mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-15 04:31:49 +08:00
0154d99053
gdb/ChangeLog * ppc-linux-nat.c (ppc_linux_read_description): Use PPC_FEATURE_HAS_VSX and PPC_FEATURE_HAS_ALTIVEC to check if such features are available.
2525 lines
79 KiB
C
2525 lines
79 KiB
C
/* PPC GNU/Linux native support.
|
|
|
|
Copyright (C) 1988-2016 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#include "defs.h"
|
|
#include "observer.h"
|
|
#include "frame.h"
|
|
#include "inferior.h"
|
|
#include "gdbthread.h"
|
|
#include "gdbcore.h"
|
|
#include "regcache.h"
|
|
#include "target.h"
|
|
#include "linux-nat.h"
|
|
#include <sys/types.h>
|
|
#include <signal.h>
|
|
#include <sys/user.h>
|
|
#include <sys/ioctl.h>
|
|
#include "gdb_wait.h"
|
|
#include <fcntl.h>
|
|
#include <sys/procfs.h>
|
|
#include "nat/gdb_ptrace.h"
|
|
|
|
/* Prototypes for supply_gregset etc. */
|
|
#include "gregset.h"
|
|
#include "ppc-tdep.h"
|
|
#include "ppc-linux-tdep.h"
|
|
|
|
/* Required when using the AUXV. */
|
|
#include "elf/common.h"
|
|
#include "auxv.h"
|
|
|
|
#include "nat/ppc-linux.h"
|
|
|
|
/* Similarly for the hardware watchpoint support. These requests are used
|
|
when the PowerPC HWDEBUG ptrace interface is not available. */
|
|
#ifndef PTRACE_GET_DEBUGREG
|
|
#define PTRACE_GET_DEBUGREG 25
|
|
#endif
|
|
#ifndef PTRACE_SET_DEBUGREG
|
|
#define PTRACE_SET_DEBUGREG 26
|
|
#endif
|
|
#ifndef PTRACE_GETSIGINFO
|
|
#define PTRACE_GETSIGINFO 0x4202
|
|
#endif
|
|
|
|
/* These requests are used when the PowerPC HWDEBUG ptrace interface is
|
|
available. It exposes the debug facilities of PowerPC processors, as well
|
|
as additional features of BookE processors, such as ranged breakpoints and
|
|
watchpoints and hardware-accelerated condition evaluation. */
|
|
#ifndef PPC_PTRACE_GETHWDBGINFO
|
|
|
|
/* Not having PPC_PTRACE_GETHWDBGINFO defined means that the PowerPC HWDEBUG
|
|
ptrace interface is not present in ptrace.h, so we'll have to pretty much
|
|
include it all here so that the code at least compiles on older systems. */
|
|
#define PPC_PTRACE_GETHWDBGINFO 0x89
|
|
#define PPC_PTRACE_SETHWDEBUG 0x88
|
|
#define PPC_PTRACE_DELHWDEBUG 0x87
|
|
|
|
struct ppc_debug_info
|
|
{
|
|
uint32_t version; /* Only version 1 exists to date. */
|
|
uint32_t num_instruction_bps;
|
|
uint32_t num_data_bps;
|
|
uint32_t num_condition_regs;
|
|
uint32_t data_bp_alignment;
|
|
uint32_t sizeof_condition; /* size of the DVC register. */
|
|
uint64_t features;
|
|
};
|
|
|
|
/* Features will have bits indicating whether there is support for: */
|
|
#define PPC_DEBUG_FEATURE_INSN_BP_RANGE 0x1
|
|
#define PPC_DEBUG_FEATURE_INSN_BP_MASK 0x2
|
|
#define PPC_DEBUG_FEATURE_DATA_BP_RANGE 0x4
|
|
#define PPC_DEBUG_FEATURE_DATA_BP_MASK 0x8
|
|
|
|
struct ppc_hw_breakpoint
|
|
{
|
|
uint32_t version; /* currently, version must be 1 */
|
|
uint32_t trigger_type; /* only some combinations allowed */
|
|
uint32_t addr_mode; /* address match mode */
|
|
uint32_t condition_mode; /* break/watchpoint condition flags */
|
|
uint64_t addr; /* break/watchpoint address */
|
|
