mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-06 12:09:26 +08:00
82d23ca811
There's a flaw in the interaction of the auxv caching and the fact that target_auxv_search allows reading auxv from an arbitrary target_ops (passed in as a parameter). This has consequences as explained in this thread: https://inbox.sourceware.org/gdb-patches/20220719144542.1478037-1-luis.machado@arm.com/ In summary, when loading an AArch64 core file with MTE support by passing the executable and core file names directly to GDB, we see the MTE info: $ ./gdb -nx --data-directory=data-directory -q aarch64-mte-gcore aarch64-mte-gcore.core ... Program terminated with signal SIGSEGV, Segmentation fault Memory tag violation while accessing address 0x0000ffff8ef5e000 Allocation tag 0x1 Logical tag 0x0. #0 0x0000aaaade3d0b4c in ?? () (gdb) But if we do it as two separate commands (file and core) we don't: $ ./gdb -nx --data-directory=data-directory -q -ex "file aarch64-mte-gcore" -ex "core aarch64-mte-gcore.core" ... Program terminated with signal SIGSEGV, Segmentation fault. #0 0x0000aaaade3d0b4c in ?? () (gdb) The problem with the latter is that auxv data gets improperly cached between the two commands. When executing the file command, auxv gets first queried here, when loading the executable: #0 target_auxv_search (ops=0x55555b842400 <exec_ops>, match=0x9, valp=0x7fffffffc5d0) at /home/simark/src/binutils-gdb/gdb/auxv.c:383 #1 0x0000555557e576f2 in svr4_exec_displacement (displacementp=0x7fffffffc8c0) at /home/simark/src/binutils-gdb/gdb/solib-svr4.c:2482 #2 0x0000555557e594d1 in svr4_relocate_main_executable () at /home/simark/src/binutils-gdb/gdb/solib-svr4.c:2878 #3 0x0000555557e5989e in svr4_solib_create_inferior_hook (from_tty=1) at /home/simark/src/binutils-gdb/gdb/solib-svr4.c:2933 #4 0x0000555557e6e49f in solib_create_inferior_hook (from_tty=1) at /home/simark/src/binutils-gdb/gdb/solib.c:1253 #5 0x0000555557f33e29 in symbol_file_command (args=0x7fffffffe01c "aarch64-mte-gcore", from_tty=1) at /home/simark/src/binutils-gdb/gdb/symfile.c:1655 #6 0x00005555573319c3 in file_command (arg=0x7fffffffe01c "aarch64-mte-gcore", from_tty=1) at /home/simark/src/binutils-gdb/gdb/exec.c:555 #7 0x0000555556e47185 in do_simple_func (args=0x7fffffffe01c "aarch64-mte-gcore", from_tty=1, c=0x612000047740) at /home/simark/src/binutils-gdb/gdb/cli/cli-decode.c:95 #8 0x0000555556e551c9 in cmd_func (cmd=0x612000047740, args=0x7fffffffe01c "aarch64-mte-gcore", from_tty=1) at /home/simark/src/binutils-gdb/gdb/cli/cli-decode.c:2543 #9 0x00005555580e63fd in execute_command (p=0x7fffffffe02c "e", from_tty=1) at /home/simark/src/binutils-gdb/gdb/top.c:692 #10 0x0000555557771913 in catch_command_errors (command=0x5555580e55ad <execute_command(char const*, int)>, arg=0x7fffffffe017 "file aarch64-mte-gcore", from_tty=1, do_bp_actions=true) at /home/simark/src/binutils-gdb/gdb/main.c:513 #11 0x0000555557771fba in execute_cmdargs (cmdarg_vec=0x7fffffffd570, file_type=CMDARG_FILE, cmd_type=CMDARG_COMMAND, ret=0x7fffffffd230) at /home/simark/src/binutils-gdb/gdb/main.c:608 #12 0x00005555577755ac in captured_main_1 (context=0x7fffffffda10) at /home/simark/src/binutils-gdb/gdb/main.c:1299 #13 0x0000555557775c2d in captured_main (data=0x7fffffffda10) at /home/simark/src/binutils-gdb/gdb/main.c:1320 #14 0x0000555557775cc2 in gdb_main (args=0x7fffffffda10) at /home/simark/src/binutils-gdb/gdb/main.c:1345 #15 0x00005555568bdcbe in main (argc=10, argv=0x7fffffffdba8) at /home/simark/src/binutils-gdb/gdb/gdb.c:32 Here, target_auxv_search is called on the inferior's target stack. The target stack only contains the exec target, so the query returns empty auxv data. This gets cached for that inferior in `auxv_inferior_data`. In its constructor (before it is pushed to the inferior's target stack), the core_target needs to identify the right target description from the core, and for that asks the gdbarch to read a target description from the core file. Because some implementations of gdbarch_core_read_description (such as AArch64's) need to read auxv data from the core in order to determine the right target description, the core_target passes a pointer to itself, allowing implementations to call target_auxv_search it. However, because we have previously cached (empty) auxv data for that inferior, target_auxv_search searched that cached (empty) auxv data, not auxv data read from the core. Remember that this data was obtained by reading auxv on the inferior's target stack, which only contained an exec target. The problem I see is that while target_auxv_search offers the flexibility of reading from an arbitrary (passed as an argument) target, the caching doesn't do the distinction of which target is being queried, and where the cached data came from. So, you could read auxv from a target