mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-15 04:31:49 +08:00
6d088eb92e
Bug 28980 shows that trying to value_copy an entirely optimized out
value causes an internal error. The original bug report involves MI and
some Python pretty printer, and is quite difficult to reproduce, but
another easy way to reproduce (that is believed to be equivalent) was
proposed:
$ ./gdb -q -nx --data-directory=data-directory -ex "py print(gdb.Value(gdb.Value(5).type.optimized_out()))"
/home/smarchi/src/binutils-gdb/gdb/value.c:1731: internal-error: value_copy: Assertion `arg->contents != nullptr' failed.
This is caused by 5f8ab46bc6
("gdb: constify parameter of
value_copy"). It added an assertion that the contents buffer is
allocated if the value is not lazy:
if (!value_lazy (val))
{
gdb_assert (arg->contents != nullptr);
This was based on the comment on value::contents, which suggest that
this is the case:
/* Actual contents of the value. Target byte-order. NULL or not
valid if lazy is nonzero. */
gdb::unique_xmalloc_ptr<gdb_byte> contents;
However, it turns out that it can also be nullptr also if the value is
entirely optimized out, for example on exit of
allocate_optimized_out_value. That function creates a lazy value, marks
the entire value as optimized out, and then clears the lazy flag. But
contents remains nullptr.
This wasn't a problem for value_copy before, because it was calling
value_contents_all_raw on the input value, which caused contents to be
allocated before doing the copy. This means that the input value to
value_copy did not have its contents allocated on entry, but had it
allocated on exit. The result value had it allocated on exit. And that
we copied bytes for an entirely optimized out value (i.e. meaningless
bytes).
From here I see two choices:
1. respect the documented invariant that contents is nullptr only and
only if the value is lazy, which means making
allocate_optimized_out_value allocate contents
2. extend the cases where contents can be nullptr to also include
values that are entirely optimized out (note that you could still
have some entirely optimized out values that do have contents
allocated, it depends on how they were created) and adjust
value_copy accordingly
Choice #1 is safe, but less efficient: it's not very useful to allocate
a buffer for an entirely optimized out value. It's even a bit less
efficient than what we had initially, because values coming out of
allocate_optimized_out_value would now always get their contents
allocated.
Choice #2 would be more efficient than what we had before: giving an
optimized out value without allocated contents to value_copy would
result in an optimized out value without allocated contents (and the
input value would still be without allocated contents on exit). But
it's more risky, since it's difficult to ensure that all users of the
contents (through the various_contents* accessors) are all fine with
that new invariant.
In this patch, I opt for choice #2, since I think it is a better
direction than choice #1. #1 would be a pessimization, and if we go
this way, I doubt that it will ever be revisited, it will just stay that
way forever.
Add a selftest to test this. I initially started to write it as a
Python test (since the reproducer is in Python), but a selftest is more
straightforward.
Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=28980
Change-Id: I6e2f5c0ea804fafa041fcc4345d47064b5900ed7
677 lines
29 KiB
Plaintext
677 lines
29 KiB
Plaintext
# Copyright (C) 2008-2022 Free Software Foundation, Inc.
|
|
|
|
# This program is free software; you can redistribute it and/or modify
|
|
# it under the terms of the GNU General Public License as published by
|
|
# the Free Software Foundation; either version 3 of the License, or
|
|
# (at your option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License
|
|
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
# This file is part of the GDB testsuite. It tests the mechanism
|
|
# exposing values to Python.
|
|
|
|
load_lib gdb-python.exp
|
|
|
|
standard_testfile
|
|
|
|
set has_argv0 [gdb_has_argv0]
