mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-06 12:09:26 +08:00
5799c0b969
* charset.c (intermediate_encoding): Remove unused i. * completer.c (signal_completer): Remove unused i. * continuations.c (discard_my_continuations_1): Remove unused continuation_ptr. * corelow.c (core_close): Remove unuseD name. (get_core_siginfo): Remove unused pid. * cp-namespace.c (cp_lookup_symbol_imports_or_template): Remove unused i, cps. * dwarf2loc.c (dwarf2_compile_expr_to_ax): Remove unused base_offset. (loclist_describe_location): Remove unused first. * event-top.c (command_line_handler): Remove unused got_eof. * exec.c (exec_close_1): Remove unused need_symtab_cleanup. (resize_section_table): Remove unused old_value. * gdb_bfd.c (gdb_bfd_map_section): Remove unused header. * gnu-v3-abi.c (compute_vtable_size): Remove unused addr. * i386-tdep.c (i386_process_record): Remove unused rex. * infcmd.c (get_return_value): Remove unused uiout. * jv-lang.c (type_from_class): Remove unused is_array. * jv-valprint.c (java_val_print): Remove unused i. * linux-nat.c (linux_nat_stop_lwp): Remove unused ptid. * linux-thread-db.c (thread_db_find_new_threads_2): Remove unuseD pid. * m2-typeprint.c (m2_print_type): Remove unused code. * macroexp.c (get_character_constant): Remove unused body_start. (macro_stringify): Remove unused result. * objc-lang.c (find_methods): Remove unused gdbarch. * objfiles.c (filter_overlapping_sections): Remove unused abfd1, abfd2. * regcache.c (regcache_cooked_read): Remove unused gdbarch. * stack.c (print_frame_args): Remove unused summary. * thread.c (thread_apply_command): Remove unused p. * valarith.c (value_x_unop): Remove unused mangle_ptr. * valops.c (search_struct_method): Remove unused skip. * valprint.c (generic_val_print): Remove unused byte_order. * varobj.c (varobj_update): Remove unused changed. * cli/cli-cmds.c (complete_command): Remove unused next_item. (alias_command): Remove unused c. * mi/mi-cmd-catch.c (mi_catch_load_unload): Remove unused c. * mi/mi-main.c (mi_cmd_data_write_register_values): Remove unused format. (mi_cmd_data_write_memory): Remove unused word_format. (mi_cmd_data_write_memory_bytes): Remove unused r. * python/py-gdb-readline.c (gdbpy_readline_wrapper): Remove unused p_start, p_end. * python/python.c (_initialize_python): Remove unused cmd_name, cmd. * tui/tui-disasm.c (tui_set_disassem_content): Remove unused line_width. Reference: http://sourceware.org/ml/gdb-patches/2013-01/msg00766.html
4223 lines
109 KiB
C
4223 lines
109 KiB
C
/* Implementation of the GDB variable objects API.
|
||
|
||
Copyright (C) 1999-2013 Free Software Foundation, Inc.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include "exceptions.h"
|
||
#include "value.h"
|
||
#include "expression.h"
|
||
#include "frame.h"
|
||
#include "language.h"
|
||
#include "gdbcmd.h"
|
||
#include "block.h"
|
||
#include "valprint.h"
|
||
|
||
#include "gdb_assert.h"
|
||
#include "gdb_string.h"
|
||
#include "gdb_regex.h"
|
||
|
||
#include "varobj.h"
|
||
#include "vec.h"
|
||
#include "gdbthread.h"
|
||
#include "inferior.h"
|
||
#include "ada-varobj.h"
|
||
#include "ada-lang.h"
|
||
|
||
#if HAVE_PYTHON
|
||
#include "python/python.h"
|
||
#include "python/python-internal.h"
|
||
#else
|
||
typedef int PyObject;
|
||
#endif
|
||
|
||
/* The names of varobjs representing anonymous structs or unions. */
|
||
#define ANONYMOUS_STRUCT_NAME _("<anonymous struct>")
|
||
#define ANONYMOUS_UNION_NAME _("<anonymous union>")
|
||
|
||
/* Non-zero if we want to see trace of varobj level stuff. */
|
||
|
||
unsigned int varobjdebug = 0;
|
||
static void
|
||
show_varobjdebug (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
|
||
}
|
||
|
||
/* String representations of gdb's format codes. */
|
||
char *varobj_format_string[] =
|
||
{ "natural", "binary", "decimal", "hexadecimal", "octal" };
|
||
|
||
/* String representations of gdb's known languages. */
|
||
char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
|
||
|
||
/* True if we want to allow Python-based pretty-printing. */
|
||
static int pretty_printing = 0;
|
||
|
||
void
|
||
varobj_enable_pretty_printing (void)
|
||
{
|
||
pretty_printing = 1;
|
||
}
|
||
|
||
/* Data structures */
|
||
|
||
/* Every root variable has one of these structures saved in its
|
||
varobj. Members which must be free'd are noted. */
|
||
struct varobj_root
|
||
{
|
||
|
||
/* Alloc'd expression for this parent. */
|
||
struct expression *exp;
|
||
|
||
/* Block for which this expression is valid. */
|
||
const struct block *valid_block;
|
||
|
||
/* The frame for this expression. This field is set iff valid_block is
|
||
not NULL. */
|
||
struct frame_id frame;
|
||
|
||
/* The thread ID that this varobj_root belong to. This field
|
||
is only valid if valid_block is not NULL.
|
||
When not 0, indicates which thread 'frame' belongs to.
|
||
When 0, indicates that the thread list was empty when the varobj_root
|
||
was created. */
|
||
int thread_id;
|
||
|
||
/* If 1, the -var-update always recomputes the value in the
|
||
current thread and frame. Otherwise, variable object is
|
||
always updated in the specific scope/thread/frame. */
|
||
int floating;
|
||
|
||
/* Flag that indicates validity: set to 0 when this varobj_root refers
|
||
to symbols that do not exist anymore. */
|
||
int is_valid;
|
||
|
||
/* Language info for this variable and its children. */
|
||
struct language_specific *lang;
|
||
|
||
/* The varobj for this root node. */
|
||
struct varobj *rootvar;
|
||
|
||
/* Next root variable */
|
||
struct varobj_root *next;
|
||
};
|
||
|
||
/* Every variable in the system has a structure of this type defined
|
||
for it. This structure holds all information necessary to manipulate
|
||
a particular object variable. Members which must be freed are noted. */
|
||
struct varobj
|
||
{
|
||
|
||
/* Alloc'd name of the variable for this object. If this variable is a
|
||
child, then this name will be the child's source name.
|
||
(bar, not foo.bar). */
|
||
/* NOTE: This is the "expression". */
|
||
char *name;
|
||
|
||
/* Alloc'd expression for this child. Can be used to create a
|
||
root variable corresponding to this child. */
|
||
char *path_expr;
|
||
|
||
/* The alloc'd name for this variable's object. This is here for
|
||
convenience when constructing this object's children. */
|
||
char *obj_name;
|
||
|
||
/* Index of this variable in its parent or -1. */
|
||
int index;
|
||
|
||
/* The type of this variable. This can be NULL
|
||
for artifial variable objects -- currently, the "accessibility"
|
||
variable objects in C++. */
|
||
struct type *type;
|
||
|
||
/* The value of this expression or subexpression. A NULL value
|
||
indicates there was an error getting this value.
|
||
Invariant: if varobj_value_is_changeable_p (this) is non-zero,
|
||
the value is either NULL, or not lazy. */
|
||
struct value *value;
|
||
|
||
/* The number of (immediate) children this variable has. */
|
||
int num_children;
|
||
|
||
/* If this object is a child, this points to its immediate parent. */
|
||
struct varobj *parent;
|
||
|
||
/* Children of this object. */
|
||
VEC (varobj_p) *children;
|
||
|
||
/* Whether the children of this varobj were requested. This field is
|
||
used to decide if dynamic varobj should recompute their children.
|
||
In the event that the frontend never asked for the children, we
|
||
can avoid that. */
|
||
int children_requested;
|
||
|
||
/* Description of the root variable. Points to root variable for
|
||
children. */
|
||
struct varobj_root *root;
|
||
|
||
/* The format of the output for this object. */
|
||
enum varobj_display_formats format;
|
||
|
||
/* Was this variable updated via a varobj_set_value operation. */
|
||
int updated;
|
||
|
||
/* Last print value. */
|
||
char *print_value;
|
||
|
||
/* Is this variable frozen. Frozen variables are never implicitly
|
||
updated by -var-update *
|
||
or -var-update <direct-or-indirect-parent>. */
|
||
int frozen;
|
||
|
||
/* Is the value of this variable intentionally not fetched? It is
|
||
not fetched if either the variable is frozen, or any parents is
|
||
frozen. */
|
||
int not_fetched;
|
||
|
||
/* Sub-range of children which the MI consumer has requested. If
|
||
FROM < 0 or TO < 0, means that all children have been
|
||
requested. */
|
||
int from;
|
||
int to;
|
||
|
||
/* The pretty-printer constructor. If NULL, then the default
|
||
pretty-printer will be looked up. If None, then no
|
||
pretty-printer will be installed. */
|
||
PyObject *constructor;
|
||
|
||
/* The pretty-printer that has been constructed. If NULL, then a
|
||
new printer object is needed, and one will be constructed. */
|
||
PyObject *pretty_printer;
|
||
|
||
/* The iterator returned by the printer's 'children' method, or NULL
|
||
if not available. */
|
||
PyObject *child_iter;
|
||
|
||
/* We request one extra item from the iterator, so that we can
|
||
report to the caller whether there are more items than we have
|
||
already reported. However, we don't want to install this value
|
||
when we read it, because that will mess up future updates. So,
|
||
we stash it here instead. */
|
||
PyObject *saved_item;
|
||
};
|
||
|
||
struct cpstack
|
||
{
|
||
char *name;
|
||
struct cpstack *next;
|
||
};
|
||
|
||
/* A list of varobjs */
|
||
|
||
struct vlist
|
||
{
|
||
struct varobj *var;
|
||
struct vlist *next;
|
||
};
|
||
|
||
/* Private function prototypes */
|
||
|
||
/* Helper functions for the above subcommands. */
|
||
|
||
static int delete_variable (struct cpstack **, struct varobj *, int);
|
||
|
||
static void delete_variable_1 (struct cpstack **, int *,
|
||
struct varobj *, int, int);
|
||
|
||
static int install_variable (struct varobj *);
|
||
|
||
static void uninstall_variable (struct varobj *);
|
||
|
||
static struct varobj *create_child (struct varobj *, int, char *);
|
||
|
||
static struct varobj *
|
||
create_child_with_value (struct varobj *parent, int index, const char *name,
|
||
struct value *value);
|
||
|
||
/* Utility routines */
|
||
|
||
static struct varobj *new_variable (void);
|
||
|
||
static struct varobj *new_root_variable (void);
|
||
|
||
static void free_variable (struct varobj *var);
|
||
|
||
static struct cleanup *make_cleanup_free_variable (struct varobj *var);
|
||
|
||
static struct type *get_type (struct varobj *var);
|
||
|
||
static struct type *get_value_type (struct varobj *var);
|
||
|
||
static struct type *get_target_type (struct type *);
|
||
|
||
static enum varobj_display_formats variable_default_display (struct varobj *);
|
||
|
||
static void cppush (struct cpstack **pstack, char *name);
|
||
|
||
static char *cppop (struct cpstack **pstack);
|
||
|
||
static int update_type_if_necessary (struct varobj *var,
|
||
struct value *new_value);
|
||
|
||
static int install_new_value (struct varobj *var, struct value *value,
|
||
int initial);
|
||
|
||
/* Language-specific routines. */
|
||
|
||
static enum varobj_languages variable_language (struct varobj *var);
|
||
|
||
static int number_of_children (struct varobj *);
|
||
|
||
static char *name_of_variable (struct varobj *);
|
||
|
||
static char *name_of_child (struct varobj *, int);
|
||
|
||
static struct value *value_of_root (struct varobj **var_handle, int *);
|
||
|
||
static struct value *value_of_child (struct varobj *parent, int index);
|
||
|
||
static char *my_value_of_variable (struct varobj *var,
|
||
enum varobj_display_formats format);
|
||
|
||
static char *value_get_print_value (struct value *value,
|
||
enum varobj_display_formats format,
|
||
struct varobj *var);
|
||
|
||
static int varobj_value_is_changeable_p (struct varobj *var);
|
||
|
||
static int is_root_p (struct varobj *var);
|
||
|
||
#if HAVE_PYTHON
|
||
|
||
static struct varobj *varobj_add_child (struct varobj *var,
|
||
const char *name,
|
||
struct value *value);
|
||
|
||
#endif /* HAVE_PYTHON */
|
||
|
||
static int default_value_is_changeable_p (struct varobj *var);
|
||
|
||
/* C implementation */
|
||
|
||
static int c_number_of_children (struct varobj *var);
|
||
|
||
static char *c_name_of_variable (struct varobj *parent);
|
||
|
||
static char *c_name_of_child (struct varobj *parent, int index);
|
||
|
||
static char *c_path_expr_of_child (struct varobj *child);
|
||
|
||
static struct value *c_value_of_root (struct varobj **var_handle);
|
||
|
||
static struct value *c_value_of_child (struct varobj *parent, int index);
|
||
|
||
static struct type *c_type_of_child (struct varobj *parent, int index);
|
||
|
||
static char *c_value_of_variable (struct varobj *var,
|
||
enum varobj_display_formats format);
|
||
|
||
/* C++ implementation */
|
||
|
||
static int cplus_number_of_children (struct varobj *var);
|
||
|
||
static void cplus_class_num_children (struct type *type, int children[3]);
|
||
|
||
static char *cplus_name_of_variable (struct varobj *parent);
|
||
|
||
static char *cplus_name_of_child (struct varobj *parent, int index);
|
||
|
||
static char *cplus_path_expr_of_child (struct varobj *child);
|
||
|
||
static struct value *cplus_value_of_root (struct varobj **var_handle);
|
||
|
||
static struct value *cplus_value_of_child (struct varobj *parent, int index);
|
||
|
||
static struct type *cplus_type_of_child (struct varobj *parent, int index);
|
||
|
||
static char *cplus_value_of_variable (struct varobj *var,
|
||
enum varobj_display_formats format);
|
||
|
||
/* Java implementation */
|
||
|
||
static int java_number_of_children (struct varobj *var);
|
||
|
||
static char *java_name_of_variable (struct varobj *parent);
|
||
|
||
static char *java_name_of_child (struct varobj *parent, int index);
|
||
|
||
static char *java_path_expr_of_child (struct varobj *child);
|
||
|
||
static struct value *java_value_of_root (struct varobj **var_handle);
|
||
|
||
static struct value *java_value_of_child (struct varobj *parent, int index);
|
||
|
||
static struct type *java_type_of_child (struct varobj *parent, int index);
|
||
|
||
static char *java_value_of_variable (struct varobj *var,
|
||
enum varobj_display_formats format);
|
||
|
||
/* Ada implementation */
|
||
|
||
static int ada_number_of_children (struct varobj *var);
|
||
|
||
static char *ada_name_of_variable (struct varobj *parent);
|
||
|
||
static char *ada_name_of_child (struct varobj *parent, int index);
|
||
|
||
static char *ada_path_expr_of_child (struct varobj *child);
|
||
|
||
static struct value *ada_value_of_root (struct varobj **var_handle);
|
||
|
||
static struct value *ada_value_of_child (struct varobj *parent, int index);
|
||
|
||
static struct type *ada_type_of_child (struct varobj *parent, int index);
|
||
|
||
static char *ada_value_of_variable (struct varobj *var,
|
||
enum varobj_display_formats format);
|
||
|
||
static int ada_value_is_changeable_p (struct varobj *var);
|
||
|
||
static int ada_value_has_mutated (struct varobj *var, struct value *new_val,
|
||
struct type *new_type);
|
||
|
||
/* The language specific vector */
|
||
|
||
struct language_specific
|
||
{
|
||
|
||
/* The language of this variable. */
|
||
enum varobj_languages language;
|
||
|
||
/* The number of children of PARENT. */
|
||
int (*number_of_children) (struct varobj * parent);
|
||
|
||
/* The name (expression) of a root varobj. */
|
||
char *(*name_of_variable) (struct varobj * parent);
|
||
|
||
/* The name of the INDEX'th child of PARENT. */
|
||
char *(*name_of_child) (struct varobj * parent, int index);
|
||
|
||
/* Returns the rooted expression of CHILD, which is a variable
|
||
obtain that has some parent. */
|
||
char *(*path_expr_of_child) (struct varobj * child);
|
||
|
||
/* The ``struct value *'' of the root variable ROOT. */
|
||
struct value *(*value_of_root) (struct varobj ** root_handle);
|
||
|
||
/* The ``struct value *'' of the INDEX'th child of PARENT. */
|
||
struct value *(*value_of_child) (struct varobj * parent, int index);
|
||
|
||
/* The type of the INDEX'th child of PARENT. */
|
||
struct type *(*type_of_child) (struct varobj * parent, int index);
|
||
|
||
/* The current value of VAR. */
|
||
char *(*value_of_variable) (struct varobj * var,
|
||
enum varobj_display_formats format);
|
||
|
||
/* Return non-zero if changes in value of VAR must be detected and
|
||
reported by -var-update. Return zero if -var-update should never
|
||
report changes of such values. This makes sense for structures
|
||
(since the changes in children values will be reported separately),
|
||
or for artifical objects (like 'public' pseudo-field in C++).