A, it gets cached, then you try to read auxv from a target B, and it returns the cached data from target A. That sounds wrong. In our case, we expect to read different auxv data from the core target than what we have read from the target stack earlier, so it doesn't make sense to hit the cache in this case. To fix this, I propose splitting the code paths that read auxv data from an inferior's target stack and those that read from a passed-in target. The code path that reads from the target stack will keep caching, whereas the one that reads from a passed-in target won't. And since, searching in auxv data is independent from where this data came from, split the "read" part from the "search" part. From what I understand, auxv caching was introduced mostly to reduce latency on remote connections, when doing many queries. With the change I propose, only the queries done while constructing the core_target end up not using cached auxv data. This is fine, because there are just a handful of queries max, done at this point, and reading core files is local. The changes to auxv functions are: - Introduce 2 target_read_auxv functions. One reads from an explicit target_ops and doesn't do caching (to be used in gdbarch_core_read_description context). The other takes no argument, reads from the current inferior's target stack (it looks just like a standard target function wrapper) and does caching. The first target_read_auxv actually replaces get_auxv_inferior_data, since it became a trivial wrapper around it. - Change the existing target_auxv_search to not read auxv data from the target, but to accept it as a parameter (a gdb::byte_vector). This function doesn't care where the data came from, it just searches in it. It still needs to take a target_ops and gdbarch to know how to parse auxv entries. - Add a convenience target_auxv_search overload that reads auxv data from the inferior's target stack and searches in it. This overload is useful to replace the exist target_auxv_search calls that passed the `current_inferior ()->top_target ()` target and keep the call sites short. - Modify parse_auxv to accept a target_ops and gdbarch to use for parsing entries. Not strictly related to the rest of this change, but it seems like a good change in the context. Changes in architecture-specific files (tdep and nat): - In linux-tdep, linux_get_hwcap and linux_get_hwcap2 get split in two, similar to target_auxv_search. One version receives auxv data, target and arch as parameters. The other gets everything from the current inferior. The latter is for convenience, to avoid making call sites too ugly. - Call sites of linux_get_hwcap and linux_get_hwcap2 are adjusted to use either of the new versions. The call sites in gdbarch_core_read_description context explicitly read auxv data from the passed-in target and call the linux_get_hwcap{,2} function with parameters. Other call sites use the versions without parameters. - Same idea for arm_fbsd_read_description_auxv. - Call sites of target_auxv_search that passed `current_inferior ()->top_target ()` are changed to use the target_auxv_search overload that works in the current inferior. Reviewed-By: John Baldwin <jhb@FreeBSD.org> Reviewed-By: Luis Machado <luis.machado@arm.com> Change-Id: Ib775a220cf1e76443fb7da2fdff8fc631128fe66
964 lines
28 KiB
C
964 lines
28 KiB
C
/* Native-dependent code for GNU/Linux AArch64.
|
||
|
||
Copyright (C) 2011-2022 Free Software Foundation, Inc.
|
||
Contributed by ARM Ltd.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
|
||
#include "inferior.h"
|
||
#include "gdbcore.h"
|
||
#include "regcache.h"
|
||
#include "linux-nat.h"
|
||
#include "target-descriptions.h"
|
||
#include "auxv.h"
|
||
#include "gdbcmd.h"
|
||
#include "aarch64-nat.h"
|
||
#include "aarch64-tdep.h"
|
||
#include "aarch64-linux-tdep.h"
|
||
#include "aarch32-linux-nat.h"
|
||
#include "aarch32-tdep.h"
|
||
#include "arch/arm.h"
|
||
#include "nat/aarch64-linux.h"
|
||
#include "nat/aarch64-linux-hw-point.h"
|
||
#include "nat/aarch64-sve-linux-ptrace.h"
|
||
|
||
#include "elf/external.h"
|
||
#include "elf/common.h"
|
||
|
||
#include "nat/gdb_ptrace.h"
|
||
#include <sys/utsname.h>
|
||
#include <asm/ptrace.h>
|
||
|
||
#include "gregset.h"
|
||
#include "linux-tdep.h"
|
||
#include "arm-tdep.h"
|
||
|
||
/* Defines ps_err_e, struct ps_prochandle. */
|
||
#include "gdb_proc_service.h"
|
||
#include "arch-utils.h"
|
||
|
||
#include "arch/aarch64-mte-linux.h"
|
||
|
||
#include "nat/aarch64-mte-linux-ptrace.h"
|
||
|
||
#ifndef TRAP_HWBKPT
|
||
#define TRAP_HWBKPT 0x0004
|
||
#endif
|
||
|
||
class aarch64_linux_nat_target final
|
||
: public aarch64_nat_target<linux_nat_target>
|
||
{
|
||
public:
|
||
/* Add our register access methods. */
|
||
void fetch_registers (struct regcache *, int) override;