|
|
|
|
# Build inferior to language specification.
|
|
# LANG is one of "c" or "c++".
|
|
proc build_inferior {exefile lang} {
|
|
global srcdir subdir srcfile testfile hex
|
|
|
|
# Use different names for .o files based on the language.
|
|
# For Fission, the debug info goes in foo.dwo and we don't want,
|
|
# for example, a C++ compile to clobber the dwo of a C compile.
|
|
# ref: http://gcc.gnu.org/wiki/DebugFission
|
|
switch ${lang} {
|
|
"c" { set filename ${testfile}.o }
|
|
"c++" { set filename ${testfile}-cxx.o }
|
|
}
|
|
set objfile [standard_output_file $filename]
|
|
|
|
if { [gdb_compile "${srcdir}/${subdir}/${srcfile}" "${objfile}" object "debug $lang"] != ""
|
|
|| [gdb_compile "${objfile}" "${exefile}" executable "debug $lang"] != "" } {
|
|
untested "failed to compile in $lang mode"
|
|
return -1
|
|
}
|
|
return 0
|
|
}
|
|
|
|
proc test_value_creation {} {
|
|
global gdb_prompt
|
|
|
|
gdb_py_test_silent_cmd "python i = gdb.Value (True)" "create boolean value" 1
|
|
gdb_py_test_silent_cmd "python i = gdb.Value (5)" "create integer value" 1
|
|
gdb_py_test_silent_cmd "python i = gdb.Value (3,None)" "create integer value, with None type" 1
|
|
|
|
gdb_py_test_silent_cmd "python l = gdb.Value(0xffffffff12345678)" "create large unsigned 64-bit value" 1
|
|
gdb_test "python print (int(l))" "18446744069720004216" "large unsigned 64-bit int conversion to python"
|
|
|
|
gdb_py_test_silent_cmd "python f = gdb.Value (1.25)" "create double value" 1
|
|
gdb_py_test_silent_cmd "python a = gdb.Value ('string test')" "create 8-bit string value" 1
|
|
gdb_test "python print (a)" "\"string test\"" "print 8-bit string"
|
|
gdb_test "python print (a.__class__)" "<(type|class) 'gdb.Value'>" "verify type of 8-bit string"
|
|
|
|
# Test address attribute is None in a non-addressable value
|
|
gdb_test "python print ('result = %s' % i.address)" "= None" "test address attribute in non-addressable value"
|
|
|
|
# Test creating / printing an optimized out value
|
|
gdb_test "python print(gdb.Value(gdb.Value(5).type.optimized_out()))"
|
|
}
|
|
|
|
# Check that we can call gdb.Value.__init__ to change a value.
|
|
proc test_value_reinit {} {
|
|
gdb_py_test_silent_cmd "python v = gdb.Value (3)" \
|
|
"create initial integer value" 1
|
|
gdb_test "python print(v)" "3" \
|
|
"check initial value contents"
|
|
gdb_py_test_silent_cmd "python v.__init__(5)" \
|
|
"call gdb.Value.__init__ manually" 1
|
|
gdb_test "python print(v)" "5" \
|
|
"check new value contents"
|
|
}
|
|
|
|
proc test_value_numeric_ops {} {
|
|
global gdb_prompt
|
|
|
|
gdb_py_test_silent_cmd "python i = gdb.Value (5)" "create first integer value" 0
|
|
gdb_py_test_silent_cmd "python j = gdb.Value (2)" "create second integer value" 0
|
|
gdb_py_test_silent_cmd "python f = gdb.Value (1.25)" "create first double value" 0
|
|
gdb_py_test_silent_cmd "python g = gdb.Value (2.5)" "create second double value" 0
|
|
gdb_test "python print ('result = ' + str(i+j))" " = 7" "add two integer values"
|
|
gdb_test "python print ((i+j).__class__)" "<(type|class) 'gdb.Value'>" "verify type of integer add result"
|
|
|
|
gdb_test "python print ('result = ' + str(f+g))" " = 3.75" "add two double values"
|
|
gdb_test "python print ('result = ' + str(i-j))" " = 3" "subtract two integer values"
|
|
gdb_test "python print ('result = ' + str(f-g))" " = -1.25" "subtract two double values"
|
|
gdb_test "python print ('result = ' + str(i*j))" " = 10" "multiply two integer values"
|
|
gdb_test "python print ('result = ' + str(f*g))" " = 3.125" "multiply two double values"
|
|
gdb_test "python print ('result = ' + str(i/j))" " = 2" "divide two integer values"
|
|
gdb_test "python print ('result = ' + str(f/g))" " = 0.5" "divide two double values"
|
|
gdb_test "python print ('result = ' + str(i%j))" " = 1" "take remainder of two integer values"
|
|
# Remainder of float is implemented in Python but not in GDB's value system.
|
|
|
|
gdb_test "python print ('result = ' + str(i**j))" " = 25" "integer value raised to the power of another integer value"
|
|
gdb_test "python print ('result = ' + str(g**j))" " = 6.25" "double value raised to the power of integer value"
|
|
|
|
gdb_test "python print ('result = ' + str(-i))" " = -5" "negated integer value"
|
|
gdb_test "python print ('result = ' + str(+i))" " = 5" "positive integer value"
|
|
gdb_test "python print ('result = ' + str(-f))" " = -1.25" "negated double value"
|
|
gdb_test "python print ('result = ' + str(+f))" " = 1.25" "positive double value"
|
|
gdb_test "python print ('result = ' + str(abs(j-i)))" " = 3" "absolute of integer value"
|
|
gdb_test "python print ('result = ' + str(abs(f-g)))" " = 1.25" "absolute of double value"
|
|
|
|
# Test gdb.Value mixed with Python types.
|
|
|
|
gdb_test "python print ('result = ' + str(i-1))" " = 4" "subtract integer value from python integer"
|
|
gdb_test "python print ((i-1).__class__)" "<(type|class) 'gdb.Value'>" "verify type of mixed integer subtraction result"
|
|
gdb_test "python print ('result = ' + str(f+1.5))" " = 2.75" "add double value with python float"
|
|
|
|
gdb_test "python print ('result = ' + str(1-i))" " = -4" "subtract python integer from integer value"
|
|
gdb_test "python print ('result = ' + str(1.5+f))" " = 2.75" "add python float with double value"