|
||
|
||
Return value of 0 means that gdb need not call value_fetch_lazy
|
||
for the value of this variable object. */
|
||
int (*value_is_changeable_p) (struct varobj *var);
|
||
|
||
/* Return nonzero if the type of VAR has mutated.
|
||
|
||
VAR's value is still the varobj's previous value, while NEW_VALUE
|
||
is VAR's new value and NEW_TYPE is the var's new type. NEW_VALUE
|
||
may be NULL indicating that there is no value available (the varobj
|
||
may be out of scope, of may be the child of a null pointer, for
|
||
instance). NEW_TYPE, on the other hand, must never be NULL.
|
||
|
||
This function should also be able to assume that var's number of
|
||
children is set (not < 0).
|
||
|
||
Languages where types do not mutate can set this to NULL. */
|
||
int (*value_has_mutated) (struct varobj *var, struct value *new_value,
|
||
struct type *new_type);
|
||
};
|
||
|
||
/* Array of known source language routines. */
|
||
static struct language_specific languages[vlang_end] = {
|
||
/* Unknown (try treating as C). */
|
||
{
|
||
vlang_unknown,
|
||
c_number_of_children,
|
||
c_name_of_variable,
|
||
c_name_of_child,
|
||
c_path_expr_of_child,
|
||
c_value_of_root,
|
||
c_value_of_child,
|
||
c_type_of_child,
|
||
c_value_of_variable,
|
||
default_value_is_changeable_p,
|
||
NULL /* value_has_mutated */}
|
||
,
|
||
/* C */
|
||
{
|
||
vlang_c,
|
||
c_number_of_children,
|
||
c_name_of_variable,
|
||
c_name_of_child,
|
||
c_path_expr_of_child,
|
||
c_value_of_root,
|
||
c_value_of_child,
|
||
c_type_of_child,
|
||
c_value_of_variable,
|
||
default_value_is_changeable_p,
|
||
NULL /* value_has_mutated */}
|
||
,
|
||
/* C++ */
|
||
{
|
||
vlang_cplus,
|
||
cplus_number_of_children,
|
||
cplus_name_of_variable,
|
||
cplus_name_of_child,
|
||
cplus_path_expr_of_child,
|
||
cplus_value_of_root,
|
||
cplus_value_of_child,
|
||
cplus_type_of_child,
|
||
cplus_value_of_variable,
|
||
default_value_is_changeable_p,
|
||
NULL /* value_has_mutated */}
|
||
,
|
||
/* Java */
|
||
{
|
||
vlang_java,
|
||
java_number_of_children,
|
||
java_name_of_variable,
|
||
java_name_of_child,
|
||
java_path_expr_of_child,
|
||
java_value_of_root,
|
||
java_value_of_child,
|
||
java_type_of_child,
|
||
java_value_of_variable,
|
||
default_value_is_changeable_p,
|
||
NULL /* value_has_mutated */},
|
||
/* Ada */
|
||
{
|
||
vlang_ada,
|
||
ada_number_of_children,
|
||
ada_name_of_variable,
|
||
ada_name_of_child,
|
||
ada_path_expr_of_child,
|
||
ada_value_of_root,
|
||
ada_value_of_child,
|
||
ada_type_of_child,
|
||
ada_value_of_variable,
|
||
ada_value_is_changeable_p,
|
||
ada_value_has_mutated}
|
||
};
|
||
|
||
/* A little convenience enum for dealing with C++/Java. */
|
||
enum vsections
|
||
{
|
||
v_public = 0, v_private, v_protected
|
||
};
|
||
|
||
/* Private data */
|
||
|
||
/* Mappings of varobj_display_formats enums to gdb's format codes. */
|
||
static int format_code[] = { 0, 't', 'd', 'x', 'o' };
|
||
|
||
/* Header of the list of root variable objects. */
|
||
static struct varobj_root *rootlist;
|
||
|
||
/* Prime number indicating the number of buckets in the hash table. */
|
||
/* A prime large enough to avoid too many colisions. */
|
||
#define VAROBJ_TABLE_SIZE 227
|
||
|
||
/* Pointer to the varobj hash table (built at run time). */
|
||
static struct vlist **varobj_table;
|
||
|
||
/* Is the variable X one of our "fake" children? */
|
||
#define CPLUS_FAKE_CHILD(x) \
|
||
((x) != NULL && (x)->type == NULL && (x)->value == NULL)
|
||
|
||
|
||
/* API Implementation */
|
||
static int
|
||
is_root_p (struct varobj *var)
|
||
{
|
||
return (var->root->rootvar == var);
|
||
}
|
||
|
||
#ifdef HAVE_PYTHON
|
||
/* Helper function to install a Python environment suitable for
|
||
use during operations on VAR. */
|
||
static struct cleanup *
|
||
varobj_ensure_python_env (struct varobj *var)
|
||
{
|
||
return ensure_python_env (var->root->exp->gdbarch,
|
||
var->root->exp->language_defn);
|
||
}
|
||
#endif
|
||
|
||
/* Creates a varobj (not its children). */
|
||
|
||
/* Return the full FRAME which corresponds to the given CORE_ADDR
|
||
or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
|
||
|
||
static struct frame_info *
|
||
find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
|
||
{
|
||
struct frame_info *frame = NULL;
|
||
|
||
if (frame_addr == (CORE_ADDR) 0)
|
||
return NULL;
|
||
|
||
for (frame = get_current_frame ();
|
||
frame != NULL;
|
||
frame = get_prev_frame (frame))
|
||
{
|
||
/* The CORE_ADDR we get as argument was parsed from a string GDB
|
||
output as $fp. This output got truncated to gdbarch_addr_bit.
|
||
Truncate the frame base address in the same manner before
|
||
comparing it against our argument. */
|
||
CORE_ADDR frame_base = get_frame_base_address (frame);
|
||
int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
|
||
|
||
if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
|
||
frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
|
||
|
||
if (frame_base == frame_addr)
|
||
return frame;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
struct varobj *
|
||
varobj_create (char *objname,
|
||
char *expression, CORE_ADDR frame, enum varobj_type type)
|
||
{
|
||
struct varobj *var;
|
||
struct cleanup *old_chain;
|
||
|
||
/* Fill out a varobj structure for the (root) variable being constructed. */
|
||
var = new_root_variable ();
|
||
old_chain = make_cleanup_free_variable (var);
|
||
|
||
if (expression != NULL)
|
||
{
|
||
struct frame_info *fi;
|
||
struct frame_id old_id = null_frame_id;
|
||
struct block *block;
|
||
char *p;
|
||
enum varobj_languages lang;
|
||
struct value *value = NULL;
|
||
volatile struct gdb_exception except;
|
||
CORE_ADDR pc;
|
||
|
||
/* Parse and evaluate the expression, filling in as much of the
|
||
variable's data as possible. */
|
||
|
||
if (has_stack_frames ())
|
||
{
|
||
/* Allow creator to specify context of variable. */
|
||
if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
|
||
fi = get_selected_frame (NULL);
|
||
else
|
||
/* FIXME: cagney/2002-11-23: This code should be doing a
|
||
lookup using the frame ID and not just the frame's
|
||
``address''. This, of course, means an interface
|
||
change. However, with out that interface change ISAs,
|
||
such as the ia64 with its two stacks, won't work.
|
||
Similar goes for the case where there is a frameless
|
||
function. */
|
||
fi = find_frame_addr_in_frame_chain (frame);
|
||
}
|
||
else
|
||
fi = NULL;
|
||
|
||
/* frame = -2 means always use selected frame. */
|
||
if (type == USE_SELECTED_FRAME)
|
||
var->root->floating = 1;
|
||
|
||
pc = 0;
|
||
block = NULL;
|
||
if (fi != NULL)
|
||
{
|
||
block = get_frame_block (fi, 0);
|
||
pc = get_frame_pc (fi);
|
||
}
|
||
|
||
p = expression;
|
||
innermost_block = NULL;
|
||
/* Wrap the call to parse expression, so we can
|
||
return a sensible error. */
|
||
TRY_CATCH (except, RETURN_MASK_ERROR)
|
||
{
|
||
var->root->exp = parse_exp_1 (&p, pc, block, 0);
|
||
}
|
||
|
||
if (except.reason < 0)
|
||
{
|
||
do_cleanups (old_chain);
|
||
return NULL;
|
||
}
|
||
|
||
/* Don't allow variables to be created for types. */
|
||
if (var->root->exp->elts[0].opcode == OP_TYPE
|
||
|| var->root->exp->elts[0].opcode == OP_TYPEOF
|
||
|| var->root->exp->elts[0].opcode == OP_DECLTYPE)
|
||
{
|
||
do_cleanups (old_chain);
|
||
fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
|
||
" as an expression.\n");
|
||
return NULL;
|
||
}
|
||
|
||
var->format = variable_default_display (var);
|
||
var->root->valid_block = innermost_block;
|
||
var->name = xstrdup (expression);
|
||
/* For a root var, the name and the expr are the same. */
|
||
var->path_expr = xstrdup (expression);
|
||
|
||
/* When the frame is different from the current frame,
|
||
we must select the appropriate frame before parsing
|
||
the expression, otherwise the value will not be current.
|
||
Since select_frame is so benign, just call it for all cases. */
|
||
if (innermost_block)
|
||
{
|
||
/* User could specify explicit FRAME-ADDR which was not found but
|
||
EXPRESSION is frame specific and we would not be able to evaluate
|
||
it correctly next time. With VALID_BLOCK set we must also set
|
||
FRAME and THREAD_ID. */
|
||
if (fi == NULL)
|
||
error (_("Failed to find the specified frame"));
|
||
|
||
var->root->frame = get_frame_id (fi);
|
||
var->root->thread_id = pid_to_thread_id (inferior_ptid);
|
||
old_id = get_frame_id (get_selected_frame (NULL));
|
||
select_frame (fi);
|
||
}
|
||
|
||
/* We definitely need to catch errors here.
|
||
If evaluate_expression succeeds we got the value we wanted.
|
||
But if it fails, we still go on with a call to evaluate_type(). */
|
||
TRY_CATCH (except, RETURN_MASK_ERROR)
|
||
{
|
||
value = evaluate_expression (var->root->exp);
|
||
}
|
||
|
||
if (except.reason < 0)
|
||
{
|
||
/* Error getting the value. Try to at least get the
|
||
right type. */
|
||
struct value *type_only_value = evaluate_type (var->root->exp);
|
||
|
||
var->type = value_type (type_only_value);
|
||
}
|
||
else
|
||
{
|
||
int real_type_found = 0;
|
||
|
||
var->type = value_actual_type (value, 0, &real_type_found);
|
||
if (real_type_found)
|
||
value = value_cast (var->type, value);
|
||
}
|
||
|
||
/* Set language info */
|
||
lang = variable_language (var);
|
||
var->root->lang = &languages[lang];
|
||
|
||
install_new_value (var, value, 1 /* Initial assignment */);
|
||
|
||
/* Set ourselves as our root. */
|
||
var->root->rootvar = var;
|
||
|
||
/* Reset the selected frame. */
|
||
if (frame_id_p (old_id))
|
||
select_frame (frame_find_by_id (old_id));
|
||
}
|
||
|
||
/* If the variable object name is null, that means this
|
||
is a temporary variable, so don't install it. */
|
||
|
||
if ((var != NULL) && (objname != NULL))
|
||
{
|
||
var->obj_name = xstrdup (objname);
|
||
|
||
/* If a varobj name is duplicated, the install will fail so
|
||
we must cleanup. */
|
||
if (!install_variable (var))
|
||
{
|
||
do_cleanups (old_chain);
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
discard_cleanups (old_chain);
|
||
return var;
|
||
}
|
||
|
||
/* Generates an unique name that can be used for a varobj. */
|
||
|
||
char *
|
||
varobj_gen_name (void)
|
||
{
|
||
static int id = 0;
|
||
char *obj_name;
|
||
|
||
/* Generate a name for this object. */
|
||
id++;
|
||
obj_name = xstrprintf ("var%d", id);
|
||
|
||
return obj_name;
|
||
}
|
||
|
||
/* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
|
||
error if OBJNAME cannot be found. */
|
||
|
||
struct varobj *
|
||
varobj_get_handle (char *objname)
|
||
{
|
||
struct vlist *cv;
|
||
const char *chp;
|
||
unsigned int index = 0;
|
||
unsigned int i = 1;
|
||
|
||
for (chp = objname; *chp; chp++)
|
||
{
|
||
index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
|
||
}
|
||
|
||
cv = *(varobj_table + index);
|
||
while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
|
||
cv = cv->next;
|
||
|
||
if (cv == NULL)
|
||
error (_("Variable object not found"));
|
||
|
||
return cv->var;
|
||
}
|
||
|
||
/* Given the handle, return the name of the object. */
|
||
|
||
char *
|
||
varobj_get_objname (struct varobj *var)
|
||
{
|
||
return var->obj_name;
|
||
}
|
||
|
||
/* Given the handle, return the expression represented by the object. */
|
||
|
||
char *
|
||
varobj_get_expression (struct varobj *var)
|
||
{
|
||
return name_of_variable (var);
|
||
}
|
||
|
||
/* Deletes a varobj and all its children if only_children == 0,
|
||
otherwise deletes only the children; returns a malloc'ed list of
|
||
all the (malloc'ed) names of the variables that have been deleted
|
||
(NULL terminated). */
|
||
|
||
int
|
||
varobj_delete (struct varobj *var, char ***dellist, int only_children)
|
||
{
|
||
int delcount;
|
||
int mycount;
|
||
struct cpstack *result = NULL;
|
||
char **cp;
|
||
|
||
/* Initialize a stack for temporary results. */
|
||
cppush (&result, NULL);
|
||
|
||
if (only_children)
|
||
/* Delete only the variable children. */
|
||
delcount = delete_variable (&result, var, 1 /* only the children */ );
|
||
else
|
||
/* Delete the variable and all its children. */
|
||
delcount = delete_variable (&result, var, 0 /* parent+children */ );
|
||
|
||
/* We may have been asked to return a list of what has been deleted. */
|
||
if (dellist != NULL)
|
||
{
|
||
*dellist = xmalloc ((delcount + 1) * sizeof (char *));
|
||
|
||
cp = *dellist;
|
||
mycount = delcount;
|
||
*cp = cppop (&result);
|
||
while ((*cp != NULL) && (mycount > 0))
|
||
{
|
||
mycount--;
|
||
cp++;
|
||
*cp = cppop (&result);
|
||
}
|
||
|
||
if (mycount || (*cp != NULL))
|
||
warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
|
||
mycount);
|
||
}
|
||
|
||
return delcount;
|
||
}
|
||
|
||
#if HAVE_PYTHON
|
||
|
||
/* Convenience function for varobj_set_visualizer. Instantiate a
|
||
pretty-printer for a given value. */
|
||
static PyObject *
|
||
instantiate_pretty_printer (PyObject *constructor, struct value *value)
|
||
{
|
||
PyObject *val_obj = NULL;
|
||
PyObject *printer;
|
||
|
||
val_obj = value_to_value_object (value);
|
||
if (! val_obj)
|
||
return NULL;
|
||
|
||
printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
|
||
Py_DECREF (val_obj);
|
||
return printer;
|
||
}
|
||
|
||
#endif
|
||
|
||
/* Set/Get variable object display format. */
|
||
|
||
enum varobj_display_formats
|
||
varobj_set_display_format (struct varobj *var,
|
||
enum varobj_display_formats format)
|
||
{
|
||
switch (format)
|
||
{
|
||
case FORMAT_NATURAL:
|
||
case FORMAT_BINARY:
|
||
case FORMAT_DECIMAL:
|
||
case FORMAT_HEXADECIMAL:
|
||
case FORMAT_OCTAL:
|
||
var->format = format;
|
||
break;
|
||
|
||
default:
|
||
var->format = variable_default_display (var);
|
||
}
|
||
|
||
if (varobj_value_is_changeable_p (var)
|
||
&& var->value && !value_lazy (var->value))
|
||
{
|
||
xfree (var->print_value);
|
||
var->print_value = value_get_print_value (var->value, var->format, var);
|
||
}
|
||
|
||
return var->format;
|
||
}
|
||
|
||
enum varobj_display_formats
|
||
varobj_get_display_format (struct varobj *var)
|
||
{
|
||
return var->format;
|
||
}
|
||
|
||
char *
|
||
varobj_get_display_hint (struct varobj *var)
|
||
{
|
||
char *result = NULL;
|
||
|
||
#if HAVE_PYTHON
|
||
struct cleanup *back_to = varobj_ensure_python_env (var);
|
||
|
||
if (var->pretty_printer)
|
||
result = gdbpy_get_display_hint (var->pretty_printer);
|
||
|
||
do_cleanups (back_to);
|
||
#endif
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Return true if the varobj has items after TO, false otherwise. */
|
||
|
||
int
|
||
varobj_has_more (struct varobj *var, int to)
|
||
{
|
||
if (VEC_length (varobj_p, var->children) > to)
|
||
return 1;
|
||
return ((to == -1 || VEC_length (varobj_p, var->children) == to)
|
||
&& var->saved_item != NULL);
|
||
}
|
||
|
||
/* If the variable object is bound to a specific thread, that
|
||
is its evaluation can always be done in context of a frame
|
||
inside that thread, returns GDB id of the thread -- which
|
||
is always positive. Otherwise, returns -1. */
|
||
int
|
||
varobj_get_thread_id (struct varobj *var)
|
||
{
|
||
if (var->root->valid_block && var->root->thread_id > 0)
|
||
return var->root->thread_id;
|
||
else
|
||
return -1;
|
||
}
|
||
|
||
void
|
||
varobj_set_frozen (struct varobj *var, int frozen)
|
||
{
|
||
/* When a variable is unfrozen, we don't fetch its value.
