mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-21 04:42:53 +08:00
42a4f53d2b
This commit applies all changes made after running the gdb/copyright.py script. Note that one file was flagged by the script, due to an invalid copyright header (gdb/unittests/basic_string_view/element_access/char/empty.cc). As the file was copied from GCC's libstdc++-v3 testsuite, this commit leaves this file untouched for the time being; a patch to fix the header was sent to gcc-patches first. gdb/ChangeLog: Update copyright year range in all GDB files.
106 lines
4.7 KiB
C
106 lines
4.7 KiB
C
/* addrmap.h --- interface to address map data structure.
|
|
|
|
Copyright (C) 2007-2019 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#ifndef ADDRMAP_H
|
|
#define ADDRMAP_H
|
|
|
|
/* An address map is essentially a table mapping CORE_ADDRs onto GDB
|
|
data structures, like blocks, symtabs, partial symtabs, and so on.
|
|
An address map uses memory proportional to the number of
|
|
transitions in the map, where a CORE_ADDR N is mapped to one
|
|
object, and N+1 is mapped to a different object.
|
|
|
|
Address maps come in two flavors: fixed, and mutable. Mutable
|
|
address maps consume more memory, but can be changed and extended.
|
|
A fixed address map, once constructed (from a mutable address map),
|
|
can't be edited. Both kinds of map are allocated in obstacks. */
|
|
|
|
/* The opaque type representing address maps. */
|
|
struct addrmap;
|
|
|
|
/* Create a mutable address map which maps every address to NULL.
|
|
Allocate entries in OBSTACK. */
|
|
struct addrmap *addrmap_create_mutable (struct obstack *obstack);
|
|
|
|
/* In the mutable address map MAP, associate the addresses from START
|
|
to END_INCLUSIVE that are currently associated with NULL with OBJ
|
|
instead. Addresses mapped to an object other than NULL are left
|
|
unchanged.
|
|
|
|
As the name suggests, END_INCLUSIVE is also mapped to OBJ. This
|
|
convention is unusual, but it allows callers to accurately specify
|
|
ranges that abut the top of the address space, and ranges that
|
|
cover the entire address space.
|
|
|
|
This operation seems a bit complicated for a primitive: if it's
|
|
needed, why not just have a simpler primitive operation that sets a
|
|
range to a value, wiping out whatever was there before, and then
|
|
let the caller construct more complicated operations from that,
|
|
along with some others for traversal?
|
|
|
|
It turns out this is the mutation operation we want to use all the
|
|
time, at least for now. Our immediate use for address maps is to
|
|
represent lexical blocks whose address ranges are not contiguous.
|
|
We walk the tree of lexical blocks present in the debug info, and
|
|
only create 'struct block' objects after we've traversed all a
|
|
block's children. If a lexical block declares no local variables
|
|
(and isn't the lexical block for a function's body), we omit it
|
|
from GDB's data structures entirely.
|
|
|
|
However, this means that we don't decide to create a block (and
|
|
thus record it in the address map) until after we've traversed its
|
|
children. If we do decide to create the block, we do so at a time
|
|
when all its children have already been recorded in the map. So
|
|
this operation --- change only those addresses left unset --- is
|
|
actually the operation we want to use every time.
|
|
|
|
It seems simpler to let the code which operates on the
|
|
representation directly deal with the hair of implementing these
|
|
semantics than to provide an interface which allows it to be
|
|
implemented efficiently, but doesn't reveal too much of the
|
|
representation. */
|
|
void addrmap_set_empty (struct addrmap *map,
|
|
CORE_ADDR start, CORE_ADDR end_inclusive,
|
|
void *obj);
|
|
|
|
/* Return the object associated with ADDR in MAP. */
|
|
void *addrmap_find (struct addrmap *map, CORE_ADDR addr);
|
|
|
|
/* Create a fixed address map which is a copy of the mutable address
|
|
map ORIGINAL. Allocate entries in OBSTACK. */
|
|
struct addrmap *addrmap_create_fixed (struct addrmap *original,
|
|
struct obstack *obstack);
|
|
|
|
/* Relocate all the addresses in MAP by OFFSET. (This can be applied
|
|
to either mutable or immutable maps.) */
|
|
void addrmap_relocate (struct addrmap *map, CORE_ADDR offset);
|
|
|
|
/* The type of a function used to iterate over the map.
|
|
OBJ is NULL for unmapped regions. */
|
|
typedef int (*addrmap_foreach_fn) (void *data, CORE_ADDR start_addr,
|
|
void *obj);
|
|
|
|
/* Call FN, passing it DATA, for every address in MAP, following an
|
|
in-order traversal. If FN ever returns a non-zero value, the
|
|
iteration ceases immediately, and the value is returned.
|
|
Otherwise, this function returns 0. */
|
|
int addrmap_foreach (struct addrmap *map, addrmap_foreach_fn fn, void *data);
|
|
|
|
#endif /* ADDRMAP_H */
|