|
|
|
|
# Conversion test.
|
|
gdb_test "print evalue" " = TWO"
|
|
gdb_test_no_output "python evalue = gdb.history (0)"
|
|
gdb_test "python print (int (evalue))" "2"
|
|
|
|
# Test pointer arithmethic
|
|
|
|
# First, obtain the pointers
|
|
gdb_test "print (void *) 2" ".*" ""
|
|
gdb_test_no_output "python a = gdb.history (0)" ""
|
|
gdb_test "print (void *) 5" ".*" ""
|
|
gdb_test_no_output "python b = gdb.history (0)" ""
|
|
|
|
gdb_test "python print(int(b))" "5" "convert pointer to int"
|
|
|
|
gdb_test "python print ('result = ' + str(a+5))" " = 0x7( <.*>)?" "add pointer value with python integer"
|
|
gdb_test "python print ('result = ' + str(b-2))" " = 0x3( <.*>)?" "subtract python integer from pointer value"
|
|
gdb_test "python print ('result = ' + str(b-a))" " = 3" "subtract two pointer values"
|
|
|
|
gdb_test "python print ('result = ' + 'result'\[gdb.Value(0)\])" \
|
|
"result = r" "use value as string index"
|
|
gdb_test "python print ('result = ' + str((1,2,3)\[gdb.Value(0)\]))" \
|
|
"result = 1" "use value as tuple index"
|
|
gdb_test "python print ('result = ' + str(\[1,2,3\]\[gdb.Value(0)\]))" \
|
|
"result = 1" "use value as array index"
|
|
|
|
gdb_test "python print('%x' % int(gdb.parse_and_eval('-1ull')))" \
|
|
"f+" "int conversion respect type sign"
|
|
|
|
# Test some invalid operations.
|
|
|
|
gdb_test_multiple "python print ('result = ' + str(i+'foo'))" "catch error in python type conversion" {
|
|
-re "Argument to arithmetic operation not a number or boolean.*$gdb_prompt $" {pass "catch error in python type conversion"}
|
|
-re "result = .*$gdb_prompt $" {fail "catch error in python type conversion"}
|
|
-re "$gdb_prompt $" {fail "catch error in python type conversion"}
|
|
}
|
|
|
|
gdb_test_multiple "python print ('result = ' + str(i+gdb.Value('foo')))" "catch throw of GDB error" {
|
|
-re "Traceback.*$gdb_prompt $" {pass "catch throw of GDB error"}
|
|
-re "result = .*$gdb_prompt $" {fail "catch throw of GDB error"}
|
|
-re "$gdb_prompt $" {fail "catch throw of GDB error"}
|
|
}
|
|
}
|
|
|
|
proc test_value_boolean {} {
|
|
# First, define a useful function to test booleans.
|
|
gdb_test_multiline "define function to test booleans" \
|
|
"python" "" \
|
|
"def test_bool (val):" "" \
|
|
" if val:" "" \
|
|
" print ('yay')" "" \
|
|
" else:" "" \
|
|
" print ('nay')" "" \
|
|
"end" ""
|
|
|
|
gdb_test "py test_bool (gdb.Value (True))" "yay" "check evaluation of true boolean value in expression"
|
|
|
|
gdb_test "py test_bool (gdb.Value (False))" "nay" "check evaluation of false boolean value in expression"
|
|
|
|
gdb_test "py test_bool (gdb.Value (5))" "yay" "check evaluation of true integer value in expression"
|
|
|
|
gdb_test "py test_bool (gdb.Value (0))" "nay" "check evaluation of false integer value in expression"
|
|
|
|
gdb_test "py test_bool (gdb.Value (5.2))" "yay" "check evaluation of true float value in expression"
|
|
|
|
gdb_test "py test_bool (gdb.Value (0.0))" "nay" "check evaluation of false float value in expression"
|
|
}
|
|
|
|
proc test_value_compare {} {
|
|
gdb_test "py print (gdb.Value (1) < gdb.Value (1))" "False" "less than, equal"
|
|
gdb_test "py print (gdb.Value (1) < gdb.Value (2))" "True" "less than, less"
|
|
gdb_test "py print (gdb.Value (2) < gdb.Value (1))" "False" "less than, greater"
|
|
gdb_test "py print (gdb.Value (2) < None)" "False" "less than, None"
|
|
|
|
gdb_test "py print (gdb.Value (1) <= gdb.Value (1))" "True" "less or equal, equal"
|
|
gdb_test "py print (gdb.Value (1) <= gdb.Value (2))" "True" "less or equal, less"
|
|
gdb_test "py print (gdb.Value (2) <= gdb.Value (1))" "False" "less or equal, greater"
|
|
gdb_test "py print (gdb.Value (2) <= None)" "False" "less or equal, None"
|
|
|
|
gdb_test "py print (gdb.Value (1) == gdb.Value (1))" "True" "equality of gdb.Values"
|
|
gdb_test "py print (gdb.Value (1) == gdb.Value (2))" "False" "inequality of gdb.Values"
|
|
gdb_test "py print (gdb.Value (1) == 1.0)" "True" "equality of gdb.Value with Python value"
|
|
gdb_test "py print (gdb.Value (1) == 2)" "False" "inequality of gdb.Value with Python value"
|
|
gdb_test "py print (gdb.Value (1) == None)" "False" "inequality of gdb.Value with None"
|
|
|
|
gdb_test "py print (gdb.Value (1) != gdb.Value (1))" "False" "inequality, false"
|