uint64_t addr2; /* range end or mask */
|
|
uint64_t condition_value; /* contents of the DVC register */
|
|
};
|
|
|
|
/* Trigger type. */
|
|
#define PPC_BREAKPOINT_TRIGGER_EXECUTE 0x1
|
|
#define PPC_BREAKPOINT_TRIGGER_READ 0x2
|
|
#define PPC_BREAKPOINT_TRIGGER_WRITE 0x4
|
|
#define PPC_BREAKPOINT_TRIGGER_RW 0x6
|
|
|
|
/* Address mode. */
|
|
#define PPC_BREAKPOINT_MODE_EXACT 0x0
|
|
#define PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE 0x1
|
|
#define PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE 0x2
|
|
#define PPC_BREAKPOINT_MODE_MASK 0x3
|
|
|
|
/* Condition mode. */
|
|
#define PPC_BREAKPOINT_CONDITION_NONE 0x0
|
|
#define PPC_BREAKPOINT_CONDITION_AND 0x1
|
|
#define PPC_BREAKPOINT_CONDITION_EXACT 0x1
|
|
#define PPC_BREAKPOINT_CONDITION_OR 0x2
|
|
#define PPC_BREAKPOINT_CONDITION_AND_OR 0x3
|
|
#define PPC_BREAKPOINT_CONDITION_BE_ALL 0x00ff0000
|
|
#define PPC_BREAKPOINT_CONDITION_BE_SHIFT 16
|
|
#define PPC_BREAKPOINT_CONDITION_BE(n) \
|
|
(1<<((n)+PPC_BREAKPOINT_CONDITION_BE_SHIFT))
|
|
#endif /* PPC_PTRACE_GETHWDBGINFO */
|
|
|
|
/* Feature defined on Linux kernel v3.9: DAWR interface, that enables wider
|
|
watchpoint (up to 512 bytes). */
|
|
#ifndef PPC_DEBUG_FEATURE_DATA_BP_DAWR
|
|
#define PPC_DEBUG_FEATURE_DATA_BP_DAWR 0x10
|
|
#endif /* PPC_DEBUG_FEATURE_DATA_BP_DAWR */
|
|
|
|
/* Similarly for the general-purpose (gp0 -- gp31)
|
|
and floating-point registers (fp0 -- fp31). */
|
|
#ifndef PTRACE_GETREGS
|
|
#define PTRACE_GETREGS 12
|
|
#endif
|
|
#ifndef PTRACE_SETREGS
|
|
#define PTRACE_SETREGS 13
|
|
#endif
|
|
#ifndef PTRACE_GETFPREGS
|
|
#define PTRACE_GETFPREGS 14
|
|
#endif
|
|
#ifndef PTRACE_SETFPREGS
|
|
#define PTRACE_SETFPREGS 15
|
|
#endif
|
|
|
|
/* This oddity is because the Linux kernel defines elf_vrregset_t as
|
|
an array of 33 16 bytes long elements. I.e. it leaves out vrsave.
|
|
However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return
|
|
the vrsave as an extra 4 bytes at the end. I opted for creating a
|
|
flat array of chars, so that it is easier to manipulate for gdb.
|
|
|
|
There are 32 vector registers 16 bytes longs, plus a VSCR register
|
|
which is only 4 bytes long, but is fetched as a 16 bytes
|
|
quantity. Up to here we have the elf_vrregset_t structure.
|
|
Appended to this there is space for the VRSAVE register: 4 bytes.
|
|
Even though this vrsave register is not included in the regset
|
|
typedef, it is handled by the ptrace requests.
|
|
|
|
Note that GNU/Linux doesn't support little endian PPC hardware,
|
|
therefore the offset at which the real value of the VSCR register
|
|
is located will be always 12 bytes.
|
|
|
|
The layout is like this (where x is the actual value of the vscr reg): */
|
|
|
|
/* *INDENT-OFF* */
|
|
/*
|
|
|.|.|.|.|.....|.|.|.|.||.|.|.|x||.|
|
|
<-------> <-------><-------><->
|
|
VR0 VR31 VSCR VRSAVE
|
|
*/
|
|
/* *INDENT-ON* */
|
|
|
|
#define SIZEOF_VRREGS 33*16+4
|
|
|
|
typedef char gdb_vrregset_t[SIZEOF_VRREGS];
|
|
|
|
/* This is the layout of the POWER7 VSX registers and the way they overlap
|
|
with the existing FPR and VMX registers.
