binutils-gdb/sim/h8300/compile.c
Alexandre Oliva e073c4747a sim/h8300/ChangeLog:
2003-07-23  Richard Sandiford  <rsandifo@redhat.com>
* compile.c (sim_resume): Make sure that dst.reg refers to the
right register byte in mova/sz.l @(dd,RnL),ERn.
2003-07-21  Richard Sandiford  <rsandifo@redhat.com>
* compile.c (sim_resume): Zero-extend immediate to muls, mulsu,
mulxs, divs and divxs.
sim/testsuite/sim/h8300/ChangeLog:
2003-07-22  Michael Snyder  <msnyder@redhat.com>
* mul.s: Don't try to use negative immediate (it's always
unsigned).
* div.s: Ditto.
2004-06-28 19:26:37 +00:00

5128 lines
120 KiB
C

/*
* Simulator for the Renesas (formerly Hitachi) H8/300 architecture.
*
* Written by Steve Chamberlain of Cygnus Support. sac@cygnus.com
*
* This file is part of H8/300 sim
*
*
* THIS SOFTWARE IS NOT COPYRIGHTED
*
* Cygnus offers the following for use in the public domain. Cygnus makes no
* warranty with regard to the software or its performance and the user
* accepts the software "AS IS" with all faults.
*
* CYGNUS DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD TO THIS
* SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
* AND FITNESS FOR A PARTICULAR PURPOSE.
*/
#include <signal.h>
#ifdef HAVE_TIME_H
#include <time.h>
#endif
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif
#ifdef HAVE_SYS_PARAM_H
#include <sys/param.h>
#endif
#include "bfd.h"
#include "sim-main.h"
#include "gdb/sim-h8300.h"
#include "sys/stat.h"
#include "sys/types.h"
#ifndef SIGTRAP
# define SIGTRAP 5
#endif
int debug;
host_callback *sim_callback;
static SIM_OPEN_KIND sim_kind;
static char *myname;
/* FIXME: Needs to live in header file.
This header should also include the things in remote-sim.h.
One could move this to remote-sim.h but this function isn't needed
by gdb. */
static void set_simcache_size (SIM_DESC, int);
#define X(op, size) (op * 4 + size)
#define SP (h8300hmode && !h8300_normal_mode ? SL : SW)
#define h8_opcodes ops
#define DEFINE_TABLE
#include "opcode/h8300.h"
/* CPU data object: */
static int
sim_state_initialize (SIM_DESC sd, sim_cpu *cpu)
{
/* FIXME: not really necessary, since sim_cpu_alloc calls zalloc. */
memset (&cpu->regs, 0, sizeof(cpu->regs));
cpu->regs[SBR_REGNUM] = 0xFFFFFF00;
cpu->pc = 0;
cpu->delayed_branch = 0;
cpu->memory = NULL;
cpu->eightbit = NULL;
cpu->mask = 0;
/* Initialize local simulator state. */
sd->sim_cache = NULL;
sd->sim_cache_size = 0;
sd->cache_idx = NULL;
sd->cache_top = 0;
sd->memory_size = 0;
sd->compiles = 0;
#ifdef ADEBUG
memset (&cpu->stats, 0, sizeof (cpu->stats));
#endif
return 0;
}
static unsigned int
h8_get_pc (SIM_DESC sd)
{
return (STATE_CPU (sd, 0)) -> pc;
}
static void
h8_set_pc (SIM_DESC sd, unsigned int val)
{
(STATE_CPU (sd, 0)) -> pc = val;
}
static unsigned int
h8_get_ccr (SIM_DESC sd)
{
return (STATE_CPU (sd, 0)) -> regs[CCR_REGNUM];
}
static void
h8_set_ccr (SIM_DESC sd, unsigned int val)
{
(STATE_CPU (sd, 0)) -> regs[CCR_REGNUM] = val;
}
static unsigned int
h8_get_exr (SIM_DESC sd)
{
return (STATE_CPU (sd, 0)) -> regs[EXR_REGNUM];
}
static void
h8_set_exr (SIM_DESC sd, unsigned int val)
{
(STATE_CPU (sd, 0)) -> regs[EXR_REGNUM] = val;
}
static int
h8_get_sbr (SIM_DESC sd)
{
return (STATE_CPU (sd, 0)) -> regs[SBR_REGNUM];
}
static void
h8_set_sbr (SIM_DESC sd, int val)
{
(STATE_CPU (sd, 0)) -> regs[SBR_REGNUM] = val;
}
static int
h8_get_vbr (SIM_DESC sd)
{
return (STATE_CPU (sd, 0)) -> regs[VBR_REGNUM];
}
static void
h8_set_vbr (SIM_DESC sd, int val)
{
(STATE_CPU (sd, 0)) -> regs[VBR_REGNUM] = val;
}
static int
h8_get_cache_top (SIM_DESC sd)
{
return sd -> cache_top;
}
static void
h8_set_cache_top (SIM_DESC sd, int val)
{
sd -> cache_top = val;
}
static int
h8_get_mask (SIM_DESC sd)
{
return (STATE_CPU (sd, 0)) -> mask;
}
static void
h8_set_mask (SIM_DESC sd, int val)
{
(STATE_CPU (sd, 0)) -> mask = val;
}
#if 0
static int
h8_get_exception (SIM_DESC sd)
{
return (STATE_CPU (sd, 0)) -> exception;
}
static void
h8_set_exception (SIM_DESC sd, int val)
{
(STATE_CPU (sd, 0)) -> exception = val;
}
static enum h8300_sim_state
h8_get_state (SIM_DESC sd)
{
return sd -> state;
}
static void
h8_set_state (SIM_DESC sd, enum h8300_sim_state val)
{
sd -> state = val;
}
#endif
static unsigned int
h8_get_cycles (SIM_DESC sd)
{
return (STATE_CPU (sd, 0)) -> regs[CYCLE_REGNUM];
}
static void
h8_set_cycles (SIM_DESC sd, unsigned int val)
{
(STATE_CPU (sd, 0)) -> regs[CYCLE_REGNUM] = val;
}
static unsigned int
h8_get_insts (SIM_DESC sd)
{
return (STATE_CPU (sd, 0)) -> regs[INST_REGNUM];
}
static void
h8_set_insts (SIM_DESC sd, unsigned int val)
{
(STATE_CPU (sd, 0)) -> regs[INST_REGNUM] = val;
}
static unsigned int
h8_get_ticks (SIM_DESC sd)
{
return (STATE_CPU (sd, 0)) -> regs[TICK_REGNUM];
}
static void
h8_set_ticks (SIM_DESC sd, unsigned int val)
{
(STATE_CPU (sd, 0)) -> regs[TICK_REGNUM] = val;
}
static unsigned int
h8_get_mach (SIM_DESC sd)
{
return (STATE_CPU (sd, 0)) -> regs[MACH_REGNUM];
}
static void
h8_set_mach (SIM_DESC sd, unsigned int val)
{
(STATE_CPU (sd, 0)) -> regs[MACH_REGNUM] = val;
}
static unsigned int
h8_get_macl (SIM_DESC sd)
{
return (STATE_CPU (sd, 0)) -> regs[MACL_REGNUM];
}
static void
h8_set_macl (SIM_DESC sd, unsigned int val)
{
(STATE_CPU (sd, 0)) -> regs[MACL_REGNUM] = val;
}
static int
h8_get_compiles (SIM_DESC sd)
{
return sd -> compiles;
}
static void
h8_increment_compiles (SIM_DESC sd)
{
sd -> compiles ++;
}
static unsigned int *
h8_get_reg_buf (SIM_DESC sd)
{
return &(((STATE_CPU (sd, 0)) -> regs)[0]);
}
static unsigned int
h8_get_reg (SIM_DESC sd, int regnum)
{
return (STATE_CPU (sd, 0)) -> regs[regnum];
}
static void
h8_set_reg (SIM_DESC sd, int regnum, int val)
{
(STATE_CPU (sd, 0)) -> regs[regnum] = val;
}
#ifdef ADEBUG
static int
h8_get_stats (SIM_DESC sd, int idx)
{
return sd -> stats[idx];
}
static void
h8_increment_stats (SIM_DESC sd, int idx)
{
sd -> stats[idx] ++;
}
#endif /* ADEBUG */
static unsigned short *
h8_get_cache_idx_buf (SIM_DESC sd)
{
return sd -> cache_idx;
}
static void
h8_set_cache_idx_buf (SIM_DESC sd, unsigned short *ptr)
{
sd -> cache_idx = ptr;
}
static unsigned short
h8_get_cache_idx (SIM_DESC sd, unsigned int idx)
{
if (idx > sd->memory_size)
return (unsigned short) -1;
return sd -> cache_idx[idx];
}
static void
h8_set_cache_idx (SIM_DESC sd, int idx, unsigned int val)
{
sd -> cache_idx[idx] = (unsigned short) val;
}
static unsigned char *
h8_get_memory_buf (SIM_DESC sd)
{
return (STATE_CPU (sd, 0)) -> memory;
}
static void
h8_set_memory_buf (SIM_DESC sd, unsigned char *ptr)
{
(STATE_CPU (sd, 0)) -> memory = ptr;
}
static unsigned char
h8_get_memory (SIM_DESC sd, int idx)
{
return (STATE_CPU (sd, 0)) -> memory[idx];
}
static void
h8_set_memory (SIM_DESC sd, int idx, unsigned int val)
{
(STATE_CPU (sd, 0)) -> memory[idx] = (unsigned char) val;
}
static unsigned char *
h8_get_eightbit_buf (SIM_DESC sd)
{
return (STATE_CPU (sd, 0)) -> eightbit;
}
static void
h8_set_eightbit_buf (SIM_DESC sd, unsigned char *ptr)
{
(STATE_CPU (sd, 0)) -> eightbit = ptr;
}
static unsigned char
h8_get_eightbit (SIM_DESC sd, int idx)
{
return (STATE_CPU (sd, 0)) -> eightbit[idx];
}
static void
h8_set_eightbit (SIM_DESC sd, int idx, unsigned int val)
{
(STATE_CPU (sd, 0)) -> eightbit[idx] = (unsigned char) val;
}
static unsigned int
h8_get_delayed_branch (SIM_DESC sd)
{
return (STATE_CPU (sd, 0)) -> delayed_branch;
}
static void
h8_set_delayed_branch (SIM_DESC sd, unsigned int dest)
{
(STATE_CPU (sd, 0)) -> delayed_branch = dest;
}
static char **
h8_get_command_line (SIM_DESC sd)
{
return (STATE_CPU (sd, 0)) -> command_line;
}
static void
h8_set_command_line (SIM_DESC sd, char ** val)
{
(STATE_CPU (sd, 0)) -> command_line = val;
}
static char *
h8_get_cmdline_arg (SIM_DESC sd, int index)
{
return (STATE_CPU (sd, 0)) -> command_line[index];
}
static void
h8_set_cmdline_arg (SIM_DESC sd, int index, char * val)
{
(STATE_CPU (sd, 0)) -> command_line[index] = val;
}
/* MAC Saturation Mode */
static int
h8_get_macS (SIM_DESC sd)
{
return (STATE_CPU (sd, 0)) -> macS;
}
static void
h8_set_macS (SIM_DESC sd, int val)
{
(STATE_CPU (sd, 0)) -> macS = (val != 0);
}
/* MAC Zero Flag */
static int
h8_get_macZ (SIM_DESC sd)
{
return (STATE_CPU (sd, 0)) -> macZ;
}
static void
h8_set_macZ (SIM_DESC sd, int val)
{
(STATE_CPU (sd, 0)) -> macZ = (val != 0);
}
/* MAC Negative Flag */
static int
h8_get_macN (SIM_DESC sd)
{
return (STATE_CPU (sd, 0)) -> macN;
}
static void
h8_set_macN (SIM_DESC sd, int val)
{
(STATE_CPU (sd, 0)) -> macN = (val != 0);
}
/* MAC Overflow Flag */
static int
h8_get_macV (SIM_DESC sd)
{
return (STATE_CPU (sd, 0)) -> macV;
}
static void
h8_set_macV (SIM_DESC sd, int val)
{
(STATE_CPU (sd, 0)) -> macV = (val != 0);
}
/* End CPU data object. */
/* The rate at which to call the host's poll_quit callback. */
enum { POLL_QUIT_INTERVAL = 0x80000 };
#define LOW_BYTE(x) ((x) & 0xff)
#define HIGH_BYTE(x) (((x) >> 8) & 0xff)
#define P(X, Y) ((X << 8) | Y)
#define C (c != 0)
#define Z (nz == 0)
#define V (v != 0)
#define N (n != 0)
#define U (u != 0)
#define H (h != 0)
#define UI (ui != 0)
#define I (intMaskBit != 0)
#define BUILDSR(SD) \
h8_set_ccr (SD, (I << 7) | (UI << 6) | (H << 5) | (U << 4) \
| (N << 3) | (Z << 2) | (V << 1) | C)
#define GETSR(SD) \
/* Get Status Register (flags). */ \
c = (h8_get_ccr (sd) >> 0) & 1; \
v = (h8_get_ccr (sd) >> 1) & 1; \
nz = !((h8_get_ccr (sd) >> 2) & 1); \
n = (h8_get_ccr (sd) >> 3) & 1; \
u = (h8_get_ccr (sd) >> 4) & 1; \
h = (h8_get_ccr (sd) >> 5) & 1; \
ui = ((h8_get_ccr (sd) >> 6) & 1); \
intMaskBit = (h8_get_ccr (sd) >> 7) & 1
#ifdef __CHAR_IS_SIGNED__
#define SEXTCHAR(x) ((char) (x))
#endif
#ifndef SEXTCHAR
#define SEXTCHAR(x) ((x & 0x80) ? (x | ~0xff) : x & 0xff)
#endif
#define UEXTCHAR(x) ((x) & 0xff)
#define UEXTSHORT(x) ((x) & 0xffff)
#define SEXTSHORT(x) ((short) (x))
int h8300hmode = 0;
int h8300smode = 0;
int h8300_normal_mode = 0;
int h8300sxmode = 0;
static int memory_size;
static int
get_now (void)
{
return time (0); /* WinXX HAS UNIX like 'time', so why not use it? */
}
static int
now_persec (void)
{
return 1;
}
static int
bitfrom (int x)
{
switch (x & SIZE)
{
case L_8:
return SB;
case L_16:
case L_16U:
return SW;
case L_32:
return SL;
case L_P:
return (h8300hmode && !h8300_normal_mode)? SL : SW;
}
return 0;
}
/* Simulate an indirection / dereference.
return 0 for success, -1 for failure.