|
gdb_test "py print (gdb.Value (1) != gdb.Value (2))" "True" "inequality, true"
|
|
gdb_test "py print (gdb.Value (1) != None)" "True" "inequality, None"
|
|
|
|
gdb_test "py print (gdb.Value (1) > gdb.Value (1))" "False" "greater than, equal"
|
|
gdb_test "py print (gdb.Value (1) > gdb.Value (2))" "False" "greater than, less"
|
|
gdb_test "py print (gdb.Value (2) > gdb.Value (1))" "True" "greater than, greater"
|
|
gdb_test "py print (gdb.Value (2) > None)" "True" "greater than, None"
|
|
|
|
gdb_test "py print (gdb.Value (1) >= gdb.Value (1))" "True" "greater or equal, equal"
|
|
gdb_test "py print (gdb.Value (1) >= gdb.Value (2))" "False" "greater or equal, less"
|
|
gdb_test "py print (gdb.Value (2) >= gdb.Value (1))" "True" "greater or equal, greater"
|
|
gdb_test "py print (gdb.Value (2) >= None)" "True" "greater or equal, None"
|
|
}
|
|
|
|
proc test_value_in_inferior {} {
|
|
global gdb_prompt
|
|
global testfile
|
|
|
|
gdb_breakpoint [gdb_get_line_number "break to inspect struct and union"]
|
|
gdb_continue_to_breakpoint "break to inspect struct and union"
|
|
|
|
# Just get inferior variable s in the value history, available to python.
|
|
gdb_test "print s" " = {a = 3, b = 5}" ""
|
|
|
|
gdb_py_test_silent_cmd "python s = gdb.history (0)" "get value s from history" 1
|
|
|
|
gdb_test "python print ('result = ' + str(s\['a'\]))" " = 3" "access element inside struct using 8-bit string name"
|
|
|
|
# Test dereferencing the argv pointer
|
|
|
|
# Just get inferior variable argv the value history, available to python.
|
|
gdb_test "print argv" " = \\(char \\*\\*\\) 0x.*" ""
|
|
|
|
gdb_py_test_silent_cmd "python argv = gdb.history (0)" "" 0
|
|
gdb_py_test_silent_cmd "python arg0 = argv.dereference ()" "dereference value" 1
|
|
|
|
# Check that the dereferenced value is sane
|
|
global has_argv0
|
|
set test "verify dereferenced value"
|
|
if { $has_argv0 } {
|
|
gdb_test_no_output "set print elements unlimited" ""
|
|
gdb_test_no_output "set print repeats unlimited" ""
|
|
gdb_test "python print (arg0)" "0x.*$testfile\"" $test
|
|
} else {
|
|
unsupported $test
|
|
}
|
|
|
|
# Smoke-test is_optimized_out attribute
|
|
gdb_test "python print ('result = %s' % arg0.is_optimized_out)" "= False" "test is_optimized_out attribute"
|
|
|
|
# Test address attribute
|
|
gdb_test "python print ('result = %s' % arg0.address)" "= 0x\[\[:xdigit:\]\]+" "test address attribute"
|
|
|
|
# Test displaying a variable that is temporarily at a bad address.
|
|
# But if we can examine what's at memory address 0, then we'll also be
|
|
# able to display it without error. Don't run the test in that case.
|
|
set can_read_0 [is_address_zero_readable]
|
|
|
|
# Test memory error.
|
|
set test "parse_and_eval with memory error"
|
|
if {$can_read_0} {
|
|
untested $test
|
|
} else {
|
|
gdb_test "python print (gdb.parse_and_eval('*(int*)0'))" "gdb.MemoryError: Cannot access memory at address 0x0.*" $test
|
|
}
|
|
|
|
# Test Python lazy value handling
|
|
set test "memory error and lazy values"
|
|
if {$can_read_0} {
|
|
untested $test
|
|
} else {
|
|
gdb_test "python inval = gdb.parse_and_eval('*(int*)0')"
|
|
gdb_test "python print (inval.is_lazy)" "True"
|
|
gdb_test "python inval2 = inval+1" \
|
|
"gdb.MemoryError: Cannot access memory at address 0x0.*" \
|
|
"$test, first test"
|
|
gdb_test "python inval.fetch_lazy ()" \
|
|
"gdb.MemoryError: Cannot access memory at address 0x0.*" \
|
|
"$test, second test"
|
|
}
|
|
set argc_value [get_integer_valueof "argc" 0]
|
|
gdb_test "python argc_lazy = gdb.parse_and_eval('argc')"
|
|
gdb_test "python argc_notlazy = gdb.parse_and_eval('argc')"
|
|
gdb_test "python argc_notlazy.fetch_lazy()"
|
|
gdb_test "python print (argc_lazy.is_lazy)" "True" \
|
|
"python print (argc_lazy.is_lazy) the first time"
|
|
gdb_test "python print (argc_notlazy.is_lazy)" "False"
|
|
gdb_test "print argc" " = $argc_value" "sanity check argc"
|
|
gdb_test "python print (argc_lazy.is_lazy)" "\r\nTrue" \
|
|
"python print (argc_lazy.is_lazy) the second time"
|
|
gdb_test_no_output "set argc=[expr $argc_value + 1]" "change argc"
|
|
gdb_test "python print (argc_notlazy)" "\r\n$argc_value"
|
|
gdb_test "python print (argc_lazy)" "\r\n[expr $argc_value + 1]"
|
|
gdb_test "python print (argc_lazy.is_lazy)" "False"