|
|
|
|
VSR doubleword 0 VSR doubleword 1
|
|
----------------------------------------------------------------
|
|
VSR[0] | FPR[0] | |
|
|
----------------------------------------------------------------
|
|
VSR[1] | FPR[1] | |
|
|
----------------------------------------------------------------
|
|
| ... | |
|
|
| ... | |
|
|
----------------------------------------------------------------
|
|
VSR[30] | FPR[30] | |
|
|
----------------------------------------------------------------
|
|
VSR[31] | FPR[31] | |
|
|
----------------------------------------------------------------
|
|
VSR[32] | VR[0] |
|
|
----------------------------------------------------------------
|
|
VSR[33] | VR[1] |
|
|
----------------------------------------------------------------
|
|
| ... |
|
|
| ... |
|
|
----------------------------------------------------------------
|
|
VSR[62] | VR[30] |
|
|
----------------------------------------------------------------
|
|
VSR[63] | VR[31] |
|
|
----------------------------------------------------------------
|
|
|
|
VSX has 64 128bit registers. The first 32 registers overlap with
|
|
the FP registers (doubleword 0) and hence extend them with additional
|
|
64 bits (doubleword 1). The other 32 regs overlap with the VMX
|
|
registers. */
|
|
#define SIZEOF_VSXREGS 32*8
|
|
|
|
typedef char gdb_vsxregset_t[SIZEOF_VSXREGS];
|
|
|
|
/* On PPC processors that support the Signal Processing Extension
|
|
(SPE) APU, the general-purpose registers are 64 bits long.
|
|
However, the ordinary Linux kernel PTRACE_PEEKUSER / PTRACE_POKEUSER
|
|
ptrace calls only access the lower half of each register, to allow
|
|
them to behave the same way they do on non-SPE systems. There's a
|
|
separate pair of calls, PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that
|
|
read and write the top halves of all the general-purpose registers
|
|
at once, along with some SPE-specific registers.
|
|
|
|
GDB itself continues to claim the general-purpose registers are 32
|
|
bits long. It has unnamed raw registers that hold the upper halves
|
|
of the gprs, and the full 64-bit SIMD views of the registers,
|
|
'ev0' -- 'ev31', are pseudo-registers that splice the top and
|
|
bottom halves together.
|
|
|
|
This is the structure filled in by PTRACE_GETEVRREGS and written to
|
|
the inferior's registers by PTRACE_SETEVRREGS. */
|
|
struct gdb_evrregset_t
|
|
{
|
|
unsigned long evr[32];
|
|
unsigned long long acc;
|
|
unsigned long spefscr;
|
|
};
|
|
|
|
/* Non-zero if our kernel may support the PTRACE_GETVSXREGS and
|
|
PTRACE_SETVSXREGS requests, for reading and writing the VSX
|
|
POWER7 registers 0 through 31. Zero if we've tried one of them and
|
|
gotten an error. Note that VSX registers 32 through 63 overlap
|
|
with VR registers 0 through 31. */
|
|
int have_ptrace_getsetvsxregs = 1;
|
|
|
|
/* Non-zero if our kernel may support the PTRACE_GETVRREGS and
|
|
PTRACE_SETVRREGS requests, for reading and writing the Altivec
|
|
registers. Zero if we've tried one of them and gotten an
|
|
error. */
|
|
int have_ptrace_getvrregs = 1;
|
|
|
|
/* Non-zero if our kernel may support the PTRACE_GETEVRREGS and
|
|
PTRACE_SETEVRREGS requests, for reading and writing the SPE
|
|
registers. Zero if we've tried one of them and gotten an
|
|
error. */
|
|
int have_ptrace_getsetevrregs = 1;
|
|
|
|
/* Non-zero if our kernel may support the PTRACE_GETREGS and
|
|
PTRACE_SETREGS requests, for reading and writing the
|
|
general-purpose registers. Zero if we've tried one of
|
|
them and gotten an error. */
|
|
int have_ptrace_getsetregs = 1;
|
|
|
|
/* Non-zero if our kernel may support the PTRACE_GETFPREGS and
|
|
PTRACE_SETFPREGS requests, for reading and writing the
|
|
floating-pointers registers. Zero if we've tried one of
|
|
them and gotten an error. */
|
|
int have_ptrace_getsetfpregs = 1;