*/
static unsigned int
lvalue (SIM_DESC sd, int x, int rn, unsigned int *val)
{
if (val == NULL) /* Paranoia. */
return -1;
switch (x / 4)
{
case OP_DISP:
if (rn == ZERO_REGNUM)
*val = X (OP_IMM, SP);
else
*val = X (OP_REG, SP);
break;
case OP_MEM:
*val = X (OP_MEM, SP);
break;
default:
sim_engine_set_run_state (sd, sim_stopped, SIGSEGV);
return -1;
}
return 0;
}
static int
cmdline_location()
{
if (h8300smode && !h8300_normal_mode)
return 0xffff00L;
else if (h8300hmode && !h8300_normal_mode)
return 0x2ff00L;
else
return 0xff00L;
}
static void
decode (SIM_DESC sd, int addr, unsigned char *data, decoded_inst *dst)
{
int cst[3] = {0, 0, 0};
int reg[3] = {0, 0, 0};
int rdisp[3] = {0, 0, 0};
int opnum;
const struct h8_opcode *q;
dst->dst.type = -1;
dst->src.type = -1;
/* Find the exact opcode/arg combo. */
for (q = h8_opcodes; q->name; q++)
{
op_type *nib = q->data.nib;
unsigned int len = 0;
if ((q->available == AV_H8SX && !h8300sxmode) ||
(q->available == AV_H8S && !h8300smode) ||
(q->available == AV_H8H && !h8300hmode))
continue;
cst[0] = cst[1] = cst[2] = 0;
reg[0] = reg[1] = reg[2] = 0;
rdisp[0] = rdisp[1] = rdisp[2] = 0;
while (1)
{
op_type looking_for = *nib;
int thisnib = data[len / 2];
thisnib = (len & 1) ? (thisnib & 0xf) : ((thisnib >> 4) & 0xf);
opnum = ((looking_for & OP3) ? 2 :
(looking_for & DST) ? 1 : 0);
if (looking_for < 16 && looking_for >= 0)
{
if (looking_for != thisnib)
goto fail;
}
else
{
if (looking_for & B31)
{
if (!((thisnib & 0x8) != 0))
goto fail;
looking_for = (op_type) (looking_for & ~B31);
thisnib &= 0x7;
}
else if (looking_for & B30)
{
if (!((thisnib & 0x8) == 0))
goto fail;
looking_for = (op_type) (looking_for & ~B30);
}
if (looking_for & B21)
{
if (!((thisnib & 0x4) != 0))
goto fail;
looking_for = (op_type) (looking_for & ~B21);
thisnib &= 0xb;
}
else if (looking_for & B20)
{
if (!((thisnib & 0x4) == 0))
goto fail;
looking_for = (op_type) (looking_for & ~B20);
}
if (looking_for & B11)
{
if (!((thisnib & 0x2) != 0))
goto fail;
looking_for = (op_type) (looking_for & ~B11);
thisnib &= 0xd;
}
else if (looking_for & B10)
{
if (!((thisnib & 0x2) == 0))
goto fail;
looking_for = (op_type) (looking_for & ~B10);
}
if (looking_for & B01)
{
if (!((thisnib & 0x1) != 0))
goto fail;
looking_for = (op_type) (looking_for & ~B01);
thisnib &= 0xe;
}
else if (looking_for & B00)
{
if (!((thisnib & 0x1) == 0))
goto fail;
looking_for = (op_type) (looking_for & ~B00);
}
if (looking_for & IGNORE)
{
/* Hitachi has declared that IGNORE must be zero. */
if (thisnib != 0)
goto fail;
}
else if ((looking_for & MODE) == DATA)
{
; /* Skip embedded data. */
}
else if ((looking_for & MODE) == DBIT)
{
/* Exclude adds/subs by looking at bit 0 and 2, and
make sure the operand size, either w or l,
matches by looking at bit 1. */
if ((looking_for & 7) != (thisnib & 7))
goto fail;
cst[opnum] = (thisnib & 0x8) ? 2 : 1;
}
else if ((looking_for & MODE) == REG ||
(looking_for & MODE) == LOWREG ||
(looking_for & MODE) == IND ||
(looking_for & MODE) == PREINC ||
(looking_for & MODE) == POSTINC ||
(looking_for & MODE) == PREDEC ||
(looking_for & MODE) == POSTDEC)
{
reg[opnum] = thisnib;
}
else if (looking_for & CTRL)
{
thisnib &= 7;
if (((looking_for & MODE) == CCR && (thisnib != C_CCR)) ||
((looking_for & MODE) == EXR && (thisnib != C_EXR)) ||
((looking_for & MODE) == MACH && (thisnib != C_MACH)) ||
((looking_for & MODE) == MACL && (thisnib != C_MACL)) ||
((looking_for & MODE) == VBR && (thisnib != C_VBR)) ||
((looking_for & MODE) == SBR && (thisnib != C_SBR)))
goto fail;
if (((looking_for & MODE) == CCR_EXR &&
(thisnib != C_CCR && thisnib != C_EXR)) ||
((looking_for & MODE) == VBR_SBR &&
(thisnib != C_VBR && thisnib != C_SBR)) ||
((looking_for & MODE) == MACREG &&
(thisnib != C_MACH && thisnib != C_MACL)))
goto fail;
if (((looking_for & MODE) == CC_EX_VB_SB &&
(thisnib != C_CCR && thisnib != C_EXR &&
thisnib != C_VBR && thisnib != C_SBR)))
goto fail;
reg[opnum] = thisnib;
}
else if ((looking_for & MODE) == ABS)
{
/* Absolute addresses are unsigned. */
switch (looking_for & SIZE)
{
case L_8:
cst[opnum] = UEXTCHAR (data[len / 2]);
break;
case L_16:
case L_16U:
cst[opnum] = (data[len / 2] << 8) + data[len / 2 + 1];
break;
case L_32:
cst[opnum] =
(data[len / 2 + 0] << 24) +
(data[len / 2 + 1] << 16) +
(data[len / 2 + 2] << 8) +
(data[len / 2 + 3]);
break;
default:
printf ("decode: bad size ABS: %d\n",
(looking_for & SIZE));
goto end;
}
}
else if ((looking_for & MODE) == DISP ||
(looking_for & MODE) == PCREL ||
(looking_for & MODE) == INDEXB ||
(looking_for & MODE) == INDEXW ||
(looking_for & MODE) == INDEXL)
{
switch (looking_for & SIZE)
{
case L_2:
cst[opnum] = thisnib & 3;
break;
case L_8:
cst[opnum] = SEXTCHAR (data[len / 2]);
break;
case L_16:
cst[opnum] = (data[len / 2] << 8) + data[len / 2 + 1];
cst[opnum] = (short) cst[opnum]; /* Sign extend. */
break;
case L_16U:
cst[opnum] = (data[len / 2] << 8) + data[len / 2 + 1];
break;
case L_32:
cst[opnum] =
(data[len / 2 + 0] << 24) +
(data[len / 2 + 1] << 16) +
(data[len / 2 + 2] << 8) +
(data[len / 2 + 3]);
break;
default:
printf ("decode: bad size DISP/PCREL/INDEX: %d\n",
(looking_for & SIZE));
goto end;
}
}
else if ((looking_for & SIZE) == L_16 ||
(looking_for & SIZE) == L_16U)
{
cst[opnum] = (data[len / 2] << 8) + data[len / 2 + 1];
/* Immediates are always unsigned. */
if ((looking_for & SIZE) != L_16U &&
(looking_for & MODE) != IMM)
cst[opnum] = (short) cst[opnum]; /* Sign extend. */
}
else if (looking_for & ABSJMP)
{
switch (looking_for & SIZE) {
case L_24:
cst[opnum] = (data[1] << 16) | (data[2] << 8) | (data[3]);
break;
case L_32:
cst[opnum] =
(data[len / 2 + 0] << 24) +
(data[len / 2 + 1] << 16) +
(data[len / 2 + 2] << 8) +
(data[len / 2 + 3]);
break;
default:
printf ("decode: bad size ABSJMP: %d\n",
(looking_for & SIZE));
goto end;
}
}
else if ((looking_for & MODE) == MEMIND)
{
cst[opnum] = data[1];
}
else if ((looking_for & MODE) == VECIND)
{
if(h8300_normal_mode)
cst[opnum] = ((data[1] & 0x7f) + 0x80) * 2;
else
cst[opnum] = ((data[1] & 0x7f) + 0x80) * 4;
cst[opnum] += h8_get_vbr (sd); /* Add vector base reg. */
}
else if ((looking_for & SIZE) == L_32)
{
int i = len / 2;
cst[opnum] =
(data[i + 0] << 24) |
(data[i + 1] << 16) |
(data[i + 2] << 8) |
(data[i + 3]);
}
else if ((looking_for & SIZE) == L_24)
{
int i = len / 2;
cst[opnum] =
(data[i + 0] << 16) |
(data[i + 1] << 8) |
(data[i + 2]);
}
else if (looking_for & DISPREG)
{
rdisp[opnum] = thisnib & 0x7;
}
else if ((looking_for & MODE) == KBIT)
{
switch (thisnib)
{
case 9:
cst[opnum] = 4;
break;
case 8:
cst[opnum] = 2;
break;
case 0:
cst[opnum] = 1;
break;
default:
goto fail;
}
}
else if ((looking_for & SIZE) == L_8)
{
if ((looking_for & MODE) == ABS)
{
/* Will be combined with contents of SBR_REGNUM
by fetch (). For all modes except h8sx, this
will always contain the value 0xFFFFFF00. */
cst[opnum] = data[len / 2] & 0xff;
}
else
{
cst[opnum] = data[len / 2] & 0xff;
}
}
else if ((looking_for & SIZE) == L_2)
{
cst[opnum] = thisnib & 3;
}
else if ((looking_for & SIZE) == L_3 ||
(looking_for & SIZE) == L_3NZ)
{
cst[opnum] = thisnib & 7;
if (cst[opnum] == 0 && (looking_for & SIZE) == L_3NZ)
goto fail;
}
else if ((looking_for & SIZE) == L_4)
{
cst[opnum] = thisnib & 15;
}
else if ((looking_for & SIZE) == L_5)
{
cst[opnum] = data[len / 2] & 0x1f;
}
else if (looking_for == E)
{
#ifdef ADEBUG
dst->op = q;
#endif
/* Fill in the args. */
{
op_type *args = q->args.nib;
int hadone = 0;
int nargs;
for (nargs = 0;
nargs < 3 && *args != E;
nargs++)
{
int x = *args;
ea_type *p;
opnum = ((x & OP3) ? 2 :
(x & DST) ? 1 : 0);
if (x & DST)
p = &dst->dst;
else if (x & OP3)
p = &dst->op3;
else
p = &dst->src;
if ((x & MODE) == IMM ||
(x & MODE) == KBIT ||
(x & MODE) == DBIT)
{
/* Use the instruction to determine
the operand size. */
p->type = X (OP_IMM, OP_SIZE (q->how));
p->literal = cst[opnum];
}
else if ((x & MODE) == CONST_2 ||
(x & MODE) == CONST_4 ||
(x & MODE) == CONST_8 ||
(x & MODE) == CONST_16)
{
/* Use the instruction to determine
the operand size. */
p->type = X (OP_IMM, OP_SIZE (q->how));
switch (x & MODE) {
case CONST_2: p->literal = 2; break;
case CONST_4: p->literal = 4; break;
case CONST_8: p->literal = 8; break;
case CONST_16: p->literal = 16; break;
}
}
else if ((x & MODE) == REG)
{
p->type = X (OP_REG, bitfrom (x));
p->reg = reg[opnum];
}
else if ((x & MODE) == LOWREG)
{
p->type = X (OP_LOWREG, bitfrom (x));
p->reg = reg[opnum];
}
else if ((x & MODE) == PREINC)
{
/* Use the instruction to determine
the operand size. */
p->type = X (OP_PREINC, OP_SIZE (q->how));
p->reg = reg[opnum] & 0x7;
}
else if ((x & MODE) == POSTINC)
{
/* Use the instruction to determine
the operand size. */
p->type = X (OP_POSTINC, OP_SIZE (q->how));
p->reg = reg[opnum] & 0x7;
}
else if ((x & MODE) == PREDEC)
{
/* Use the instruction to determine
the operand size. */
p->type = X (OP_PREDEC, OP_SIZE (q->how));
p->reg = reg[opnum] & 0x7;
}
else if ((x & MODE) == POSTDEC)
{
/* Use the instruction to determine
the operand size. */
p->type = X (OP_POSTDEC, OP_SIZE (q->how));
p->reg = reg[opnum] & 0x7;
}
else if ((x & MODE) == IND)
{
/* Note: an indirect is transformed into
a displacement of zero.
*/
/* Use the instruction to determine
the operand size. */
p->type = X (OP_DISP, OP_SIZE (q->how));
p->reg = reg[opnum] & 0x7;
p->literal = 0;
if (OP_KIND (q->how) == O_JSR ||
OP_KIND (q->how) == O_JMP)
if (lvalue (sd, p->type, p->reg, &p->type))
goto end;
}
else if ((x & MODE) == ABS)
{
/* Note: a 16 or 32 bit ABS is transformed into a
displacement from pseudo-register ZERO_REGNUM,
which is always zero. An 8 bit ABS becomes
a displacement from SBR_REGNUM.
*/
/* Use the instruction to determine
the operand size. */
p->type = X (OP_DISP, OP_SIZE (q->how));
p->literal = cst[opnum];
/* 8-bit ABS is displacement from SBR.
16 and 32-bit ABS are displacement from ZERO.
(SBR will always be zero except for h8/sx)
*/
if ((x & SIZE) == L_8)
p->reg = SBR_REGNUM;
else
p->reg = ZERO_REGNUM;;
}
else if ((x & MODE) == MEMIND ||
(x & MODE) == VECIND)
{
/* Size doesn't matter. */
p->type = X (OP_MEM, SB);
p->literal = cst[opnum];
if (OP_KIND (q->how) == O_JSR ||
OP_KIND (q->how) == O_JMP)
if (lvalue (sd, p->type, p->reg, &p->type))
goto end;
}
else if ((x & MODE) == PCREL)
{
/* Size doesn't matter. */
p->type = X (OP_PCREL, SB);
p->literal = cst[opnum];
}
else if (x & ABSJMP)
{
p->type = X (OP_IMM, SP);
p->literal = cst[opnum];
}
else if ((x & MODE) == INDEXB)
{
p->type = X (OP_INDEXB, OP_SIZE (q->how));
p->literal = cst[opnum];
p->reg = rdisp[opnum];
}
else if ((x & MODE) == INDEXW)
{
p->type = X (OP_INDEXW, OP_SIZE (q->how));
p->literal = cst[opnum];
p->reg = rdisp[opnum];
}
else if ((x & MODE) == INDEXL)
{
p->type = X (OP_INDEXL, OP_SIZE (q->how));
p->literal = cst[opnum];
p->reg = rdisp[opnum];
}
else if ((x & MODE) == DISP)
{
/* Yuck -- special for mova args. */
if (strncmp (q->name, "mova", 4) == 0 &&
(x & SIZE) == L_2)
{
/* Mova can have a DISP2 dest, with an
INDEXB or INDEXW src. The multiplier
for the displacement value is determined
by the src operand, not by the insn. */
switch (OP_KIND (dst->src.type))
{
case OP_INDEXB:
p->type = X (OP_DISP, SB);
p->literal = cst[opnum];
break;
case OP_INDEXW:
p->type = X (OP_DISP, SW);
p->literal = cst[opnum] * 2;
break;
default:
goto fail;
}
}
else
{
p->type = X (OP_DISP, OP_SIZE (q->how));
p->literal = cst[opnum];
/* DISP2 is special. */
if ((x & SIZE) == L_2)
switch (OP_SIZE (q->how))
{
case SB: break;
case SW: p->literal *= 2; break;
case SL: p->literal *= 4; break;
}
}
p->reg = rdisp[opnum];
}
else if (x & CTRL)
{
switch (reg[opnum])
{
case C_CCR:
p->type = X (OP_CCR, SB);
break;
case C_EXR:
p->type = X (OP_EXR, SB);
break;
case C_MACH:
p->type = X (OP_MACH, SL);
break;
case C_MACL:
p->type = X (OP_MACL, SL);
break;
case C_VBR:
p->type = X (OP_VBR, SL);
break;
case C_SBR:
p->type = X (OP_SBR, SL);
break;
}
}
else if ((x & MODE) == CCR)
{
p->type = OP_CCR;
}
else if ((x & MODE) == EXR)
{
p->type = OP_EXR;
}
else
printf ("Hmmmm 0x%x...\n", x);
args++;
}
}
/* Unary operators: treat src and dst as equivalent. */
if (dst->dst.type == -1)
dst->dst = dst->src;
if (dst->src.type == -1)
dst->src = dst->dst;
dst->opcode = q->how;
dst->cycles = q->time;
/* And jsr's to these locations are turned into
magic traps. */
if (OP_KIND (dst->opcode) == O_JSR)
{
switch (dst->src.literal)
{
case 0xc5:
dst->opcode = O (O_SYS_OPEN, SB);
break;
case 0xc6:
dst->opcode = O (O_SYS_READ, SB);
break;
case 0xc7:
dst->opcode = O (O_SYS_WRITE, SB);
break;
case 0xc8:
dst->opcode = O (O_SYS_LSEEK, SB);
break;
case 0xc9:
dst->opcode = O (O_SYS_CLOSE, SB);
break;
case 0xca:
dst->opcode = O (O_SYS_STAT, SB);
break;
case 0xcb:
dst->opcode = O (O_SYS_FSTAT, SB);
break;
case 0xcc:
dst->opcode = O (O_SYS_CMDLINE, SB);
break;
}
/* End of Processing for system calls. */
}
dst->next_pc = addr + len / 2;
return;
}
else
printf ("Don't understand 0x%x \n", looking_for);
}
len++;
nib++;
}
fail:
;
}
end:
/* Fell off the end. */
dst->opcode = O (O_ILL, SB);
}
static void
compile (SIM_DESC sd, int pc)
{
int idx;
/* Find the next cache entry to use. */
idx = h8_get_cache_top (sd) + 1;
h8_increment_compiles (sd);
if (idx >= sd->sim_cache_size)
{
idx = 1;
}
h8_set_cache_top (sd, idx);
/* Throw away its old meaning. */
h8_set_cache_idx (sd, sd->sim_cache[idx].oldpc, 0);
/* Set to new address. */
sd->sim_cache[idx].oldpc = pc;
/* Fill in instruction info. */
decode (sd, pc, h8_get_memory_buf (sd) + pc, sd->sim_cache + idx);
/* Point to new cache entry. */
h8_set_cache_idx (sd, pc, idx);
}
static unsigned char *breg[32];
static unsigned short *wreg[16];
static unsigned int *lreg[18];
#define GET_B_REG(X) *(breg[X])
#define SET_B_REG(X, Y) (*(breg[X])) = (Y)
#define GET_W_REG(X) *(wreg[X])
#define SET_W_REG(X, Y) (*(wreg[X])) = (Y)
#define GET_L_REG(X) h8_get_reg (sd, X)
#define SET_L_REG(X, Y) h8_set_reg (sd, X, Y)
#define GET_MEMORY_L(X) \
((X) < memory_size \
? ((h8_get_memory (sd, (X)+0) << 24) | (h8_get_memory (sd, (X)+1) << 16) \
| (h8_get_memory (sd, (X)+2) << 8) | (h8_get_memory (sd, (X)+3) << 0)) \
: ((h8_get_eightbit (sd, ((X)+0) & 0xff) << 24) \
| (h8_get_eightbit (sd, ((X)+1) & 0xff) << 16) \
| (h8_get_eightbit (sd, ((X)+2) & 0xff) << 8) \
| (h8_get_eightbit (sd, ((X)+3) & 0xff) << 0)))
#define GET_MEMORY_W(X) \
((X) < memory_size \
? ((h8_get_memory (sd, (X)+0) << 8) \
| (h8_get_memory (sd, (X)+1) << 0)) \
: ((h8_get_eightbit (sd, ((X)+0) & 0xff) << 8) \
| (h8_get_eightbit (sd, ((X)+1) & 0xff) << 0)))
#define GET_MEMORY_B(X) \
((X) < memory_size ? (h8_get_memory (sd, (X))) \
: (h8_get_eightbit (sd, (X) & 0xff)))
#define SET_MEMORY_L(X, Y) \
{ register unsigned char *_p; register int __y = (Y); \
_p = ((X) < memory_size ? h8_get_memory_buf (sd) + (X) : \
h8_get_eightbit_buf (sd) + ((X) & 0xff)); \
_p[0] = __y >> 24; _p[1] = __y >> 16; \
_p[2] = __y >> 8; _p[3] = __y >> 0; \
}
#define SET_MEMORY_W(X, Y) \
{ register unsigned char *_p; register int __y = (Y); \
_p = ((X) < memory_size ? h8_get_memory_buf (sd) + (X) : \
h8_get_eightbit_buf (sd) + ((X) & 0xff)); \
_p[0] = __y >> 8; _p[1] = __y; \
}
#define SET_MEMORY_B(X, Y) \
((X) < memory_size ? (h8_set_memory (sd, (X), (Y))) \
: (h8_set_eightbit (sd, (X) & 0xff, (Y))))
/* Simulate a memory fetch.
Return 0 for success, -1 for failure.