|
|
|
|
# Test string fetches, both partial and whole.
|
|
gdb_test "print st" "\"divide et impera\""
|
|
gdb_py_test_silent_cmd "python st = gdb.history (0)" "get value st from history" 1
|
|
gdb_test "python print (st.string ())" "divide et impera" "Test string with no length"
|
|
gdb_test "python print (st.string (length = -1))" "divide et impera" "test string (length = -1) is all of the string"
|
|
gdb_test "python print (st.string (length = 6))" "divide"
|
|
gdb_test "python print (\"---\"+st.string (length = 0)+\"---\")" "------" "test string (length = 0) is empty"
|
|
gdb_test "python print (len(st.string (length = 0)))" "0" "test length is 0"
|
|
|
|
# We choose Ada here to test a language where c_style_arrays is
|
|
# false.
|
|
gdb_test "set lang ada" \
|
|
"Warning: the current language does not match this frame."
|
|
gdb_test "python print (st.string ())" "divide et impera" \
|
|
"Test string with no length in ada"
|
|
gdb_test_no_output "set lang auto"
|
|
|
|
# Fetch a string that has embedded nulls.
|
|
gdb_test "print nullst" "\"divide\\\\000et\\\\000impera\".*"
|
|
gdb_py_test_silent_cmd "python nullst = gdb.history (0)" "get value nullst from history" 1
|
|
gdb_test "python print (nullst.string ())" "divide" "test string to first null"
|
|
# Python cannot print strings that contain the null (\0) character.
|
|
# For the purposes of this test, use repr()
|
|
gdb_py_test_silent_cmd "python nullst = nullst.string (length = 9)" "get string beyond null" 1
|
|
gdb_test "python print (repr(nullst))" "u?'divide\\\\x00et'"
|
|
|
|
# Test fetching a string longer than its declared (in C) size.
|
|
# PR 16286
|
|
gdb_py_test_silent_cmd "python xstr = gdb.parse_and_eval('xstr')" "get xstr" 1
|
|
gdb_test "python print(xstr\['text'\].string (length = xstr\['length'\]))" "x{100}" \
|
|
"read string beyond declared size"
|
|
|
|
# However it shouldn't be possible to fetch past the end of a
|
|
# non-memory value.
|
|
gdb_py_test_silent_cmd "python str = '\"str\"'" "set up str variable" 1
|
|
gdb_test "python print (gdb.parse_and_eval (str).string (length = 10))" \
|
|
"gdb.error: Attempt to take address of value not located in memory.\r\nError while executing Python code."
|
|
}
|
|
|
|
proc test_inferior_function_call {} {
|
|
global gdb_prompt hex decimal
|
|
|
|
# Correct inferior call without arguments.
|
|
gdb_test "p/x fp1" " = $hex.*"
|
|
gdb_py_test_silent_cmd "python fp1 = gdb.history (0)" "get value fp1 from history" 1
|
|
gdb_test "python fp1 = fp1.dereference()" ""
|
|
gdb_test "python result = fp1()" ""
|
|
gdb_test "python print (result)" "void"
|
|
|
|
# Correct inferior call with arguments.
|
|
gdb_test "p/x fp2" " = $hex.*" \
|
|
"print fp2 to place it into history"
|
|
gdb_py_test_silent_cmd "python fp2 = gdb.history (0)" "get value fp2 from history" 1
|
|
gdb_test "python fp2 = fp2.dereference()" ""
|
|
gdb_test "python result2 = fp2(10,20)" ""
|
|
gdb_test "python print (result2)" "30"
|
|
|
|
# Incorrect to call an int value.
|
|
gdb_test "p i" " = $decimal.*"
|
|
gdb_py_test_silent_cmd "python i = gdb.history (0)" "get value i from history" 1
|
|
gdb_test "python result3 = i()" ".*Value is not callable.*"
|
|
|
|
# Incorrect number of arguments.
|
|
gdb_test "p/x fp2" " = $hex.*" \
|
|
"print fp2 again to place it into history"
|
|
gdb_py_test_silent_cmd "python fp3 = gdb.history (0)" "get value fp3 from history" 1
|
|
gdb_test "python fp3 = fp3.dereference()" ""
|
|
gdb_test "python result2 = fp3(10)" ".*Too few arguments in function call.*"
|
|
}
|
|
|
|
# A few objfile tests.
|
|
proc test_objfiles {} {
|
|
gdb_test "python\nok=False\nfor file in gdb.objfiles():\n if 'py-value' in file.filename:\n ok=True\nprint (ok)\nend" "True" \
|
|
"py-value in file.filename"
|
|
|
|
gdb_test "python print (gdb.objfiles()\[0\].pretty_printers)" "\\\[\\\]"
|
|
|
|
gdb_test "python gdb.objfiles()\[0\].pretty_printers = 0" \
|
|
"pretty_printers attribute must be a list.*Error while executing Python code."