|
||
The 'not_fetched' flag remains set, so next -var-update
|
||
won't complain.
|
||
|
||
We don't fetch the value, because for structures the client
|
||
should do -var-update anyway. It would be bad to have different
|
||
client-size logic for structure and other types. */
|
||
var->frozen = frozen;
|
||
}
|
||
|
||
int
|
||
varobj_get_frozen (struct varobj *var)
|
||
{
|
||
return var->frozen;
|
||
}
|
||
|
||
/* A helper function that restricts a range to what is actually
|
||
available in a VEC. This follows the usual rules for the meaning
|
||
of FROM and TO -- if either is negative, the entire range is
|
||
used. */
|
||
|
||
static void
|
||
restrict_range (VEC (varobj_p) *children, int *from, int *to)
|
||
{
|
||
if (*from < 0 || *to < 0)
|
||
{
|
||
*from = 0;
|
||
*to = VEC_length (varobj_p, children);
|
||
}
|
||
else
|
||
{
|
||
if (*from > VEC_length (varobj_p, children))
|
||
*from = VEC_length (varobj_p, children);
|
||
if (*to > VEC_length (varobj_p, children))
|
||
*to = VEC_length (varobj_p, children);
|
||
if (*from > *to)
|
||
*from = *to;
|
||
}
|
||
}
|
||
|
||
#if HAVE_PYTHON
|
||
|
||
/* A helper for update_dynamic_varobj_children that installs a new
|
||
child when needed. */
|
||
|
||
static void
|
||
install_dynamic_child (struct varobj *var,
|
||
VEC (varobj_p) **changed,
|
||
VEC (varobj_p) **type_changed,
|
||
VEC (varobj_p) **new,
|
||
VEC (varobj_p) **unchanged,
|
||
int *cchanged,
|
||
int index,
|
||
const char *name,
|
||
struct value *value)
|
||
{
|
||
if (VEC_length (varobj_p, var->children) < index + 1)
|
||
{
|
||
/* There's no child yet. */
|
||
struct varobj *child = varobj_add_child (var, name, value);
|
||
|
||
if (new)
|
||
{
|
||
VEC_safe_push (varobj_p, *new, child);
|
||
*cchanged = 1;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
varobj_p existing = VEC_index (varobj_p, var->children, index);
|
||
|
||
int type_updated = update_type_if_necessary (existing, value);
|
||
if (type_updated)
|
||
{
|
||
if (type_changed)
|
||
VEC_safe_push (varobj_p, *type_changed, existing);
|
||
}
|
||
if (install_new_value (existing, value, 0))
|
||
{
|
||
if (!type_updated && changed)
|
||
VEC_safe_push (varobj_p, *changed, existing);
|
||
}
|
||
else if (!type_updated && unchanged)
|
||
VEC_safe_push (varobj_p, *unchanged, existing);
|
||
}
|
||
}
|
||
|
||
static int
|
||
dynamic_varobj_has_child_method (struct varobj *var)
|
||
{
|
||
struct cleanup *back_to;
|
||
PyObject *printer = var->pretty_printer;
|
||
int result;
|
||
|
||
back_to = varobj_ensure_python_env (var);
|
||
result = PyObject_HasAttr (printer, gdbpy_children_cst);
|
||
do_cleanups (back_to);
|
||
return result;
|
||
}
|
||
|
||
#endif
|
||
|
||
static int
|
||
update_dynamic_varobj_children (struct varobj *var,
|
||
VEC (varobj_p) **changed,
|
||
VEC (varobj_p) **type_changed,
|
||
VEC (varobj_p) **new,
|
||
VEC (varobj_p) **unchanged,
|
||
int *cchanged,
|
||
int update_children,
|
||
int from,
|
||
int to)
|
||
{
|
||
#if HAVE_PYTHON
|
||
struct cleanup *back_to;
|
||
PyObject *children;
|
||
int i;
|
||
PyObject *printer = var->pretty_printer;
|
||
|
||
back_to = varobj_ensure_python_env (var);
|
||
|
||
*cchanged = 0;
|
||
if (!PyObject_HasAttr (printer, gdbpy_children_cst))
|
||
{
|
||
do_cleanups (back_to);
|
||
return 0;
|
||
}
|
||
|
||
if (update_children || !var->child_iter)
|
||
{
|
||
children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
|
||
NULL);
|
||
|
||
if (!children)
|
||
{
|
||
gdbpy_print_stack ();
|
||
error (_("Null value returned for children"));
|
||
}
|
||
|
||
make_cleanup_py_decref (children);
|
||
|
||
Py_XDECREF (var->child_iter);
|
||
var->child_iter = PyObject_GetIter (children);
|
||
if (!var->child_iter)
|
||
{
|
||
gdbpy_print_stack ();
|
||
error (_("Could not get children iterator"));
|
||
}
|
||
|
||
Py_XDECREF (var->saved_item);
|
||
var->saved_item = NULL;
|
||
|
||
i = 0;
|
||
}
|
||
else
|
||
i = VEC_length (varobj_p, var->children);
|
||
|
||
/* We ask for one extra child, so that MI can report whether there
|
||
are more children. */
|
||
for (; to < 0 || i < to + 1; ++i)
|
||
{
|
||
PyObject *item;
|
||
int force_done = 0;
|
||
|
||
/* See if there was a leftover from last time. */
|
||
if (var->saved_item)
|
||
{
|
||
item = var->saved_item;
|
||
var->saved_item = NULL;
|
||
}
|
||
else
|
||
item = PyIter_Next (var->child_iter);
|
||
|
||
if (!item)
|
||
{
|
||
/* Normal end of iteration. */
|
||
if (!PyErr_Occurred ())
|
||
break;
|
||
|
||
/* If we got a memory error, just use the text as the
|
||
item. */
|
||
if (PyErr_ExceptionMatches (gdbpy_gdb_memory_error))
|
||
{
|
||
PyObject *type, *value, *trace;
|
||
char *name_str, *value_str;
|
||
|
||
PyErr_Fetch (&type, &value, &trace);
|
||
value_str = gdbpy_exception_to_string (type, value);
|
||
Py_XDECREF (type);
|
||
Py_XDECREF (value);
|
||
Py_XDECREF (trace);
|
||
if (!value_str)
|
||
{
|
||
gdbpy_print_stack ();
|
||
break;
|
||
}
|
||
|
||
name_str = xstrprintf ("<error at %d>", i);
|
||
item = Py_BuildValue ("(ss)", name_str, value_str);
|
||
xfree (name_str);
|
||
xfree (value_str);
|
||
if (!item)
|
||
{
|
||
gdbpy_print_stack ();
|
||
break;
|
||
}
|
||
|
||
force_done = 1;
|
||
}
|
||
else
|
||
{
|
||
/* Any other kind of error. */
|
||
gdbpy_print_stack ();
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* We don't want to push the extra child on any report list. */
|
||
if (to < 0 || i < to)
|
||
{
|
||
PyObject *py_v;
|
||
const char *name;
|
||
struct value *v;
|
||
struct cleanup *inner;
|
||
int can_mention = from < 0 || i >= from;
|
||
|
||
inner = make_cleanup_py_decref (item);
|
||
|
||
if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
|
||
{
|
||
gdbpy_print_stack ();
|
||
error (_("Invalid item from the child list"));
|
||
}
|
||
|
||
v = convert_value_from_python (py_v);
|
||
if (v == NULL)
|
||
gdbpy_print_stack ();
|
||
install_dynamic_child (var, can_mention ? changed : NULL,
|
||
can_mention ? type_changed : NULL,
|
||
can_mention ? new : NULL,
|
||
can_mention ? unchanged : NULL,
|
||
can_mention ? cchanged : NULL, i, name, v);
|
||
do_cleanups (inner);
|
||
}
|
||
else
|
||
{
|
||
Py_XDECREF (var->saved_item);
|
||
var->saved_item = item;
|
||
|
||
/* We want to truncate the child list just before this
|
||
element. */
|
||
break;
|
||
}
|
||
|
||
if (force_done)
|
||
break;
|
||
}
|
||
|
||
if (i < VEC_length (varobj_p, var->children))
|
||
{
|
||
int j;
|
||
|
||
*cchanged = 1;
|
||
for (j = i; j < VEC_length (varobj_p, var->children); ++j)
|
||
varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
|
||
VEC_truncate (varobj_p, var->children, i);
|
||
}
|
||
|
||
/* If there are fewer children than requested, note that the list of
|
||
children changed. */
|
||
if (to >= 0 && VEC_length (varobj_p, var->children) < to)
|
||
*cchanged = 1;
|
||
|
||
var->num_children = VEC_length (varobj_p, var->children);
|
||
|
||
do_cleanups (back_to);
|
||
|
||
return 1;
|
||
#else
|
||
gdb_assert (0 && "should never be called if Python is not enabled");
|
||
#endif
|
||
}
|
||
|
||
int
|
||
varobj_get_num_children (struct varobj *var)
|
||
{
|
||
if (var->num_children == -1)
|
||
{
|
||
if (var->pretty_printer)
|
||
{
|
||
int dummy;
|
||
|
||
/* If we have a dynamic varobj, don't report -1 children.
|
||
So, try to fetch some children first. */
|
||
update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
|
||
0, 0, 0);
|
||
}
|
||
else
|
||
var->num_children = number_of_children (var);
|
||
}
|
||
|
||
return var->num_children >= 0 ? var->num_children : 0;
|
||
}
|
||
|
||
/* Creates a list of the immediate children of a variable object;
|
||
the return code is the number of such children or -1 on error. */
|
||
|
||
VEC (varobj_p)*
|
||
varobj_list_children (struct varobj *var, int *from, int *to)
|
||
{
|
||
char *name;
|
||
int i, children_changed;
|
||
|
||
var->children_requested = 1;
|
||
|
||
if (var->pretty_printer)
|
||
{
|
||
/* This, in theory, can result in the number of children changing without
|
||
frontend noticing. But well, calling -var-list-children on the same
|
||
varobj twice is not something a sane frontend would do. */
|
||
update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
|
||
&children_changed, 0, 0, *to);
|
||
restrict_range (var->children, from, to);
|
||
return var->children;
|
||
}
|
||
|
||
if (var->num_children == -1)
|
||
var->num_children = number_of_children (var);
|
||
|
||
/* If that failed, give up. */
|
||
if (var->num_children == -1)
|
||
return var->children;
|
||
|
||
/* If we're called when the list of children is not yet initialized,
|
||
allocate enough elements in it. */
|
||
while (VEC_length (varobj_p, var->children) < var->num_children)
|
||
VEC_safe_push (varobj_p, var->children, NULL);
|
||
|
||
for (i = 0; i < var->num_children; i++)
|
||
{
|
||
varobj_p existing = VEC_index (varobj_p, var->children, i);
|
||
|
||
if (existing == NULL)
|
||
{
|
||
/* Either it's the first call to varobj_list_children for
|
||
this variable object, and the child was never created,
|
||
or it was explicitly deleted by the client. */
|
||
name = name_of_child (var, i);
|
||
existing = create_child (var, i, name);
|
||
VEC_replace (varobj_p, var->children, i, existing);
|
||
}
|
||
}
|
||
|
||
restrict_range (var->children, from, to);
|
||
return var->children;
|
||
}
|
||
|
||
#if HAVE_PYTHON
|
||
|
||
static struct varobj *
|
||
varobj_add_child (struct varobj *var, const char *name, struct value *value)
|
||
{
|
||
varobj_p v = create_child_with_value (var,
|
||
VEC_length (varobj_p, var->children),
|
||
name, value);
|
||
|
||
VEC_safe_push (varobj_p, var->children, v);
|
||
return v;
|
||
}
|
||
|
||
#endif /* HAVE_PYTHON */
|
||
|
||
/* Obtain the type of an object Variable as a string similar to the one gdb
|
||
prints on the console. */
|
||
|
||
char *
|
||
varobj_get_type (struct varobj *var)
|
||
{
|
||
/* For the "fake" variables, do not return a type. (It's type is
|
||
NULL, too.)
|
||
Do not return a type for invalid variables as well. */
|
||
if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
|
||
return NULL;
|
||
|
||
return type_to_string (var->type);
|
||
}
|
||
|
||
/* Obtain the type of an object variable. */
|
||
|
||
struct type *
|
||
varobj_get_gdb_type (struct varobj *var)
|
||
{
|
||
return var->type;
|
||
}
|
||
|
||
/* Is VAR a path expression parent, i.e., can it be used to construct
|
||
a valid path expression? */
|
||
|
||
static int
|
||
is_path_expr_parent (struct varobj *var)
|
||
{
|
||
struct type *type;
|
||
|
||
/* "Fake" children are not path_expr parents. */
|
||
if (CPLUS_FAKE_CHILD (var))
|
||
return 0;
|
||
|
||
type = get_value_type (var);
|
||
|
||
/* Anonymous unions and structs are also not path_expr parents. */
|
||
return !((TYPE_CODE (type) == TYPE_CODE_STRUCT
|
||
|| TYPE_CODE (type) == TYPE_CODE_UNION)
|
||
&& TYPE_NAME (type) == NULL);
|
||
}
|
||
|
||
/* Return the path expression parent for VAR. */
|
||
|
||
static struct varobj *
|
||
get_path_expr_parent (struct varobj *var)
|
||
{
|
||
struct varobj *parent = var;
|
||
|
||
while (!is_root_p (parent) && !is_path_expr_parent (parent))
|
||
parent = parent->parent;
|
||
|
||
return parent;
|
||
}
|
||
|
||
/* Return a pointer to the full rooted expression of varobj VAR.
|
||
If it has not been computed yet, compute it. */
|
||
char *
|
||
varobj_get_path_expr (struct varobj *var)
|
||
{
|
||
if (var->path_expr != NULL)
|
||
return var->path_expr;
|
||
else
|
||
{
|
||
/* For root varobjs, we initialize path_expr
|
||
when creating varobj, so here it should be
|
||
child varobj. */
|
||
gdb_assert (!is_root_p (var));
|
||
return (*var->root->lang->path_expr_of_child) (var);
|
||
}
|
||
}
|
||
|
||
enum varobj_languages
|
||
varobj_get_language (struct varobj *var)
|
||
{
|
||
return variable_language (var);
|
||
}
|
||
|
||
int
|
||
varobj_get_attributes (struct varobj *var)
|
||
{
|
||
int attributes = 0;
|
||
|
||
if (varobj_editable_p (var))
|
||
/* FIXME: define masks for attributes. */
|
||
attributes |= 0x00000001; /* Editable */
|
||
|
||
return attributes;
|
||
}
|
||
|
||
int
|
||
varobj_pretty_printed_p (struct varobj *var)
|
||
{
|
||
return var->pretty_printer != NULL;
|
||
}
|
||
|
||
char *
|
||
varobj_get_formatted_value (struct varobj *var,
|
||
enum varobj_display_formats format)
|
||
{
|
||
return my_value_of_variable (var, format);
|
||
}
|
||
|
||
char *
|
||
varobj_get_value (struct varobj *var)
|
||
{
|
||
return my_value_of_variable (var, var->format);
|
||
}
|
||
|
||
/* Set the value of an object variable (if it is editable) to the
|
||
value of the given expression. */
|
||
/* Note: Invokes functions that can call error(). */
|
||
|
||
int
|
||
varobj_set_value (struct varobj *var, char *expression)
|
||
{
|
||
struct value *val = NULL; /* Initialize to keep gcc happy. */
|
||
/* The argument "expression" contains the variable's new value.
|
||
We need to first construct a legal expression for this -- ugh! */
|
||
/* Does this cover all the bases? */
|
||
struct expression *exp;
|
||
struct value *value = NULL; /* Initialize to keep gcc happy. */
|
||
int saved_input_radix = input_radix;
|
||
char *s = expression;
|
||
volatile struct gdb_exception except;
|
||
|
||
gdb_assert (varobj_editable_p (var));
|
||
|
||
input_radix = 10; /* ALWAYS reset to decimal temporarily. */
|
||
exp = parse_exp_1 (&s, 0, 0, 0);
|
||
TRY_CATCH (except, RETURN_MASK_ERROR)
|
||
{
|
||
value = evaluate_expression (exp);
|
||
}
|
||
|
||
if (except.reason < 0)
|
||
{
|
||
/* We cannot proceed without a valid expression. */
|
||
xfree (exp);
|
||
return 0;
|
||
}
|
||
|
||
/* All types that are editable must also be changeable. */
|
||
gdb_assert (varobj_value_is_changeable_p (var));
|
||
|
||
/* The value of a changeable variable object must not be lazy. */
|
||
gdb_assert (!value_lazy (var->value));
|
||
|
||
/* Need to coerce the input. We want to check if the
|
||
value of the variable object will be different
|
||
after assignment, and the first thing value_assign
|
||
does is coerce the input.