|
|
|
|
/* *INDENT-OFF* */
|
|
/* registers layout, as presented by the ptrace interface:
|
|
PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
|
|
PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15,
|
|
PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23,
|
|
PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31,
|
|
PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6,
|
|
PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14,
|
|
PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22,
|
|
PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30,
|
|
PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38,
|
|
PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46,
|
|
PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54,
|
|
PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62,
|
|
PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */
|
|
/* *INDENT_ON * */
|
|
|
|
static int
|
|
ppc_register_u_addr (struct gdbarch *gdbarch, int regno)
|
|
{
|
|
int u_addr = -1;
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
/* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
|
|
interface, and not the wordsize of the program's ABI. */
|
|
int wordsize = sizeof (long);
|
|
|
|
/* General purpose registers occupy 1 slot each in the buffer. */
|
|
if (regno >= tdep->ppc_gp0_regnum
|
|
&& regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
|
|
u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize);
|
|
|
|
/* Floating point regs: eight bytes each in both 32- and 64-bit
|
|
ptrace interfaces. Thus, two slots each in 32-bit interface, one
|
|
slot each in 64-bit interface. */
|
|
if (tdep->ppc_fp0_regnum >= 0
|
|
&& regno >= tdep->ppc_fp0_regnum
|
|
&& regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
|
|
u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8);
|
|
|
|
/* UISA special purpose registers: 1 slot each. */
|
|
if (regno == gdbarch_pc_regnum (gdbarch))
|
|
u_addr = PT_NIP * wordsize;
|
|
if (regno == tdep->ppc_lr_regnum)
|
|
u_addr = PT_LNK * wordsize;
|
|
if (regno == tdep->ppc_cr_regnum)
|
|
u_addr = PT_CCR * wordsize;
|
|
if (regno == tdep->ppc_xer_regnum)
|
|
u_addr = PT_XER * wordsize;
|
|
if (regno == tdep->ppc_ctr_regnum)
|
|
u_addr = PT_CTR * wordsize;
|
|
#ifdef PT_MQ
|
|
if (regno == tdep->ppc_mq_regnum)
|
|
u_addr = PT_MQ * wordsize;
|
|
#endif
|
|
if (regno == tdep->ppc_ps_regnum)
|
|
u_addr = PT_MSR * wordsize;
|
|
if (regno == PPC_ORIG_R3_REGNUM)
|
|
u_addr = PT_ORIG_R3 * wordsize;
|
|
if (regno == PPC_TRAP_REGNUM)
|
|
u_addr = PT_TRAP * wordsize;
|
|
if (tdep->ppc_fpscr_regnum >= 0
|
|
&& regno == tdep->ppc_fpscr_regnum)
|
|
{
|
|
/* NOTE: cagney/2005-02-08: On some 64-bit GNU/Linux systems the
|
|
kernel headers incorrectly contained the 32-bit definition of
|
|
PT_FPSCR. For the 32-bit definition, floating-point
|
|
registers occupy two 32-bit "slots", and the FPSCR lives in
|
|
the second half of such a slot-pair (hence +1). For 64-bit,
|
|
the FPSCR instead occupies the full 64-bit 2-word-slot and
|
|
hence no adjustment is necessary. Hack around this. */
|
|
if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1))
|
|
u_addr = (48 + 32) * wordsize;
|
|
/* If the FPSCR is 64-bit wide, we need to fetch the whole 64-bit
|
|
slot and not just its second word. The PT_FPSCR supplied when
|
|
GDB is compiled as a 32-bit app doesn't reflect this. */
|
|
else if (wordsize == 4 && register_size (gdbarch, regno) == 8
|
|
&& PT_FPSCR == (48 + 2*32 + 1))
|
|
u_addr = (48 + 2*32) * wordsize;
|
|
else
|
|
u_addr = PT_FPSCR * wordsize;
|
|
}
|
|
return u_addr;
|
|
}
|
|
|
|
/* The Linux kernel ptrace interface for POWER7 VSX registers uses the
|
|
registers set mechanism, as opposed to the interface for all the
|
|
other registers, that stores/fetches each register individually. */
|
|
static void
|