|
|
}
|
|
|
|
proc test_value_after_death {} {
|
|
# Construct a type while the inferior is still running.
|
|
gdb_py_test_silent_cmd "python ptrtype = gdb.lookup_type('PTR')" \
|
|
"create PTR type" 1
|
|
|
|
# Kill the inferior and remove the symbols.
|
|
gdb_test "kill" "" "kill the inferior" \
|
|
"Kill the program being debugged. .y or n. $" \
|
|
"y"
|
|
gdb_test "file" "" "discard the symbols" \
|
|
"Discard symbol table from.*y or n. $" \
|
|
"y"
|
|
|
|
# Now create a value using that type. Relies on arg0, created by
|
|
# test_value_in_inferior.
|
|
gdb_py_test_silent_cmd "python castval = arg0.cast(ptrtype.pointer())" \
|
|
"cast arg0 to PTR" 1
|
|
|
|
# Make sure the type is deleted.
|
|
gdb_py_test_silent_cmd "python ptrtype = None" \
|
|
"delete PTR type" 1
|
|
|
|
# Now see if the value's type is still valid.
|
|
gdb_test "python print (castval.type)" "PTR ." \
|
|
"print value's type"
|
|
}
|
|
|
|
# Regression test for invalid subscript operations. The bug was that
|
|
# the type of the value was not being checked before allowing a
|
|
# subscript operation to proceed.
|
|
|
|
proc test_subscript_regression {exefile lang} {
|
|
# Start with a fresh gdb.
|
|
clean_restart ${exefile}
|
|
|
|
if ![runto_main ] then {
|
|
perror "couldn't run to breakpoint"
|
|
return
|
|
}
|
|
|
|
if {$lang == "c++"} {
|
|
gdb_breakpoint [gdb_get_line_number "break to inspect pointer by reference"]
|
|
gdb_continue_to_breakpoint "break to inspect pointer by reference"
|
|
|
|
gdb_py_test_silent_cmd "print rptr_int" \
|
|
"Obtain address" 1
|
|
gdb_py_test_silent_cmd "python rptr = gdb.history(0)" \
|
|
"Obtains value from GDB" 1
|
|
gdb_test "python print (rptr\[0\])" "2" "check pointer passed as reference"
|
|
|
|
# Just the most basic test of dynamic_cast -- it is checked in
|
|
# the C++ tests.
|
|
gdb_test "python print (bool(gdb.parse_and_eval('base').dynamic_cast(gdb.lookup_type('Derived').pointer())))" \
|
|
True
|
|
|
|
# Likewise.
|
|
gdb_test "python print (gdb.parse_and_eval('base').dynamic_type)" \
|
|
"Derived \[*\]"
|
|
gdb_test "python print (gdb.parse_and_eval('base_ref').dynamic_type)" \
|
|
"Derived \[&\]"
|
|
# A static type case.
|
|
gdb_test "python print (gdb.parse_and_eval('5').dynamic_type)" \
|
|
"int"
|
|
}
|
|
|
|
gdb_breakpoint [gdb_get_line_number "break to inspect struct and union"]
|
|
gdb_continue_to_breakpoint \
|
|
"break to inspect struct and union for subscript regression test"
|
|
|
|
gdb_py_test_silent_cmd "python intv = gdb.Value(1)" \
|
|
"Create value intv for subscript test" 1
|
|
gdb_py_test_silent_cmd "python stringv = gdb.Value(\"foo\")" \
|
|
"Create value stringv for subscript test" 1
|
|
|
|
# Try to access an int with a subscript. This should fail.
|
|
gdb_test "python print (intv)" "1" "baseline print of an int Python value"
|
|
gdb_test "python print (intv\[0\])" "gdb.error: Cannot subscript requested type.*" \
|
|
"Attempt to access an integer with a subscript"
|
|
|
|
# Try to access a string with a subscript. This should pass.
|
|
gdb_test "python print (stringv)" "foo." "baseline print of a string Python value"
|
|
gdb_test "python print (stringv\[0\])" "f." "attempt to access a string with a subscript"
|
|
|
|
# Try to access an int array via a pointer with a subscript. This should pass.
|
|
gdb_py_test_silent_cmd "print p" "Build pointer to array" 1
|
|
gdb_py_test_silent_cmd "python pointer = gdb.history(0)" "fetch pointer" 0
|
|
gdb_test "python print (pointer\[0\])" "1" "access array via pointer with int subscript"
|
|
gdb_test "python print (pointer\[intv\])" "2" "access array via pointer with value subscript"
|
|
|
|
# Try to access a single dimension array with a subscript to the
|
|
# result. This should fail.
|
|
gdb_test "python print (pointer\[intv\]\[0\])" "gdb.error: Cannot subscript requested type.*" \
|
|
"Attempt to access a single dimension array with a two subscripts"