|
||
For example, if we are assigning an array to a pointer variable we
|
||
should compare the pointer with the array's address, not with the
|
||
array's content. */
|
||
value = coerce_array (value);
|
||
|
||
/* The new value may be lazy. value_assign, or
|
||
rather value_contents, will take care of this. */
|
||
TRY_CATCH (except, RETURN_MASK_ERROR)
|
||
{
|
||
val = value_assign (var->value, value);
|
||
}
|
||
|
||
if (except.reason < 0)
|
||
return 0;
|
||
|
||
/* If the value has changed, record it, so that next -var-update can
|
||
report this change. If a variable had a value of '1', we've set it
|
||
to '333' and then set again to '1', when -var-update will report this
|
||
variable as changed -- because the first assignment has set the
|
||
'updated' flag. There's no need to optimize that, because return value
|
||
of -var-update should be considered an approximation. */
|
||
var->updated = install_new_value (var, val, 0 /* Compare values. */);
|
||
input_radix = saved_input_radix;
|
||
return 1;
|
||
}
|
||
|
||
#if HAVE_PYTHON
|
||
|
||
/* A helper function to install a constructor function and visualizer
|
||
in a varobj. */
|
||
|
||
static void
|
||
install_visualizer (struct varobj *var, PyObject *constructor,
|
||
PyObject *visualizer)
|
||
{
|
||
Py_XDECREF (var->constructor);
|
||
var->constructor = constructor;
|
||
|
||
Py_XDECREF (var->pretty_printer);
|
||
var->pretty_printer = visualizer;
|
||
|
||
Py_XDECREF (var->child_iter);
|
||
var->child_iter = NULL;
|
||
}
|
||
|
||
/* Install the default visualizer for VAR. */
|
||
|
||
static void
|
||
install_default_visualizer (struct varobj *var)
|
||
{
|
||
/* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
|
||
if (CPLUS_FAKE_CHILD (var))
|
||
return;
|
||
|
||
if (pretty_printing)
|
||
{
|
||
PyObject *pretty_printer = NULL;
|
||
|
||
if (var->value)
|
||
{
|
||
pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
|
||
if (! pretty_printer)
|
||
{
|
||
gdbpy_print_stack ();
|
||
error (_("Cannot instantiate printer for default visualizer"));
|
||
}
|
||
}
|
||
|
||
if (pretty_printer == Py_None)
|
||
{
|
||
Py_DECREF (pretty_printer);
|
||
pretty_printer = NULL;
|
||
}
|
||
|
||
install_visualizer (var, NULL, pretty_printer);
|
||
}
|
||
}
|
||
|
||
/* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
|
||
make a new object. */
|
||
|
||
static void
|
||
construct_visualizer (struct varobj *var, PyObject *constructor)
|
||
{
|
||
PyObject *pretty_printer;
|
||
|
||
/* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
|
||
if (CPLUS_FAKE_CHILD (var))
|
||
return;
|
||
|
||
Py_INCREF (constructor);
|
||
if (constructor == Py_None)
|
||
pretty_printer = NULL;
|
||
else
|
||
{
|
||
pretty_printer = instantiate_pretty_printer (constructor, var->value);
|
||
if (! pretty_printer)
|
||
{
|
||
gdbpy_print_stack ();
|
||
Py_DECREF (constructor);
|
||
constructor = Py_None;
|
||
Py_INCREF (constructor);
|
||
}
|
||
|
||
if (pretty_printer == Py_None)
|
||
{
|
||
Py_DECREF (pretty_printer);
|
||
pretty_printer = NULL;
|
||
}
|
||
}
|
||
|
||
install_visualizer (var, constructor, pretty_printer);
|
||
}
|
||
|
||
#endif /* HAVE_PYTHON */
|
||
|
||
/* A helper function for install_new_value. This creates and installs
|
||
a visualizer for VAR, if appropriate. */
|
||
|
||
static void
|
||
install_new_value_visualizer (struct varobj *var)
|
||
{
|
||
#if HAVE_PYTHON
|
||
/* If the constructor is None, then we want the raw value. If VAR
|
||
does not have a value, just skip this. */
|
||
if (var->constructor != Py_None && var->value)
|
||
{
|
||
struct cleanup *cleanup;
|
||
|
||
cleanup = varobj_ensure_python_env (var);
|
||
|
||
if (!var->constructor)
|
||
install_default_visualizer (var);
|
||
else
|
||
construct_visualizer (var, var->constructor);
|
||
|
||
do_cleanups (cleanup);
|
||
}
|
||
#else
|
||
/* Do nothing. */
|
||
#endif
|
||
}
|
||
|
||
/* When using RTTI to determine variable type it may be changed in runtime when
|
||
the variable value is changed. This function checks whether type of varobj
|
||
VAR will change when a new value NEW_VALUE is assigned and if it is so
|
||
updates the type of VAR. */
|
||
|
||
static int
|
||
update_type_if_necessary (struct varobj *var, struct value *new_value)
|
||
{
|
||
if (new_value)
|
||
{
|
||
struct value_print_options opts;
|
||
|
||
get_user_print_options (&opts);
|
||
if (opts.objectprint)
|
||
{
|
||
struct type *new_type;
|
||
char *curr_type_str, *new_type_str;
|
||
|
||
new_type = value_actual_type (new_value, 0, 0);
|
||
new_type_str = type_to_string (new_type);
|
||
curr_type_str = varobj_get_type (var);
|
||
if (strcmp (curr_type_str, new_type_str) != 0)
|
||
{
|
||
var->type = new_type;
|
||
|
||
/* This information may be not valid for a new type. */
|
||
varobj_delete (var, NULL, 1);
|
||
VEC_free (varobj_p, var->children);
|
||
var->num_children = -1;
|
||
return 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Assign a new value to a variable object. If INITIAL is non-zero,
|
||
this is the first assignement after the variable object was just
|
||
created, or changed type. In that case, just assign the value
|
||
and return 0.
|
||
Otherwise, assign the new value, and return 1 if the value is
|
||
different from the current one, 0 otherwise. The comparison is
|
||
done on textual representation of value. Therefore, some types
|
||
need not be compared. E.g. for structures the reported value is
|
||
always "{...}", so no comparison is necessary here. If the old
|
||
value was NULL and new one is not, or vice versa, we always return 1.
|
||
|
||
The VALUE parameter should not be released -- the function will
|
||
take care of releasing it when needed. */
|
||
static int
|
||
install_new_value (struct varobj *var, struct value *value, int initial)
|
||
{
|
||
int changeable;
|
||
int need_to_fetch;
|
||
int changed = 0;
|
||
int intentionally_not_fetched = 0;
|
||
char *print_value = NULL;
|
||
|
||
/* We need to know the varobj's type to decide if the value should
|
||
be fetched or not. C++ fake children (public/protected/private)
|
||
don't have a type. */
|
||
gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
|
||
changeable = varobj_value_is_changeable_p (var);
|
||
|
||
/* If the type has custom visualizer, we consider it to be always
|
||
changeable. FIXME: need to make sure this behaviour will not
|
||
mess up read-sensitive values. */
|
||
if (var->pretty_printer)
|
||
changeable = 1;
|
||
|
||
need_to_fetch = changeable;
|
||
|
||
/* We are not interested in the address of references, and given
|
||
that in C++ a reference is not rebindable, it cannot
|
||
meaningfully change. So, get hold of the real value. */
|
||
if (value)
|
||
value = coerce_ref (value);
|
||
|
||
if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
|
||
/* For unions, we need to fetch the value implicitly because
|
||
of implementation of union member fetch. When gdb
|
||
creates a value for a field and the value of the enclosing
|
||
structure is not lazy, it immediately copies the necessary
|
||
bytes from the enclosing values. If the enclosing value is
|
||
lazy, the call to value_fetch_lazy on the field will read
|
||
the data from memory. For unions, that means we'll read the
|
||
same memory more than once, which is not desirable. So
|
||
fetch now. */
|
||
need_to_fetch = 1;
|
||
|
||
/* The new value might be lazy. If the type is changeable,
|
||
that is we'll be comparing values of this type, fetch the
|
||
value now. Otherwise, on the next update the old value
|
||
will be lazy, which means we've lost that old value. */
|
||
if (need_to_fetch && value && value_lazy (value))
|
||
{
|
||
struct varobj *parent = var->parent;
|
||
int frozen = var->frozen;
|
||
|
||
for (; !frozen && parent; parent = parent->parent)
|
||
frozen |= parent->frozen;
|
||
|
||
if (frozen && initial)
|
||
{
|
||
/* For variables that are frozen, or are children of frozen
|
||
variables, we don't do fetch on initial assignment.
|
||
For non-initial assignemnt we do the fetch, since it means we're
|
||
explicitly asked to compare the new value with the old one. */
|
||
intentionally_not_fetched = 1;
|
||
}
|
||
else
|
||
{
|
||
volatile struct gdb_exception except;
|
||
|
||
TRY_CATCH (except, RETURN_MASK_ERROR)
|
||
{
|
||
value_fetch_lazy (value);
|
||
}
|
||
|
||
if (except.reason < 0)
|
||
{
|
||
/* Set the value to NULL, so that for the next -var-update,
|
||
we don't try to compare the new value with this value,
|
||
that we couldn't even read. */
|
||
value = NULL;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Get a reference now, before possibly passing it to any Python
|
||
code that might release it. */
|
||
if (value != NULL)
|
||
value_incref (value);
|
||
|
||
/* Below, we'll be comparing string rendering of old and new
|
||
values. Don't get string rendering if the value is
|
||
lazy -- if it is, the code above has decided that the value
|
||
should not be fetched. */
|
||
if (value && !value_lazy (value) && !var->pretty_printer)
|
||
print_value = value_get_print_value (value, var->format, var);
|
||
|
||
/* If the type is changeable, compare the old and the new values.
|
||
If this is the initial assignment, we don't have any old value
|
||
to compare with. */
|
||
if (!initial && changeable)
|
||
{
|
||
/* If the value of the varobj was changed by -var-set-value,
|
||
then the value in the varobj and in the target is the same.
|
||
However, that value is different from the value that the
|
||
varobj had after the previous -var-update. So need to the
|
||
varobj as changed. */
|
||
if (var->updated)
|
||
{
|
||
changed = 1;
|
||
}
|
||
else if (! var->pretty_printer)
|
||
{
|
||
/* Try to compare the values. That requires that both
|
||
values are non-lazy. */
|
||
if (var->not_fetched && value_lazy (var->value))
|
||
{
|
||
/* This is a frozen varobj and the value was never read.
|
||
Presumably, UI shows some "never read" indicator.
|
||
Now that we've fetched the real value, we need to report
|
||
this varobj as changed so that UI can show the real
|
||
value. */
|
||
changed = 1;
|
||
}
|
||
else if (var->value == NULL && value == NULL)
|
||
/* Equal. */
|
||
;
|
||
else if (var->value == NULL || value == NULL)
|
||
{
|
||
changed = 1;
|
||
}
|
||
else
|
||
{
|
||
gdb_assert (!value_lazy (var->value));
|
||
gdb_assert (!value_lazy (value));
|
||
|
||
gdb_assert (var->print_value != NULL && print_value != NULL);
|
||
if (strcmp (var->print_value, print_value) != 0)
|
||
changed = 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (!initial && !changeable)
|
||
{
|
||
/* For values that are not changeable, we don't compare the values.
|
||
However, we want to notice if a value was not NULL and now is NULL,
|
||
or vise versa, so that we report when top-level varobjs come in scope
|
||
and leave the scope. */
|
||
changed = (var->value != NULL) != (value != NULL);
|
||
}
|
||
|
||
/* We must always keep the new value, since children depend on it. */
|
||
if (var->value != NULL && var->value != value)
|
||
value_free (var->value);
|
||
var->value = value;
|
||
if (value && value_lazy (value) && intentionally_not_fetched)
|
||
var->not_fetched = 1;
|
||
else
|
||
var->not_fetched = 0;
|
||
var->updated = 0;
|
||
|
||
install_new_value_visualizer (var);
|
||
|
||
/* If we installed a pretty-printer, re-compare the printed version
|
||
to see if the variable changed. */
|
||
if (var->pretty_printer)
|
||
{
|
||
xfree (print_value);
|
||
print_value = value_get_print_value (var->value, var->format, var);
|
||
if ((var->print_value == NULL && print_value != NULL)
|
||
|| (var->print_value != NULL && print_value == NULL)
|
||
|| (var->print_value != NULL && print_value != NULL
|
||
&& strcmp (var->print_value, print_value) != 0))
|
||
changed = 1;
|
||
}
|
||
if (var->print_value)
|
||
xfree (var->print_value);
|
||
var->print_value = print_value;
|
||
|
||
gdb_assert (!var->value || value_type (var->value));
|
||
|
||
return changed;
|
||
}
|
||
|
||
/* Return the requested range for a varobj. VAR is the varobj. FROM
|
||
and TO are out parameters; *FROM and *TO will be set to the
|
||
selected sub-range of VAR. If no range was selected using
|
||
-var-set-update-range, then both will be -1. */
|
||
void
|
||
varobj_get_child_range (struct varobj *var, int *from, int *to)
|
||
{
|
||
*from = var->from;
|
||
*to = var->to;
|
||
}
|
||
|
||
/* Set the selected sub-range of children of VAR to start at index
|
||
FROM and end at index TO. If either FROM or TO is less than zero,
|
||
this is interpreted as a request for all children. */
|
||
void
|
||
varobj_set_child_range (struct varobj *var, int from, int to)
|
||
{
|
||
var->from = from;
|
||
var->to = to;
|
||
}
|
||
|
||
void
|
||
varobj_set_visualizer (struct varobj *var, const char *visualizer)
|
||
{
|
||
#if HAVE_PYTHON
|
||
PyObject *mainmod, *globals, *constructor;
|
||
struct cleanup *back_to;
|
||
|
||
back_to = varobj_ensure_python_env (var);
|
||
|
||
mainmod = PyImport_AddModule ("__main__");
|
||
globals = PyModule_GetDict (mainmod);
|
||
Py_INCREF (globals);
|
||
make_cleanup_py_decref (globals);
|
||
|
||
constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
|
||
|
||
if (! constructor)
|
||
{
|
||
gdbpy_print_stack ();
|
||
error (_("Could not evaluate visualizer expression: %s"), visualizer);
|
||
}
|
||
|
||
construct_visualizer (var, constructor);
|
||
Py_XDECREF (constructor);
|
||
|
||
/* If there are any children now, wipe them. */
|
||
varobj_delete (var, NULL, 1 /* children only */);
|
||
var->num_children = -1;
|
||
|
||
do_cleanups (back_to);
|
||
#else
|
||
error (_("Python support required"));
|
||
#endif
|
||
}
|
||
|
||
/* If NEW_VALUE is the new value of the given varobj (var), return
|
||
non-zero if var has mutated. In other words, if the type of
|
||
the new value is different from the type of the varobj's old
|
||
value.
|
||
|
||
NEW_VALUE may be NULL, if the varobj is now out of scope. */
|
||
|
||
static int
|
||
varobj_value_has_mutated (struct varobj *var, struct value *new_value,
|
||
struct type *new_type)
|
||
{
|
||
/* If we haven't previously computed the number of children in var,
|
||
it does not matter from the front-end's perspective whether
|
||
the type has mutated or not. For all intents and purposes,
|
||
it has not mutated. */
|
||
if (var->num_children < 0)
|
||
return 0;
|
||
|
||
if (var->root->lang->value_has_mutated)
|
||
return var->root->lang->value_has_mutated (var, new_value, new_type);
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
/* Update the values for a variable and its children. This is a
|
||
two-pronged attack. First, re-parse the value for the root's
|
||
expression to see if it's changed. Then go all the way
|
||
through its children, reconstructing them and noting if they've
|
||
changed.
|
||
|
||
The EXPLICIT parameter specifies if this call is result
|
||
of MI request to update this specific variable, or
|
||
result of implicit -var-update *. For implicit request, we don't
|
||
update frozen variables.
|
||
|
||
NOTE: This function may delete the caller's varobj. If it
|
||
returns TYPE_CHANGED, then it has done this and VARP will be modified
|
||
to point to the new varobj. */
|
||
|
||
VEC(varobj_update_result) *
|
||
varobj_update (struct varobj **varp, int explicit)
|
||
{
|
||
int type_changed = 0;
|
||
int i;
|
||
struct value *new;
|
||
VEC (varobj_update_result) *stack = NULL;
|
||
VEC (varobj_update_result) *result = NULL;
|
||
|
||
/* Frozen means frozen -- we don't check for any change in
|
||
this varobj, including its going out of scope, or
|
||
changing type. One use case for frozen varobjs is
|
||
retaining previously evaluated expressions, and we don't
|
||
want them to be reevaluated at all. */
|
||
if (!explicit && (*varp)->frozen)
|
||
return result;
|
||
|
||
if (!(*varp)->root->is_valid)
|
||
{
|
||
varobj_update_result r = {0};
|
||
|
||
r.varobj = *varp;
|
||
r.status = VAROBJ_INVALID;
|
||
VEC_safe_push (varobj_update_result, result, &r);
|
||
return result;
|
||
}
|
||
|
||
if ((*varp)->root->rootvar == *varp)
|
||
{
|
||
varobj_update_result r = {0};
|
||
|
||
r.varobj = *varp;
|
||
r.status = VAROBJ_IN_SCOPE;
|
||
|
||
/* Update the root variable. value_of_root can return NULL
|
||
if the variable is no longer around, i.e. we stepped out of
|
||
the frame in which a local existed. We are letting the
|
||
value_of_root variable dispose of the varobj if the type
|
||
has changed. */
|
||
new = value_of_root (varp, &type_changed);
|
||
if (update_type_if_necessary(*varp, new))
|
||
type_changed = 1;
|
||
r.varobj = *varp;
|
||
r.type_changed = type_changed;
|
||
if (install_new_value ((*varp), new, type_changed))
|
||
r.changed = 1;
|
||
|
||
if (new == NULL)
|
||
r.status = VAROBJ_NOT_IN_SCOPE;
|
||
r.value_installed = 1;
|
||
|
||
if (r.status == VAROBJ_NOT_IN_SCOPE)
|
||
{
|
||
if (r.type_changed || r.changed)
|
||
VEC_safe_push (varobj_update_result, result, &r);
|
||
return result;
|
||
}
|
||
|
||
VEC_safe_push (varobj_update_result, stack, &r);
|
||
}
|
||
else
|
||
{
|
||
varobj_update_result r = {0};
|
||
|
||
r.varobj = *varp;
|
||
VEC_safe_push (varobj_update_result, stack, &r);
|
||
}
|
||
|
||
/* Walk through the children, reconstructing them all. */
|
||
while (!VEC_empty (varobj_update_result, stack))
|
||
{
|
||
varobj_update_result r = *(VEC_last (varobj_update_result, stack));
|
||
struct varobj *v = r.varobj;
|
||
|
||
VEC_pop (varobj_update_result, stack);
|
||
|
||
/* Update this variable, unless it's a root, which is already
|
||
updated. */
|
||
if (!r.value_installed)
|
||
{
|
||
struct type *new_type;
|
||
|
||
new = value_of_child (v->parent, v->index);
|
||
if (update_type_if_necessary(v, new))
|
||
r.type_changed = 1;
|
||
if (new)
|
||
new_type = value_type (new);
|
||
else
|
||
new_type = v->root->lang->type_of_child (v->parent, v->index);
|
||
|
||
if (varobj_value_has_mutated (v, new, new_type))
|
||
{
|
||
/* The children are no longer valid; delete them now.