|
||
void store_registers (struct regcache *, int) override;
|
||
|
||
const struct target_desc *read_description () override;
|
||
|
||
/* Add our hardware breakpoint and watchpoint implementation. */
|
||
bool stopped_by_watchpoint () override;
|
||
bool stopped_data_address (CORE_ADDR *) override;
|
||
|
||
int can_do_single_step () override;
|
||
|
||
/* Override the GNU/Linux inferior startup hook. */
|
||
void post_startup_inferior (ptid_t) override;
|
||
|
||
/* Override the GNU/Linux post attach hook. */
|
||
void post_attach (int pid) override;
|
||
|
||
/* These three defer to common nat/ code. */
|
||
void low_new_thread (struct lwp_info *lp) override
|
||
{ aarch64_linux_new_thread (lp); }
|
||
void low_delete_thread (struct arch_lwp_info *lp) override
|
||
{ aarch64_linux_delete_thread (lp); }
|
||
void low_prepare_to_resume (struct lwp_info *lp) override
|
||
{ aarch64_linux_prepare_to_resume (lp); }
|
||
|
||
void low_new_fork (struct lwp_info *parent, pid_t child_pid) override;
|
||
void low_forget_process (pid_t pid) override;
|
||
|
||
/* Add our siginfo layout converter. */
|
||
bool low_siginfo_fixup (siginfo_t *ptrace, gdb_byte *inf, int direction)
|
||
override;
|
||
|
||
struct gdbarch *thread_architecture (ptid_t) override;
|
||
|
||
bool supports_memory_tagging () override;
|
||
|
||
/* Read memory allocation tags from memory via PTRACE. */
|
||
bool fetch_memtags (CORE_ADDR address, size_t len,
|
||
gdb::byte_vector &tags, int type) override;
|
||
|
||
/* Write allocation tags to memory via PTRACE. */
|
||
bool store_memtags (CORE_ADDR address, size_t len,
|
||
const gdb::byte_vector &tags, int type) override;
|
||
};
|
||
|
||
static aarch64_linux_nat_target the_aarch64_linux_nat_target;
|
||
|
||
/* Called whenever GDB is no longer debugging process PID. It deletes
|
||
data structures that keep track of debug register state. */
|
||
|
||
void
|
||
aarch64_linux_nat_target::low_forget_process (pid_t pid)
|
||
{
|
||
aarch64_remove_debug_reg_state (pid);
|
||
}
|
||
|
||
/* Fill GDB's register array with the general-purpose register values
|
||
from the current thread. */
|
||
|
||
static void
|
||
fetch_gregs_from_thread (struct regcache *regcache)
|
||
{
|
||
int ret, tid;
|
||
struct gdbarch *gdbarch = regcache->arch ();
|
||
elf_gregset_t regs;
|
||
struct iovec iovec;
|
||
|
||
/* Make sure REGS can hold all registers contents on both aarch64
|
||
and arm. */
|
||
gdb_static_assert (sizeof (regs) >= 18 * 4);
|
||
|
||
tid = regcache->ptid ().lwp ();
|
||
|
||
iovec.iov_base = ®s;
|
||
if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
|
||
iovec.iov_len = 18 * 4;
|
||
else
|
||
iovec.iov_len = sizeof (regs);
|
||
|
||
ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iovec);
|
||
if (ret < 0)
|
||
perror_with_name (_("Unable to fetch general registers"));
|
||
|
||
if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
|
||
aarch32_gp_regcache_supply (regcache, (uint32_t *) regs, 1);
|
||
else
|
||
{
|
||
int regno;
|
||
|
||
for (regno = AARCH64_X0_REGNUM; regno <= AARCH64_CPSR_REGNUM; regno++)
|
||
regcache->raw_supply (regno, ®s[regno - AARCH64_X0_REGNUM]);
|
||
}
|
||
}
|
||
|
||
/* Store to the current thread the valid general-purpose register
|
||
values in the GDB's register array. */
|
||
|
||
static void
|
||
store_gregs_to_thread (const struct regcache *regcache)
|
||
{
|
||
int ret, tid;
|
||
elf_gregset_t regs;
|
||
struct iovec iovec;
|
||
struct gdbarch *gdbarch = regcache->arch ();
|
||
|
||
/* Make sure REGS can hold all registers contents on both aarch64
|
||
and arm. */
|
||
gdb_static_assert (sizeof (regs) >= 18 * 4);
|
||
tid = regcache->ptid ().lwp ();
|
||
|
||
iovec.iov_base = ®s;
|
||
if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
|
||
iovec.iov_len = 18 * 4;
|
||
else
|
||
iovec.iov_len = sizeof (regs);
|
||
|
||
ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iovec);
|
||
if (ret < 0)
|
||
perror_with_name (_("Unable to fetch general registers"));
|
||
|
||
if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
|
||
aarch32_gp_regcache_collect (regcache, (uint32_t *) regs, 1);
|
||
else
|
||
{
|
||
int regno;
|
||
|
||
for (regno = AARCH64_X0_REGNUM; regno <= AARCH64_CPSR_REGNUM; regno++)
|
||
if (REG_VALID == regcache->get_register_status (regno))
|
||
regcache->raw_collect (regno, ®s[regno - AARCH64_X0_REGNUM]);
|
||
}
|
||
|
||
ret = ptrace (PTRACE_SETREGSET, tid, NT_PRSTATUS, &iovec);
|
||
if (ret < 0)
|
||
perror_with_name (_("Unable to store general registers"));
|
||
}
|
||
|
||
/* Fill GDB's register array with the fp/simd register values
|
||
from the current thread. */
|
||
|
||
static void
|
||
fetch_fpregs_from_thread (struct regcache *regcache)
|
||
{
|
||
int ret, tid;
|
||
elf_fpregset_t regs;
|
||
struct iovec iovec;
|