*/
static int
fetch_1 (SIM_DESC sd, ea_type *arg, int *val, int twice)
{
int rn = arg->reg;
int abs = arg->literal;
int r;
int t;
if (val == NULL)
return -1; /* Paranoia. */
switch (arg->type)
{
/* Indexed register plus displacement mode:
This new family of addressing modes are similar to OP_DISP
(register plus displacement), with two differences:
1) INDEXB uses only the least significant byte of the register,
INDEXW uses only the least significant word, and
INDEXL uses the entire register (just like OP_DISP).
and
2) The displacement value in abs is multiplied by two
for SW-sized operations, and by four for SL-size.
This gives nine possible variations.
*/
case X (OP_INDEXB, SB):
case X (OP_INDEXB, SW):
case X (OP_INDEXB, SL):
case X (OP_INDEXW, SB):
case X (OP_INDEXW, SW):
case X (OP_INDEXW, SL):
case X (OP_INDEXL, SB):
case X (OP_INDEXL, SW):
case X (OP_INDEXL, SL):
t = GET_L_REG (rn);
switch (OP_KIND (arg->type)) {
case OP_INDEXB: t &= 0xff; break;
case OP_INDEXW: t &= 0xffff; break;
case OP_INDEXL:
default: break;
}
switch (OP_SIZE (arg->type)) {
case SB:
*val = GET_MEMORY_B ((t * 1 + abs) & h8_get_mask (sd));
break;
case SW:
*val = GET_MEMORY_W ((t * 2 + abs) & h8_get_mask (sd));
break;
case SL:
*val = GET_MEMORY_L ((t * 4 + abs) & h8_get_mask (sd));
break;
}
break;
case X (OP_LOWREG, SB):
*val = GET_L_REG (rn) & 0xff;
break;
case X (OP_LOWREG, SW):
*val = GET_L_REG (rn) & 0xffff;
break;
case X (OP_REG, SB): /* Register direct, byte. */
*val = GET_B_REG (rn);
break;
case X (OP_REG, SW): /* Register direct, word. */
*val = GET_W_REG (rn);
break;
case X (OP_REG, SL): /* Register direct, long. */
*val = GET_L_REG (rn);
break;
case X (OP_IMM, SB): /* Immediate, byte. */
case X (OP_IMM, SW): /* Immediate, word. */
case X (OP_IMM, SL): /* Immediate, long. */
*val = abs;
break;
case X (OP_POSTINC, SB): /* Register indirect w/post-incr: byte. */
t = GET_L_REG (rn);
t &= h8_get_mask (sd);
r = GET_MEMORY_B (t);
if (!twice)
t += 1;
t = t & h8_get_mask (sd);
SET_L_REG (rn, t);
*val = r;
break;
case X (OP_POSTINC, SW): /* Register indirect w/post-incr: word. */
t = GET_L_REG (rn);
t &= h8_get_mask (sd);
r = GET_MEMORY_W (t);
if (!twice)
t += 2;
t = t & h8_get_mask (sd);
SET_L_REG (rn, t);
*val = r;
break;
case X (OP_POSTINC, SL): /* Register indirect w/post-incr: long. */
t = GET_L_REG (rn);
t &= h8_get_mask (sd);
r = GET_MEMORY_L (t);
if (!twice)
t += 4;
t = t & h8_get_mask (sd);
SET_L_REG (rn, t);
*val = r;
break;
case X (OP_POSTDEC, SB): /* Register indirect w/post-decr: byte. */
t = GET_L_REG (rn);
t &= h8_get_mask (sd);
r = GET_MEMORY_B (t);
if (!twice)
t -= 1;
t = t & h8_get_mask (sd);
SET_L_REG (rn, t);
*val = r;
break;
case X (OP_POSTDEC, SW): /* Register indirect w/post-decr: word. */
t = GET_L_REG (rn);
t &= h8_get_mask (sd);
r = GET_MEMORY_W (t);
if (!twice)
t -= 2;
t = t & h8_get_mask (sd);
SET_L_REG (rn, t);
*val = r;
break;
case X (OP_POSTDEC, SL): /* Register indirect w/post-decr: long. */
t = GET_L_REG (rn);
t &= h8_get_mask (sd);
r = GET_MEMORY_L (t);
if (!twice)
t -= 4;
t = t & h8_get_mask (sd);
SET_L_REG (rn, t);
*val = r;
break;
case X (OP_PREDEC, SB): /* Register indirect w/pre-decr: byte. */
t = GET_L_REG (rn) - 1;
t &= h8_get_mask (sd);
SET_L_REG (rn, t);
*val = GET_MEMORY_B (t);
break;
case X (OP_PREDEC, SW): /* Register indirect w/pre-decr: word. */
t = GET_L_REG (rn) - 2;
t &= h8_get_mask (sd);
SET_L_REG (rn, t);
*val = GET_MEMORY_W (t);
break;
case X (OP_PREDEC, SL): /* Register indirect w/pre-decr: long. */
t = GET_L_REG (rn) - 4;
t &= h8_get_mask (sd);
SET_L_REG (rn, t);
*val = GET_MEMORY_L (t);
break;
case X (OP_PREINC, SB): /* Register indirect w/pre-incr: byte. */
t = GET_L_REG (rn) + 1;
t &= h8_get_mask (sd);
SET_L_REG (rn, t);
*val = GET_MEMORY_B (t);
break;
case X (OP_PREINC, SW): /* Register indirect w/pre-incr: long. */
t = GET_L_REG (rn) + 2;
t &= h8_get_mask (sd);
SET_L_REG (rn, t);
*val = GET_MEMORY_W (t);
break;
case X (OP_PREINC, SL): /* Register indirect w/pre-incr: long. */
t = GET_L_REG (rn) + 4;
t &= h8_get_mask (sd);
SET_L_REG (rn, t);
*val = GET_MEMORY_L (t);
break;
case X (OP_DISP, SB): /* Register indirect w/displacement: byte. */
t = GET_L_REG (rn) + abs;
t &= h8_get_mask (sd);
*val = GET_MEMORY_B (t);
break;
case X (OP_DISP, SW): /* Register indirect w/displacement: word. */
t = GET_L_REG (rn) + abs;
t &= h8_get_mask (sd);
*val = GET_MEMORY_W (t);
break;
case X (OP_DISP, SL): /* Register indirect w/displacement: long. */
t = GET_L_REG (rn) + abs;
t &= h8_get_mask (sd);
*val =GET_MEMORY_L (t);
break;
case X (OP_MEM, SL): /* Absolute memory address, long. */
t = GET_MEMORY_L (abs);
t &= h8_get_mask (sd);
*val = t;
break;
case X (OP_MEM, SW): /* Absolute memory address, word. */
t = GET_MEMORY_W (abs);
t &= h8_get_mask (sd);
*val = t;
break;
case X (OP_PCREL, SB): /* PC relative (for jump, branch etc). */
case X (OP_PCREL, SW):
case X (OP_PCREL, SL):
case X (OP_PCREL, SN):
*val = abs;
break;
case X (OP_MEM, SB): /* Why isn't this implemented? */
default:
sim_engine_set_run_state (sd, sim_stopped, SIGSEGV);
return -1;
}
return 0; /* Success. */
}
/* Normal fetch. */
static int
fetch (SIM_DESC sd, ea_type *arg, int *val)
{
return fetch_1 (sd, arg, val, 0);
}
/* Fetch which will be followed by a store to the same location.
The difference being that we don't want to do a post-increment
or post-decrement at this time: we'll do it when we store. */
static int
fetch2 (SIM_DESC sd, ea_type *arg, int *val)
{
return fetch_1 (sd, arg, val, 1);
}
/* Simulate a memory store.
Return 0 for success, -1 for failure.
*/
static int
store_1 (SIM_DESC sd, ea_type *arg, int n, int twice)
{
int rn = arg->reg;
int abs = arg->literal;
int t;
switch (arg->type)
{
/* Indexed register plus displacement mode:
This new family of addressing modes are similar to OP_DISP
(register plus displacement), with two differences:
1) INDEXB uses only the least significant byte of the register,
INDEXW uses only the least significant word, and
INDEXL uses the entire register (just like OP_DISP).
and
2) The displacement value in abs is multiplied by two
for SW-sized operations, and by four for SL-size.
This gives nine possible variations.
*/
case X (OP_INDEXB, SB):
case X (OP_INDEXB, SW):
case X (OP_INDEXB, SL):
case X (OP_INDEXW, SB):
case X (OP_INDEXW, SW):
case X (OP_INDEXW, SL):
case X (OP_INDEXL, SB):
case X (OP_INDEXL, SW):
case X (OP_INDEXL, SL):
t = GET_L_REG (rn);
switch (OP_KIND (arg->type)) {
case OP_INDEXB: t &= 0xff; break;
case OP_INDEXW: t &= 0xffff; break;
case OP_INDEXL:
default: break;
}
switch (OP_SIZE (arg->type)) {
case SB:
SET_MEMORY_B ((t * 1 + abs) & h8_get_mask (sd), n);
break;
case SW:
SET_MEMORY_W ((t * 2 + abs) & h8_get_mask (sd), n);
break;
case SL:
SET_MEMORY_L ((t * 4 + abs) & h8_get_mask (sd), n);
break;
}
break;
case X (OP_REG, SB): /* Register direct, byte. */
SET_B_REG (rn, n);
break;
case X (OP_REG, SW): /* Register direct, word. */
SET_W_REG (rn, n);
break;
case X (OP_REG, SL): /* Register direct, long. */
SET_L_REG (rn, n);
break;
case X (OP_PREDEC, SB): /* Register indirect w/pre-decr, byte. */
t = GET_L_REG (rn);
if (!twice)
t -= 1;
t &= h8_get_mask (sd);
SET_L_REG (rn, t);
SET_MEMORY_B (t, n);
break;
case X (OP_PREDEC, SW): /* Register indirect w/pre-decr, word. */
t = GET_L_REG (rn);
if (!twice)
t -= 2;
t &= h8_get_mask (sd);
SET_L_REG (rn, t);
SET_MEMORY_W (t, n);
break;
case X (OP_PREDEC, SL): /* Register indirect w/pre-decr, long. */
t = GET_L_REG (rn);
if (!twice)
t -= 4;
t &= h8_get_mask (sd);
SET_L_REG (rn, t);
SET_MEMORY_L (t, n);
break;
case X (OP_PREINC, SB): /* Register indirect w/pre-incr, byte. */
t = GET_L_REG (rn);
if (!twice)
t += 1;
t &= h8_get_mask (sd);
SET_L_REG (rn, t);
SET_MEMORY_B (t, n);
break;
case X (OP_PREINC, SW): /* Register indirect w/pre-incr, word. */
t = GET_L_REG (rn);
if (!twice)
t += 2;
t &= h8_get_mask (sd);
SET_L_REG (rn, t);
SET_MEMORY_W (t, n);
break;
case X (OP_PREINC, SL): /* Register indirect w/pre-incr, long. */
t = GET_L_REG (rn);
if (!twice)
t += 4;
t &= h8_get_mask (sd);
SET_L_REG (rn, t);
SET_MEMORY_L (t, n);
break;
case X (OP_POSTDEC, SB): /* Register indirect w/post-decr, byte. */
t = GET_L_REG (rn) & h8_get_mask (sd);
SET_MEMORY_B (t, n);
SET_L_REG (rn, t - 1);
break;
case X (OP_POSTDEC, SW): /* Register indirect w/post-decr, word. */
t = GET_L_REG (rn) & h8_get_mask (sd);
SET_MEMORY_W (t, n);
SET_L_REG (rn, t - 2);
break;
case X (OP_POSTDEC, SL): /* Register indirect w/post-decr, long. */
t = GET_L_REG (rn) & h8_get_mask (sd);
SET_MEMORY_L (t, n);
SET_L_REG (rn, t - 4);
break;
case X (OP_POSTINC, SB): /* Register indirect w/post-incr, byte. */
t = GET_L_REG (rn) & h8_get_mask (sd);
SET_MEMORY_B (t, n);
SET_L_REG (rn, t + 1);
break;
case X (OP_POSTINC, SW): /* Register indirect w/post-incr, word. */
t = GET_L_REG (rn) & h8_get_mask (sd);
SET_MEMORY_W (t, n);
SET_L_REG (rn, t + 2);
break;
case X (OP_POSTINC, SL): /* Register indirect w/post-incr, long. */
t = GET_L_REG (rn) & h8_get_mask (sd);
SET_MEMORY_L (t, n);
SET_L_REG (rn, t + 4);
break;
case X (OP_DISP, SB): /* Register indirect w/displacement, byte. */
t = GET_L_REG (rn) + abs;
t &= h8_get_mask (sd);
SET_MEMORY_B (t, n);
break;
case X (OP_DISP, SW): /* Register indirect w/displacement, word. */
t = GET_L_REG (rn) + abs;
t &= h8_get_mask (sd);
SET_MEMORY_W (t, n);
break;
case X (OP_DISP, SL): /* Register indirect w/displacement, long. */
t = GET_L_REG (rn) + abs;
t &= h8_get_mask (sd);
SET_MEMORY_L (t, n);
break;
case X (OP_MEM, SB): /* Why isn't this implemented? */
case X (OP_MEM, SW): /* Why isn't this implemented? */
case X (OP_MEM, SL): /* Why isn't this implemented? */
default:
sim_engine_set_run_state (sd, sim_stopped, SIGSEGV);
return -1;
}
return 0;
}
/* Normal store. */
static int
store (SIM_DESC sd, ea_type *arg, int n)
{
return store_1 (sd, arg, n, 0);
}
/* Store which follows a fetch from the same location.
The difference being that we don't want to do a pre-increment
or pre-decrement at this time: it was already done when we fetched. */
static int
store2 (SIM_DESC sd, ea_type *arg, int n)
{
return store_1 (sd, arg, n, 1);
}
static union
{
short int i;
struct
{
char low;
char high;
}
u;
} littleendian;
/* Flag to be set whenever a new SIM_DESC object is created. */
static int init_pointers_needed = 1;
static void
init_pointers (SIM_DESC sd)
{
if (init_pointers_needed)
{
int i;
littleendian.i = 1;
if (h8300smode && !h8300_normal_mode)
memory_size = H8300S_MSIZE;
else if (h8300hmode && !h8300_normal_mode)
memory_size = H8300H_MSIZE;
else
memory_size = H8300_MSIZE;
/* `msize' must be a power of two. */
if ((memory_size & (memory_size - 1)) != 0)
{
(*sim_callback->printf_filtered)
(sim_callback,
"init_pointers: bad memory size %d, defaulting to %d.\n",
memory_size, memory_size = H8300S_MSIZE);
}
if (h8_get_memory_buf (sd))
free (h8_get_memory_buf (sd));
if (h8_get_cache_idx_buf (sd))
free (h8_get_cache_idx_buf (sd));
if (h8_get_eightbit_buf (sd))
free (h8_get_eightbit_buf (sd));
h8_set_memory_buf (sd, (unsigned char *)
calloc (sizeof (char), memory_size));
h8_set_cache_idx_buf (sd, (unsigned short *)
calloc (sizeof (short), memory_size));
sd->memory_size = memory_size;
h8_set_eightbit_buf (sd, (unsigned char *) calloc (sizeof (char), 256));
h8_set_mask (sd, memory_size - 1);
memset (h8_get_reg_buf (sd), 0, sizeof (((STATE_CPU (sd, 0))->regs)));
for (i = 0; i < 8; i++)
{
/* FIXME: rewrite using local buffer. */
unsigned char *p = (unsigned char *) (h8_get_reg_buf (sd) + i);
unsigned char *e = (unsigned char *) (h8_get_reg_buf (sd) + i + 1);
unsigned short *q = (unsigned short *) (h8_get_reg_buf (sd) + i);
unsigned short *u = (unsigned short *) (h8_get_reg_buf (sd) + i + 1);
h8_set_reg (sd, i, 0x00112233);
while (p < e)
{
if (*p == 0x22)
breg[i] = p;
if (*p == 0x33)
breg[i + 8] = p;
if (*p == 0x11)
breg[i + 16] = p;
if (*p == 0x00)
breg[i + 24] = p;
p++;
}
wreg[i] = wreg[i + 8] = 0;
while (q < u)
{
if (*q == 0x2233)
{
wreg[i] = q;
}
if (*q == 0x0011)
{
wreg[i + 8] = q;
}
q++;
}
if (wreg[i] == 0 || wreg[i + 8] == 0)
(*sim_callback->printf_filtered) (sim_callback,
"init_pointers: internal error.\n");
h8_set_reg (sd, i, 0);
lreg[i] = h8_get_reg_buf (sd) + i;
}
/* Note: sim uses pseudo-register ZERO as a zero register. */
lreg[ZERO_REGNUM] = h8_get_reg_buf (sd) + ZERO_REGNUM;
init_pointers_needed = 0;
/* Initialize the seg registers. */
if (!sd->sim_cache)
set_simcache_size (sd, CSIZE);
}
}
/* Grotty global variable for use by control_c signal handler. */
static SIM_DESC control_c_sim_desc;
static void
control_c (int sig)
{
sim_engine_set_run_state (control_c_sim_desc, sim_stopped, SIGINT);
}
int
sim_stop (SIM_DESC sd)
{
/* FIXME: use a real signal value. */
sim_engine_set_run_state (sd, sim_stopped, SIGINT);
return 1;
}
#define OBITOP(name, f, s, op) \
case O (name, SB): \
{ \
int m, tmp; \
\
if (f) \
if (fetch (sd, &code->dst, &ea)) \
goto end; \
if (fetch (sd, &code->src, &tmp)) \
goto end; \
m = 1 << tmp; \
op; \
if (s) \
if (store (sd, &code->dst,ea)) \
goto end; \
goto next; \
}
void
sim_resume (SIM_DESC sd, int step, int siggnal)
{
static int init1;
int cycles = 0;
int insts = 0;
int tick_start = get_now ();
void (*prev) ();
int poll_count = 0;
int res;
int tmp;
int rd;
int ea;
int bit;
int pc;
int c, nz, v, n, u, h, ui, intMaskBit;
int trace, intMask;
int oldmask;
enum sim_stop reason;
int sigrc;
init_pointers (sd);
control_c_sim_desc = sd;
prev = signal (SIGINT, control_c);
if (step)
{
sim_engine_set_run_state (sd, sim_stopped, SIGTRAP);
}
else
{
sim_engine_set_run_state (sd, sim_running, 0);
}
pc = h8_get_pc (sd);
/* The PC should never be odd. */
if (pc & 0x1)
{
sim_engine_set_run_state (sd, sim_stopped, SIGBUS);
return;
}
/* Get Status Register (flags). */
GETSR (sd);
if (h8300smode) /* Get exr. */
{
trace = (h8_get_exr (sd) >> 7) & 1;
intMask = h8_get_exr (sd) & 7;
}
oldmask = h8_get_mask (sd);
if (!h8300hmode || h8300_normal_mode)
h8_set_mask (sd, 0xffff);
do
{
unsigned short cidx;
decoded_inst *code;
top:
cidx = h8_get_cache_idx (sd, pc);
if (cidx == (unsigned short) -1 ||
cidx >= sd->sim_cache_size)
goto illegal;
code = sd->sim_cache + cidx;
#if ADEBUG
if (debug)
{
printf ("%x %d %s\n", pc, code->opcode,
code->op ? code->op->name : "**");
}
h8_increment_stats (sd, code->opcode);
#endif
if (code->opcode)
{
cycles += code->cycles;
insts++;
}
switch (code->opcode)
{
case 0:
/*
* This opcode is a fake for when we get to an
* instruction which hasnt been compiled
*/
compile (sd, pc);
goto top;
break;
case O (O_MOVAB, SL):
case O (O_MOVAW, SL):
case O (O_MOVAL, SL):
/* 1) Evaluate 2nd argument (dst).