|
||
Report the fact that its type changed as well. */
|
||
varobj_delete (v, NULL, 1 /* only_children */);
|
||
v->num_children = -1;
|
||
v->to = -1;
|
||
v->from = -1;
|
||
v->type = new_type;
|
||
r.type_changed = 1;
|
||
}
|
||
|
||
if (install_new_value (v, new, r.type_changed))
|
||
{
|
||
r.changed = 1;
|
||
v->updated = 0;
|
||
}
|
||
}
|
||
|
||
/* We probably should not get children of a varobj that has a
|
||
pretty-printer, but for which -var-list-children was never
|
||
invoked. */
|
||
if (v->pretty_printer)
|
||
{
|
||
VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
|
||
VEC (varobj_p) *new = 0;
|
||
int i, children_changed = 0;
|
||
|
||
if (v->frozen)
|
||
continue;
|
||
|
||
if (!v->children_requested)
|
||
{
|
||
int dummy;
|
||
|
||
/* If we initially did not have potential children, but
|
||
now we do, consider the varobj as changed.
|
||
Otherwise, if children were never requested, consider
|
||
it as unchanged -- presumably, such varobj is not yet
|
||
expanded in the UI, so we need not bother getting
|
||
it. */
|
||
if (!varobj_has_more (v, 0))
|
||
{
|
||
update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
|
||
&dummy, 0, 0, 0);
|
||
if (varobj_has_more (v, 0))
|
||
r.changed = 1;
|
||
}
|
||
|
||
if (r.changed)
|
||
VEC_safe_push (varobj_update_result, result, &r);
|
||
|
||
continue;
|
||
}
|
||
|
||
/* If update_dynamic_varobj_children returns 0, then we have
|
||
a non-conforming pretty-printer, so we skip it. */
|
||
if (update_dynamic_varobj_children (v, &changed, &type_changed, &new,
|
||
&unchanged, &children_changed, 1,
|
||
v->from, v->to))
|
||
{
|
||
if (children_changed || new)
|
||
{
|
||
r.children_changed = 1;
|
||
r.new = new;
|
||
}
|
||
/* Push in reverse order so that the first child is
|
||
popped from the work stack first, and so will be
|
||
added to result first. This does not affect
|
||
correctness, just "nicer". */
|
||
for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
|
||
{
|
||
varobj_p tmp = VEC_index (varobj_p, type_changed, i);
|
||
varobj_update_result r = {0};
|
||
|
||
/* Type may change only if value was changed. */
|
||
r.varobj = tmp;
|
||
r.changed = 1;
|
||
r.type_changed = 1;
|
||
r.value_installed = 1;
|
||
VEC_safe_push (varobj_update_result, stack, &r);
|
||
}
|
||
for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
|
||
{
|
||
varobj_p tmp = VEC_index (varobj_p, changed, i);
|
||
varobj_update_result r = {0};
|
||
|
||
r.varobj = tmp;
|
||
r.changed = 1;
|
||
r.value_installed = 1;
|
||
VEC_safe_push (varobj_update_result, stack, &r);
|
||
}
|
||
for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
|
||
{
|
||
varobj_p tmp = VEC_index (varobj_p, unchanged, i);
|
||
|
||
if (!tmp->frozen)
|
||
{
|
||
varobj_update_result r = {0};
|
||
|
||
r.varobj = tmp;
|
||
r.value_installed = 1;
|
||
VEC_safe_push (varobj_update_result, stack, &r);
|
||
}
|
||
}
|
||
if (r.changed || r.children_changed)
|
||
VEC_safe_push (varobj_update_result, result, &r);
|
||
|
||
/* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
|
||
because NEW has been put into the result vector. */
|
||
VEC_free (varobj_p, changed);
|
||
VEC_free (varobj_p, type_changed);
|
||
VEC_free (varobj_p, unchanged);
|
||
|
||
continue;
|
||
}
|
||
}
|
||
|
||
/* Push any children. Use reverse order so that the first
|
||
child is popped from the work stack first, and so
|
||
will be added to result first. This does not
|
||
affect correctness, just "nicer". */
|
||
for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
|
||
{
|
||
varobj_p c = VEC_index (varobj_p, v->children, i);
|
||
|
||
/* Child may be NULL if explicitly deleted by -var-delete. */
|
||
if (c != NULL && !c->frozen)
|
||
{
|
||
varobj_update_result r = {0};
|
||
|
||
r.varobj = c;
|
||
VEC_safe_push (varobj_update_result, stack, &r);
|
||
}
|
||
}
|
||
|
||
if (r.changed || r.type_changed)
|
||
VEC_safe_push (varobj_update_result, result, &r);
|
||
}
|
||
|
||
VEC_free (varobj_update_result, stack);
|
||
|
||
return result;
|
||
}
|
||
|
||
|
||
/* Helper functions */
|
||
|
||
/*
|
||
* Variable object construction/destruction
|
||
*/
|
||
|
||
static int
|
||
delete_variable (struct cpstack **resultp, struct varobj *var,
|
||
int only_children_p)
|
||
{
|
||
int delcount = 0;
|
||
|
||
delete_variable_1 (resultp, &delcount, var,
|
||
only_children_p, 1 /* remove_from_parent_p */ );
|
||
|
||
return delcount;
|
||
}
|
||
|
||
/* Delete the variable object VAR and its children. */
|
||
/* IMPORTANT NOTE: If we delete a variable which is a child
|
||
and the parent is not removed we dump core. It must be always
|
||
initially called with remove_from_parent_p set. */
|
||
static void
|
||
delete_variable_1 (struct cpstack **resultp, int *delcountp,
|
||
struct varobj *var, int only_children_p,
|
||
int remove_from_parent_p)
|
||
{
|
||
int i;
|
||
|
||
/* Delete any children of this variable, too. */
|
||
for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
|
||
{
|
||
varobj_p child = VEC_index (varobj_p, var->children, i);
|
||
|
||
if (!child)
|
||
continue;
|
||
if (!remove_from_parent_p)
|
||
child->parent = NULL;
|
||
delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
|
||
}
|
||
VEC_free (varobj_p, var->children);
|
||
|
||
/* if we were called to delete only the children we are done here. */
|
||
if (only_children_p)
|
||
return;
|
||
|
||
/* Otherwise, add it to the list of deleted ones and proceed to do so. */
|
||
/* If the name is null, this is a temporary variable, that has not
|
||
yet been installed, don't report it, it belongs to the caller... */
|
||
if (var->obj_name != NULL)
|
||
{
|
||
cppush (resultp, xstrdup (var->obj_name));
|
||
*delcountp = *delcountp + 1;
|
||
}
|
||
|
||
/* If this variable has a parent, remove it from its parent's list. */
|
||
/* OPTIMIZATION: if the parent of this variable is also being deleted,
|
||
(as indicated by remove_from_parent_p) we don't bother doing an
|
||
expensive list search to find the element to remove when we are
|
||
discarding the list afterwards. */
|
||
if ((remove_from_parent_p) && (var->parent != NULL))
|
||
{
|
||
VEC_replace (varobj_p, var->parent->children, var->index, NULL);
|
||
}
|
||
|
||
if (var->obj_name != NULL)
|
||
uninstall_variable (var);
|
||
|
||
/* Free memory associated with this variable. */
|
||
free_variable (var);
|
||
}
|
||
|
||
/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
|
||
static int
|
||
install_variable (struct varobj *var)
|
||
{
|
||
struct vlist *cv;
|
||
struct vlist *newvl;
|
||
const char *chp;
|
||
unsigned int index = 0;
|
||
unsigned int i = 1;
|
||
|
||
for (chp = var->obj_name; *chp; chp++)
|
||
{
|
||
index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
|
||
}
|
||
|
||
cv = *(varobj_table + index);
|
||
while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
|
||
cv = cv->next;
|
||
|
||
if (cv != NULL)
|
||
error (_("Duplicate variable object name"));
|
||
|
||
/* Add varobj to hash table. */
|
||
newvl = xmalloc (sizeof (struct vlist));
|
||
newvl->next = *(varobj_table + index);
|
||
newvl->var = var;
|
||
*(varobj_table + index) = newvl;
|
||
|
||
/* If root, add varobj to root list. */
|
||
if (is_root_p (var))
|
||
{
|
||
/* Add to list of root variables. */
|
||
if (rootlist == NULL)
|
||
var->root->next = NULL;
|
||
else
|
||
var->root->next = rootlist;
|
||
rootlist = var->root;
|
||
}
|
||
|
||
return 1; /* OK */
|
||
}
|
||
|
||
/* Unistall the object VAR. */
|
||
static void
|
||
uninstall_variable (struct varobj *var)
|
||
{
|
||
struct vlist *cv;
|
||
struct vlist *prev;
|
||
struct varobj_root *cr;
|
||
struct varobj_root *prer;
|
||
const char *chp;
|
||
unsigned int index = 0;
|
||
unsigned int i = 1;
|
||
|
||
/* Remove varobj from hash table. */
|
||
for (chp = var->obj_name; *chp; chp++)
|
||
{
|
||
index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
|
||
}
|
||
|
||
cv = *(varobj_table + index);
|
||
prev = NULL;
|
||
while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
|
||
{
|
||
prev = cv;
|
||
cv = cv->next;
|
||
}
|
||
|
||
if (varobjdebug)
|
||
fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
|
||
|
||
if (cv == NULL)
|
||
{
|
||
warning
|
||
("Assertion failed: Could not find variable object \"%s\" to delete",
|
||
var->obj_name);
|
||
return;
|
||
}
|
||
|
||
if (prev == NULL)
|
||
*(varobj_table + index) = cv->next;
|
||
else
|
||
prev->next = cv->next;
|
||
|
||
xfree (cv);
|
||
|
||
/* If root, remove varobj from root list. */
|
||
if (is_root_p (var))
|
||
{
|
||
/* Remove from list of root variables. */
|
||
if (rootlist == var->root)
|
||
rootlist = var->root->next;
|
||
else
|
||
{
|
||
prer = NULL;
|
||
cr = rootlist;
|
||
while ((cr != NULL) && (cr->rootvar != var))
|
||
{
|
||
prer = cr;
|
||
cr = cr->next;
|
||
}
|
||
if (cr == NULL)
|
||
{
|
||
warning (_("Assertion failed: Could not find "
|
||
"varobj \"%s\" in root list"),
|
||
var->obj_name);
|
||
return;
|
||
}
|
||
if (prer == NULL)
|
||
rootlist = NULL;
|
||
else
|
||
prer->next = cr->next;
|
||
}
|
||
}
|
||
|
||
}
|
||
|
||
/* Create and install a child of the parent of the given name. */
|
||
static struct varobj *
|
||
create_child (struct varobj *parent, int index, char *name)
|
||
{
|
||
return create_child_with_value (parent, index, name,
|
||
value_of_child (parent, index));
|
||
}
|
||
|
||
/* Does CHILD represent a child with no name? This happens when
|
||
the child is an anonmous struct or union and it has no field name
|
||
in its parent variable.
|
||
|
||
This has already been determined by *_describe_child. The easiest
|
||
thing to do is to compare the child's name with ANONYMOUS_*_NAME. */
|
||
|
||
static int
|
||
is_anonymous_child (struct varobj *child)
|
||
{
|
||
return (strcmp (child->name, ANONYMOUS_STRUCT_NAME) == 0
|
||
|| strcmp (child->name, ANONYMOUS_UNION_NAME) == 0);
|
||
}
|
||
|
||
static struct varobj *
|
||
create_child_with_value (struct varobj *parent, int index, const char *name,
|
||
struct value *value)
|
||
{
|
||
struct varobj *child;
|
||
char *childs_name;
|
||
|
||
child = new_variable ();
|
||
|
||
/* Name is allocated by name_of_child. */
|
||
/* FIXME: xstrdup should not be here. */
|
||
child->name = xstrdup (name);
|
||
child->index = index;
|
||
child->parent = parent;
|
||
child->root = parent->root;
|
||
|
||
if (is_anonymous_child (child))
|
||
childs_name = xstrprintf ("%s.%d_anonymous", parent->obj_name, index);
|
||
else
|
||
childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
|
||
child->obj_name = childs_name;
|
||
|
||
install_variable (child);
|
||
|
||
/* Compute the type of the child. Must do this before
|
||
calling install_new_value. */
|
||
if (value != NULL)
|
||
/* If the child had no evaluation errors, var->value
|
||
will be non-NULL and contain a valid type. */
|
||
child->type = value_actual_type (value, 0, NULL);
|
||
else
|
||
/* Otherwise, we must compute the type. */
|
||
child->type = (*child->root->lang->type_of_child) (child->parent,
|
||
child->index);
|
||
install_new_value (child, value, 1);
|
||
|
||
return child;
|
||
}
|
||
|
||
|
||
/*
|
||
* Miscellaneous utility functions.
|
||
*/
|
||
|
||
/* Allocate memory and initialize a new variable. */
|
||
static struct varobj *
|
||
new_variable (void)
|
||
{
|
||
struct varobj *var;
|
||
|
||
var = (struct varobj *) xmalloc (sizeof (struct varobj));
|
||
var->name = NULL;
|
||
var->path_expr = NULL;
|
||
var->obj_name = NULL;
|
||
var->index = -1;
|
||
var->type = NULL;
|
||
var->value = NULL;
|
||
var->num_children = -1;
|
||
var->parent = NULL;
|
||
var->children = NULL;
|
||
var->format = 0;
|
||
var->root = NULL;
|
||
var->updated = 0;
|
||
var->print_value = NULL;
|
||
var->frozen = 0;
|
||
var->not_fetched = 0;
|
||
var->children_requested = 0;
|
||
var->from = -1;
|
||
var->to = -1;
|
||
var->constructor = 0;
|
||
var->pretty_printer = 0;
|
||
var->child_iter = 0;
|
||
var->saved_item = 0;
|
||
|
||
return var;
|
||
}
|
||
|
||
/* Allocate memory and initialize a new root variable. */
|
||
static struct varobj *
|
||
new_root_variable (void)
|
||
{
|
||
struct varobj *var = new_variable ();
|
||
|
||
var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));
|
||
var->root->lang = NULL;
|
||
var->root->exp = NULL;
|
||
var->root->valid_block = NULL;
|
||
var->root->frame = null_frame_id;
|
||
var->root->floating = 0;
|
||
var->root->rootvar = NULL;
|
||
var->root->is_valid = 1;
|
||
|
||
return var;
|
||
}
|
||
|
||
/* Free any allocated memory associated with VAR. */
|
||
static void
|
||
free_variable (struct varobj *var)
|
||
{
|
||
#if HAVE_PYTHON
|
||
if (var->pretty_printer)
|
||
{
|
||
struct cleanup *cleanup = varobj_ensure_python_env (var);
|
||
Py_XDECREF (var->constructor);
|
||
Py_XDECREF (var->pretty_printer);
|
||
Py_XDECREF (var->child_iter);
|
||
Py_XDECREF (var->saved_item);
|
||
do_cleanups (cleanup);
|
||
}
|
||
#endif
|
||
|
||
value_free (var->value);
|
||
|
||
/* Free the expression if this is a root variable. */
|
||
if (is_root_p (var))
|
||
{
|
||
xfree (var->root->exp);
|
||
xfree (var->root);
|
||
}
|
||
|
||
xfree (var->name);
|
||
xfree (var->obj_name);
|
||
xfree (var->print_value);
|
||
xfree (var->path_expr);
|
||
xfree (var);
|
||
}
|
||
|
||
static void
|
||
do_free_variable_cleanup (void *var)
|
||
{
|
||
free_variable (var);
|
||
}
|
||
|
||
static struct cleanup *
|
||
make_cleanup_free_variable (struct varobj *var)
|
||
{
|
||
return make_cleanup (do_free_variable_cleanup, var);
|
||
}
|
||
|
||
/* This returns the type of the variable. It also skips past typedefs
|
||
to return the real type of the variable.