||
struct gdbarch *gdbarch = regcache->arch ();
|
||
|
||
/* Make sure REGS can hold all VFP registers contents on both aarch64
|
||
and arm. */
|
||
gdb_static_assert (sizeof regs >= ARM_VFP3_REGS_SIZE);
|
||
|
||
tid = regcache->ptid ().lwp ();
|
||
|
||
iovec.iov_base = ®s;
|
||
|
||
if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
|
||
{
|
||
iovec.iov_len = ARM_VFP3_REGS_SIZE;
|
||
|
||
ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iovec);
|
||
if (ret < 0)
|
||
perror_with_name (_("Unable to fetch VFP registers"));
|
||
|
||
aarch32_vfp_regcache_supply (regcache, (gdb_byte *) ®s, 32);
|
||
}
|
||
else
|
||
{
|
||
int regno;
|
||
|
||
iovec.iov_len = sizeof (regs);
|
||
|
||
ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iovec);
|
||
if (ret < 0)
|
||
perror_with_name (_("Unable to fetch vFP/SIMD registers"));
|
||
|
||
for (regno = AARCH64_V0_REGNUM; regno <= AARCH64_V31_REGNUM; regno++)
|
||
regcache->raw_supply (regno, ®s.vregs[regno - AARCH64_V0_REGNUM]);
|
||
|
||
regcache->raw_supply (AARCH64_FPSR_REGNUM, ®s.fpsr);
|
||
regcache->raw_supply (AARCH64_FPCR_REGNUM, ®s.fpcr);
|
||
}
|
||
}
|
||
|
||
/* Store to the current thread the valid fp/simd register
|
||
values in the GDB's register array. */
|
||
|
||
static void
|
||
store_fpregs_to_thread (const struct regcache *regcache)
|
||
{
|
||
int ret, tid;
|
||
elf_fpregset_t regs;
|
||
struct iovec iovec;
|
||
struct gdbarch *gdbarch = regcache->arch ();
|
||
|
||
/* Make sure REGS can hold all VFP registers contents on both aarch64
|
||
and arm. */
|
||
gdb_static_assert (sizeof regs >= ARM_VFP3_REGS_SIZE);
|
||
tid = regcache->ptid ().lwp ();
|
||
|
||
iovec.iov_base = ®s;
|
||
|
||
if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
|
||
{
|
||
iovec.iov_len = ARM_VFP3_REGS_SIZE;
|
||
|
||
ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iovec);
|
||
if (ret < 0)
|
||
perror_with_name (_("Unable to fetch VFP registers"));
|
||
|
||
aarch32_vfp_regcache_collect (regcache, (gdb_byte *) ®s, 32);
|
||
}
|
||
else
|
||
{
|
||
int regno;
|
||
|
||
iovec.iov_len = sizeof (regs);
|
||
|
||
ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iovec);
|
||
if (ret < 0)
|
||
perror_with_name (_("Unable to fetch FP/SIMD registers"));
|
||
|
||
for (regno = AARCH64_V0_REGNUM; regno <= AARCH64_V31_REGNUM; regno++)
|
||
if (REG_VALID == regcache->get_register_status (regno))
|
||
regcache->raw_collect
|
||
(regno, (char *) ®s.vregs[regno - AARCH64_V0_REGNUM]);
|
||
|
||
if (REG_VALID == regcache->get_register_status (AARCH64_FPSR_REGNUM))
|
||
regcache->raw_collect (AARCH64_FPSR_REGNUM, (char *) ®s.fpsr);
|
||
if (REG_VALID == regcache->get_register_status (AARCH64_FPCR_REGNUM))
|
||
regcache->raw_collect (AARCH64_FPCR_REGNUM, (char *) ®s.fpcr);
|
||
}
|
||
|
||
if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
|
||
{
|
||
ret = ptrace (PTRACE_SETREGSET, tid, NT_ARM_VFP, &iovec);
|
||
if (ret < 0)
|
||
perror_with_name (_("Unable to store VFP registers"));
|
||
}
|
||
else
|
||
{
|
||
ret = ptrace (PTRACE_SETREGSET, tid, NT_FPREGSET, &iovec);
|
||
if (ret < 0)
|
||
perror_with_name (_("Unable to store FP/SIMD registers"));
|
||
}
|
||
}
|
||
|
||
/* Fill GDB's register array with the sve register values
|
||
from the current thread. */
|
||
|
||
static void
|
||
fetch_sveregs_from_thread (struct regcache *regcache)
|
||
{
|
||
std::unique_ptr<gdb_byte[]> base
|
||
= aarch64_sve_get_sveregs (regcache->ptid ().lwp ());
|
||
aarch64_sve_regs_copy_to_reg_buf (regcache, base.get ());
|
||
}
|
||
|
||
/* Store to the current thread the valid sve register
|
||
values in the GDB's register array. */
|
||
|
||
static void
|
||
store_sveregs_to_thread (struct regcache *regcache)
|
||
{
|
||
int ret;
|
||
struct iovec iovec;
|
||
int tid = regcache->ptid ().lwp ();
|
||
|
||
/* First store vector length to the thread. This is done first to ensure the
|
||
ptrace buffers read from the kernel are the correct size. */
|
||
if (!aarch64_sve_set_vq (tid, regcache))
|
||
perror_with_name (_("Unable to set VG register"));
|
||
|
||
/* Obtain a dump of SVE registers from ptrace. */
|
||
std::unique_ptr<gdb_byte[]> base = aarch64_sve_get_sveregs (tid);
|
||
|
||
/* Overwrite with regcache state. */
|
||
aarch64_sve_regs_copy_from_reg_buf (regcache, base.get ());
|
||
|
||
/* Write back to the kernel. */
|
||
iovec.iov_base = base.get ();
|
||
iovec.iov_len = ((struct user_sve_header *) base.get ())->size;
|
||
ret = ptrace (PTRACE_SETREGSET, tid, NT_ARM_SVE, &iovec);
|
||
|
||
if (ret < 0)
|
||
perror_with_name (_("Unable to store sve registers"));
|
||
}
|
||
|
||
/* Fill GDB's register array with the pointer authentication mask values from
|
||
the current thread. */
|
||
|
||
static void
|
||
fetch_pauth_masks_from_thread (struct regcache *regcache)
|
||
{
|
