (),
|
|
buffer->original_pc, buffer->addr,
|
|
rc, instruction_executed_successfully);
|
|
|
|
return (instruction_executed_successfully
|
|
? DISPLACED_STEP_FINISH_STATUS_OK
|
|
: DISPLACED_STEP_FINISH_STATUS_NOT_EXECUTED);
|
|
}
|
|
|
|
const displaced_step_copy_insn_closure *
|
|
displaced_step_buffers::copy_insn_closure_by_addr (CORE_ADDR addr)
|
|
{
|
|
for (const displaced_step_buffer &buffer : m_buffers)
|
|
{
|
|
/* Make sure we have active buffers to compare to. */
|
|
if (buffer.current_thread != nullptr && addr == buffer.addr)
|
|
{
|
|
/* The closure information should always be available. */
|
|
gdb_assert (buffer.copy_insn_closure.get () != nullptr);
|
|
return buffer.copy_insn_closure.get ();
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
void
|
|
displaced_step_buffers::restore_in_ptid (ptid_t ptid)
|
|
{
|
|
for (const displaced_step_buffer &buffer : m_buffers)
|
|
{
|
|
if (buffer.current_thread == nullptr)
|
|
continue;
|
|
|
|
regcache *regcache = get_thread_regcache (buffer.current_thread);
|
|
gdbarch *arch = regcache->arch ();
|
|
ULONGEST len = gdbarch_displaced_step_buffer_length (arch);
|
|
|
|
write_memory_ptid (ptid, buffer.addr, buffer.saved_copy.data (), len);
|
|
|
|
displaced_debug_printf ("restored in ptid %s %s",
|
|
ptid.to_string ().c_str (),
|
|
paddress (arch, buffer.addr));
|
|
}
|
|
}
|
|
|
|
void _initialize_displaced_stepping ();
|
|
void
|
|
_initialize_displaced_stepping ()
|
|
{
|
|
add_setshow_boolean_cmd ("displaced", class_maintenance,
|
|
&debug_displaced, _("\
|
|
Set displaced stepping debugging."), _("\
|
|
Show displaced stepping debugging."), _("\
|
|
When non-zero, displaced stepping specific debugging is enabled."),
|
|
NULL,
|
|
show_debug_displaced,
|
|
&setdebuglist, &showdebuglist);
|
|
}
|