|
||
|
||
NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
|
||
except within get_target_type and get_type. */
|
||
static struct type *
|
||
get_type (struct varobj *var)
|
||
{
|
||
struct type *type;
|
||
|
||
type = var->type;
|
||
if (type != NULL)
|
||
type = check_typedef (type);
|
||
|
||
return type;
|
||
}
|
||
|
||
/* Return the type of the value that's stored in VAR,
|
||
or that would have being stored there if the
|
||
value were accessible.
|
||
|
||
This differs from VAR->type in that VAR->type is always
|
||
the true type of the expession in the source language.
|
||
The return value of this function is the type we're
|
||
actually storing in varobj, and using for displaying
|
||
the values and for comparing previous and new values.
|
||
|
||
For example, top-level references are always stripped. */
|
||
static struct type *
|
||
get_value_type (struct varobj *var)
|
||
{
|
||
struct type *type;
|
||
|
||
if (var->value)
|
||
type = value_type (var->value);
|
||
else
|
||
type = var->type;
|
||
|
||
type = check_typedef (type);
|
||
|
||
if (TYPE_CODE (type) == TYPE_CODE_REF)
|
||
type = get_target_type (type);
|
||
|
||
type = check_typedef (type);
|
||
|
||
return type;
|
||
}
|
||
|
||
/* This returns the target type (or NULL) of TYPE, also skipping
|
||
past typedefs, just like get_type ().
|
||
|
||
NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
|
||
except within get_target_type and get_type. */
|
||
static struct type *
|
||
get_target_type (struct type *type)
|
||
{
|
||
if (type != NULL)
|
||
{
|
||
type = TYPE_TARGET_TYPE (type);
|
||
if (type != NULL)
|
||
type = check_typedef (type);
|
||
}
|
||
|
||
return type;
|
||
}
|
||
|
||
/* What is the default display for this variable? We assume that
|
||
everything is "natural". Any exceptions? */
|
||
static enum varobj_display_formats
|
||
variable_default_display (struct varobj *var)
|
||
{
|
||
return FORMAT_NATURAL;
|
||
}
|
||
|
||
/* FIXME: The following should be generic for any pointer. */
|
||
static void
|
||
cppush (struct cpstack **pstack, char *name)
|
||
{
|
||
struct cpstack *s;
|
||
|
||
s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
|
||
s->name = name;
|
||
s->next = *pstack;
|
||
*pstack = s;
|
||
}
|
||
|
||
/* FIXME: The following should be generic for any pointer. */
|
||
static char *
|
||
cppop (struct cpstack **pstack)
|
||
{
|
||
struct cpstack *s;
|
||
char *v;
|
||
|
||
if ((*pstack)->name == NULL && (*pstack)->next == NULL)
|
||
return NULL;
|
||
|
||
s = *pstack;
|
||
v = s->name;
|
||
*pstack = (*pstack)->next;
|
||
xfree (s);
|
||
|
||
return v;
|
||
}
|
||
|
||
/*
|
||
* Language-dependencies
|
||
*/
|
||
|
||
/* Common entry points */
|
||
|
||
/* Get the language of variable VAR. */
|
||
static enum varobj_languages
|
||
variable_language (struct varobj *var)
|
||
{
|
||
enum varobj_languages lang;
|
||
|
||
switch (var->root->exp->language_defn->la_language)
|
||
{
|
||
default:
|
||
case language_c:
|
||
lang = vlang_c;
|
||
break;
|
||
case language_cplus:
|
||
lang = vlang_cplus;
|
||
break;
|
||
case language_java:
|
||
lang = vlang_java;
|
||
break;
|
||
case language_ada:
|
||
lang = vlang_ada;
|
||
break;
|
||
}
|
||
|
||
return lang;
|
||
}
|
||
|
||
/* Return the number of children for a given variable.
|
||
The result of this function is defined by the language
|
||
implementation. The number of children returned by this function
|
||
is the number of children that the user will see in the variable
|
||
display. */
|
||
static int
|
||
number_of_children (struct varobj *var)
|
||
{
|
||
return (*var->root->lang->number_of_children) (var);
|
||
}
|
||
|
||
/* What is the expression for the root varobj VAR? Returns a malloc'd
|
||
string. */
|
||
static char *
|
||
name_of_variable (struct varobj *var)
|
||
{
|
||
return (*var->root->lang->name_of_variable) (var);
|
||
}
|
||
|
||
/* What is the name of the INDEX'th child of VAR? Returns a malloc'd
|
||
string. */
|
||
static char *
|
||
name_of_child (struct varobj *var, int index)
|
||
{
|
||
return (*var->root->lang->name_of_child) (var, index);
|
||
}
|
||
|
||
/* What is the ``struct value *'' of the root variable VAR?
|
||
For floating variable object, evaluation can get us a value
|
||
of different type from what is stored in varobj already. In
|
||
that case:
|
||
- *type_changed will be set to 1
|
||
- old varobj will be freed, and new one will be
|
||
created, with the same name.
|
||
- *var_handle will be set to the new varobj
|
||
Otherwise, *type_changed will be set to 0. */
|
||
static struct value *
|
||
value_of_root (struct varobj **var_handle, int *type_changed)
|
||
{
|
||
struct varobj *var;
|
||
|
||
if (var_handle == NULL)
|
||
return NULL;
|
||
|
||
var = *var_handle;
|
||
|
||
/* This should really be an exception, since this should
|
||
only get called with a root variable. */
|
||
|
||
if (!is_root_p (var))
|
||
return NULL;
|
||
|
||
if (var->root->floating)
|
||
{
|
||
struct varobj *tmp_var;
|
||
char *old_type, *new_type;
|
||
|
||
tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
|
||
USE_SELECTED_FRAME);
|
||
if (tmp_var == NULL)
|
||
{
|
||
return NULL;
|
||
}
|
||
old_type = varobj_get_type (var);
|
||
new_type = varobj_get_type (tmp_var);
|
||
if (strcmp (old_type, new_type) == 0)
|
||
{
|
||
/* The expression presently stored inside var->root->exp
|
||
remembers the locations of local variables relatively to
|
||
the frame where the expression was created (in DWARF location
|
||
button, for example). Naturally, those locations are not
|
||
correct in other frames, so update the expression. */
|
||
|
||
struct expression *tmp_exp = var->root->exp;
|
||
|
||
var->root->exp = tmp_var->root->exp;
|
||
tmp_var->root->exp = tmp_exp;
|
||
|
||
varobj_delete (tmp_var, NULL, 0);
|
||
*type_changed = 0;
|
||
}
|
||
else
|
||
{
|
||
tmp_var->obj_name = xstrdup (var->obj_name);
|
||
tmp_var->from = var->from;
|
||
tmp_var->to = var->to;
|
||
varobj_delete (var, NULL, 0);
|
||
|
||
install_variable (tmp_var);
|
||
*var_handle = tmp_var;
|
||
var = *var_handle;
|
||
*type_changed = 1;
|
||
}
|
||
xfree (old_type);
|
||
xfree (new_type);
|
||
}
|
||
else
|
||
{
|
||
*type_changed = 0;
|
||
}
|
||
|
||
{
|
||
struct value *value;
|
||
|
||
value = (*var->root->lang->value_of_root) (var_handle);
|
||
if (var->value == NULL || value == NULL)
|
||
{
|
||
/* For root varobj-s, a NULL value indicates a scoping issue.
|
||
So, nothing to do in terms of checking for mutations. */
|
||
}
|
||
else if (varobj_value_has_mutated (var, value, value_type (value)))
|
||
{
|
||
/* The type has mutated, so the children are no longer valid.
|
||
Just delete them, and tell our caller that the type has
|
||
changed. */
|
||
varobj_delete (var, NULL, 1 /* only_children */);
|
||
var->num_children = -1;
|
||
var->to = -1;
|
||
var->from = -1;
|
||
*type_changed = 1;
|
||
}
|
||
return value;
|
||
}
|
||
}
|
||
|
||
/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
|
||
static struct value *
|
||
value_of_child (struct varobj *parent, int index)
|
||
{
|
||
struct value *value;
|
||
|
||
value = (*parent->root->lang->value_of_child) (parent, index);
|
||
|
||
return value;
|
||
}
|
||
|
||
/* GDB already has a command called "value_of_variable". Sigh. */
|
||
static char *
|
||
my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
|
||
{
|
||
if (var->root->is_valid)
|
||
{
|
||
if (var->pretty_printer)
|
||
return value_get_print_value (var->value, var->format, var);
|
||
return (*var->root->lang->value_of_variable) (var, format);
|
||
}
|
||
else
|
||
return NULL;
|
||
}
|
||
|
||
static char *
|
||
value_get_print_value (struct value *value, enum varobj_display_formats format,
|
||
struct varobj *var)
|
||
{
|
||
struct ui_file *stb;
|
||
struct cleanup *old_chain;
|
||
gdb_byte *thevalue = NULL;
|
||
struct value_print_options opts;
|
||
struct type *type = NULL;
|
||
long len = 0;
|
||
char *encoding = NULL;
|
||
struct gdbarch *gdbarch = NULL;
|
||
/* Initialize it just to avoid a GCC false warning. */
|
||
CORE_ADDR str_addr = 0;
|
||
int string_print = 0;
|
||
|
||
if (value == NULL)
|
||
return NULL;
|
||
|
||
stb = mem_fileopen ();
|
||
old_chain = make_cleanup_ui_file_delete (stb);
|
||
|
||
gdbarch = get_type_arch (value_type (value));
|
||
#if HAVE_PYTHON
|
||
{
|
||
PyObject *value_formatter = var->pretty_printer;
|
||
|
||
varobj_ensure_python_env (var);
|
||
|
||
if (value_formatter)
|
||
{
|
||
/* First check to see if we have any children at all. If so,
|
||
we simply return {...}. */
|
||
if (dynamic_varobj_has_child_method (var))
|
||
{
|
||
do_cleanups (old_chain);
|
||
return xstrdup ("{...}");
|
||
}
|
||
|
||
if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
|
||
{
|
||
struct value *replacement;
|
||
PyObject *output = NULL;
|
||
|
||
output = apply_varobj_pretty_printer (value_formatter,
|
||
&replacement,
|
||
stb);
|
||
|
||
/* If we have string like output ... */
|
||
if (output)
|
||
{
|
||
make_cleanup_py_decref (output);
|
||
|
||
/* If this is a lazy string, extract it. For lazy
|
||
strings we always print as a string, so set
|
||
string_print. */
|
||
if (gdbpy_is_lazy_string (output))
|
||
{
|
||
gdbpy_extract_lazy_string (output, &str_addr, &type,
|
||
&len, &encoding);
|
||
make_cleanup (free_current_contents, &encoding);
|
||
string_print = 1;
|
||
}
|
||
else
|
||
{
|
||
/* If it is a regular (non-lazy) string, extract
|
||
it and copy the contents into THEVALUE. If the
|
||
hint says to print it as a string, set
|
||
string_print. Otherwise just return the extracted
|
||
string as a value. */
|
||
|
||
char *s = python_string_to_target_string (output);
|
||
|
||
if (s)
|
||
{
|
||
char *hint;
|
||
|
||
hint = gdbpy_get_display_hint (value_formatter);
|
||
if (hint)
|
||
{
|
||
if (!strcmp (hint, "string"))
|
||
string_print = 1;
|
||
xfree (hint);
|
||
}
|
||
|
||
len = strlen (s);
|
||
thevalue = xmemdup (s, len + 1, len + 1);
|
||
type = builtin_type (gdbarch)->builtin_char;
|
||
xfree (s);
|
||
|
||
if (!string_print)
|
||
{
|
||
do_cleanups (old_chain);
|
||
return thevalue;
|
||
}
|
||
|
||
make_cleanup (xfree, thevalue);
|
||
}
|
||
else
|
||
gdbpy_print_stack ();
|
||
}
|
||
}
|
||
/* If the printer returned a replacement value, set VALUE
|
||
to REPLACEMENT. If there is not a replacement value,
|
||
just use the value passed to this function. */
|
||
if (replacement)
|
||
value = replacement;
|
||
}
|
||
}
|
||
}
|
||
#endif
|
||
|
||
get_formatted_print_options (&opts, format_code[(int) format]);
|
||
opts.deref_ref = 0;
|
||
opts.raw = 1;
|
||
|
||
/* If the THEVALUE has contents, it is a regular string. */
|
||
if (thevalue)
|
||
LA_PRINT_STRING (stb, type, thevalue, len, encoding, 0, &opts);
|
||
else if (string_print)
|
||
/* Otherwise, if string_print is set, and it is not a regular
|
||
string, it is a lazy string. */
|
||
val_print_string (type, encoding, str_addr, len, stb, &opts);
|
||
else
|
||
/* All other cases. */
|
||
common_val_print (value, stb, 0, &opts, current_language);
|
||
|
||
thevalue = ui_file_xstrdup (stb, NULL);
|
||
|
||
do_cleanups (old_chain);
|
||
return thevalue;
|
||
}
|
||
|
||
int
|
||
varobj_editable_p (struct varobj *var)
|
||
{
|
||
struct type *type;
|
||
|
||
if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
|
||
return 0;
|
||
|
||
type = get_value_type (var);
|
||
|
||
switch (TYPE_CODE (type))
|
||
{
|
||
case TYPE_CODE_STRUCT:
|
||
case TYPE_CODE_UNION:
|
||
case TYPE_CODE_ARRAY:
|
||
case TYPE_CODE_FUNC:
|
||
case TYPE_CODE_METHOD:
|
||
return 0;
|
||
break;
|
||
|
||
default:
|
||
return 1;
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Call VAR's value_is_changeable_p language-specific callback. */
|
||
|
||
static int
|
||
varobj_value_is_changeable_p (struct varobj *var)
|
||
{
|
||
return var->root->lang->value_is_changeable_p (var);
|
||
}
|
||
|
||
/* Return 1 if that varobj is floating, that is is always evaluated in the
|
||
selected frame, and not bound to thread/frame. Such variable objects
|
||
are created using '@' as frame specifier to -var-create. */
|
||
int
|
||
varobj_floating_p (struct varobj *var)
|
||
{
|
||
return var->root->floating;
|
||
}
|
||
|
||
/* Given the value and the type of a variable object,
|
||
adjust the value and type to those necessary
|
||
for getting children of the variable object.
|
||
This includes dereferencing top-level references
|
||
to all types and dereferencing pointers to
|
||
structures.
|
||
|
||
If LOOKUP_ACTUAL_TYPE is set the enclosing type of the
|
||
value will be fetched and if it differs from static type
|
||
the value will be casted to it.
|
||
|
||
Both TYPE and *TYPE should be non-null. VALUE
|
||
can be null if we want to only translate type.
|
||
*VALUE can be null as well -- if the parent
|
||
value is not known.
|
||
|
||
If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
|
||
depending on whether pointer was dereferenced
|
||
in this function. */
|
||
static void
|
||
adjust_value_for_child_access (struct value **value,
|
||
struct type **type,
|
||
int *was_ptr,
|
||
int lookup_actual_type)
|
||
{
|
||
gdb_assert (type && *type);
|
||
|
||
if (was_ptr)
|
||
*was_ptr = 0;
|
||
|
||
*type = check_typedef (*type);
|
||
|
||
/* The type of value stored in varobj, that is passed
|
||
to us, is already supposed to be
|
||
reference-stripped. */
|
||
|
||
gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
|
||
|
||
/* Pointers to structures are treated just like
|
||
structures when accessing children. Don't
|
||
dererences pointers to other types. */
|
||
if (TYPE_CODE (*type) == TYPE_CODE_PTR)
|
||
{
|
||
struct type *target_type = get_target_type (*type);
|
||
if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
|
||
|| TYPE_CODE (target_type) == TYPE_CODE_UNION)
|
||
{
|
||
if (value && *value)
|
||
{
|
||
volatile struct gdb_exception except;
|
||
|
||
TRY_CATCH (except, RETURN_MASK_ERROR)
|
||
{
|
||
*value = value_ind (*value);
|
||
}
|
||
|
||
if (except.reason < 0)
|
||
*value = NULL;
|
||
}
|
||
*type = target_type;
|
||
if (was_ptr)
|
||
*was_ptr = 1;
|
||
}
|
||
}
|
||
|
||
/* The 'get_target_type' function calls check_typedef on
|
||
result, so we can immediately check type code. No
|
||
need to call check_typedef here. */
|
||
|
||
/* Access a real type of the value (if necessary and possible). */
|
||
if (value && *value && lookup_actual_type)
|
||
{
|
||
struct type *enclosing_type;
|
||
int real_type_found = 0;
|
||
|
||
enclosing_type = value_actual_type (*value, 1, &real_type_found);
|
||
if (real_type_found)
|
||
{
|
||
*type = enclosing_type;
|
||
*value = value_cast (enclosing_type, *value);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Implement the "value_is_changeable_p" varobj callback for most
|
||
languages. */
|
||
|
||
static int
|
||
default_value_is_changeable_p (struct varobj *var)
|
||
{
|
||
int r;
|
||
struct type *type;
|
||
|
||
if (CPLUS_FAKE_CHILD (var))
|
||
return 0;
|
||
|
||
type = get_value_type (var);
|
||
|
||
switch (TYPE_CODE (type))
|
||
{
|
||
case TYPE_CODE_STRUCT:
|
||
case TYPE_CODE_UNION:
|
||
case TYPE_CODE_ARRAY:
|
||
r = 0;
|
||
break;
|
||
|
||
default:
|
||
r = 1;
|
||
}
|
||
|
||
return r;
|
||
}
|
||
|
||
/* C */
|
||
|
||
static int
|
||
c_number_of_children (struct varobj *var)
|
||
{
|
||
struct type *type = get_value_type (var);
|
||
int children = 0;
|
||
struct type *target;
|
||
|
||
adjust_value_for_child_access (NULL, &type, NULL, 0);
|
||
target = get_target_type (type);
|
||
|
||
switch (TYPE_CODE (type))
|
||
{
|
||
case TYPE_CODE_ARRAY:
|
||
if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
|
||
&& !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
|
||
children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
|
||
else
|
||
/* If we don't know how many elements there are, don't display
|
||
any. */
|
||
children = 0;
|
||
break;
|
||
|
||
case TYPE_CODE_STRUCT:
|
||
case TYPE_CODE_UNION:
|
||
children = TYPE_NFIELDS (type);
|
||
break;
|
||
|
||
case TYPE_CODE_PTR:
|
||
/* The type here is a pointer to non-struct. Typically, pointers
|
||
have one child, except for function ptrs, which have no children,
|
||
and except for void*, as we don't know what to show.