||
aarch64_gdbarch_tdep *tdep
|
||
= gdbarch_tdep<aarch64_gdbarch_tdep> (regcache->arch ());
|
||
int ret;
|
||
struct iovec iovec;
|
||
uint64_t pauth_regset[2] = {0, 0};
|
||
int tid = regcache->ptid ().lwp ();
|
||
|
||
iovec.iov_base = &pauth_regset;
|
||
iovec.iov_len = sizeof (pauth_regset);
|
||
|
||
ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_PAC_MASK, &iovec);
|
||
if (ret != 0)
|
||
perror_with_name (_("unable to fetch pauth registers"));
|
||
|
||
regcache->raw_supply (AARCH64_PAUTH_DMASK_REGNUM (tdep->pauth_reg_base),
|
||
&pauth_regset[0]);
|
||
regcache->raw_supply (AARCH64_PAUTH_CMASK_REGNUM (tdep->pauth_reg_base),
|
||
&pauth_regset[1]);
|
||
}
|
||
|
||
/* Fill GDB's register array with the MTE register values from
|
||
the current thread. */
|
||
|
||
static void
|
||
fetch_mteregs_from_thread (struct regcache *regcache)
|
||
{
|
||
aarch64_gdbarch_tdep *tdep
|
||
= gdbarch_tdep<aarch64_gdbarch_tdep> (regcache->arch ());
|
||
int regno = tdep->mte_reg_base;
|
||
|
||
gdb_assert (regno != -1);
|
||
|
||
uint64_t tag_ctl = 0;
|
||
struct iovec iovec;
|
||
|
||
iovec.iov_base = &tag_ctl;
|
||
iovec.iov_len = sizeof (tag_ctl);
|
||
|
||
int tid = get_ptrace_pid (regcache->ptid ());
|
||
if (ptrace (PTRACE_GETREGSET, tid, NT_ARM_TAGGED_ADDR_CTRL, &iovec) != 0)
|
||
perror_with_name (_("unable to fetch MTE registers"));
|
||
|
||
regcache->raw_supply (regno, &tag_ctl);
|
||
}
|
||
|
||
/* Store to the current thread the valid MTE register set in the GDB's
|
||
register array. */
|
||
|
||
static void
|
||
store_mteregs_to_thread (struct regcache *regcache)
|
||
{
|
||
aarch64_gdbarch_tdep *tdep
|
||
= gdbarch_tdep<aarch64_gdbarch_tdep> (regcache->arch ());
|
||
int regno = tdep->mte_reg_base;
|
||
|
||
gdb_assert (regno != -1);
|
||
|
||
uint64_t tag_ctl = 0;
|
||
|
||
if (REG_VALID != regcache->get_register_status (regno))
|
||
return;
|
||
|
||
regcache->raw_collect (regno, (char *) &tag_ctl);
|
||
|
||
struct iovec iovec;
|
||
|
||
iovec.iov_base = &tag_ctl;
|
||
iovec.iov_len = sizeof (tag_ctl);
|
||
|
||
int tid = get_ptrace_pid (regcache->ptid ());
|
||
if (ptrace (PTRACE_SETREGSET, tid, NT_ARM_TAGGED_ADDR_CTRL, &iovec) != 0)
|
||
perror_with_name (_("unable to store MTE registers"));
|
||
}
|
||
|
||
/* Fill GDB's register array with the TLS register values from
|
||
the current thread. */
|
||
|
||
static void
|
||
fetch_tlsregs_from_thread (struct regcache *regcache)
|
||
{
|
||
aarch64_gdbarch_tdep *tdep
|
||
= gdbarch_tdep<aarch64_gdbarch_tdep> (regcache->arch ());
|
||
int regno = tdep->tls_regnum;
|
||
|
||
gdb_assert (regno != -1);
|
||
|
||
uint64_t tpidr = 0;
|
||
struct iovec iovec;
|
||
|
||
iovec.iov_base = &tpidr;
|
||
iovec.iov_len = sizeof (tpidr);
|
||
|
||
int tid = get_ptrace_pid (regcache->ptid ());
|
||
if (ptrace (PTRACE_GETREGSET, tid, NT_ARM_TLS, &iovec) != 0)
|
||
perror_with_name (_("unable to fetch TLS register"));
|
||
|
||
regcache->raw_supply (regno, &tpidr);
|
||
}
|
||
|
||
/* Store to the current thread the valid TLS register set in GDB's
|
||
register array. */
|
||
|
||
static void
|
||
store_tlsregs_to_thread (struct regcache *regcache)
|
||
{
|
||
aarch64_gdbarch_tdep *tdep
|
||
= gdbarch_tdep<aarch64_gdbarch_tdep> (regcache->arch ());
|
||
int regno = tdep->tls_regnum;
|
||
|
||
gdb_assert (regno != -1);
|
||
|
||
uint64_t tpidr = 0;
|
||
|
||
if (REG_VALID != regcache->get_register_status (regno))
|
||
return;
|
||
|
||
regcache->raw_collect (regno, (char *) &tpidr);
|
||
|
||
struct iovec iovec;
|
||
|
||
iovec.iov_base = &tpidr;
|
||
iovec.iov_len = sizeof (tpidr);
|
||
|
||
int tid = get_ptrace_pid (regcache->ptid ());
|
||
if (ptrace (PTRACE_SETREGSET, tid, NT_ARM_TLS, &iovec) != 0)
|
||
perror_with_name (_("unable to store TLS register"));
|
||
}
|
||
|
||
/* The AArch64 version of the "fetch_registers" target_ops method. Fetch
|
||
REGNO from the target and place the result into REGCACHE. */
|
||
|
||
static void
|
||
aarch64_fetch_registers (struct regcache *regcache, int regno)
|
||
{
|
||
aarch64_gdbarch_tdep *tdep
|
||
= gdbarch_tdep<aarch64_gdbarch_tdep> (regcache->arch ());
|
||
|
||
if (regno == -1)
|
||
{
|
||
fetch_gregs_from_thread (regcache);
|
||
if (tdep->has_sve ())
|
||
fetch_sveregs_from_thread (regcache);
|
||
else
|
||
fetch_fpregs_from_thread (regcache);
|
||
|
||
if (tdep->has_pauth ())
|
||
fetch_pauth_masks_from_thread (regcache);
|
||
|
||
if (tdep->has_mte ())
|
||
fetch_mteregs_from_thread (regcache);
|
||
|
||
if (tdep->has_tls ())
|
||
fetch_tlsregs_from_thread (regcache);
|
||
}
|
||
else if (regno < AARCH64_V0_REGNUM)
|
||
fetch_gregs_from_thread (regcache);
|
||
else if (tdep->has_sve ())
|
||
fetch_sveregs_from_thread (regcache);
|
||
else
|
||
fetch_fpregs_from_thread (regcache);
|
||
|
||
if (tdep->has_pauth ())
|
||
{