2) Mask / zero extend according to whether 1st argument (src)
is INDEXB, INDEXW, or INDEXL.
3) Left-shift the result by 0, 1 or 2, according to size of mova
(mova/b, mova/w, mova/l).
4) Add literal value of 1st argument (src).
5) Store result in 3rd argument (op3).
*/
/* Alas, since this is the only instruction with 3 arguments,
decode doesn't handle them very well. Some fix-up is required.
a) The size of dst is determined by whether src is
INDEXB or INDEXW. */
if (OP_KIND (code->src.type) == OP_INDEXB)
code->dst.type = X (OP_KIND (code->dst.type), SB);
else if (OP_KIND (code->src.type) == OP_INDEXW)
code->dst.type = X (OP_KIND (code->dst.type), SW);
/* b) If op3 == null, then this is the short form of the insn.
Dst is the dispreg of src, and op3 is the 32-bit form
of the same register.
*/
if (code->op3.type == 0)
{
/* Short form: src == INDEXB/INDEXW, dst == op3 == 0.
We get to compose dst and op3 as follows:
op3 is a 32-bit register, ID == src.reg.
dst is the same register, but 8 or 16 bits
depending on whether src is INDEXB or INDEXW.
*/
code->op3.type = X (OP_REG, SL);
code->op3.reg = code->src.reg;
code->op3.literal = 0;
if (OP_KIND (code->src.type) == OP_INDEXB)
{
code->dst.type = X (OP_REG, SB);
code->dst.reg = code->op3.reg + 8;
}
else
code->dst.type = X (OP_REG, SW);
}
if (fetch (sd, &code->dst, &ea))
goto end;
switch (OP_KIND (code->src.type)) {
case OP_INDEXB: ea = ea & 0xff; break;
case OP_INDEXW: ea = ea & 0xffff; break;
case OP_INDEXL: break;
default: goto illegal;
}
switch (code->opcode) {
case O (O_MOVAB, SL): break;
case O (O_MOVAW, SL): ea = ea << 1; break;
case O (O_MOVAL, SL): ea = ea << 2; break;
default: goto illegal;
}
ea = ea + code->src.literal;
if (store (sd, &code->op3, ea))
goto end;
goto next;
case O (O_SUBX, SB): /* subx, extended sub */
if (fetch2 (sd, &code->dst, &rd))
goto end;
if (fetch (sd, &code->src, &ea))
goto end;
ea = -(ea + C);
res = rd + ea;
goto alu8;
case O (O_SUBX, SW): /* subx, extended sub */
if (fetch2 (sd, &code->dst, &rd))
goto end;
if (fetch (sd, &code->src, &ea))
goto end;
ea = -(ea + C);
res = rd + ea;
goto alu16;
case O (O_SUBX, SL): /* subx, extended sub */
if (fetch2 (sd, &code->dst, &rd))
goto end;
if (fetch (sd, &code->src, &ea))
goto end;
ea = -(ea + C);
res = rd + ea;
goto alu32;
case O (O_ADDX, SB): /* addx, extended add */
if (fetch2 (sd, &code->dst, &rd))
goto end;
if (fetch (sd, &code->src, &ea))
goto end;
ea = ea + C;
res = rd + ea;
goto alu8;
case O (O_ADDX, SW): /* addx, extended add */
if (fetch2 (sd, &code->dst, &rd))
goto end;
if (fetch (sd, &code->src, &ea))
goto end;
ea = ea + C;
res = rd + ea;
goto alu16;
case O (O_ADDX, SL): /* addx, extended add */
if (fetch2 (sd, &code->dst, &rd))
goto end;
if (fetch (sd, &code->src, &ea))
goto end;
ea = ea + C;
res = rd + ea;
goto alu32;
case O (O_SUB, SB): /* sub.b */
/* Fetch rd and ea. */
if (fetch (sd, &code->src, &ea) || fetch2 (sd, &code->dst, &rd))
goto end;
ea = -ea;
res = rd + ea;
goto alu8;
case O (O_SUB, SW): /* sub.w */
/* Fetch rd and ea. */
if (fetch (sd, &code->src, &ea) || fetch2 (sd, &code->dst, &rd))
goto end;
ea = -ea;
res = rd + ea;
goto alu16;
case O (O_SUB, SL): /* sub.l */
/* Fetch rd and ea. */
if (fetch (sd, &code->src, &ea) || fetch2 (sd, &code->dst, &rd))
goto end;
ea = -ea;
res = rd + ea;
goto alu32;
case O (O_NEG, SB): /* neg.b */
/* Fetch ea. */
if (fetch2 (sd, &code->src, &ea))
goto end;
ea = -ea;
rd = 0;
res = rd + ea;
goto alu8;
case O (O_NEG, SW): /* neg.w */
/* Fetch ea. */
if (fetch2 (sd, &code->src, &ea))
goto end;
ea = -ea;
rd = 0;
res = rd + ea;
goto alu16;
case O (O_NEG, SL): /* neg.l */
/* Fetch ea. */
if (fetch2 (sd, &code->src, &ea))
goto end;
ea = -ea;
rd = 0;
res = rd + ea;
goto alu32;
case O (O_ADD, SB): /* add.b */
if (fetch2 (sd, &code->dst, &rd))
goto end;
if (fetch (sd, &code->src, &ea))
goto end;
res = rd + ea;
goto alu8;
case O (O_ADD, SW): /* add.w */
if (fetch2 (sd, &code->dst, &rd))
goto end;
if (fetch (sd, &code->src, &ea))
goto end;
res = rd + ea;
goto alu16;
case O (O_ADD, SL): /* add.l */
if (fetch2 (sd, &code->dst, &rd))
goto end;
if (fetch (sd, &code->src, &ea))
goto end;
res = rd + ea;
goto alu32;
case O (O_AND, SB): /* and.b */
/* Fetch rd and ea. */
if (fetch (sd, &code->src, &ea) || fetch2 (sd, &code->dst, &rd))
goto end;
res = rd & ea;
goto log8;
case O (O_AND, SW): /* and.w */
/* Fetch rd and ea. */
if (fetch (sd, &code->src, &ea) || fetch2 (sd, &code->dst, &rd))
goto end;
res = rd & ea;
goto log16;
case O (O_AND, SL): /* and.l */
/* Fetch rd and ea. */
if (fetch (sd, &code->src, &ea) || fetch2 (sd, &code->dst, &rd))
goto end;
res = rd & ea;
goto log32;
case O (O_OR, SB): /* or.b */
/* Fetch rd and ea. */
if (fetch (sd, &code->src, &ea) || fetch2 (sd, &code->dst, &rd))
goto end;
res = rd | ea;
goto log8;
case O (O_OR, SW): /* or.w */
/* Fetch rd and ea. */
if (fetch (sd, &code->src, &ea) || fetch2 (sd, &code->dst, &rd))
goto end;
res = rd | ea;
goto log16;
case O (O_OR, SL): /* or.l */
/* Fetch rd and ea. */
if (fetch (sd, &code->src, &ea) || fetch2 (sd, &code->dst, &rd))
goto end;
res = rd | ea;
goto log32;
case O (O_XOR, SB): /* xor.b */
/* Fetch rd and ea. */
if (fetch (sd, &code->src, &ea) || fetch2 (sd, &code->dst, &rd))
goto end;
res = rd ^ ea;
goto log8;
case O (O_XOR, SW): /* xor.w */
/* Fetch rd and ea. */
if (fetch (sd, &code->src, &ea) || fetch2 (sd, &code->dst, &rd))
goto end;
res = rd ^ ea;
goto log16;
case O (O_XOR, SL): /* xor.l */
/* Fetch rd and ea. */
if (fetch (sd, &code->src, &ea) || fetch2 (sd, &code->dst, &rd))
goto end;
res = rd ^ ea;
goto log32;
case O (O_MOV, SB):
if (fetch (sd, &code->src, &res))
goto end;
if (store (sd, &code->dst, res))
goto end;
goto just_flags_log8;
case O (O_MOV, SW):
if (fetch (sd, &code->src, &res))
goto end;
if (store (sd, &code->dst, res))
goto end;
goto just_flags_log16;
case O (O_MOV, SL):
if (fetch (sd, &code->src, &res))
goto end;
if (store (sd, &code->dst, res))
goto end;
goto just_flags_log32;
case O (O_MOVMD, SB): /* movmd.b */
ea = GET_W_REG (4);
if (ea == 0)
ea = 0x10000;
while (ea--)
{
rd = GET_MEMORY_B (GET_L_REG (5));
SET_MEMORY_B (GET_L_REG (6), rd);
SET_L_REG (5, GET_L_REG (5) + 1);
SET_L_REG (6, GET_L_REG (6) + 1);
SET_W_REG (4, ea);
}
goto next;
case O (O_MOVMD, SW): /* movmd.w */
ea = GET_W_REG (4);
if (ea == 0)
ea = 0x10000;
while (ea--)
{
rd = GET_MEMORY_W (GET_L_REG (5));
SET_MEMORY_W (GET_L_REG (6), rd);
SET_L_REG (5, GET_L_REG (5) + 2);
SET_L_REG (6, GET_L_REG (6) + 2);
SET_W_REG (4, ea);
}
goto next;
case O (O_MOVMD, SL): /* movmd.l */
ea = GET_W_REG (4);
if (ea == 0)
ea = 0x10000;
while (ea--)
{
rd = GET_MEMORY_L (GET_L_REG (5));
SET_MEMORY_L (GET_L_REG (6), rd);
SET_L_REG (5, GET_L_REG (5) + 4);
SET_L_REG (6, GET_L_REG (6) + 4);
SET_W_REG (4, ea);
}
goto next;
case O (O_MOVSD, SB): /* movsd.b */
/* This instruction implements strncpy, with a conditional branch.
r4 contains n, r5 contains src, and r6 contains dst.
The 16-bit displacement operand is added to the pc
if and only if the end of string is reached before
n bytes are transferred. */
ea = GET_L_REG (4) & 0xffff;
if (ea == 0)
ea = 0x10000;
while (ea--)
{
rd = GET_MEMORY_B (GET_L_REG (5));
SET_MEMORY_B (GET_L_REG (6), rd);
SET_L_REG (5, GET_L_REG (5) + 1);
SET_L_REG (6, GET_L_REG (6) + 1);
SET_W_REG (4, ea);
if (rd == 0)
goto condtrue;
}
goto next;
case O (O_EEPMOV, SB): /* eepmov.b */
case O (O_EEPMOV, SW): /* eepmov.w */
if (h8300hmode || h8300smode)
{
register unsigned char *_src, *_dst;
unsigned int count = ((code->opcode == O (O_EEPMOV, SW))
? h8_get_reg (sd, R4_REGNUM) & 0xffff
: h8_get_reg (sd, R4_REGNUM) & 0xff);
_src = (h8_get_reg (sd, R5_REGNUM) < memory_size
? h8_get_memory_buf (sd) + h8_get_reg (sd, R5_REGNUM)
: h8_get_eightbit_buf (sd) +
(h8_get_reg (sd, R5_REGNUM) & 0xff));
if ((_src + count) >= (h8_get_memory_buf (sd) + memory_size))
{
if ((_src + count) >= (h8_get_eightbit_buf (sd) + 0x100))
goto illegal;
}
_dst = (h8_get_reg (sd, R6_REGNUM) < memory_size
? h8_get_memory_buf (sd) + h8_get_reg (sd, R6_REGNUM)
: h8_get_eightbit_buf (sd) +
(h8_get_reg (sd, R6_REGNUM) & 0xff));
if ((_dst + count) >= (h8_get_memory_buf (sd) + memory_size))
{
if ((_dst + count) >= (h8_get_eightbit_buf (sd) + 0x100))
goto illegal;
}
memcpy (_dst, _src, count);
h8_set_reg (sd, R5_REGNUM, h8_get_reg (sd, R5_REGNUM) + count);
h8_set_reg (sd, R6_REGNUM, h8_get_reg (sd, R6_REGNUM) + count);
h8_set_reg (sd, R4_REGNUM, h8_get_reg (sd, R4_REGNUM) &
((code->opcode == O (O_EEPMOV, SW))
? (~0xffff) : (~0xff)));
cycles += 2 * count;
goto next;
}
goto illegal;
case O (O_ADDS, SL): /* adds (.l) */
/* FIXME fetch.
* This insn only uses register operands, but still
* it would be cleaner to use fetch and store... */
SET_L_REG (code->dst.reg,
GET_L_REG (code->dst.reg)
+ code->src.literal);
goto next;
case O (O_SUBS, SL): /* subs (.l) */
/* FIXME fetch.
* This insn only uses register operands, but still
* it would be cleaner to use fetch and store... */
SET_L_REG (code->dst.reg,
GET_L_REG (code->dst.reg)
- code->src.literal);
goto next;
case O (O_CMP, SB): /* cmp.b */
if (fetch (sd, &code->dst, &rd))
goto end;
if (fetch (sd, &code->src, &ea))
goto end;
ea = -ea;
res = rd + ea;
goto just_flags_alu8;
case O (O_CMP, SW): /* cmp.w */
if (fetch (sd, &code->dst, &rd))
goto end;
if (fetch (sd, &code->src, &ea))
goto end;
ea = -ea;
res = rd + ea;
goto just_flags_alu16;
case O (O_CMP, SL): /* cmp.l */
if (fetch (sd, &code->dst, &rd))
goto end;
if (fetch (sd, &code->src, &ea))
goto end;
ea = -ea;
res = rd + ea;
goto just_flags_alu32;
case O (O_DEC, SB): /* dec.b */
/* FIXME fetch.
* This insn only uses register operands, but still
* it would be cleaner to use fetch and store... */
rd = GET_B_REG (code->src.reg);
ea = -1;
res = rd + ea;
SET_B_REG (code->src.reg, res);
goto just_flags_inc8;
case O (O_DEC, SW): /* dec.w */
/* FIXME fetch.
* This insn only uses register operands, but still
* it would be cleaner to use fetch and store... */
rd = GET_W_REG (code->dst.reg);
ea = -code->src.literal;
res = rd + ea;
SET_W_REG (code->dst.reg, res);
goto just_flags_inc16;
case O (O_DEC, SL): /* dec.l */
/* FIXME fetch.
* This insn only uses register operands, but still
* it would be cleaner to use fetch and store... */
rd = GET_L_REG (code->dst.reg);
ea = -code->src.literal;
res = rd + ea;
SET_L_REG (code->dst.reg, res);
goto just_flags_inc32;
case O (O_INC, SB): /* inc.b */
/* FIXME fetch.
* This insn only uses register operands, but still
* it would be cleaner to use fetch and store... */
rd = GET_B_REG (code->src.reg);
ea = 1;
res = rd + ea;
SET_B_REG (code->src.reg, res);
goto just_flags_inc8;
case O (O_INC, SW): /* inc.w */
/* FIXME fetch.
* This insn only uses register operands, but still
* it would be cleaner to use fetch and store... */
rd = GET_W_REG (code->dst.reg);
ea = code->src.literal;
res = rd + ea;
SET_W_REG (code->dst.reg, res);
goto just_flags_inc16;
case O (O_INC, SL): /* inc.l */
/* FIXME fetch.