|
|
|
|
# Lastly, test subscript access to an array with multiple
|
|
# dimensions. This should pass.
|
|
gdb_py_test_silent_cmd "print {\"fu \",\"foo\",\"bar\"}" "Build array" 1
|
|
gdb_py_test_silent_cmd "python marray = gdb.history(0)" "fetch marray" 0
|
|
gdb_test "python print (marray\[1\]\[2\])" "o." "test multiple subscript"
|
|
}
|
|
|
|
# A few tests of gdb.parse_and_eval.
|
|
proc test_parse_and_eval {} {
|
|
gdb_test "python print (gdb.parse_and_eval ('23'))" "23" \
|
|
"parse_and_eval constant test"
|
|
gdb_test "python print (gdb.parse_and_eval ('5 + 7'))" "12" \
|
|
"parse_and_eval simple expression test"
|
|
gdb_test "python print (type(gdb.parse_and_eval ('5 + 7')))" \
|
|
".(type|class) 'gdb.Value'."\
|
|
"parse_and_eval type test"
|
|
}
|
|
|
|
# Test that values are hashable.
|
|
proc test_value_hash {} {
|
|
gdb_test_multiline "Simple Python value dictionary" \
|
|
"python" "" \
|
|
"one = gdb.Value(1)" "" \
|
|
"two = gdb.Value(2)" "" \
|
|
"three = gdb.Value(3)" "" \
|
|
"vdict = {one:\"one str\",two:\"two str\",three:\"three str\"}" "" \
|
|
"end"
|
|
gdb_test "python print (vdict\[one\])" "one str" "test dictionary hash for one"
|
|
gdb_test "python print (vdict\[two\])" "two str" "test dictionary hash for two"
|
|
gdb_test "python print (vdict\[three\])" "three str" "test dictionary hash for three"
|
|
gdb_test "python print (one.__hash__() == hash(one))" "True" "test inbuilt hash"
|
|
}
|
|
|
|
proc test_float_conversion {} {
|
|
gdb_test "python print(int(gdb.Value(0)))" "0"
|
|
gdb_test "python print(int(gdb.Value(2.5)))" "2"
|
|
gdb_test "python print(float(gdb.Value(2.5)))" "2\\.5"
|
|
gdb_test "python print(float(gdb.Value(0)))" "0\\.0"
|
|
}
|
|
|
|
# Setup some Python variables:
|
|
# tp : a gdb.Type for 'int',
|
|
# size_a : the size of array 'a' from the inferior,
|
|
# size_a0 : the size of array element 'a[0] from the inferior,
|
|
# addr : the address of 'a[0]' from the inferior,
|
|
# b : a buffer containing the full contents of array 'a' from the
|
|
# inferior.
|
|
proc prepare_type_and_buffer {} {
|
|
gdb_py_test_silent_cmd "python tp=gdb.lookup_type('int')" "look up int type" 0
|
|
gdb_py_test_silent_cmd "python size_a=gdb.parse_and_eval('sizeof(a)')" \
|
|
"find size of a" 0
|
|
gdb_py_test_silent_cmd "python size_a0=gdb.parse_and_eval('sizeof(a\[0\])')" \
|
|
"find size of element of a" 0
|
|
gdb_py_test_silent_cmd "python addr=gdb.parse_and_eval('&a')" \
|
|
"find address of a" 0
|
|
gdb_py_test_silent_cmd "python b=gdb.selected_inferior().read_memory(addr,size_a)" \
|
|
"read buffer from memory" 0
|
|
}
|
|
|
|
proc test_value_from_buffer {} {
|
|
global gdb_prompt
|
|
|
|
prepare_type_and_buffer
|
|
gdb_test "python v=gdb.Value(b,tp); print(v)" "1" \
|
|
"construct value from buffer"
|
|
gdb_test "python v=gdb.Value(b\[size_a0:\],tp); print(v)" "2" \
|
|
"convert 2nd elem of buffer to value"
|
|
gdb_test "python v=gdb.Value(b\[2*size_a0:\],tp); print(v)" "3" \
|
|
"convert 3rd elem of buffer to value"
|
|
gdb_test "python v=gdb.Value(b\[2*size_a0+1:\],tp); print(v)" \
|
|
"ValueError: Size of type is larger than that of buffer object\..*" \
|
|
"attempt to convert smaller buffer than size of type"
|
|
gdb_py_test_silent_cmd "python atp=tp.array(2) ; print(atp)" \
|
|
"make array type" 0
|
|
gdb_py_test_silent_cmd "python va=gdb.Value(b,atp)" \
|
|
"construct array value from buffer" 0
|
|
gdb_test "python print(va)" "\\{1, 2, 3\\}" "print array value"
|
|
gdb_test "python print(va\[0\])" "1" "print first array element"
|
|
gdb_test "python print(va\[1\])" "2" "print second array element"
|
|
gdb_test "python print(va\[2\])" "3" "print third array element"
|
|
gdb_test "python print(va\[3\])" "gdb\.error: no such vector element.*" \
|
|
"print out of bounds array element"
|
|
gdb_py_test_silent_cmd "python atpbig=tp.array(3)" "make bigger array type" 0
|
|
gdb_test "python vabig=gdb.Value(b,atpbig)" \
|
|
"ValueError: Size of type is larger than that of buffer object\..*" \
|
|
"attempt to construct large value with small buffer"
|
|
gdb_test "python v=gdb.Value(2048,tp)" \
|
|
"TypeError: Object must support the python buffer protocol\..*" \
|
|
"attempt to construct value from buffer with non-buffer object"
|
|
gdb_test "python v=gdb.Value(b,'int'); print(v)" \
|
|
"TypeError: type argument must be a gdb\.Type\..*" \
|
|
"attempt to construct value with string as type"