|
||
if (regno == AARCH64_PAUTH_DMASK_REGNUM (tdep->pauth_reg_base)
|
||
|| regno == AARCH64_PAUTH_CMASK_REGNUM (tdep->pauth_reg_base))
|
||
fetch_pauth_masks_from_thread (regcache);
|
||
}
|
||
|
||
/* Fetch individual MTE registers. */
|
||
if (tdep->has_mte ()
|
||
&& (regno == tdep->mte_reg_base))
|
||
fetch_mteregs_from_thread (regcache);
|
||
|
||
if (tdep->has_tls () && regno == tdep->tls_regnum)
|
||
fetch_tlsregs_from_thread (regcache);
|
||
}
|
||
|
||
/* A version of the "fetch_registers" target_ops method used when running
|
||
32-bit ARM code on an AArch64 target. Fetch REGNO from the target and
|
||
place the result into REGCACHE. */
|
||
|
||
static void
|
||
aarch32_fetch_registers (struct regcache *regcache, int regno)
|
||
{
|
||
arm_gdbarch_tdep *tdep
|
||
= gdbarch_tdep<arm_gdbarch_tdep> (regcache->arch ());
|
||
|
||
if (regno == -1)
|
||
{
|
||
fetch_gregs_from_thread (regcache);
|
||
if (tdep->vfp_register_count > 0)
|
||
fetch_fpregs_from_thread (regcache);
|
||
}
|
||
else if (regno < ARM_F0_REGNUM || regno == ARM_PS_REGNUM)
|
||
fetch_gregs_from_thread (regcache);
|
||
else if (tdep->vfp_register_count > 0
|
||
&& regno >= ARM_D0_REGNUM
|
||
&& (regno < ARM_D0_REGNUM + tdep->vfp_register_count
|
||
|| regno == ARM_FPSCR_REGNUM))
|
||
fetch_fpregs_from_thread (regcache);
|
||
}
|
||
|
||
/* Implement the "fetch_registers" target_ops method. */
|
||
|
||
void
|
||
aarch64_linux_nat_target::fetch_registers (struct regcache *regcache,
|
||
int regno)
|
||
{
|
||
if (gdbarch_bfd_arch_info (regcache->arch ())->bits_per_word == 32)
|
||
aarch32_fetch_registers (regcache, regno);
|
||
else
|
||
aarch64_fetch_registers (regcache, regno);
|
||
}
|
||
|
||
/* The AArch64 version of the "store_registers" target_ops method. Copy
|
||
the value of register REGNO from REGCACHE into the the target. */
|
||
|
||
static void
|
||
aarch64_store_registers (struct regcache *regcache, int regno)
|
||
{
|
||
aarch64_gdbarch_tdep *tdep
|
||
= gdbarch_tdep<aarch64_gdbarch_tdep> (regcache->arch ());
|
||
|
||
if (regno == -1)
|
||
{
|
||
store_gregs_to_thread (regcache);
|
||
if (tdep->has_sve ())
|
||
store_sveregs_to_thread (regcache);
|
||
else
|
||
store_fpregs_to_thread (regcache);
|
||
|
||
if (tdep->has_mte ())
|
||
store_mteregs_to_thread (regcache);
|
||
|
||
if (tdep->has_tls ())
|
||
store_tlsregs_to_thread (regcache);
|
||
}
|
||
else if (regno < AARCH64_V0_REGNUM)
|
||
store_gregs_to_thread (regcache);
|
||
else if (tdep->has_sve ())
|
||
store_sveregs_to_thread (regcache);
|
||
else
|
||
store_fpregs_to_thread (regcache);
|
||
|
||
/* Store MTE registers. */
|
||
if (tdep->has_mte ()
|
||
&& (regno == tdep->mte_reg_base))
|
||
store_mteregs_to_thread (regcache);
|
||
|
||
if (tdep->has_tls () && regno == tdep->tls_regnum)
|
||
store_tlsregs_to_thread (regcache);
|
||
}
|
||
|
||
/* A version of the "store_registers" target_ops method used when running
|
||
32-bit ARM code on an AArch64 target. Copy the value of register REGNO
|
||
from REGCACHE into the the target. */
|
||
|
||
static void
|
||
aarch32_store_registers (struct regcache *regcache, int regno)
|
||
{
|
||
arm_gdbarch_tdep *tdep
|
||
= gdbarch_tdep<arm_gdbarch_tdep> (regcache->arch ());
|
||
|
||
if (regno == -1)
|
||
{
|
||
store_gregs_to_thread (regcache);
|
||
if (tdep->vfp_register_count > 0)
|
||
store_fpregs_to_thread (regcache);
|
||
}
|
||
else if (regno < ARM_F0_REGNUM || regno == ARM_PS_REGNUM)
|
||
store_gregs_to_thread (regcache);
|
||
else if (tdep->vfp_register_count > 0
|
||
&& regno >= ARM_D0_REGNUM
|
||
&& (regno < ARM_D0_REGNUM + tdep->vfp_register_count
|
||
|| regno == ARM_FPSCR_REGNUM))
|
||
store_fpregs_to_thread (regcache);
|
||
}
|
||
|
||
/* Implement the "store_registers" target_ops method. */
|
||
|
||
void
|
||
aarch64_linux_nat_target::store_registers (struct regcache *regcache,
|
||
int regno)
|
||
{
|
||
if (gdbarch_bfd_arch_info (regcache->arch ())->bits_per_word == 32)
|
||
aarch32_store_registers (regcache, regno);
|
||
else
|
||
aarch64_store_registers (regcache, regno);
|
||
}
|
||
|
||
/* Fill register REGNO (if it is a general-purpose register) in
|
||
*GREGSETPS with the value in GDB's register array. If REGNO is -1,
|
||
do this for all registers. */
|
||
|
||
void
|
||
fill_gregset (const struct regcache *regcache,
|
||
gdb_gregset_t *gregsetp, int regno)
|
||
{
|
||
regcache_collect_regset (&aarch64_linux_gregset, regcache,
|
||
regno, (gdb_byte *) gregsetp,
|
||
AARCH64_LINUX_SIZEOF_GREGSET);
|
||
}
|
||
|
||
/* Fill GDB's register array with the general-purpose register values
|
||
in *GREGSETP. */
|
||
|
||
void
|
||
supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
|
||
{
|
||
regcache_supply_regset (&aarch64_linux_gregset, regcache, -1,
|
||
(const gdb_byte *) gregsetp,
|
||
AARCH64_LINUX_SIZEOF_GREGSET);