* This insn only uses register operands, but still
* it would be cleaner to use fetch and store... */
rd = GET_L_REG (code->dst.reg);
ea = code->src.literal;
res = rd + ea;
SET_L_REG (code->dst.reg, res);
goto just_flags_inc32;
case O (O_LDC, SB): /* ldc.b */
if (fetch (sd, &code->src, &res))
goto end;
goto setc;
case O (O_LDC, SW): /* ldc.w */
if (fetch (sd, &code->src, &res))
goto end;
/* Word operand, value from MSB, must be shifted. */
res >>= 8;
goto setc;
case O (O_LDC, SL): /* ldc.l */
if (fetch (sd, &code->src, &res))
goto end;
switch (code->dst.type) {
case X (OP_SBR, SL):
h8_set_sbr (sd, res);
break;
case X (OP_VBR, SL):
h8_set_vbr (sd, res);
break;
default:
goto illegal;
}
goto next;
case O (O_STC, SW): /* stc.w */
case O (O_STC, SB): /* stc.b */
if (code->src.type == X (OP_CCR, SB))
{
BUILDSR (sd);
res = h8_get_ccr (sd);
}
else if (code->src.type == X (OP_EXR, SB) && h8300smode)
{
if (h8300smode)
h8_set_exr (sd, (trace << 7) | intMask);
res = h8_get_exr (sd);
}
else
goto illegal;
/* Word operand, value to MSB, must be shifted. */
if (code->opcode == X (O_STC, SW))
res <<= 8;
if (store (sd, &code->dst, res))
goto end;
goto next;
case O (O_STC, SL): /* stc.l */
switch (code->src.type) {
case X (OP_SBR, SL):
res = h8_get_sbr (sd);
break;
case X (OP_VBR, SL):
res = h8_get_vbr (sd);
break;
default:
goto illegal;
}
if (store (sd, &code->dst, res))
goto end;
goto next;
case O (O_ANDC, SB): /* andc.b */
if (code->dst.type == X (OP_CCR, SB))
{
BUILDSR (sd);
rd = h8_get_ccr (sd);
}
else if (code->dst.type == X (OP_EXR, SB) && h8300smode)
{
if (h8300smode)
h8_set_exr (sd, (trace << 7) | intMask);
rd = h8_get_exr (sd);
}
else
goto illegal;
ea = code->src.literal;
res = rd & ea;
goto setc;
case O (O_ORC, SB): /* orc.b */
if (code->dst.type == X (OP_CCR, SB))
{
BUILDSR (sd);
rd = h8_get_ccr (sd);
}
else if (code->dst.type == X (OP_EXR, SB) && h8300smode)
{
if (h8300smode)
h8_set_exr (sd, (trace << 7) | intMask);
rd = h8_get_exr (sd);
}
else
goto illegal;
ea = code->src.literal;
res = rd | ea;
goto setc;
case O (O_XORC, SB): /* xorc.b */
if (code->dst.type == X (OP_CCR, SB))
{
BUILDSR (sd);
rd = h8_get_ccr (sd);
}
else if (code->dst.type == X (OP_EXR, SB) && h8300smode)
{
if (h8300smode)
h8_set_exr (sd, (trace << 7) | intMask);
rd = h8_get_exr (sd);
}
else
goto illegal;
ea = code->src.literal;
res = rd ^ ea;
goto setc;
case O (O_BRAS, SB): /* bra/s */
/* This is basically an ordinary branch, with a delay slot. */
if (fetch (sd, &code->src, &res))
goto end;
if ((res & 1) == 0)
goto illegal;
res -= 1;
/* Execution continues at next instruction, but
delayed_branch is set up for next cycle. */
h8_set_delayed_branch (sd, code->next_pc + res);
pc = code->next_pc;
goto end;
case O (O_BRAB, SB): /* bra rd.b */
case O (O_BRAW, SW): /* bra rd.w */
case O (O_BRAL, SL): /* bra erd.l */
if (fetch (sd, &code->src, &rd))
goto end;
switch (OP_SIZE (code->opcode)) {
case SB: rd &= 0xff; break;
case SW: rd &= 0xffff; break;
case SL: rd &= 0xffffffff; break;
}
pc = code->next_pc + rd;
goto end;
case O (O_BRABC, SB): /* bra/bc, branch if bit clear */
case O (O_BRABS, SB): /* bra/bs, branch if bit set */
case O (O_BSRBC, SB): /* bsr/bc, call if bit clear */
case O (O_BSRBS, SB): /* bsr/bs, call if bit set */
if (fetch (sd, &code->dst, &rd) ||
fetch (sd, &code->src, &bit))
goto end;
if (code->opcode == O (O_BRABC, SB) || /* branch if clear */
code->opcode == O (O_BSRBC, SB)) /* call if clear */
{
if ((rd & (1 << bit))) /* no branch */
goto next;
}
else /* branch/call if set */
{
if (!(rd & (1 << bit))) /* no branch */
goto next;
}
if (fetch (sd, &code->op3, &res)) /* branch */
goto end;
pc = code->next_pc + res;
if (code->opcode == O (O_BRABC, SB) ||
code->opcode == O (O_BRABS, SB)) /* branch */
goto end;
else /* call */
goto call;
case O (O_BRA, SN):
case O (O_BRA, SL):
case O (O_BRA, SW):
case O (O_BRA, SB): /* bra, branch always */
if (1)
goto condtrue;
goto next;
case O (O_BRN, SB): /* brn, ;-/ branch never? */
if (0)
goto condtrue;
goto next;
case O (O_BHI, SB): /* bhi */
if ((C || Z) == 0)
goto condtrue;
goto next;
case O (O_BLS, SB): /* bls */
if ((C || Z))
goto condtrue;
goto next;
case O (O_BCS, SB): /* bcs, branch if carry set */
if ((C == 1))
goto condtrue;
goto next;
case O (O_BCC, SB): /* bcc, branch if carry clear */
if ((C == 0))
goto condtrue;
goto next;
case O (O_BEQ, SB): /* beq, branch if zero set */
if (Z)
goto condtrue;
goto next;
case O (O_BGT, SB): /* bgt */
if (((Z || (N ^ V)) == 0))
goto condtrue;
goto next;
case O (O_BLE, SB): /* ble */
if (((Z || (N ^ V)) == 1))
goto condtrue;
goto next;
case O (O_BGE, SB): /* bge */
if ((N ^ V) == 0)
goto condtrue;
goto next;
case O (O_BLT, SB): /* blt */
if ((N ^ V))
goto condtrue;
goto next;
case O (O_BMI, SB): /* bmi */
if ((N))
goto condtrue;
goto next;
case O (O_BNE, SB): /* bne, branch if zero clear */
if ((Z == 0))
goto condtrue;
goto next;
case O (O_BPL, SB): /* bpl */
if (N == 0)
goto condtrue;
goto next;
case O (O_BVC, SB): /* bvc */
if ((V == 0))
goto condtrue;
goto next;
case O (O_BVS, SB): /* bvs */
if ((V == 1))
goto condtrue;
goto next;
/* Trap for Command Line setup. */
case O (O_SYS_CMDLINE, SB):
{
int i = 0; /* Loop counter. */
int j = 0; /* Loop counter. */
int ind_arg_len = 0; /* Length of each argument. */
int no_of_args = 0; /* The no. or cmdline args. */
int current_location = 0; /* Location of string. */
int old_sp = 0; /* The Initial Stack Pointer. */
int no_of_slots = 0; /* No. of slots required on the stack
for storing cmdline args. */
int sp_move = 0; /* No. of locations by which the stack needs
to grow. */
int new_sp = 0; /* The final stack pointer location passed
back. */
int *argv_ptrs; /* Pointers of argv strings to be stored. */
int argv_ptrs_location = 0; /* Location of pointers to cmdline
args on the stack. */
int char_ptr_size = 0; /* Size of a character pointer on
target machine. */
int addr_cmdline = 0; /* Memory location where cmdline has
to be stored. */
int size_cmdline = 0; /* Size of cmdline. */
/* Set the address of 256 free locations where command line is
stored. */
addr_cmdline = cmdline_location();
h8_set_reg (sd, 0, addr_cmdline);
/* Counting the no. of commandline arguments. */
for (i = 0; h8_get_cmdline_arg (sd, i) != NULL; i++)
continue;
/* No. of arguments in the command line. */
no_of_args = i;
/* Current location is just a temporary variable,which we are
setting to the point to the start of our commandline string. */
current_location = addr_cmdline;
/* Allocating space for storing pointers of the command line
arguments. */
argv_ptrs = (int *) malloc (sizeof (int) * no_of_args);
/* Setting char_ptr_size to the sizeof (char *) on the different
architectures. */
if ((h8300hmode || h8300smode) && !h8300_normal_mode)
{
char_ptr_size = 4;
}
else
{
char_ptr_size = 2;
}
for (i = 0; i < no_of_args; i++)
{
ind_arg_len = 0;
/* The size of the commandline argument. */
ind_arg_len = strlen (h8_get_cmdline_arg (sd, i) + 1);
/* The total size of the command line string. */
size_cmdline += ind_arg_len;
/* As we have only 256 bytes, we need to provide a graceful
exit. Anyways, a program using command line arguments
where we cannot store all the command line arguments
given may behave unpredictably. */
if (size_cmdline >= 256)
{
h8_set_reg (sd, 0, 0);
goto next;
}
else
{
/* current_location points to the memory where the next
commandline argument is stored. */
argv_ptrs[i] = current_location;
for (j = 0; j < ind_arg_len; j++)
{
SET_MEMORY_B ((current_location +
(sizeof (char) * j)),
*(h8_get_cmdline_arg (sd, i) +
sizeof (char) * j));
}
/* Setting current_location to the starting of next
argument. */
current_location += ind_arg_len;
}
}
/* This is the original position of the stack pointer. */
old_sp = h8_get_reg (sd, SP_REGNUM);
/* We need space from the stack to store the pointers to argvs. */
/* As we will infringe on the stack, we need to shift the stack
pointer so that the data is not overwritten. We calculate how
much space is required. */
sp_move = (no_of_args) * (char_ptr_size);
/* The final position of stack pointer, we have thus taken some
space from the stack. */
new_sp = old_sp - sp_move;
/* Temporary variable holding value where the argv pointers need
to be stored. */
argv_ptrs_location = new_sp;
/* The argv pointers are stored at sequential locations. As per
the H8300 ABI. */
for (i = 0; i < no_of_args; i++)
{
/* Saving the argv pointer. */
if ((h8300hmode || h8300smode) && !h8300_normal_mode)
{
SET_MEMORY_L (argv_ptrs_location, argv_ptrs[i]);
}
else
{
SET_MEMORY_W (argv_ptrs_location, argv_ptrs[i]);
}
/* The next location where the pointer to the next argv
string has to be stored. */
argv_ptrs_location += char_ptr_size;
}
/* Required by POSIX, Setting 0x0 at the end of the list of argv
pointers. */
if ((h8300hmode || h8300smode) && !h8300_normal_mode)
{
SET_MEMORY_L (old_sp, 0x0);
}
else
{
SET_MEMORY_W (old_sp, 0x0);
}
/* Freeing allocated memory. */
free (argv_ptrs);
for (i = 0; i <= no_of_args; i++)
{
free (h8_get_cmdline_arg (sd, i));
}
free (h8_get_command_line (sd));
/* The no. of argv arguments are returned in Reg 0. */
h8_set_reg (sd, 0, no_of_args);
/* The Pointer to argv in Register 1. */
h8_set_reg (sd, 1, new_sp);
/* Setting the stack pointer to the new value. */
h8_set_reg (sd, SP_REGNUM, new_sp);
}
goto next;
/* System call processing starts. */
case O (O_SYS_OPEN, SB):
{
int len = 0; /* Length of filename. */
char *filename; /* Filename would go here. */
char temp_char; /* Temporary character */
int mode = 0; /* Mode bits for the file. */
int open_return; /* Return value of open, file descriptor. */
int i; /* Loop counter */
int filename_ptr; /* Pointer to filename in cpu memory. */
/* Setting filename_ptr to first argument of open, */
/* and trying to get mode. */
if ((h8300sxmode || h8300hmode || h8300smode) && !h8300_normal_mode)
{
filename_ptr = GET_L_REG (0);
mode = GET_MEMORY_L (h8_get_reg (sd, SP_REGNUM) + 4);
}
else
{
filename_ptr = GET_W_REG (0);
mode = GET_MEMORY_W (h8_get_reg (sd, SP_REGNUM) + 2);
}
/* Trying to find the length of the filename. */
temp_char = GET_MEMORY_B (h8_get_reg (sd, 0));
len = 1;
while (temp_char != '\0')
{
temp_char = GET_MEMORY_B (filename_ptr + len);
len++;
}
/* Allocating space for the filename. */
filename = (char *) malloc (sizeof (char) * len);
/* String copying the filename from memory. */
for (i = 0; i < len; i++)
{
temp_char = GET_MEMORY_B (filename_ptr + i);
filename[i] = temp_char;
}
/* Callback to open and return the file descriptor. */
open_return = sim_callback->open (sim_callback, filename, mode);
/* Return value in register 0. */
h8_set_reg (sd, 0, open_return);
/* Freeing memory used for filename. */
free (filename);
}
goto next;
case O (O_SYS_READ, SB):
{
char *char_ptr; /* Where characters read would be stored. */
int fd; /* File descriptor */
int buf_size; /* BUF_SIZE parameter in read. */
int i = 0; /* Temporary Loop counter */
int read_return = 0; /* Return value from callback to
read. */
fd = (h8300hmode && !h8300_normal_mode) ? GET_L_REG (0) : GET_W_REG (0);
buf_size = (h8300hmode && !h8300_normal_mode) ? GET_L_REG (2) : GET_W_REG (2);
char_ptr = (char *) malloc (sizeof (char) * buf_size);
/* Callback to read and return the no. of characters read. */
read_return =
sim_callback->read (sim_callback, fd, char_ptr, buf_size);
/* The characters read are stored in cpu memory. */
for (i = 0; i < buf_size; i++)
{
SET_MEMORY_B ((h8_get_reg (sd, 1) + (sizeof (char) * i)),
*(char_ptr + (sizeof (char) * i)));
}
/* Return value in Register 0. */
h8_set_reg (sd, 0, read_return);
/* Freeing memory used as buffer. */
free (char_ptr);
}
goto next;
case O (O_SYS_WRITE, SB):
{
int fd; /* File descriptor */
char temp_char; /* Temporary character */
int len; /* Length of write, Parameter II to write. */
int char_ptr; /* Character Pointer, Parameter I of write. */
char *ptr; /* Where characters to be written are stored.