|
fetch_vsx_register (struct regcache *regcache, int tid, int regno)
|
|
{
|
|
int ret;
|
|
gdb_vsxregset_t regs;
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
|
|
|
|
ret = ptrace (PTRACE_GETVSXREGS, tid, 0, ®s);
|
|
if (ret < 0)
|
|
{
|
|
if (errno == EIO)
|
|
{
|
|
have_ptrace_getsetvsxregs = 0;
|
|
return;
|
|
}
|
|
perror_with_name (_("Unable to fetch VSX register"));
|
|
}
|
|
|
|
regcache_raw_supply (regcache, regno,
|
|
regs + (regno - tdep->ppc_vsr0_upper_regnum)
|
|
* vsxregsize);
|
|
}
|
|
|
|
/* The Linux kernel ptrace interface for AltiVec registers uses the
|
|
registers set mechanism, as opposed to the interface for all the
|
|
other registers, that stores/fetches each register individually. */
|
|
static void
|
|
fetch_altivec_register (struct regcache *regcache, int tid, int regno)
|
|
{
|
|
int ret;
|
|
int offset = 0;
|
|
gdb_vrregset_t regs;
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
|
|
|
|
ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s);
|
|
if (ret < 0)
|
|
{
|
|
if (errno == EIO)
|
|
{
|
|
have_ptrace_getvrregs = 0;
|
|
return;
|
|
}
|
|
perror_with_name (_("Unable to fetch AltiVec register"));
|
|
}
|
|
|
|
/* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
|
|
long on the hardware. We deal only with the lower 4 bytes of the
|
|
vector. VRSAVE is at the end of the array in a 4 bytes slot, so
|
|
there is no need to define an offset for it. */
|
|
if (regno == (tdep->ppc_vrsave_regnum - 1))
|
|
offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
|
|
|
|
regcache_raw_supply (regcache, regno,
|
|
regs + (regno
|
|
- tdep->ppc_vr0_regnum) * vrregsize + offset);
|
|
}
|
|
|
|
/* Fetch the top 32 bits of TID's general-purpose registers and the
|
|
SPE-specific registers, and place the results in EVRREGSET. If we
|
|
don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with
|
|
zeros.
|
|
|
|
All the logic to deal with whether or not the PTRACE_GETEVRREGS and
|
|
PTRACE_SETEVRREGS requests are supported is isolated here, and in
|
|
set_spe_registers. */
|
|
static void
|
|
get_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
|
|
{
|
|
if (have_ptrace_getsetevrregs)
|
|
{
|
|
if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0)
|
|
return;
|
|
else
|
|
{
|
|
/* EIO means that the PTRACE_GETEVRREGS request isn't supported;
|
|
we just return zeros. */
|
|
if (errno == EIO)
|
|
have_ptrace_getsetevrregs = 0;
|
|
else
|
|
/* Anything else needs to be reported. */
|
|
perror_with_name (_("Unable to fetch SPE registers"));
|
|
}
|
|
}
|
|
|
|
memset (evrregset, 0, sizeof (*evrregset));
|
|
}
|
|
|
|
/* Supply values from TID for SPE-specific raw registers: the upper
|
|
halves of the GPRs, the accumulator, and the spefscr. REGNO must
|
|
be the number of an upper half register, acc, spefscr, or -1 to
|
|
supply the values of all registers. */
|
|
static void
|
|
fetch_spe_register (struct regcache *regcache, int tid, int regno)
|
|
{
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
struct gdb_evrregset_t evrregs;
|
|
|
|
gdb_assert (sizeof (evrregs.evr[0])
|
|
== register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
|
|
gdb_assert (sizeof (evrregs.acc)
|
|
== register_size (gdbarch, tdep->ppc_acc_regnum));
|
|
gdb_assert (sizeof (evrregs.spefscr)
|
|
== register_size (gdbarch, tdep->ppc_spefscr_regnum));
|
|
|
|
get_spe_registers (tid, &evrregs);
|
|
|
|
if (regno == -1)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ppc_num_gprs; i++)
|
|
regcache_raw_supply (regcache, tdep->ppc_ev0_upper_regnum + i,
|
|
&evrregs.evr[i]);
|
|
}
|
|
else if (tdep->ppc_ev0_upper_regnum <= regno
|
|
&& regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
|
|
regcache_raw_supply (regcache, regno,
|
|
&evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
|
|
|
|
if (regno == -1
|
|
|| regno == tdep->ppc_acc_regnum)