|
||
}
|
||
|
||
/* Fill register REGNO (if it is a floating-point register) in
|
||
*FPREGSETP with the value in GDB's register array. If REGNO is -1,
|
||
do this for all registers. */
|
||
|
||
void
|
||
fill_fpregset (const struct regcache *regcache,
|
||
gdb_fpregset_t *fpregsetp, int regno)
|
||
{
|
||
regcache_collect_regset (&aarch64_linux_fpregset, regcache,
|
||
regno, (gdb_byte *) fpregsetp,
|
||
AARCH64_LINUX_SIZEOF_FPREGSET);
|
||
}
|
||
|
||
/* Fill GDB's register array with the floating-point register values
|
||
in *FPREGSETP. */
|
||
|
||
void
|
||
supply_fpregset (struct regcache *regcache, const gdb_fpregset_t *fpregsetp)
|
||
{
|
||
regcache_supply_regset (&aarch64_linux_fpregset, regcache, -1,
|
||
(const gdb_byte *) fpregsetp,
|
||
AARCH64_LINUX_SIZEOF_FPREGSET);
|
||
}
|
||
|
||
/* linux_nat_new_fork hook. */
|
||
|
||
void
|
||
aarch64_linux_nat_target::low_new_fork (struct lwp_info *parent,
|
||
pid_t child_pid)
|
||
{
|
||
pid_t parent_pid;
|
||
struct aarch64_debug_reg_state *parent_state;
|
||
struct aarch64_debug_reg_state *child_state;
|
||
|
||
/* NULL means no watchpoint has ever been set in the parent. In
|
||
that case, there's nothing to do. */
|
||
if (parent->arch_private == NULL)
|
||
return;
|
||
|
||
/* GDB core assumes the child inherits the watchpoints/hw
|
||
breakpoints of the parent, and will remove them all from the
|
||
forked off process. Copy the debug registers mirrors into the
|
||
new process so that all breakpoints and watchpoints can be
|
||
removed together. */
|
||
|
||
parent_pid = parent->ptid.pid ();
|
||
parent_state = aarch64_get_debug_reg_state (parent_pid);
|
||
child_state = aarch64_get_debug_reg_state (child_pid);
|
||
*child_state = *parent_state;
|
||
}
|
||
|
||
|
||
/* Called by libthread_db. Returns a pointer to the thread local
|
||
storage (or its descriptor). */
|
||
|
||
ps_err_e
|
||
ps_get_thread_area (struct ps_prochandle *ph,
|
||
lwpid_t lwpid, int idx, void **base)
|
||
{
|
||
int is_64bit_p
|
||
= (gdbarch_bfd_arch_info (target_gdbarch ())->bits_per_word == 64);
|
||
|
||
return aarch64_ps_get_thread_area (ph, lwpid, idx, base, is_64bit_p);
|
||
}
|
||
|
||
|
||
/* Implement the virtual inf_ptrace_target::post_startup_inferior method. */
|
||
|
||
void
|
||
aarch64_linux_nat_target::post_startup_inferior (ptid_t ptid)
|
||
{
|
||
low_forget_process (ptid.pid ());
|
||
aarch64_linux_get_debug_reg_capacity (ptid.pid ());
|
||
linux_nat_target::post_startup_inferior (ptid);
|
||
}
|
||
|
||
/* Implement the "post_attach" target_ops method. */
|
||
|
||
void
|
||
aarch64_linux_nat_target::post_attach (int pid)
|
||
{
|
||
low_forget_process (pid);
|
||
/* Set the hardware debug register capacity. If
|
||
aarch64_linux_get_debug_reg_capacity is not called
|
||
(as it is in aarch64_linux_child_post_startup_inferior) then
|
||
software watchpoints will be used instead of hardware
|
||
watchpoints when attaching to a target. */
|
||
aarch64_linux_get_debug_reg_capacity (pid);
|
||
linux_nat_target::post_attach (pid);
|
||
}
|
||
|
||
/* Implement the "read_description" target_ops method. */
|
||
|
||
const struct target_desc *
|
||
aarch64_linux_nat_target::read_description ()
|
||
{
|
||
int ret, tid;
|
||
gdb_byte regbuf[ARM_VFP3_REGS_SIZE];
|
||
struct iovec iovec;
|
||
|
||
tid = inferior_ptid.pid ();
|
||
|
||
iovec.iov_base = regbuf;
|
||
iovec.iov_len = ARM_VFP3_REGS_SIZE;
|
||
|
||
ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iovec);
|
||
if (ret == 0)
|
||
return aarch32_read_description ();
|
||
|
||
CORE_ADDR hwcap = linux_get_hwcap ();
|
||
CORE_ADDR hwcap2 = linux_get_hwcap2 ();
|
||
|
||
aarch64_features features;
|
||
features.vq = aarch64_sve_get_vq (tid);
|
||
features.pauth = hwcap & AARCH64_HWCAP_PACA;
|
||
features.mte = hwcap2 & HWCAP2_MTE;
|
||
features.tls = true;
|
||
|
||
return aarch64_read_description (features);
|
||
}
|
||
|
||
/* Convert a native/host siginfo object, into/from the siginfo in the
|
||
layout of the inferiors' architecture. Returns true if any
|
||
conversion was done; false otherwise. If DIRECTION is 1, then copy
|
||
from INF to NATIVE. If DIRECTION is 0, copy from NATIVE to
|
||
INF. */
|
||
|
||
bool
|
||
aarch64_linux_nat_target::low_siginfo_fixup (siginfo_t *native, gdb_byte *inf,
|
||
int direction)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
|
||
|
||
/* Is the inferior 32-bit? If so, then do fixup the siginfo
|
||
object. */
|
||
if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
|
||
{
|
||
if (direction == 0)
|
||
aarch64_compat_siginfo_from_siginfo ((struct compat_siginfo *) inf,
|
||
native);
|
||
else
|
||
aarch64_siginfo_from_compat_siginfo (native,
|
||
(struct compat_siginfo *) inf);
|
||
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Implement the "stopped_data_address" target_ops method. */