*/
int write_return; /* Return value from callback to write. */
int i = 0; /* Loop counter */
fd = (h8300hmode && !h8300_normal_mode) ? GET_L_REG (0) : GET_W_REG (0);
char_ptr = (h8300hmode && !h8300_normal_mode) ? GET_L_REG (1) : GET_W_REG (1);
len = (h8300hmode && !h8300_normal_mode) ? GET_L_REG (2) : GET_W_REG (2);
/* Allocating space for the characters to be written. */
ptr = (char *) malloc (sizeof (char) * len);
/* Fetching the characters from cpu memory. */
for (i = 0; i < len; i++)
{
temp_char = GET_MEMORY_B (char_ptr + i);
ptr[i] = temp_char;
}
/* Callback write and return the no. of characters written. */
write_return = sim_callback->write (sim_callback, fd, ptr, len);
/* Return value in Register 0. */
h8_set_reg (sd, 0, write_return);
/* Freeing memory used as buffer. */
free (ptr);
}
goto next;
case O (O_SYS_LSEEK, SB):
{
int fd; /* File descriptor */
int offset; /* Offset */
int origin; /* Origin */
int lseek_return; /* Return value from callback to lseek. */
fd = (h8300hmode && !h8300_normal_mode) ? GET_L_REG (0) : GET_W_REG (0);
offset = (h8300hmode && !h8300_normal_mode) ? GET_L_REG (1) : GET_W_REG (1);
origin = (h8300hmode && !h8300_normal_mode) ? GET_L_REG (2) : GET_W_REG (2);
/* Callback lseek and return offset. */
lseek_return =
sim_callback->lseek (sim_callback, fd, offset, origin);
/* Return value in register 0. */
h8_set_reg (sd, 0, lseek_return);
}
goto next;
case O (O_SYS_CLOSE, SB):
{
int fd; /* File descriptor */
int close_return; /* Return value from callback to close. */
fd = (h8300hmode && !h8300_normal_mode) ? GET_L_REG (0) : GET_W_REG (0);
/* Callback close and return. */
close_return = sim_callback->close (sim_callback, fd);
/* Return value in register 0. */
h8_set_reg (sd, 0, close_return);
}
goto next;
case O (O_SYS_FSTAT, SB):
{
int fd; /* File descriptor */
struct stat stat_rec; /* Stat record */
int fstat_return; /* Return value from callback to stat. */
int stat_ptr; /* Pointer to stat record. */
char *temp_stat_ptr; /* Temporary stat_rec pointer. */
fd = (h8300hmode && !h8300_normal_mode) ? GET_L_REG (0) : GET_W_REG (0);
/* Setting stat_ptr to second argument of stat. */
stat_ptr = (h8300hmode && !h8300_normal_mode) ? GET_L_REG (1) : GET_W_REG (1);
/* Callback stat and return. */
fstat_return = sim_callback->fstat (sim_callback, fd, &stat_rec);
/* Have stat_ptr point to starting of stat_rec. */
temp_stat_ptr = (char *) (&stat_rec);
/* Setting up the stat structure returned. */
SET_MEMORY_W (stat_ptr, stat_rec.st_dev);
stat_ptr += 2;
SET_MEMORY_W (stat_ptr, stat_rec.st_ino);
stat_ptr += 2;
SET_MEMORY_L (stat_ptr, stat_rec.st_mode);
stat_ptr += 4;
SET_MEMORY_W (stat_ptr, stat_rec.st_nlink);
stat_ptr += 2;
SET_MEMORY_W (stat_ptr, stat_rec.st_uid);
stat_ptr += 2;
SET_MEMORY_W (stat_ptr, stat_rec.st_gid);
stat_ptr += 2;
SET_MEMORY_W (stat_ptr, stat_rec.st_rdev);
stat_ptr += 2;
SET_MEMORY_L (stat_ptr, stat_rec.st_size);
stat_ptr += 4;
SET_MEMORY_L (stat_ptr, stat_rec.st_atime);
stat_ptr += 8;
SET_MEMORY_L (stat_ptr, stat_rec.st_mtime);
stat_ptr += 8;
SET_MEMORY_L (stat_ptr, stat_rec.st_ctime);
/* Return value in register 0. */
h8_set_reg (sd, 0, fstat_return);
}
goto next;
case O (O_SYS_STAT, SB):
{
int len = 0; /* Length of filename. */
char *filename; /* Filename would go here. */
char temp_char; /* Temporary character */
int filename_ptr; /* Pointer to filename in cpu memory. */
struct stat stat_rec; /* Stat record */
int stat_return; /* Return value from callback to stat */
int stat_ptr; /* Pointer to stat record. */
char *temp_stat_ptr; /* Temporary stat_rec pointer. */
int i = 0; /* Loop Counter */
/* Setting filename_ptr to first argument of open. */
filename_ptr = (h8300hmode && !h8300_normal_mode) ? GET_L_REG (0) : GET_W_REG (0);
/* Trying to find the length of the filename. */
temp_char = GET_MEMORY_B (h8_get_reg (sd, 0));
len = 1;
while (temp_char != '\0')
{
temp_char = GET_MEMORY_B (filename_ptr + len);
len++;
}
/* Allocating space for the filename. */
filename = (char *) malloc (sizeof (char) * len);
/* String copying the filename from memory. */
for (i = 0; i < len; i++)
{
temp_char = GET_MEMORY_B (filename_ptr + i);
filename[i] = temp_char;
}
/* Setting stat_ptr to second argument of stat. */
/* stat_ptr = h8_get_reg (sd, 1); */
stat_ptr = (h8300hmode && !h8300_normal_mode) ? GET_L_REG (1) : GET_W_REG (1);
/* Callback stat and return. */
stat_return =
sim_callback->stat (sim_callback, filename, &stat_rec);
/* Have stat_ptr point to starting of stat_rec. */
temp_stat_ptr = (char *) (&stat_rec);
/* Freeing memory used for filename. */
free (filename);
/* Setting up the stat structure returned. */
SET_MEMORY_W (stat_ptr, stat_rec.st_dev);
stat_ptr += 2;
SET_MEMORY_W (stat_ptr, stat_rec.st_ino);
stat_ptr += 2;
SET_MEMORY_L (stat_ptr, stat_rec.st_mode);
stat_ptr += 4;
SET_MEMORY_W (stat_ptr, stat_rec.st_nlink);
stat_ptr += 2;
SET_MEMORY_W (stat_ptr, stat_rec.st_uid);
stat_ptr += 2;
SET_MEMORY_W (stat_ptr, stat_rec.st_gid);
stat_ptr += 2;
SET_MEMORY_W (stat_ptr, stat_rec.st_rdev);
stat_ptr += 2;
SET_MEMORY_L (stat_ptr, stat_rec.st_size);
stat_ptr += 4;
SET_MEMORY_L (stat_ptr, stat_rec.st_atime);
stat_ptr += 8;
SET_MEMORY_L (stat_ptr, stat_rec.st_mtime);
stat_ptr += 8;
SET_MEMORY_L (stat_ptr, stat_rec.st_ctime);
/* Return value in register 0. */
h8_set_reg (sd, 0, stat_return);
}
goto next;
/* End of system call processing. */
case O (O_NOT, SB): /* not.b */
if (fetch2 (sd, &code->src, &rd))
goto end;
rd = ~rd;
v = 0;
goto shift8;
case O (O_NOT, SW): /* not.w */
if (fetch2 (sd, &code->src, &rd))
goto end;
rd = ~rd;
v = 0;
goto shift16;
case O (O_NOT, SL): /* not.l */
if (fetch2 (sd, &code->src, &rd))
goto end;
rd = ~rd;
v = 0;
goto shift32;
case O (O_SHLL, SB): /* shll.b */
case O (O_SHLR, SB): /* shlr.b */
if (fetch2 (sd, &code->dst, &rd))
goto end;
if (memcmp (&code->src, &code->dst, sizeof (code->src)) == 0)
ea = 1; /* unary op */
else /* binary op */
fetch (sd, &code->src, &ea);
if (code->opcode == O (O_SHLL, SB))
{
v = (ea > 8);
c = rd & (0x80 >> (ea - 1));
rd <<= ea;
}
else
{
v = 0;
c = rd & (1 << (ea - 1));
rd = (unsigned char) rd >> ea;
}
goto shift8;
case O (O_SHLL, SW): /* shll.w */
case O (O_SHLR, SW): /* shlr.w */
if (fetch2 (sd, &code->dst, &rd))
goto end;
if (memcmp (&code->src, &code->dst, sizeof (code->src)) == 0)
ea = 1; /* unary op */
else
fetch (sd, &code->src, &ea);
if (code->opcode == O (O_SHLL, SW))
{
v = (ea > 16);
c = rd & (0x8000 >> (ea - 1));
rd <<= ea;
}
else
{
v = 0;
c = rd & (1 << (ea - 1));
rd = (unsigned short) rd >> ea;
}
goto shift16;
case O (O_SHLL, SL): /* shll.l */
case O (O_SHLR, SL): /* shlr.l */
if (fetch2 (sd, &code->dst, &rd))
goto end;
if (memcmp (&code->src, &code->dst, sizeof (code->src)) == 0)
ea = 1; /* unary op */
else
fetch (sd, &code->src, &ea);
if (code->opcode == O (O_SHLL, SL))
{
v = (ea > 32);
c = rd & (0x80000000 >> (ea - 1));
rd <<= ea;
}
else
{
v = 0;
c = rd & (1 << (ea - 1));
rd = (unsigned int) rd >> ea;
}
goto shift32;
case O (O_SHAL, SB):
case O (O_SHAR, SB):
if (fetch2 (sd, &code->dst, &rd))
goto end;
if (code->src.type == X (OP_IMM, SB))
fetch (sd, &code->src, &ea);
else
ea = 1;
if (code->opcode == O (O_SHAL, SB))
{
c = rd & (0x80 >> (ea - 1));
res = rd >> (7 - ea);
v = ((res & 1) && !(res & 2))
|| (!(res & 1) && (res & 2));
rd <<= ea;
}
else
{
c = rd & (1 << (ea - 1));
v = 0;
rd = ((signed char) rd) >> ea;
}
goto shift8;
case O (O_SHAL, SW):
case O (O_SHAR, SW):
if (fetch2 (sd, &code->dst, &rd))
goto end;
if (code->src.type == X (OP_IMM, SW))
fetch (sd, &code->src, &ea);
else
ea = 1;
if (code->opcode == O (O_SHAL, SW))
{
c = rd & (0x8000 >> (ea - 1));
res = rd >> (15 - ea);
v = ((res & 1) && !(res & 2))
|| (!(res & 1) && (res & 2));
rd <<= ea;
}
else
{
c = rd & (1 << (ea - 1));
v = 0;
rd = ((signed short) rd) >> ea;
}
goto shift16;
case O (O_SHAL, SL):
case O (O_SHAR, SL):
if (fetch2 (sd, &code->dst, &rd))
goto end;
if (code->src.type == X (OP_IMM, SL))
fetch (sd, &code->src, &ea);
else
ea = 1;
if (code->opcode == O (O_SHAL, SL))
{
c = rd & (0x80000000 >> (ea - 1));
res = rd >> (31 - ea);
v = ((res & 1) && !(res & 2))
|| (!(res & 1) && (res & 2));
rd <<= ea;
}
else
{
c = rd & (1 << (ea - 1));
v = 0;
rd = ((signed int) rd) >> ea;
}
goto shift32;
case O (O_ROTL, SB):
case O (O_ROTR, SB):
if (fetch2 (sd, &code->dst, &rd))
goto end;
if (code->src.type == X (OP_IMM, SB))
fetch (sd, &code->src, &ea);
else
ea = 1;
while (ea--)
if (code->opcode == O (O_ROTL, SB))
{
c = rd & 0x80;
rd <<= 1;
if (c)
rd |= 1;
}
else
{
c = rd & 1;
rd = ((unsigned char) rd) >> 1;
if (c)
rd |= 0x80;
}
v = 0;
goto shift8;
case O (O_ROTL, SW):
case O (O_ROTR, SW):
if (fetch2 (sd, &code->dst, &rd))
goto end;
if (code->src.type == X (OP_IMM, SW))
fetch (sd, &code->src, &ea);
else
ea = 1;
while (ea--)
if (code->opcode == O (O_ROTL, SW))
{
c = rd & 0x8000;
rd <<= 1;
if (c)
rd |= 1;
}
else
{
c = rd & 1;
rd = ((unsigned short) rd) >> 1;
if (c)
rd |= 0x8000;
}
v = 0;
goto shift16;
case O (O_ROTL, SL):
case O (O_ROTR, SL):
if (fetch2 (sd, &code->dst, &rd))
goto end;
if (code->src.type == X (OP_IMM, SL))
fetch (sd, &code->src, &ea);
else
ea = 1;
while (ea--)
if (code->opcode == O (O_ROTL, SL))
{
c = rd & 0x80000000;
rd <<= 1;
if (c)
rd |= 1;
}
else
{
c = rd & 1;
rd = ((unsigned int) rd) >> 1;
if (c)
rd |= 0x80000000;
}
v = 0;
goto shift32;
case O (O_ROTXL, SB):
case O (O_ROTXR, SB):
if (fetch2 (sd, &code->dst, &rd))
goto end;
if (code->src.type == X (OP_IMM, SB))
fetch (sd, &code->src, &ea);
else
ea = 1;
while (ea--)
if (code->opcode == O (O_ROTXL, SB))
{
res = rd & 0x80;
rd <<= 1;
if (C)
rd |= 1;
c = res;
}
else
{
res = rd & 1;
rd = ((unsigned char) rd) >> 1;
if (C)
rd |= 0x80;
c = res;
}
v = 0;
goto shift8;
case O (O_ROTXL, SW):
case O (O_ROTXR, SW):
if (fetch2 (sd, &code->dst, &rd))
goto end;
if (code->src.type == X (OP_IMM, SW))
fetch (sd, &code->src, &ea);
else
ea = 1;
while (ea--)
if (code->opcode == O (O_ROTXL, SW))
{
res = rd & 0x8000;
rd <<= 1;
if (C)
rd |= 1;
c = res;
}
else
{
res = rd & 1;
rd = ((unsigned short) rd) >> 1;
if (C)
rd |= 0x8000;
c = res;
}
v = 0;
goto shift16;
case O (O_ROTXL, SL):
case O (O_ROTXR, SL):
if (fetch2 (sd, &code->dst, &rd))
goto end;
if (code->src.type == X (OP_IMM, SL))
fetch (sd, &code->src, &ea);
else
ea = 1;
while (ea--)
if (code->opcode == O (O_ROTXL, SL))
{
res = rd & 0x80000000;
rd <<= 1;
if (C)
rd |= 1;
c = res;
}
else
{
res = rd & 1;
rd = ((unsigned int) rd) >> 1;
if (C)
rd |= 0x80000000;
c = res;
}
v = 0;
goto shift32;
case O (O_JMP, SN):
case O (O_JMP, SL):
case O (O_JMP, SB): /* jmp */
case O (O_JMP, SW):
fetch (sd, &code->src, &pc);
goto end;
case O (O_JSR, SN):
case O (O_JSR, SL):
case O (O_JSR, SB): /* jsr, jump to subroutine */
case O (O_JSR, SW):
if (fetch (sd, &code->src, &pc))
goto end;
call:
tmp = h8_get_reg (sd, SP_REGNUM);
if (h8300hmode && !h8300_normal_mode)
{
tmp -= 4;
SET_MEMORY_L (tmp, code->next_pc);
}
else
{
tmp -= 2;
SET_MEMORY_W (tmp, code->next_pc);
}
h8_set_reg (sd, SP_REGNUM, tmp);
goto end;
case O (O_BSR, SW):
case O (O_BSR, SL):
case O (O_BSR, SB): /* bsr, branch to subroutine */
if (fetch (sd, &code->src, &res))
goto end;
pc = code->next_pc + res;
goto call;
case O (O_RTE, SN): /* rte, return from exception */
rte:
/* Pops exr and ccr before pc -- otherwise identical to rts. */
tmp = h8_get_reg (sd, SP_REGNUM);
if (h8300smode) /* pop exr */
{
h8_set_exr (sd, GET_MEMORY_L (tmp));
tmp += 4;
}
if (h8300hmode && !h8300_normal_mode)
{
h8_set_ccr (sd, GET_MEMORY_L (tmp));
tmp += 4;
pc = GET_MEMORY_L (tmp);
tmp += 4;
}
else
{
h8_set_ccr (sd, GET_MEMORY_W (tmp));
tmp += 2;
pc = GET_MEMORY_W (tmp);
tmp += 2;
}
GETSR (sd);
h8_set_reg (sd, SP_REGNUM, tmp);
goto end;
case O (O_RTS, SN): /* rts, return from subroutine */
rts:
tmp = h8_get_reg (sd, SP_REGNUM);
if (h8300hmode && !h8300_normal_mode)
{
pc = GET_MEMORY_L (tmp);
tmp += 4;
}
else
{
pc = GET_MEMORY_W (tmp);
tmp += 2;
}
h8_set_reg (sd, SP_REGNUM, tmp);
goto end;
case O (O_ILL, SB): /* illegal */
sim_engine_set_run_state (sd, sim_stopped, SIGILL);
goto end;
case O (O_SLEEP, SN): /* sleep */
/* Check for magic numbers in r1 and r2. */
if ((h8_get_reg (sd, R1_REGNUM) & 0xffff) == LIBC_EXIT_MAGIC1 &&
(h8_get_reg (sd, R2_REGNUM) & 0xffff) == LIBC_EXIT_MAGIC2 &&
SIM_WIFEXITED (h8_get_reg (sd, 0)))
{
/* This trap comes from _exit, not from gdb. */
sim_engine_set_run_state (sd, sim_exited,
SIM_WEXITSTATUS (h8_get_reg (sd, 0)));
}
#if 0
/* Unfortunately this won't really work, because
when we take a breakpoint trap, R0 has a "random",
user-defined value. Don't see any immediate solution. */
else if (SIM_WIFSTOPPED (h8_get_reg (sd, 0)))
{
/* Pass the stop signal up to gdb. */
sim_engine_set_run_state (sd, sim_stopped,
SIM_WSTOPSIG (h8_get_reg (sd, 0)));
}
#endif
else
{
/* Treat it as a sigtrap. */
sim_engine_set_run_state (sd, sim_stopped, SIGTRAP);
}
goto end;
case O (O_TRAPA, SB): /* trapa */
if (fetch (sd, &code->src, &res))
goto end; /* res is vector number. */
tmp = h8_get_reg (sd, SP_REGNUM);
if(h8300_normal_mode)
{
tmp -= 2;
SET_MEMORY_W (tmp, code->next_pc);
tmp -= 2;
SET_MEMORY_W (tmp, h8_get_ccr (sd));
}
else
{
tmp -= 4;
SET_MEMORY_L (tmp, code->next_pc);
tmp -= 4;
SET_MEMORY_L (tmp, h8_get_ccr (sd));
}
intMaskBit = 1;
BUILDSR (sd);
if (h8300smode)
{
tmp -= 4;
SET_MEMORY_L (tmp, h8_get_exr (sd));
}
h8_set_reg (sd, SP_REGNUM, tmp);
if(h8300_normal_mode)
pc = GET_MEMORY_L (0x10 + res * 2); /* Vector addresses are 0x10,0x12,0x14 and 0x16 */
else
pc = GET_MEMORY_L (0x20 + res * 4);
goto end;
case O (O_BPT, SN):
sim_engine_set_run_state (sd, sim_stopped, SIGTRAP);
goto end;
case O (O_BSETEQ, SB):
if (Z)
goto bset;
goto next;
case O (O_BSETNE, SB):
if (!Z)
goto bset;
goto next;
case O (O_BCLREQ, SB):
if (Z)
goto bclr;
goto next;
case O (O_BCLRNE, SB):
if (!Z)
goto bclr;
goto next;
OBITOP (O_BNOT, 1, 1, ea ^= m); /* bnot */
OBITOP (O_BTST, 1, 0, nz = ea & m); /* btst */
bset:
OBITOP (O_BSET, 1, 1, ea |= m); /* bset */
bclr:
OBITOP (O_BCLR, 1, 1, ea &= ~m); /* bclr */
OBITOP (O_BLD, 1, 0, c = ea & m); /* bld */
OBITOP (O_BILD, 1, 0, c = !(ea & m)); /* bild */
OBITOP (O_BST, 1, 1, ea &= ~m;
if (C) ea |= m); /* bst */
OBITOP (O_BIST, 1, 1, ea &= ~m;
if (!C) ea |= m); /* bist */
OBITOP (O_BSTZ, 1, 1, ea &= ~m;
if (Z) ea |= m); /* bstz */
OBITOP (O_BISTZ, 1, 1, ea &= ~m;
if (!Z) ea |= m); /* bistz */
OBITOP (O_BAND, 1, 0, c = (ea & m) && C); /* band */
OBITOP (O_BIAND, 1, 0, c = !(ea & m) && C); /* biand */
OBITOP (O_BOR, 1, 0, c = (ea & m) || C); /* bor */
OBITOP (O_BIOR, 1, 0, c = !(ea & m) || C); /* bior */
OBITOP (O_BXOR, 1, 0, c = ((ea & m) != 0)!= C); /* bxor */
OBITOP (O_BIXOR, 1, 0, c = !(ea & m) != C); /* bixor */
case O (O_BFLD, SB): /* bfld */
/* bitfield load */
ea = 0;
if (fetch (sd, &code->src, &bit))
goto end;
if (bit != 0)
{
if (fetch (sd, &code->dst, &ea))
goto end;
ea &= bit;
while (!(bit & 1))
{
ea >>= 1;
bit >>= 1;
}
}
if (store (sd, &code->op3, ea))
goto end;
goto next;
case O(O_BFST, SB): /* bfst */
/* bitfield store */
/* NOTE: the imm8 value is in dst, and the ea value
(which is actually the destination) is in op3.