|
|
}
|
|
|
|
# Test the gdb.add_history API.
|
|
proc test_add_to_history {} {
|
|
# Add a gdb.Value to the value history list.
|
|
gdb_test_no_output "python idx = gdb.add_history(gdb.Value(42))" \
|
|
"add value 42 to the history list"
|
|
gdb_test "python print (\"$%d = %s\" % (idx, gdb.history (idx)))" \
|
|
" = 42" "print value 42 from the history list"
|
|
set idx [get_python_valueof "idx" "**DEFAULT**" "get idx for value 42"]
|
|
gdb_test "print \$${idx}" " = 42"
|
|
|
|
# Add something to the history list that can be converted into a
|
|
# gdb.Value.
|
|
gdb_test_no_output "python idx = gdb.add_history(84)" \
|
|
"add value to 84 to the history list"
|
|
gdb_test "python print (\"$%d = %s\" % (idx, gdb.history (idx)))" \
|
|
" = 84" "print value 84 from the history list"
|
|
set idx [get_python_valueof "idx" "**DEFAULT**" "get idx for value 84"]
|
|
gdb_test "print \$${idx}" " = 84"
|
|
|
|
# Try adding something that can't be converted to a gdb.Value,
|
|
# this should give an error.
|
|
gdb_test "python idx = gdb.add_history(gdb.GdbError(\"an error\"))" \
|
|
"TypeError: Could not convert Python object: .*"
|
|
}
|
|
|
|
# Check we can create sub-classes of gdb.Value.
|
|
proc test_value_sub_classes {} {
|
|
prepare_type_and_buffer
|
|
|
|
gdb_test_multiline "Create sub-class of gdb.Value" \
|
|
"python" "" \
|
|
"class MyValue(gdb.Value):" "" \
|
|
" def __init__(self,val,type=None):" "" \
|
|
" gdb.Value.__init__(self,val,type)" "" \
|
|
" print(\"In MyValue.__init__\")" "" \
|
|
"end"
|
|
|
|
gdb_test "python obj = MyValue (123)" "In MyValue.__init__" \
|
|
"create instance of MyValue"
|
|
gdb_test "python print(obj)" "123" \
|
|
"check printing of MyValue"
|
|
|
|
gdb_test "python obj = MyValue(b\[size_a0:\],tp)" "In MyValue.__init__" \
|
|
"convert 2nd elem of buffer to a MyValue"
|
|
gdb_test "python print(obj)" "2" \
|
|
"check printing of MyValue when initiaized with a type"
|
|
}
|
|
|
|
# Test the history count. This must be the first thing called after
|
|
# starting GDB as it depends on there being nothing in the value
|
|
# history.
|
|
proc test_history_count {} {
|
|
for { set i 0 } { $i < 5 } { incr i } {
|
|
gdb_test "python print('history count is %d' % gdb.history_count())" \
|
|
"history count is $i" "history count is $i"
|
|
gdb_test "print $i" " = $i"
|
|
}
|
|
}
|
|
|
|
# Build C version of executable. C++ is built later.
|
|
if { [build_inferior "${binfile}" "c"] < 0 } {
|
|
return -1
|
|
}
|
|
|
|
# Start with a fresh gdb.
|
|
clean_restart ${binfile}
|
|
|
|
# Skip all tests if Python scripting is not enabled.
|
|
if { [skip_python_tests] } { continue }
|
|
|
|
test_history_count
|
|
test_value_creation
|
|
test_value_reinit
|
|
test_value_numeric_ops
|
|
test_value_boolean
|
|
test_value_compare
|
|
test_objfiles
|
|
test_parse_and_eval
|
|
test_value_hash
|
|
test_float_conversion
|
|
test_add_to_history
|
|
|
|
# The following tests require execution.
|
|
|
|
if ![runto_main] then {
|
|
return 0
|
|
}
|
|
|
|
test_value_in_inferior
|
|
test_value_from_buffer
|
|
test_value_sub_classes
|
|
test_inferior_function_call
|
|
test_value_after_death
|
|
|
|
# Test either C or C++ values.
|
|
|
|
test_subscript_regression "${binfile}" "c"
|
|
|
|
if ![skip_cplus_tests] {
|
|
if { [build_inferior "${binfile}-cxx" "c++"] < 0 } {
|
|
return -1
|
|
}
|
|
with_test_prefix "c++" {
|
|
test_subscript_regression "${binfile}-cxx" "c++"
|
|
}
|
|
}
|