|
||
|
||
bool
|
||
aarch64_linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
|
||
{
|
||
siginfo_t siginfo;
|
||
struct aarch64_debug_reg_state *state;
|
||
|
||
if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
|
||
return false;
|
||
|
||
/* This must be a hardware breakpoint. */
|
||
if (siginfo.si_signo != SIGTRAP
|
||
|| (siginfo.si_code & 0xffff) != TRAP_HWBKPT)
|
||
return false;
|
||
|
||
/* Make sure to ignore the top byte, otherwise we may not recognize a
|
||
hardware watchpoint hit. The stopped data addresses coming from the
|
||
kernel can potentially be tagged addresses. */
|
||
struct gdbarch *gdbarch = thread_architecture (inferior_ptid);
|
||
const CORE_ADDR addr_trap
|
||
= address_significant (gdbarch, (CORE_ADDR) siginfo.si_addr);
|
||
|
||
/* Check if the address matches any watched address. */
|
||
state = aarch64_get_debug_reg_state (inferior_ptid.pid ());
|
||
return aarch64_stopped_data_address (state, addr_trap, addr_p);
|
||
}
|
||
|
||
/* Implement the "stopped_by_watchpoint" target_ops method. */
|
||
|
||
bool
|
||
aarch64_linux_nat_target::stopped_by_watchpoint ()
|
||
{
|
||
CORE_ADDR addr;
|
||
|
||
return stopped_data_address (&addr);
|
||
}
|
||
|
||
/* Implement the "can_do_single_step" target_ops method. */
|
||
|
||
int
|
||
aarch64_linux_nat_target::can_do_single_step ()
|
||
{
|
||
return 1;
|
||
}
|
||
|
||
/* Implement the "thread_architecture" target_ops method.
|
||
|
||
Returns the gdbarch for the thread identified by PTID. If the thread in
|
||
question is a 32-bit ARM thread, then the architecture returned will be
|
||
that of the process itself.
|
||
|
||
If the thread is an AArch64 thread then we need to check the current
|
||
vector length; if the vector length has changed then we need to lookup a
|
||
new gdbarch that matches the new vector length. */
|
||
|
||
struct gdbarch *
|
||
aarch64_linux_nat_target::thread_architecture (ptid_t ptid)
|
||
{
|
||
/* Find the current gdbarch the same way as process_stratum_target. */
|
||
inferior *inf = find_inferior_ptid (this, ptid);
|
||
gdb_assert (inf != NULL);
|
||
|
||
/* If this is a 32-bit architecture, then this is ARM, not AArch64.
|
||
There's no SVE vectors here, so just return the inferior
|
||
architecture. */
|
||
if (gdbarch_bfd_arch_info (inf->gdbarch)->bits_per_word == 32)
|
||
return inf->gdbarch;
|
||
|
||
/* Only return it if the current vector length matches the one in the tdep. */
|
||
aarch64_gdbarch_tdep *tdep
|
||
= gdbarch_tdep<aarch64_gdbarch_tdep> (inf->gdbarch);
|
||
uint64_t vq = aarch64_sve_get_vq (ptid.lwp ());
|
||
if (vq == tdep->vq)
|
||
return inf->gdbarch;
|
||
|
||
/* We reach here if the vector length for the thread is different from its
|
||
value at process start. Lookup gdbarch via info (potentially creating a
|
||
new one) by using a target description that corresponds to the new vq value
|
||
and the current architecture features. */
|
||
|
||
const struct target_desc *tdesc = gdbarch_target_desc (inf->gdbarch);
|
||
aarch64_features features = aarch64_features_from_target_desc (tdesc);
|
||
features.vq = vq;
|
||
|
||
struct gdbarch_info info;
|
||
info.bfd_arch_info = bfd_lookup_arch (bfd_arch_aarch64, bfd_mach_aarch64);
|
||
info.target_desc = aarch64_read_description (features);
|
||
return gdbarch_find_by_info (info);
|
||
}
|
||
|
||
/* Implement the "supports_memory_tagging" target_ops method. */
|
||
|
||
bool
|
||
aarch64_linux_nat_target::supports_memory_tagging ()
|
||
{
|
||
return (linux_get_hwcap2 () & HWCAP2_MTE) != 0;
|
||
}
|
||
|
||
/* Implement the "fetch_memtags" target_ops method. */
|
||
|
||
bool
|
||
aarch64_linux_nat_target::fetch_memtags (CORE_ADDR address, size_t len,
|
||
gdb::byte_vector &tags, int type)
|
||
{
|
||
int tid = get_ptrace_pid (inferior_ptid);
|
||
|
||
/* Allocation tags? */
|
||
if (type == static_cast<int> (aarch64_memtag_type::mte_allocation))
|
||
return aarch64_mte_fetch_memtags (tid, address, len, tags);
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Implement the "store_memtags" target_ops method. */
|
||
|
||
bool
|
||
aarch64_linux_nat_target::store_memtags (CORE_ADDR address, size_t len,
|
||
const gdb::byte_vector &tags, int type)
|
||
{
|
||
int tid = get_ptrace_pid (inferior_ptid);
|
||
|
||
/* Allocation tags? */
|
||
if (type == static_cast<int> (aarch64_memtag_type::mte_allocation))
|
||
return aarch64_mte_store_memtags (tid, address, len, tags);
|
||
|
||
return false;
|
||
}
|
||
|
||
void _initialize_aarch64_linux_nat ();
|
||
void
|
||
_initialize_aarch64_linux_nat ()
|
||
{
|
||
aarch64_initialize_hw_point ();
|
||
|
||
/* Register the target. */
|
||
linux_target = &the_aarch64_linux_nat_target;
|
||
add_inf_child_target (&the_aarch64_linux_nat_target);
|
||
}
|