It has to be that way, to avoid breaking the assembler. */
if (fetch (sd, &code->dst, &bit)) /* imm8 */
goto end;
if (bit == 0) /* noop -- nothing to do. */
goto next;
if (fetch (sd, &code->src, &rd)) /* reg8 src */
goto end;
if (fetch2 (sd, &code->op3, &ea)) /* ea dst */
goto end;
/* Left-shift the register data into position. */
for (tmp = bit; !(tmp & 1); tmp >>= 1)
rd <<= 1;
/* Combine it with the neighboring bits. */
ea = (ea & ~bit) | (rd & bit);
/* Put it back. */
if (store2 (sd, &code->op3, ea))
goto end;
goto next;
case O (O_CLRMAC, SN): /* clrmac */
h8_set_mach (sd, 0);
h8_set_macl (sd, 0);
h8_set_macZ (sd, 1);
h8_set_macV (sd, 0);
h8_set_macN (sd, 0);
goto next;
case O (O_STMAC, SL): /* stmac, 260 */
switch (code->src.type) {
case X (OP_MACH, SL):
res = h8_get_mach (sd);
if (res & 0x200) /* sign extend */
res |= 0xfffffc00;
break;
case X (OP_MACL, SL):
res = h8_get_macl (sd);
break;
default: goto illegal;
}
nz = !h8_get_macZ (sd);
n = h8_get_macN (sd);
v = h8_get_macV (sd);
if (store (sd, &code->dst, res))
goto end;
goto next;
case O (O_LDMAC, SL): /* ldmac, 179 */
if (fetch (sd, &code->src, &rd))
goto end;
switch (code->dst.type) {
case X (OP_MACH, SL):
rd &= 0x3ff; /* Truncate to 10 bits */
h8_set_mach (sd, rd);
break;
case X (OP_MACL, SL):
h8_set_macl (sd, rd);
break;
default: goto illegal;
}
h8_set_macV (sd, 0);
goto next;
case O (O_MAC, SW):
if (fetch (sd, &code->src, &rd) ||
fetch (sd, &code->dst, &res))
goto end;
/* Ye gods, this is non-portable!
However, the existing mul/div code is similar. */
res = SEXTSHORT (res) * SEXTSHORT (rd);
if (h8_get_macS (sd)) /* Saturating mode */
{
long long mac = h8_get_macl (sd);
if (mac & 0x80000000) /* sign extend */
mac |= 0xffffffff00000000LL;
mac += res;
if (mac > 0x7fffffff || mac < 0xffffffff80000000LL)
h8_set_macV (sd, 1);
h8_set_macZ (sd, (mac == 0));
h8_set_macN (sd, (mac < 0));
h8_set_macl (sd, (int) mac);
}
else /* "Less Saturating" mode */
{
long long mac = h8_get_mach (sd);
mac <<= 32;
mac += h8_get_macl (sd);
if (mac & 0x20000000000LL) /* sign extend */
mac |= 0xfffffc0000000000LL;
mac += res;
if (mac > 0x1ffffffffffLL ||
mac < (long long) 0xfffffe0000000000LL)
h8_set_macV (sd, 1);
h8_set_macZ (sd, (mac == 0));
h8_set_macN (sd, (mac < 0));
h8_set_macl (sd, (int) mac);
mac >>= 32;
h8_set_mach (sd, (int) (mac & 0x3ff));
}
goto next;
case O (O_MULS, SW): /* muls.w */
if (fetch (sd, &code->src, &ea) ||
fetch (sd, &code->dst, &rd))
goto end;
ea = SEXTSHORT (ea);
res = SEXTSHORT (ea * SEXTSHORT (rd));
n = res & 0x8000;
nz = res & 0xffff;
if (store (sd, &code->dst, res))
goto end;
goto next;
case O (O_MULS, SL): /* muls.l */
if (fetch (sd, &code->src, &ea) ||
fetch (sd, &code->dst, &rd))
goto end;
res = ea * rd;
n = res & 0x80000000;
nz = res & 0xffffffff;
if (store (sd, &code->dst, res))
goto end;
goto next;
case O (O_MULSU, SL): /* muls/u.l */
if (fetch (sd, &code->src, &ea) ||
fetch (sd, &code->dst, &rd))
goto end;
/* Compute upper 32 bits of the 64-bit result. */
res = (((long long) ea) * ((long long) rd)) >> 32;
n = res & 0x80000000;
nz = res & 0xffffffff;
if (store (sd, &code->dst, res))
goto end;
goto next;
case O (O_MULU, SW): /* mulu.w */
if (fetch (sd, &code->src, &ea) ||
fetch (sd, &code->dst, &rd))
goto end;
res = UEXTSHORT ((UEXTSHORT (ea) * UEXTSHORT (rd)));
/* Don't set Z or N. */
if (store (sd, &code->dst, res))
goto end;
goto next;
case O (O_MULU, SL): /* mulu.l */
if (fetch (sd, &code->src, &ea) ||
fetch (sd, &code->dst, &rd))
goto end;
res = ea * rd;
/* Don't set Z or N. */
if (store (sd, &code->dst, res))
goto end;
goto next;
case O (O_MULUU, SL): /* mulu/u.l */
if (fetch (sd, &code->src, &ea) ||
fetch (sd, &code->dst, &rd))
goto end;
/* Compute upper 32 bits of the 64-bit result. */
res = (((unsigned long long) (unsigned) ea) *
((unsigned long long) (unsigned) rd)) >> 32;
/* Don't set Z or N. */
if (store (sd, &code->dst, res))
goto end;
goto next;
case O (O_MULXS, SB): /* mulxs.b */
if (fetch (sd, &code->src, &ea) ||
fetch (sd, &code->dst, &rd))
goto end;
ea = SEXTCHAR (ea);
res = ea * SEXTCHAR (rd);
n = res & 0x8000;
nz = res & 0xffff;
if (store (sd, &code->dst, res))
goto end;
goto next;
case O (O_MULXS, SW): /* mulxs.w */
if (fetch (sd, &code->src, &ea) ||
fetch (sd, &code->dst, &rd))
goto end;
ea = SEXTSHORT (ea);
res = ea * SEXTSHORT (rd & 0xffff);
n = res & 0x80000000;
nz = res & 0xffffffff;
if (store (sd, &code->dst, res))
goto end;
goto next;
case O (O_MULXU, SB): /* mulxu.b */
if (fetch (sd, &code->src, &ea) ||
fetch (sd, &code->dst, &rd))
goto end;
res = UEXTCHAR (ea) * UEXTCHAR (rd);
if (store (sd, &code->dst, res))
goto end;
goto next;
case O (O_MULXU, SW): /* mulxu.w */
if (fetch (sd, &code->src, &ea) ||
fetch (sd, &code->dst, &rd))
goto end;
res = UEXTSHORT (ea) * UEXTSHORT (rd);
if (store (sd, &code->dst, res))
goto end;
goto next;
case O (O_TAS, SB): /* tas (test and set) */
if (!h8300sxmode) /* h8sx can use any register. */
switch (code->src.reg)
{
case R0_REGNUM:
case R1_REGNUM:
case R4_REGNUM:
case R5_REGNUM:
break;
default:
goto illegal;
}
if (fetch (sd, &code->src, &res))
goto end;
if (store (sd, &code->src, res | 0x80))
goto end;
goto just_flags_log8;
case O (O_DIVU, SW): /* divu.w */
if (fetch (sd, &code->src, &ea) ||
fetch (sd, &code->dst, &rd))
goto end;
n = ea & 0x8000;
nz = ea & 0xffff;
if (ea)
res = (unsigned) (UEXTSHORT (rd) / UEXTSHORT (ea));
else
res = 0;
if (store (sd, &code->dst, res))
goto end;
goto next;
case O (O_DIVU, SL): /* divu.l */
if (fetch (sd, &code->src, &ea) ||
fetch (sd, &code->dst, &rd))
goto end;
n = ea & 0x80000000;
nz = ea & 0xffffffff;
if (ea)
res = (unsigned) rd / ea;
else
res = 0;
if (store (sd, &code->dst, res))
goto end;
goto next;
case O (O_DIVS, SW): /* divs.w */
if (fetch (sd, &code->src, &ea) ||
fetch (sd, &code->dst, &rd))
goto end;
if (ea)
{
res = SEXTSHORT (rd) / SEXTSHORT (ea);
nz = 1;
}
else
{
res = 0;
nz = 0;
}
n = res & 0x8000;
if (store (sd, &code->dst, res))
goto end;
goto next;
case O (O_DIVS, SL): /* divs.l */
if (fetch (sd, &code->src, &ea) ||
fetch (sd, &code->dst, &rd))
goto end;
if (ea)
{
res = rd / ea;
nz = 1;
}
else
{
res = 0;
nz = 0;
}
n = res & 0x80000000;
if (store (sd, &code->dst, res))
goto end;
goto next;
case O (O_DIVXU, SB): /* divxu.b */
if (fetch (sd, &code->src, &ea) ||
fetch (sd, &code->dst, &rd))
goto end;
rd = UEXTSHORT (rd);
ea = UEXTCHAR (ea);
n = ea & 0x80;
nz = ea & 0xff;
if (ea)
{
tmp = (unsigned) rd % ea;
res = (unsigned) rd / ea;
}
else
{
tmp = 0;
res = 0;
}
if (store (sd, &code->dst, (res & 0xff) | (tmp << 8)))
goto end;
goto next;
case O (O_DIVXU, SW): /* divxu.w */
if (fetch (sd, &code->src, &ea) ||
fetch (sd, &code->dst, &rd))
goto end;
ea = UEXTSHORT (ea);
n = ea & 0x8000;
nz = ea & 0xffff;
if (ea)
{
tmp = (unsigned) rd % ea;
res = (unsigned) rd / ea;
}
else
{
tmp = 0;
res = 0;
}
if (store (sd, &code->dst, (res & 0xffff) | (tmp << 16)))
goto end;
goto next;
case O (O_DIVXS, SB): /* divxs.b */
if (fetch (sd, &code->src, &ea) ||
fetch (sd, &code->dst, &rd))
goto end;
rd = SEXTSHORT (rd);
ea = SEXTCHAR (ea);
if (ea)
{
tmp = (int) rd % (int) ea;
res = (int) rd / (int) ea;
nz = 1;
}
else
{
tmp = 0;
res = 0;
nz = 0;
}
n = res & 0x8000;
if (store (sd, &code->dst, (res & 0xff) | (tmp << 8)))
goto end;
goto next;
case O (O_DIVXS, SW): /* divxs.w */
if (fetch (sd, &code->src, &ea) ||
fetch (sd, &code->dst, &rd))
goto end;
ea = SEXTSHORT (ea);
if (ea)
{
tmp = (int) rd % (int) ea;
res = (int) rd / (int) ea;
nz = 1;
}
else
{
tmp = 0;
res = 0;
nz = 0;
}
n = res & 0x80000000;
if (store (sd, &code->dst, (res & 0xffff) | (tmp << 16)))
goto end;
goto next;
case O (O_EXTS, SW): /* exts.w, signed extend */
if (fetch2 (sd, &code->dst, &rd))
goto end;
ea = rd & 0x80 ? -256 : 0;
res = (rd & 0xff) + ea;
goto log16;
case O (O_EXTS, SL): /* exts.l, signed extend */
if (fetch2 (sd, &code->dst, &rd))
goto end;
if (code->src.type == X (OP_IMM, SL))
{
if (fetch (sd, &code->src, &ea))
goto end;
if (ea == 2) /* exts.l #2, nn */
{
/* Sign-extend from 8-bit to 32-bit. */
ea = rd & 0x80 ? -256 : 0;
res = (rd & 0xff) + ea;
goto log32;
}
}
/* Sign-extend from 16-bit to 32-bit. */
ea = rd & 0x8000 ? -65536 : 0;
res = (rd & 0xffff) + ea;
goto log32;
case O (O_EXTU, SW): /* extu.w, unsigned extend */
if (fetch2 (sd, &code->dst, &rd))
goto end;
ea = 0;
res = (rd & 0xff) + ea;
goto log16;
case O (O_EXTU, SL): /* extu.l, unsigned extend */
if (fetch2 (sd, &code->dst, &rd))
goto end;
if (code->src.type == X (OP_IMM, SL))
{
if (fetch (sd, &code->src, &ea))
goto end;
if (ea == 2) /* extu.l #2, nn */
{
/* Zero-extend from 8-bit to 32-bit. */
ea = 0;
res = (rd & 0xff) + ea;
goto log32;
}
}
/* Zero-extend from 16-bit to 32-bit. */
ea = 0;
res = (rd & 0xffff) + ea;
goto log32;
case O (O_NOP, SN): /* nop */
goto next;
case O (O_STM, SL): /* stm, store to memory */
{
int nregs, firstreg, i;
nregs = GET_MEMORY_B (pc + 1);
nregs >>= 4;
nregs &= 0xf;
firstreg = code->src.reg;
firstreg &= 0xf;
for (i = firstreg; i <= firstreg + nregs; i++)
{
h8_set_reg (sd, SP_REGNUM, h8_get_reg (sd, SP_REGNUM) - 4);
SET_MEMORY_L (h8_get_reg (sd, SP_REGNUM), h8_get_reg (sd, i));
}
}
goto next;
case O (O_LDM, SL): /* ldm, load from memory */
case O (O_RTEL, SN): /* rte/l, ldm plus rte */
case O (O_RTSL, SN): /* rts/l, ldm plus rts */
{
int nregs, firstreg, i;
nregs = ((GET_MEMORY_B (pc + 1) >> 4) & 0xf);
firstreg = code->dst.reg & 0xf;
for (i = firstreg; i >= firstreg - nregs; i--)
{
h8_set_reg (sd, i, GET_MEMORY_L (h8_get_reg (sd, SP_REGNUM)));
h8_set_reg (sd, SP_REGNUM, h8_get_reg (sd, SP_REGNUM) + 4);
}
}
switch (code->opcode) {
case O (O_RTEL, SN):
goto rte;
case O (O_RTSL, SN):
goto rts;
case O (O_LDM, SL):
goto next;
default:
goto illegal;
}
case O (O_DAA, SB):
/* Decimal Adjust Addition. This is for BCD arithmetic. */
res = GET_B_REG (code->src.reg); /* FIXME fetch? */
if (!c && (0 <= (res >> 4) && (res >> 4) <= 9) &&
!h && (0 <= (res & 0xf) && (res & 0xf) <= 9))
res = res; /* Value added == 0. */
else if (!c && (0 <= (res >> 4) && (res >> 4) <= 8) &&
!h && (10 <= (res & 0xf) && (res & 0xf) <= 15))
res = res + 0x6; /* Value added == 6. */
else if (!c && (0 <= (res >> 4) && (res >> 4) <= 9) &&
h && (0 <= (res & 0xf) && (res & 0xf) <= 3))
res = res + 0x6; /* Value added == 6. */
else if (!c && (10 <= (res >> 4) && (res >> 4) <= 15) &&
!h && (0 <= (res & 0xf) && (res & 0xf) <= 9))
res = res + 0x60; /* Value added == 60. */
else if (!c && (9 <= (res >> 4) && (res >> 4) <= 15) &&
!h && (10 <= (res & 0xf) && (res & 0xf) <= 15))
res = res + 0x66; /* Value added == 66. */
else if (!c && (10 <= (res >> 4) && (res >> 4) <= 15) &&
h && (0 <= (res & 0xf) && (res & 0xf) <= 3))
res = res + 0x66; /* Value added == 66. */
else if ( c && (1 <= (res >> 4) && (res >> 4) <= 2) &&
!h && (0 <= (res & 0xf) && (res & 0xf) <= 9))
res = res + 0x60; /* Value added == 60. */
else if ( c && (1 <= (res >> 4) && (res >> 4) <= 2) &&
!h && (10 <= (res & 0xf) && (res & 0xf) <= 15))
res = res + 0x66; /* Value added == 66. */
else if (c && (1 <= (res >> 4) && (res >> 4) <= 3) &&
h && (0 <= (res & 0xf) && (res & 0xf) <= 3))
res = res + 0x66; /* Value added == 66. */
goto alu8;
case O (O_DAS, SB):
/* Decimal Adjust Subtraction. This is for BCD arithmetic. */
res = GET_B_REG (code->src.reg); /* FIXME fetch, fetch2... */
if (!c && (0 <= (res >> 4) && (res >> 4) <= 9) &&
!h && (0 <= (res & 0xf) && (res & 0xf) <= 9))
res = res; /* Value added == 0. */
else if (!c && (0 <= (res >> 4) && (res >> 4) <= 8) &&
h && (6 <= (res & 0xf) && (res & 0xf) <= 15))
res = res + 0xfa; /* Value added == 0xfa. */
else if ( c && (7 <= (res >> 4) && (res >> 4) <= 15) &&
!h && (0 <= (res & 0xf) && (res & 0xf) <= 9))
res = res + 0xa0; /* Value added == 0xa0. */
else if (c && (6 <= (res >> 4) && (res >> 4) <= 15) &&
h && (6 <= (res & 0xf) && (res & 0xf) <= 15))
res = res + 0x9a; /* Value added == 0x9a. */
goto alu8;
default:
illegal:
sim_engine_set_run_state (sd, sim_stopped, SIGILL);
goto end;
}
(*sim_callback->printf_filtered) (sim_callback,
"sim_resume: internal error.\n");
sim_engine_set_run_state (sd, sim_stopped, SIGILL);
goto end;
setc:
if (code->dst.type == X (OP_CCR, SB) ||
code->dst.type == X (OP_CCR, SW))
{
h8_set_ccr (sd, res);
GETSR (sd);
}
else if (h8300smode &&
(code->dst.type == X (OP_EXR, SB) ||
code->dst.type == X (OP_EXR, SW)))
{
h8_set_exr (sd, res);
if (h8300smode) /* Get exr. */
{
trace = (h8_get_exr (sd) >> 7) & 1;
intMask = h8_get_exr (sd) & 7;
}
}
else
goto illegal;
goto next;
condtrue:
/* When a branch works */
if (fetch (sd, &code->src, &res))
goto end;
if (res & 1) /* bad address */
goto illegal;
pc = code->next_pc + res;
goto end;
/* Set the cond codes from res */
bitop:
/* Set the flags after an 8 bit inc/dec operation */
just_flags_inc8:
n = res & 0x80;
nz = res & 0xff;
v = (rd & 0x7f) == 0x7f;
goto next;
/* Set the flags after an 16 bit inc/dec operation */
just_flags_inc16:
n = res & 0x8000;
nz = res & 0xffff;
v = (rd & 0x7fff) == 0x7fff;
goto next;
/* Set the flags after an 32 bit inc/dec operation */
just_flags_inc32:
n = res & 0x80000000;
nz = res & 0xffffffff;
v = (rd & 0x7fffffff) == 0x7fffffff;
goto next;
shift8:
/* Set flags after an 8 bit shift op, carry,overflow set in insn */
n = (rd & 0x80);
nz = rd & 0xff;
if (store2 (sd, &code->dst, rd))
goto end;
goto next;
shift16:
/* Set flags after an 16 bit shift op, carry,overflow set in insn */
n = (rd & 0x8000);
nz = rd & 0xffff;
if (store2 (sd, &code->dst, rd))
goto end;
goto next;
shift32:
/* Set flags after an 32 bit shift op, carry,overflow set in insn */
n = (rd & 0x80000000);
nz = rd & 0xffffffff;