|
||
|
||
We can show char* so we allow it to be dereferenced. If you decide
|
||
to test for it, please mind that a little magic is necessary to
|
||
properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
|
||
TYPE_NAME == "char". */
|
||
if (TYPE_CODE (target) == TYPE_CODE_FUNC
|
||
|| TYPE_CODE (target) == TYPE_CODE_VOID)
|
||
children = 0;
|
||
else
|
||
children = 1;
|
||
break;
|
||
|
||
default:
|
||
/* Other types have no children. */
|
||
break;
|
||
}
|
||
|
||
return children;
|
||
}
|
||
|
||
static char *
|
||
c_name_of_variable (struct varobj *parent)
|
||
{
|
||
return xstrdup (parent->name);
|
||
}
|
||
|
||
/* Return the value of element TYPE_INDEX of a structure
|
||
value VALUE. VALUE's type should be a structure,
|
||
or union, or a typedef to struct/union.
|
||
|
||
Returns NULL if getting the value fails. Never throws. */
|
||
static struct value *
|
||
value_struct_element_index (struct value *value, int type_index)
|
||
{
|
||
struct value *result = NULL;
|
||
volatile struct gdb_exception e;
|
||
struct type *type = value_type (value);
|
||
|
||
type = check_typedef (type);
|
||
|
||
gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
|
||
|| TYPE_CODE (type) == TYPE_CODE_UNION);
|
||
|
||
TRY_CATCH (e, RETURN_MASK_ERROR)
|
||
{
|
||
if (field_is_static (&TYPE_FIELD (type, type_index)))
|
||
result = value_static_field (type, type_index);
|
||
else
|
||
result = value_primitive_field (value, 0, type_index, type);
|
||
}
|
||
if (e.reason < 0)
|
||
{
|
||
return NULL;
|
||
}
|
||
else
|
||
{
|
||
return result;
|
||
}
|
||
}
|
||
|
||
/* Obtain the information about child INDEX of the variable
|
||
object PARENT.
|
||
If CNAME is not null, sets *CNAME to the name of the child relative
|
||
to the parent.
|
||
If CVALUE is not null, sets *CVALUE to the value of the child.
|
||
If CTYPE is not null, sets *CTYPE to the type of the child.
|
||
|
||
If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
|
||
information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
|
||
to NULL. */
|
||
static void
|
||
c_describe_child (struct varobj *parent, int index,
|
||
char **cname, struct value **cvalue, struct type **ctype,
|
||
char **cfull_expression)
|
||
{
|
||
struct value *value = parent->value;
|
||
struct type *type = get_value_type (parent);
|
||
char *parent_expression = NULL;
|
||
int was_ptr;
|
||
volatile struct gdb_exception except;
|
||
|
||
if (cname)
|
||
*cname = NULL;
|
||
if (cvalue)
|
||
*cvalue = NULL;
|
||
if (ctype)
|
||
*ctype = NULL;
|
||
if (cfull_expression)
|
||
{
|
||
*cfull_expression = NULL;
|
||
parent_expression = varobj_get_path_expr (get_path_expr_parent (parent));
|
||
}
|
||
adjust_value_for_child_access (&value, &type, &was_ptr, 0);
|
||
|
||
switch (TYPE_CODE (type))
|
||
{
|
||
case TYPE_CODE_ARRAY:
|
||
if (cname)
|
||
*cname
|
||
= xstrdup (int_string (index
|
||
+ TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
|
||
10, 1, 0, 0));
|
||
|
||
if (cvalue && value)
|
||
{
|
||
int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
|
||
|
||
TRY_CATCH (except, RETURN_MASK_ERROR)
|
||
{
|
||
*cvalue = value_subscript (value, real_index);
|
||
}
|
||
}
|
||
|
||
if (ctype)
|
||
*ctype = get_target_type (type);
|
||
|
||
if (cfull_expression)
|
||
*cfull_expression =
|
||
xstrprintf ("(%s)[%s]", parent_expression,
|
||
int_string (index
|
||
+ TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
|
||
10, 1, 0, 0));
|
||
|
||
|
||
break;
|
||
|
||
case TYPE_CODE_STRUCT:
|
||
case TYPE_CODE_UNION:
|
||
{
|
||
const char *field_name;
|
||
|
||
/* If the type is anonymous and the field has no name,
|
||
set an appropriate name. */
|
||
field_name = TYPE_FIELD_NAME (type, index);
|
||
if (field_name == NULL || *field_name == '\0')
|
||
{
|
||
if (cname)
|
||
{
|
||
if (TYPE_CODE (TYPE_FIELD_TYPE (type, index))
|
||
== TYPE_CODE_STRUCT)
|
||
*cname = xstrdup (ANONYMOUS_STRUCT_NAME);
|
||
else
|
||
*cname = xstrdup (ANONYMOUS_UNION_NAME);
|
||
}
|
||
|
||
if (cfull_expression)
|
||
*cfull_expression = xstrdup ("");
|
||
}
|
||
else
|
||
{
|
||
if (cname)
|
||
*cname = xstrdup (field_name);
|
||
|
||
if (cfull_expression)
|
||
{
|
||
char *join = was_ptr ? "->" : ".";
|
||
|
||
*cfull_expression = xstrprintf ("(%s)%s%s", parent_expression,
|
||
join, field_name);
|
||
}
|
||
}
|
||
|
||
if (cvalue && value)
|
||
{
|
||
/* For C, varobj index is the same as type index. */
|
||
*cvalue = value_struct_element_index (value, index);
|
||
}
|
||
|
||
if (ctype)
|
||
*ctype = TYPE_FIELD_TYPE (type, index);
|
||
}
|
||
break;
|
||
|
||
case TYPE_CODE_PTR:
|
||
if (cname)
|
||
*cname = xstrprintf ("*%s", parent->name);
|
||
|
||
if (cvalue && value)
|
||
{
|
||
TRY_CATCH (except, RETURN_MASK_ERROR)
|
||
{
|
||
*cvalue = value_ind (value);
|
||
}
|
||
|
||
if (except.reason < 0)
|
||
*cvalue = NULL;
|
||
}
|
||
|
||
/* Don't use get_target_type because it calls
|
||
check_typedef and here, we want to show the true
|
||
declared type of the variable. */
|
||
if (ctype)
|
||
*ctype = TYPE_TARGET_TYPE (type);
|
||
|
||
if (cfull_expression)
|
||
*cfull_expression = xstrprintf ("*(%s)", parent_expression);
|
||
|
||
break;
|
||
|
||
default:
|
||
/* This should not happen. */
|
||
if (cname)
|
||
*cname = xstrdup ("???");
|
||
if (cfull_expression)
|
||
*cfull_expression = xstrdup ("???");
|
||
/* Don't set value and type, we don't know then. */
|
||
}
|
||
}
|
||
|
||
static char *
|
||
c_name_of_child (struct varobj *parent, int index)
|
||
{
|
||
char *name;
|
||
|
||
c_describe_child (parent, index, &name, NULL, NULL, NULL);
|
||
return name;
|
||
}
|
||
|
||
static char *
|
||
c_path_expr_of_child (struct varobj *child)
|
||
{
|
||
c_describe_child (child->parent, child->index, NULL, NULL, NULL,
|
||
&child->path_expr);
|
||
return child->path_expr;
|
||
}
|
||
|
||
/* If frame associated with VAR can be found, switch
|
||
to it and return 1. Otherwise, return 0. */
|
||
static int
|
||
check_scope (struct varobj *var)
|
||
{
|
||
struct frame_info *fi;
|
||
int scope;
|
||
|
||
fi = frame_find_by_id (var->root->frame);
|
||
scope = fi != NULL;
|
||
|
||
if (fi)
|
||
{
|
||
CORE_ADDR pc = get_frame_pc (fi);
|
||
|
||
if (pc < BLOCK_START (var->root->valid_block) ||
|
||
pc >= BLOCK_END (var->root->valid_block))
|
||
scope = 0;
|
||
else
|
||
select_frame (fi);
|
||
}
|
||
return scope;
|
||
}
|
||
|
||
static struct value *
|
||
c_value_of_root (struct varobj **var_handle)
|
||
{
|
||
struct value *new_val = NULL;
|
||
struct varobj *var = *var_handle;
|
||
int within_scope = 0;
|
||
struct cleanup *back_to;
|
||
|
||
/* Only root variables can be updated... */
|
||
if (!is_root_p (var))
|
||
/* Not a root var. */
|
||
return NULL;
|
||
|
||
back_to = make_cleanup_restore_current_thread ();
|
||
|
||
/* Determine whether the variable is still around. */
|
||
if (var->root->valid_block == NULL || var->root->floating)
|
||
within_scope = 1;
|
||
else if (var->root->thread_id == 0)
|
||
{
|
||
/* The program was single-threaded when the variable object was
|
||
created. Technically, it's possible that the program became
|
||
multi-threaded since then, but we don't support such
|
||
scenario yet. */
|
||
within_scope = check_scope (var);
|
||
}
|
||
else
|
||
{
|
||
ptid_t ptid = thread_id_to_pid (var->root->thread_id);
|
||
if (in_thread_list (ptid))
|
||
{
|
||
switch_to_thread (ptid);
|
||
within_scope = check_scope (var);
|
||
}
|
||
}
|
||
|
||
if (within_scope)
|
||
{
|
||
volatile struct gdb_exception except;
|
||
|
||
/* We need to catch errors here, because if evaluate
|
||
expression fails we want to just return NULL. */
|
||
TRY_CATCH (except, RETURN_MASK_ERROR)
|
||
{
|
||
new_val = evaluate_expression (var->root->exp);
|
||
}
|
||
|
||
return new_val;
|
||
}
|
||
|
||
do_cleanups (back_to);
|
||
|
||
return NULL;
|
||
}
|
||
|
||
static struct value *
|
||
c_value_of_child (struct varobj *parent, int index)
|
||
{
|
||
struct value *value = NULL;
|
||
|
||
c_describe_child (parent, index, NULL, &value, NULL, NULL);
|
||
return value;
|
||
}
|
||
|
||
static struct type *
|
||
c_type_of_child (struct varobj *parent, int index)
|
||
{
|
||
struct type *type = NULL;
|
||
|
||
c_describe_child (parent, index, NULL, NULL, &type, NULL);
|
||
return type;
|
||
}
|
||
|
||
static char *
|
||
c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
|
||
{
|
||
/* BOGUS: if val_print sees a struct/class, or a reference to one,
|
||
it will print out its children instead of "{...}". So we need to
|
||
catch that case explicitly. */
|
||
struct type *type = get_type (var);
|
||
|
||
/* Strip top-level references. */
|
||
while (TYPE_CODE (type) == TYPE_CODE_REF)
|
||
type = check_typedef (TYPE_TARGET_TYPE (type));
|
||
|
||
switch (TYPE_CODE (type))
|
||
{
|
||
case TYPE_CODE_STRUCT:
|
||
case TYPE_CODE_UNION:
|
||
return xstrdup ("{...}");
|
||
/* break; */
|
||
|
||
case TYPE_CODE_ARRAY:
|
||
{
|
||
char *number;
|
||
|
||
number = xstrprintf ("[%d]", var->num_children);
|
||
return (number);
|
||
}
|
||
/* break; */
|
||
|
||
default:
|
||
{
|
||
if (var->value == NULL)
|
||
{
|
||
/* This can happen if we attempt to get the value of a struct
|
||
member when the parent is an invalid pointer. This is an
|
||
error condition, so we should tell the caller. */
|
||
return NULL;
|
||
}
|
||
else
|
||
{
|
||
if (var->not_fetched && value_lazy (var->value))
|
||
/* Frozen variable and no value yet. We don't
|
||
implicitly fetch the value. MI response will
|
||
use empty string for the value, which is OK. */
|
||
return NULL;
|
||
|
||
gdb_assert (varobj_value_is_changeable_p (var));
|
||
gdb_assert (!value_lazy (var->value));
|
||
|
||
/* If the specified format is the current one,
|
||
we can reuse print_value. */
|
||
if (format == var->format)
|
||
return xstrdup (var->print_value);
|
||
else
|
||
return value_get_print_value (var->value, format, var);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* C++ */
|
||
|
||
static int
|
||
cplus_number_of_children (struct varobj *var)
|
||
{
|
||
struct value *value = NULL;
|
||
struct type *type;
|
||
int children, dont_know;
|
||
int lookup_actual_type = 0;
|
||
struct value_print_options opts;
|
||
|
||
dont_know = 1;
|
||
children = 0;
|
||
|
||
get_user_print_options (&opts);
|
||
|
||
if (!CPLUS_FAKE_CHILD (var))
|
||
{
|
||
type = get_value_type (var);
|
||
|
||
/* It is necessary to access a real type (via RTTI). */
|
||
if (opts.objectprint)
|
||
{
|
||
value = var->value;
|
||
lookup_actual_type = (TYPE_CODE (var->type) == TYPE_CODE_REF
|
||
|| TYPE_CODE (var->type) == TYPE_CODE_PTR);
|
||
}
|
||
adjust_value_for_child_access (&value, &type, NULL, lookup_actual_type);
|
||
|
||
if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
|
||
((TYPE_CODE (type)) == TYPE_CODE_UNION))
|
||
{
|
||
int kids[3];
|
||
|
||
cplus_class_num_children (type, kids);
|
||
if (kids[v_public] != 0)
|
||
children++;
|
||
if (kids[v_private] != 0)
|
||
children++;
|
||
if (kids[v_protected] != 0)
|
||
children++;
|
||
|
||
/* Add any baseclasses. */
|
||
children += TYPE_N_BASECLASSES (type);
|
||
dont_know = 0;
|
||
|
||
/* FIXME: save children in var. */
|
||
}
|
||
}
|
||
else
|
||
{
|
||
int kids[3];
|
||
|
||
type = get_value_type (var->parent);
|
||
|
||
/* It is necessary to access a real type (via RTTI). */
|
||
if (opts.objectprint)
|
||
{
|
||
struct varobj *parent = var->parent;
|
||
|
||
value = parent->value;
|
||
lookup_actual_type = (TYPE_CODE (parent->type) == TYPE_CODE_REF
|
||
|| TYPE_CODE (parent->type) == TYPE_CODE_PTR);
|
||
}
|
||
adjust_value_for_child_access (&value, &type, NULL, lookup_actual_type);
|
||
|
||
cplus_class_num_children (type, kids);
|
||
if (strcmp (var->name, "public") == 0)
|
||
children = kids[v_public];
|
||
else if (strcmp (var->name, "private") == 0)
|
||
children = kids[v_private];
|
||
else
|
||
children = kids[v_protected];
|
||
dont_know = 0;
|
||
}
|
||
|
||
if (dont_know)
|
||
children = c_number_of_children (var);
|
||
|
||
return children;
|
||
}
|
||
|
||
/* Compute # of public, private, and protected variables in this class.
|
||
That means we need to descend into all baseclasses and find out
|
||
how many are there, too. */
|
||
static void
|
||
cplus_class_num_children (struct type *type, int children[3])
|
||
{
|
||
int i, vptr_fieldno;
|
||
struct type *basetype = NULL;
|
||
|
||
children[v_public] = 0;
|
||
children[v_private] = 0;
|
||
children[v_protected] = 0;
|
||
|
||
vptr_fieldno = get_vptr_fieldno (type, &basetype);
|
||
for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
|
||
{
|
||
/* If we have a virtual table pointer, omit it. Even if virtual
|
||
table pointers are not specifically marked in the debug info,
|
||
they should be artificial. */
|
||
if ((type == basetype && i == vptr_fieldno)
|
||
|| TYPE_FIELD_ARTIFICIAL (type, i))
|
||
continue;
|
||
|
||
if (TYPE_FIELD_PROTECTED (type, i))
|
||
children[v_protected]++;
|
||
else if (TYPE_FIELD_PRIVATE (type, i))
|
||
children[v_private]++;
|
||
else
|
||
children[v_public]++;
|
||
}
|
||
}
|
||
|
||
static char *
|
||
cplus_name_of_variable (struct varobj *parent)
|
||
{
|
||
return c_name_of_variable (parent);
|
||
}
|
||
|
||
enum accessibility { private_field, protected_field, public_field };
|
||
|
||
/* Check if field INDEX of TYPE has the specified accessibility.