if (store2 (sd, &code->dst, rd))
goto end;
goto next;
log32:
if (store2 (sd, &code->dst, res))
goto end;
just_flags_log32:
/* flags after a 32bit logical operation */
n = res & 0x80000000;
nz = res & 0xffffffff;
v = 0;
goto next;
log16:
if (store2 (sd, &code->dst, res))
goto end;
just_flags_log16:
/* flags after a 16bit logical operation */
n = res & 0x8000;
nz = res & 0xffff;
v = 0;
goto next;
log8:
if (store2 (sd, &code->dst, res))
goto end;
just_flags_log8:
n = res & 0x80;
nz = res & 0xff;
v = 0;
goto next;
alu8:
if (store2 (sd, &code->dst, res))
goto end;
just_flags_alu8:
n = res & 0x80;
nz = res & 0xff;
c = (res & 0x100);
switch (code->opcode / 4)
{
case O_ADD:
case O_ADDX:
v = ((rd & 0x80) == (ea & 0x80)
&& (rd & 0x80) != (res & 0x80));
break;
case O_SUB:
case O_SUBX:
case O_CMP:
v = ((rd & 0x80) != (-ea & 0x80)
&& (rd & 0x80) != (res & 0x80));
break;
case O_NEG:
v = (rd == 0x80);
break;
case O_DAA:
case O_DAS:
break; /* No effect on v flag. */
}
goto next;
alu16:
if (store2 (sd, &code->dst, res))
goto end;
just_flags_alu16:
n = res & 0x8000;
nz = res & 0xffff;
c = (res & 0x10000);
switch (code->opcode / 4)
{
case O_ADD:
case O_ADDX:
v = ((rd & 0x8000) == (ea & 0x8000)
&& (rd & 0x8000) != (res & 0x8000));
break;
case O_SUB:
case O_SUBX:
case O_CMP:
v = ((rd & 0x8000) != (-ea & 0x8000)
&& (rd & 0x8000) != (res & 0x8000));
break;
case O_NEG:
v = (rd == 0x8000);
break;
}
goto next;
alu32:
if (store2 (sd, &code->dst, res))
goto end;
just_flags_alu32:
n = res & 0x80000000;
nz = res & 0xffffffff;
switch (code->opcode / 4)
{
case O_ADD:
case O_ADDX:
v = ((rd & 0x80000000) == (ea & 0x80000000)
&& (rd & 0x80000000) != (res & 0x80000000));
c = ((unsigned) res < (unsigned) rd) ||
((unsigned) res < (unsigned) ea);
break;
case O_SUB:
case O_SUBX:
case O_CMP:
v = ((rd & 0x80000000) != (-ea & 0x80000000)
&& (rd & 0x80000000) != (res & 0x80000000));
c = (unsigned) rd < (unsigned) -ea;
break;
case O_NEG:
v = (rd == 0x80000000);
c = res != 0;
break;
}
goto next;
next:
if ((res = h8_get_delayed_branch (sd)) != 0)
{
pc = res;
h8_set_delayed_branch (sd, 0);
}
else
pc = code->next_pc;
end:
if (--poll_count < 0)
{
poll_count = POLL_QUIT_INTERVAL;
if ((*sim_callback->poll_quit) != NULL
&& (*sim_callback->poll_quit) (sim_callback))
sim_engine_set_run_state (sd, sim_stopped, SIGINT);
}
sim_engine_get_run_state (sd, &reason, &sigrc);
} while (reason == sim_running);
h8_set_ticks (sd, h8_get_ticks (sd) + get_now () - tick_start);
h8_set_cycles (sd, h8_get_cycles (sd) + cycles);
h8_set_insts (sd, h8_get_insts (sd) + insts);
h8_set_pc (sd, pc);
BUILDSR (sd);
if (h8300smode)
h8_set_exr (sd, (trace<<7) | intMask);
h8_set_mask (sd, oldmask);
signal (SIGINT, prev);
}
int
sim_trace (SIM_DESC sd)
{
/* FIXME: Unfinished. */
(*sim_callback->printf_filtered) (sim_callback,
"sim_trace: trace not supported.\n");
return 1; /* Done. */
}
int
sim_write (SIM_DESC sd, SIM_ADDR addr, unsigned char *buffer, int size)
{
int i;
init_pointers (sd);
if (addr < 0)
return 0;
for (i = 0; i < size; i++)
{
if (addr < memory_size)
{
h8_set_memory (sd, addr + i, buffer[i]);
h8_set_cache_idx (sd, addr + i, 0);
}
else
{
h8_set_eightbit (sd, (addr + i) & 0xff, buffer[i]);
}
}
return size;
}
int
sim_read (SIM_DESC sd, SIM_ADDR addr, unsigned char *buffer, int size)
{
init_pointers (sd);
if (addr < 0)
return 0;
if (addr < memory_size)
memcpy (buffer, h8_get_memory_buf (sd) + addr, size);
else
memcpy (buffer, h8_get_eightbit_buf (sd) + (addr & 0xff), size);
return size;
}
int
sim_store_register (SIM_DESC sd, int rn, unsigned char *value, int length)
{
int longval;
int shortval;
int intval;
longval = (value[0] << 24) | (value[1] << 16) | (value[2] << 8) | value[3];
shortval = (value[0] << 8) | (value[1]);
intval = h8300hmode ? longval : shortval;
init_pointers (sd);
switch (rn)
{
case PC_REGNUM:
if(h8300_normal_mode)
h8_set_pc (sd, shortval); /* PC for Normal mode is 2 bytes */
else
h8_set_pc (sd, intval);
break;
default:
(*sim_callback->printf_filtered) (sim_callback,
"sim_store_register: bad regnum %d.\n",
rn);
case R0_REGNUM:
case R1_REGNUM:
case R2_REGNUM:
case R3_REGNUM:
case R4_REGNUM:
case R5_REGNUM:
case R6_REGNUM:
case R7_REGNUM:
h8_set_reg (sd, rn, intval);
break;
case CCR_REGNUM:
h8_set_ccr (sd, intval);
break;
case EXR_REGNUM:
h8_set_exr (sd, intval);
break;
case SBR_REGNUM:
h8_set_sbr (sd, intval);
break;
case VBR_REGNUM:
h8_set_vbr (sd, intval);
break;
case MACH_REGNUM:
h8_set_mach (sd, intval);
break;
case MACL_REGNUM:
h8_set_macl (sd, intval);
break;
case CYCLE_REGNUM:
h8_set_cycles (sd, longval);
break;
case INST_REGNUM:
h8_set_insts (sd, longval);
break;
case TICK_REGNUM:
h8_set_ticks (sd, longval);
break;
}
return -1;
}
int
sim_fetch_register (SIM_DESC sd, int rn, unsigned char *buf, int length)
{
int v;
int longreg = 0;
init_pointers (sd);
if (!h8300smode && rn >= EXR_REGNUM)
rn++;
switch (rn)
{
default:
(*sim_callback->printf_filtered) (sim_callback,
"sim_fetch_register: bad regnum %d.\n",
rn);
v = 0;
break;
case CCR_REGNUM:
v = h8_get_ccr (sd);
break;
case EXR_REGNUM:
v = h8_get_exr (sd);
break;
case PC_REGNUM:
v = h8_get_pc (sd);
break;
case SBR_REGNUM:
v = h8_get_sbr (sd);
break;
case VBR_REGNUM:
v = h8_get_vbr (sd);
break;
case MACH_REGNUM:
v = h8_get_mach (sd);
break;
case MACL_REGNUM:
v = h8_get_macl (sd);
break;
case R0_REGNUM:
case R1_REGNUM:
case R2_REGNUM:
case R3_REGNUM:
case R4_REGNUM:
case R5_REGNUM:
case R6_REGNUM:
case R7_REGNUM:
v = h8_get_reg (sd, rn);
break;
case CYCLE_REGNUM:
v = h8_get_cycles (sd);
longreg = 1;
break;
case TICK_REGNUM:
v = h8_get_ticks (sd);
longreg = 1;
break;
case INST_REGNUM:
v = h8_get_insts (sd);
longreg = 1;
break;
}
/* In Normal mode PC is 2 byte, but other registers are 4 byte */
if ((h8300hmode || longreg) && !(rn == PC_REGNUM && h8300_normal_mode))
{
buf[0] = v >> 24;
buf[1] = v >> 16;
buf[2] = v >> 8;
buf[3] = v >> 0;
}
else
{
buf[0] = v >> 8;
buf[1] = v;
}
return -1;
}
void
sim_stop_reason (SIM_DESC sd, enum sim_stop *reason, int *sigrc)
{
sim_engine_get_run_state (sd, reason, sigrc);
}
/* FIXME: Rename to sim_set_mem_size. */
void
sim_size (int n)
{
/* Memory size is fixed. */
}
static void
set_simcache_size (SIM_DESC sd, int n)
{
if (sd->sim_cache)
free (sd->sim_cache);
if (n < 2)
n = 2;
sd->sim_cache = (decoded_inst *) malloc (sizeof (decoded_inst) * n);
memset (sd->sim_cache, 0, sizeof (decoded_inst) * n);
sd->sim_cache_size = n;
}
void
sim_info (SIM_DESC sd, int verbose)
{
double timetaken = (double) h8_get_ticks (sd) / (double) now_persec ();
double virttime = h8_get_cycles (sd) / 10.0e6;
(*sim_callback->printf_filtered) (sim_callback,
"\n\n#instructions executed %10d\n",
h8_get_insts (sd));
(*sim_callback->printf_filtered) (sim_callback,
"#cycles (v approximate) %10d\n",
h8_get_cycles (sd));
(*sim_callback->printf_filtered) (sim_callback,
"#real time taken %10.4f\n",
timetaken);
(*sim_callback->printf_filtered) (sim_callback,
"#virtual time taken %10.4f\n",
virttime);
if (timetaken != 0.0)
(*sim_callback->printf_filtered) (sim_callback,
"#simulation ratio %10.4f\n",
virttime / timetaken);
(*sim_callback->printf_filtered) (sim_callback,
"#compiles %10d\n",
h8_get_compiles (sd));
(*sim_callback->printf_filtered) (sim_callback,
"#cache size %10d\n",
sd->sim_cache_size);
#ifdef ADEBUG
/* This to be conditional on `what' (aka `verbose'),
however it was never passed as non-zero. */
if (1)
{
int i;
for (i = 0; i < O_LAST; i++)
{
if (h8_get_stats (sd, i))
(*sim_callback->printf_filtered) (sim_callback, "%d: %d\n",
i, h8_get_stats (sd, i));
}
}
#endif
}
/* Indicate whether the cpu is an H8/300 or H8/300H.
FLAG is non-zero for the H8/300H. */
void
set_h8300h (unsigned long machine)
{
/* FIXME: Much of the code in sim_load can be moved to sim_open.
This function being replaced by a sim_open:ARGV configuration
option. */
h8300hmode = h8300smode = h8300sxmode = h8300_normal_mode = 0;
if (machine == bfd_mach_h8300sx || machine == bfd_mach_h8300sxn)
h8300sxmode = 1;
if (machine == bfd_mach_h8300s || machine == bfd_mach_h8300sn || h8300sxmode)
h8300smode = 1;
if (machine == bfd_mach_h8300h || machine == bfd_mach_h8300hn || h8300smode)
h8300hmode = 1;
if(machine == bfd_mach_h8300hn || machine == bfd_mach_h8300sn || machine == bfd_mach_h8300sxn)
h8300_normal_mode = 1;
}
/* Cover function of sim_state_free to free the cpu buffers as well. */
static void
free_state (SIM_DESC sd)
{
if (STATE_MODULES (sd) != NULL)
sim_module_uninstall (sd);
/* Fixme: free buffers in _sim_cpu. */
sim_state_free (sd);
}
SIM_DESC
sim_open (SIM_OPEN_KIND kind,
struct host_callback_struct *callback,
struct bfd *abfd,
char **argv)
{
SIM_DESC sd;
sim_cpu *cpu;
sd = sim_state_alloc (kind, callback);
sd->cpu = sim_cpu_alloc (sd, 0);
cpu = STATE_CPU (sd, 0);
SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
sim_state_initialize (sd, cpu);
/* sim_cpu object is new, so some initialization is needed. */
init_pointers_needed = 1;
/* For compatibility (FIXME: is this right?). */
current_alignment = NONSTRICT_ALIGNMENT;
current_target_byte_order = BIG_ENDIAN;
if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
{
free_state (sd);
return 0;
}
/* getopt will print the error message so we just have to exit if
this fails. FIXME: Hmmm... in the case of gdb we need getopt
to call print_filtered. */
if (sim_parse_args (sd, argv) != SIM_RC_OK)
{
/* Uninstall the modules to avoid memory leaks,
file descriptor leaks, etc. */
free_state (sd);
return 0;
}
/* Check for/establish the a reference program image. */
if (sim_analyze_program (sd,
(STATE_PROG_ARGV (sd) != NULL
? *STATE_PROG_ARGV (sd)
: NULL), abfd) != SIM_RC_OK)
{
free_state (sd);
return 0;
}
/* Establish any remaining configuration options. */
if (sim_config (sd) != SIM_RC_OK)
{
free_state (sd);
return 0;
}
if (sim_post_argv_init (sd) != SIM_RC_OK)
{
/* Uninstall the modules to avoid memory leaks,
file descriptor leaks, etc. */
free_state (sd);
return 0;
}
/* sim_hw_configure (sd); */
/* FIXME: Much of the code in sim_load can be moved here. */
sim_kind = kind;
myname = argv[0];
sim_callback = callback;
return sd;
}
void
sim_close (SIM_DESC sd, int quitting)
{
/* Nothing to do. */
}
/* Called by gdb to load a program into memory. */
SIM_RC
sim_load (SIM_DESC sd, char *prog, bfd *abfd, int from_tty)
{
bfd *prog_bfd;
/* FIXME: The code below that sets a specific variant of the H8/300
being simulated should be moved to sim_open(). */
/* See if the file is for the H8/300 or H8/300H. */
/* ??? This may not be the most efficient way. The z8k simulator
does this via a different mechanism (INIT_EXTRA_SYMTAB_INFO). */
if (abfd != NULL)
prog_bfd = abfd;
else
prog_bfd = bfd_openr (prog, NULL);
if (prog_bfd != NULL)
{
/* Set the cpu type. We ignore failure from bfd_check_format
and bfd_openr as sim_load_file checks too. */
if (bfd_check_format (prog_bfd, bfd_object))
{
set_h8300h (bfd_get_mach (prog_bfd));
}
}
/* If we're using gdb attached to the simulator, then we have to
reallocate memory for the simulator.
When gdb first starts, it calls fetch_registers (among other
functions), which in turn calls init_pointers, which allocates
simulator memory.
The problem is when we do that, we don't know whether we're
debugging an H8/300 or H8/300H program.
This is the first point at which we can make that determination,
so we just reallocate memory now; this will also allow us to handle
switching between H8/300 and H8/300H programs without exiting
gdb. */
if (h8300smode && !h8300_normal_mode)
memory_size = H8300S_MSIZE;
else if (h8300hmode && !h8300_normal_mode)
memory_size = H8300H_MSIZE;
else
memory_size = H8300_MSIZE;
if (h8_get_memory_buf (sd))
free (h8_get_memory_buf (sd));
if (h8_get_cache_idx_buf (sd))
free (h8_get_cache_idx_buf (sd));
if (h8_get_eightbit_buf (sd))
free (h8_get_eightbit_buf (sd));
h8_set_memory_buf (sd, (unsigned char *)
calloc (sizeof (char), memory_size));
h8_set_cache_idx_buf (sd, (unsigned short *)
calloc (sizeof (short), memory_size));
sd->memory_size = memory_size;
h8_set_eightbit_buf (sd, (unsigned char *) calloc (sizeof (char), 256));
/* `msize' must be a power of two. */
if ((memory_size & (memory_size - 1)) != 0)
{
(*sim_callback->printf_filtered) (sim_callback,
"sim_load: bad memory size.\n");
return SIM_RC_FAIL;
}
h8_set_mask (sd, memory_size - 1);
if (sim_load_file (sd, myname, sim_callback, prog, prog_bfd,
sim_kind == SIM_OPEN_DEBUG,
0, sim_write)
== NULL)
{
/* Close the bfd if we opened it. */
if (abfd == NULL && prog_bfd != NULL)
bfd_close (prog_bfd);
return SIM_RC_FAIL;
}
/* Close the bfd if we opened it. */
if (abfd == NULL && prog_bfd != NULL)
bfd_close (prog_bfd);
return SIM_RC_OK;
}
SIM_RC
sim_create_inferior (SIM_DESC sd, struct bfd *abfd, char **argv, char **env)
{
int i = 0;
int len_arg = 0;
int no_of_args = 0;
if (abfd != NULL)
h8_set_pc (sd, bfd_get_start_address (abfd));
else
h8_set_pc (sd, 0);
/* Command Line support. */
if (argv != NULL)
{
/* Counting the no. of commandline arguments. */
for (no_of_args = 0; argv[no_of_args] != NULL; no_of_args++)
continue;
/* Allocating memory for the argv pointers. */
h8_set_command_line (sd, (char **) malloc ((sizeof (char *))
* (no_of_args + 1)));
for (i = 0; i < no_of_args; i++)
{
/* Copying the argument string. */
h8_set_cmdline_arg (sd, i, (char *) strdup (argv[i]));
}
h8_set_cmdline_arg (sd, i, NULL);
}
return SIM_RC_OK;
}
void
sim_do_command (SIM_DESC sd, char *cmd)
{
(*sim_callback->printf_filtered) (sim_callback,
"This simulator does not accept any commands.\n");
}
void
sim_set_callbacks (struct host_callback_struct *ptr)
{
sim_callback = ptr;
}