|
||
Return 0 if so and 1 otherwise. */
|
||
static int
|
||
match_accessibility (struct type *type, int index, enum accessibility acc)
|
||
{
|
||
if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
|
||
return 1;
|
||
else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
|
||
return 1;
|
||
else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
|
||
&& !TYPE_FIELD_PROTECTED (type, index))
|
||
return 1;
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
static void
|
||
cplus_describe_child (struct varobj *parent, int index,
|
||
char **cname, struct value **cvalue, struct type **ctype,
|
||
char **cfull_expression)
|
||
{
|
||
struct value *value;
|
||
struct type *type;
|
||
int was_ptr;
|
||
int lookup_actual_type = 0;
|
||
char *parent_expression = NULL;
|
||
struct varobj *var;
|
||
struct value_print_options opts;
|
||
|
||
if (cname)
|
||
*cname = NULL;
|
||
if (cvalue)
|
||
*cvalue = NULL;
|
||
if (ctype)
|
||
*ctype = NULL;
|
||
if (cfull_expression)
|
||
*cfull_expression = NULL;
|
||
|
||
get_user_print_options (&opts);
|
||
|
||
var = (CPLUS_FAKE_CHILD (parent)) ? parent->parent : parent;
|
||
if (opts.objectprint)
|
||
lookup_actual_type = (TYPE_CODE (var->type) == TYPE_CODE_REF
|
||
|| TYPE_CODE (var->type) == TYPE_CODE_PTR);
|
||
value = var->value;
|
||
type = get_value_type (var);
|
||
if (cfull_expression)
|
||
parent_expression = varobj_get_path_expr (get_path_expr_parent (var));
|
||
|
||
adjust_value_for_child_access (&value, &type, &was_ptr, lookup_actual_type);
|
||
|
||
if (TYPE_CODE (type) == TYPE_CODE_STRUCT
|
||
|| TYPE_CODE (type) == TYPE_CODE_UNION)
|
||
{
|
||
char *join = was_ptr ? "->" : ".";
|
||
|
||
if (CPLUS_FAKE_CHILD (parent))
|
||
{
|
||
/* The fields of the class type are ordered as they
|
||
appear in the class. We are given an index for a
|
||
particular access control type ("public","protected",
|
||
or "private"). We must skip over fields that don't
|
||
have the access control we are looking for to properly
|
||
find the indexed field. */
|
||
int type_index = TYPE_N_BASECLASSES (type);
|
||
enum accessibility acc = public_field;
|
||
int vptr_fieldno;
|
||
struct type *basetype = NULL;
|
||
const char *field_name;
|
||
|
||
vptr_fieldno = get_vptr_fieldno (type, &basetype);
|
||
if (strcmp (parent->name, "private") == 0)
|
||
acc = private_field;
|
||
else if (strcmp (parent->name, "protected") == 0)
|
||
acc = protected_field;
|
||
|
||
while (index >= 0)
|
||
{
|
||
if ((type == basetype && type_index == vptr_fieldno)
|
||
|| TYPE_FIELD_ARTIFICIAL (type, type_index))
|
||
; /* ignore vptr */
|
||
else if (match_accessibility (type, type_index, acc))
|
||
--index;
|
||
++type_index;
|
||
}
|
||
--type_index;
|
||
|
||
/* If the type is anonymous and the field has no name,
|
||
set an appopriate name. */
|
||
field_name = TYPE_FIELD_NAME (type, type_index);
|
||
if (field_name == NULL || *field_name == '\0')
|
||
{
|
||
if (cname)
|
||
{
|
||
if (TYPE_CODE (TYPE_FIELD_TYPE (type, type_index))
|
||
== TYPE_CODE_STRUCT)
|
||
*cname = xstrdup (ANONYMOUS_STRUCT_NAME);
|
||
else if (TYPE_CODE (TYPE_FIELD_TYPE (type, type_index))
|
||
== TYPE_CODE_UNION)
|
||
*cname = xstrdup (ANONYMOUS_UNION_NAME);
|
||
}
|
||
|
||
if (cfull_expression)
|
||
*cfull_expression = xstrdup ("");
|
||
}
|
||
else
|
||
{
|
||
if (cname)
|
||
*cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
|
||
|
||
if (cfull_expression)
|
||
*cfull_expression
|
||
= xstrprintf ("((%s)%s%s)", parent_expression, join,
|
||
field_name);
|
||
}
|
||
|
||
if (cvalue && value)
|
||
*cvalue = value_struct_element_index (value, type_index);
|
||
|
||
if (ctype)
|
||
*ctype = TYPE_FIELD_TYPE (type, type_index);
|
||
}
|
||
else if (index < TYPE_N_BASECLASSES (type))
|
||
{
|
||
/* This is a baseclass. */
|
||
if (cname)
|
||
*cname = xstrdup (TYPE_FIELD_NAME (type, index));
|
||
|
||
if (cvalue && value)
|
||
*cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
|
||
|
||
if (ctype)
|
||
{
|
||
*ctype = TYPE_FIELD_TYPE (type, index);
|
||
}
|
||
|
||
if (cfull_expression)
|
||
{
|
||
char *ptr = was_ptr ? "*" : "";
|
||
|
||
/* Cast the parent to the base' type. Note that in gdb,
|
||
expression like
|
||
(Base1)d
|
||
will create an lvalue, for all appearences, so we don't
|
||
need to use more fancy:
|
||
*(Base1*)(&d)
|
||
construct.
|
||
|
||
When we are in the scope of the base class or of one
|
||
of its children, the type field name will be interpreted
|
||
as a constructor, if it exists. Therefore, we must
|
||
indicate that the name is a class name by using the
|
||
'class' keyword. See PR mi/11912 */
|
||
*cfull_expression = xstrprintf ("(%s(class %s%s) %s)",
|
||
ptr,
|
||
TYPE_FIELD_NAME (type, index),
|
||
ptr,
|
||
parent_expression);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
char *access = NULL;
|
||
int children[3];
|
||
|
||
cplus_class_num_children (type, children);
|
||
|
||
/* Everything beyond the baseclasses can
|
||
only be "public", "private", or "protected"
|
||
|
||
The special "fake" children are always output by varobj in
|
||
this order. So if INDEX == 2, it MUST be "protected". */
|
||
index -= TYPE_N_BASECLASSES (type);
|
||
switch (index)
|
||
{
|
||
case 0:
|
||
if (children[v_public] > 0)
|
||
access = "public";
|
||
else if (children[v_private] > 0)
|
||
access = "private";
|
||
else
|
||
access = "protected";
|
||
break;
|
||
case 1:
|
||
if (children[v_public] > 0)
|
||
{
|
||
if (children[v_private] > 0)
|
||
access = "private";
|
||
else
|
||
access = "protected";
|
||
}
|
||
else if (children[v_private] > 0)
|
||
access = "protected";
|
||
break;
|
||
case 2:
|
||
/* Must be protected. */
|
||
access = "protected";
|
||
break;
|
||
default:
|
||
/* error! */
|
||
break;
|
||
}
|
||
|
||
gdb_assert (access);
|
||
if (cname)
|
||
*cname = xstrdup (access);
|
||
|
||
/* Value and type and full expression are null here. */
|
||
}
|
||
}
|
||
else
|
||
{
|
||
c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
|
||
}
|
||
}
|
||
|
||
static char *
|
||
cplus_name_of_child (struct varobj *parent, int index)
|
||
{
|
||
char *name = NULL;
|
||
|
||
cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
|
||
return name;
|
||
}
|
||
|
||
static char *
|
||
cplus_path_expr_of_child (struct varobj *child)
|
||
{
|
||
cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
|
||
&child->path_expr);
|
||
return child->path_expr;
|
||
}
|
||
|
||
static struct value *
|
||
cplus_value_of_root (struct varobj **var_handle)
|
||
{
|
||
return c_value_of_root (var_handle);
|
||
}
|
||
|
||
static struct value *
|
||
cplus_value_of_child (struct varobj *parent, int index)
|
||
{
|
||
struct value *value = NULL;
|
||
|
||
cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
|
||
return value;
|
||
}
|
||
|
||
static struct type *
|
||
cplus_type_of_child (struct varobj *parent, int index)
|
||
{
|
||
struct type *type = NULL;
|
||
|
||
cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
|
||
return type;
|
||
}
|
||
|
||
static char *
|
||
cplus_value_of_variable (struct varobj *var,
|
||
enum varobj_display_formats format)
|
||
{
|
||
|
||
/* If we have one of our special types, don't print out
|
||
any value. */
|
||
if (CPLUS_FAKE_CHILD (var))
|
||
return xstrdup ("");
|
||
|
||
return c_value_of_variable (var, format);
|
||
}
|
||
|
||
/* Java */
|
||
|
||
static int
|
||
java_number_of_children (struct varobj *var)
|
||
{
|
||
return cplus_number_of_children (var);
|
||
}
|
||
|
||
static char *
|
||
java_name_of_variable (struct varobj *parent)
|
||
{
|
||
char *p, *name;
|
||
|
||
name = cplus_name_of_variable (parent);
|
||
/* If the name has "-" in it, it is because we
|
||
needed to escape periods in the name... */
|
||
p = name;
|
||
|
||
while (*p != '\000')
|
||
{
|
||
if (*p == '-')
|
||
*p = '.';
|
||
p++;
|
||
}
|
||
|
||
return name;
|
||
}
|
||
|
||
static char *
|
||
java_name_of_child (struct varobj *parent, int index)
|
||
{
|
||
char *name, *p;
|
||
|
||
name = cplus_name_of_child (parent, index);
|
||
/* Escape any periods in the name... */
|
||
p = name;
|
||
|
||
while (*p != '\000')
|
||
{
|
||
if (*p == '.')
|
||
*p = '-';
|
||
p++;
|
||
}
|
||
|
||
return name;
|
||
}
|
||
|
||
static char *
|
||
java_path_expr_of_child (struct varobj *child)
|
||
{
|
||
return NULL;
|
||
}
|
||
|
||
static struct value *
|
||
java_value_of_root (struct varobj **var_handle)
|
||
{
|
||
return cplus_value_of_root (var_handle);
|
||
}
|
||
|
||
static struct value *
|
||
java_value_of_child (struct varobj *parent, int index)
|
||
{
|
||
return cplus_value_of_child (parent, index);
|
||
}
|
||
|
||
static struct type *
|
||
java_type_of_child (struct varobj *parent, int index)
|
||
{
|
||
return cplus_type_of_child (parent, index);
|
||
}
|
||
|
||
static char *
|
||
java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
|
||
{
|
||
return cplus_value_of_variable (var, format);
|
||
}
|
||
|
||
/* Ada specific callbacks for VAROBJs. */
|
||
|
||
static int
|
||
ada_number_of_children (struct varobj *var)
|
||
{
|
||
return ada_varobj_get_number_of_children (var->value, var->type);
|
||
}
|
||
|
||
static char *
|
||
ada_name_of_variable (struct varobj *parent)
|
||
{
|
||
return c_name_of_variable (parent);
|
||
}
|
||
|
||
static char *
|
||
ada_name_of_child (struct varobj *parent, int index)
|
||
{
|
||
return ada_varobj_get_name_of_child (parent->value, parent->type,
|
||
parent->name, index);
|
||
}
|
||
|
||
static char*
|
||
ada_path_expr_of_child (struct varobj *child)
|
||
{
|
||
struct varobj *parent = child->parent;
|
||
const char *parent_path_expr = varobj_get_path_expr (parent);
|
||
|
||
return ada_varobj_get_path_expr_of_child (parent->value,
|
||
parent->type,
|
||
parent->name,
|
||
parent_path_expr,
|
||
child->index);
|
||
}
|
||
|
||
static struct value *
|
||
ada_value_of_root (struct varobj **var_handle)
|
||
{
|
||
return c_value_of_root (var_handle);
|
||
}
|
||
|
||
static struct value *
|
||
ada_value_of_child (struct varobj *parent, int index)
|
||
{
|
||
return ada_varobj_get_value_of_child (parent->value, parent->type,
|
||
parent->name, index);
|
||
}
|
||
|
||
static struct type *
|
||
ada_type_of_child (struct varobj *parent, int index)
|
||
{
|
||
return ada_varobj_get_type_of_child (parent->value, parent->type,
|
||
index);
|
||
}
|
||
|
||
static char *
|
||
ada_value_of_variable (struct varobj *var, enum varobj_display_formats format)
|
||
{
|
||
struct value_print_options opts;
|
||
|
||
get_formatted_print_options (&opts, format_code[(int) format]);
|
||
opts.deref_ref = 0;
|
||
opts.raw = 1;
|
||
|
||
return ada_varobj_get_value_of_variable (var->value, var->type, &opts);
|
||
}
|
||
|
||
/* Implement the "value_is_changeable_p" routine for Ada. */
|
||
|
||
static int
|
||
ada_value_is_changeable_p (struct varobj *var)
|
||
{
|
||
struct type *type = var->value ? value_type (var->value) : var->type;
|
||
|
||
if (ada_is_array_descriptor_type (type)
|
||
&& TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
|
||
{
|
||
/* This is in reality a pointer to an unconstrained array.
|
||
its value is changeable. */
|
||
return 1;
|
||
}
|
||
|
||
if (ada_is_string_type (type))
|
||
{
|
||
/* We display the contents of the string in the array's
|
||
"value" field. The contents can change, so consider
|
||
that the array is changeable. */
|
||
return 1;
|
||
}
|
||
|
||
return default_value_is_changeable_p (var);
|
||
}
|
||
|
||
/* Implement the "value_has_mutated" routine for Ada. */
|
||
|
||
static int
|
||
ada_value_has_mutated (struct varobj *var, struct value *new_val,
|
||
struct type *new_type)
|
||
{
|
||
int i;
|
||
int from = -1;
|
||
int to = -1;
|
||
|
||
/* If the number of fields have changed, then for sure the type
|
||
has mutated. */
|
||
if (ada_varobj_get_number_of_children (new_val, new_type)
|
||
!= var->num_children)
|
||
return 1;
|
||
|
||
/* If the number of fields have remained the same, then we need
|
||
to check the name of each field. If they remain the same,
|
||
then chances are the type hasn't mutated. This is technically
|
||
an incomplete test, as the child's type might have changed
|
||
despite the fact that the name remains the same. But we'll
|
||
handle this situation by saying that the child has mutated,
|
||
not this value.
|
||
|
||
If only part (or none!) of the children have been fetched,
|
||
then only check the ones we fetched. It does not matter
|
||
to the frontend whether a child that it has not fetched yet
|
||
has mutated or not. So just assume it hasn't. */
|
||
|
||
restrict_range (var->children, &from, &to);
|
||
for (i = from; i < to; i++)
|
||
if (strcmp (ada_varobj_get_name_of_child (new_val, new_type,
|
||
var->name, i),
|
||
VEC_index (varobj_p, var->children, i)->name) != 0)
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
|
||
with an arbitrary caller supplied DATA pointer. */
|
||
|
||
void
|
||
all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
|
||
{
|
||
struct varobj_root *var_root, *var_root_next;
|
||
|
||
/* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
|
||
|
||
for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
|
||
{
|
||
var_root_next = var_root->next;
|
||
|
||
(*func) (var_root->rootvar, data);
|
||
}
|
||
}
|
||
|
||
extern void _initialize_varobj (void);
|
||
void
|
||
_initialize_varobj (void)
|
||
{
|
||
int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
|
||
|
||
varobj_table = xmalloc (sizeof_table);
|
||
memset (varobj_table, 0, sizeof_table);
|
||
|
||
add_setshow_zuinteger_cmd ("debugvarobj", class_maintenance,
|
||
&varobjdebug,
|
||
_("Set varobj debugging."),
|
||
_("Show varobj debugging."),
|
||
_("When non-zero, varobj debugging is enabled."),
|
||
NULL, show_varobjdebug,
|
||
&setlist, &showlist);
|
||
}
|
||
|
||
/* Invalidate varobj VAR if it is tied to locals and re-create it if it is
|
||
defined on globals. It is a helper for varobj_invalidate.
|
||
|
||
This function is called after changing the symbol file, in this case the
|
||
pointers to "struct type" stored by the varobj are no longer valid. All
|
||
varobj must be either re-evaluated, or marked as invalid here. */
|
||
|
||
static void
|
||
varobj_invalidate_iter (struct varobj *var, void *unused)
|
||
{
|
||
/* global and floating var must be re-evaluated. */
|
||
if (var->root->floating || var->root->valid_block == NULL)
|
||
{
|
||
struct varobj *tmp_var;
|
||
|
||
/* Try to create a varobj with same expression. If we succeed
|
||
replace the old varobj, otherwise invalidate it. */
|
||
tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
|
||
USE_CURRENT_FRAME);
|
||
if (tmp_var != NULL)
|
||
{
|
||
tmp_var->obj_name = xstrdup (var->obj_name);
|
||
varobj_delete (var, NULL, 0);
|
||
install_variable (tmp_var);
|
||
}
|
||
else
|
||
var->root->is_valid = 0;
|
||
}
|
||
else /* locals must be invalidated. */
|
||
var->root->is_valid = 0;
|
||
}
|
||
|
||
/* Invalidate the varobjs that are tied to locals and re-create the ones that
|
||
are defined on globals.
|
||
Invalidated varobjs will be always printed in_scope="invalid". */
|
||
|
||
void
|
||
varobj_invalidate (void)
|
||
{
|
||
all_root_varobjs (varobj_invalidate_iter, NULL);
|
||
}
|