|
|
regcache_raw_supply (regcache, tdep->ppc_acc_regnum, &evrregs.acc);
|
|
|
|
if (regno == -1
|
|
|| regno == tdep->ppc_spefscr_regnum)
|
|
regcache_raw_supply (regcache, tdep->ppc_spefscr_regnum,
|
|
&evrregs.spefscr);
|
|
}
|
|
|
|
static void
|
|
fetch_register (struct regcache *regcache, int tid, int regno)
|
|
{
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
/* This isn't really an address. But ptrace thinks of it as one. */
|
|
CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
|
|
int bytes_transferred;
|
|
unsigned int offset; /* Offset of registers within the u area. */
|
|
gdb_byte buf[MAX_REGISTER_SIZE];
|
|
|
|
if (altivec_register_p (gdbarch, regno))
|
|
{
|
|
/* If this is the first time through, or if it is not the first
|
|
time through, and we have comfirmed that there is kernel
|
|
support for such a ptrace request, then go and fetch the
|
|
register. */
|
|
if (have_ptrace_getvrregs)
|
|
{
|
|
fetch_altivec_register (regcache, tid, regno);
|
|
return;
|
|
}
|
|
/* If we have discovered that there is no ptrace support for
|
|
AltiVec registers, fall through and return zeroes, because
|
|
regaddr will be -1 in this case. */
|
|
}
|
|
if (vsx_register_p (gdbarch, regno))
|
|
{
|
|
if (have_ptrace_getsetvsxregs)
|
|
{
|
|
fetch_vsx_register (regcache, tid, regno);
|
|
return;
|
|
}
|
|
}
|
|
else if (spe_register_p (gdbarch, regno))
|
|
{
|
|
fetch_spe_register (regcache, tid, regno);
|
|
return;
|
|
}
|
|
|
|
if (regaddr == -1)
|
|
{
|
|
memset (buf, '\0', register_size (gdbarch, regno)); /* Supply zeroes */
|
|
regcache_raw_supply (regcache, regno, buf);
|
|
return;
|
|
}
|
|
|
|
/* Read the raw register using sizeof(long) sized chunks. On a
|
|
32-bit platform, 64-bit floating-point registers will require two
|
|
transfers. */
|
|
for (bytes_transferred = 0;
|
|
bytes_transferred < register_size (gdbarch, regno);
|
|
bytes_transferred += sizeof (long))
|
|
{
|
|
long l;
|
|
|
|
errno = 0;
|
|
l = ptrace (PTRACE_PEEKUSER, tid, (PTRACE_TYPE_ARG3) regaddr, 0);
|
|
regaddr += sizeof (long);
|
|
if (errno != 0)
|
|
{
|
|
char message[128];
|
|
xsnprintf (message, sizeof (message), "reading register %s (#%d)",
|
|
gdbarch_register_name (gdbarch, regno), regno);
|
|
perror_with_name (message);
|
|
}
|
|
memcpy (&buf[bytes_transferred], &l, sizeof (l));
|
|
}
|
|
|
|
/* Now supply the register. Keep in mind that the regcache's idea
|
|
of the register's size may not be a multiple of sizeof
|
|
(long). */
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
|
|
{
|
|
/* Little-endian values are always found at the left end of the
|
|
bytes transferred. */
|
|
regcache_raw_supply (regcache, regno, buf);
|
|
}
|
|
else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
|
{
|
|
/* Big-endian values are found at the right end of the bytes
|
|
transferred. */
|
|
size_t padding = (bytes_transferred - register_size (gdbarch, regno));
|
|
regcache_raw_supply (regcache, regno, buf + padding);
|
|
}
|
|
else
|
|
internal_error (__FILE__, __LINE__,
|
|
_("fetch_register: unexpected byte order: %d"),
|
|
gdbarch_byte_order (gdbarch));
|
|
}
|
|
|
|
static void
|
|
supply_vsxregset (struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
|
|
{
|
|
int i;
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
|
|
|
|
for (i = 0; i < ppc_num_vshrs; i++)
|
|
{
|
|
regcache_raw_supply (regcache, tdep->ppc_vsr0_upper_regnum + i,
|
|
*vsxregsetp + i * vsxregsize);
|
|
}
|
|
}
|
|
|
|
static void
|
|
supply_vrregset (struct regcache *regcache, gdb_vrregset_t *vrregsetp)
|
|
{
|
|
int i;
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
|
|
int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
|
|
int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
|
|
|
|
for (i = 0; i < num_of_vrregs; i++)
|
|
{
|
|
/* The last 2 registers of this set are only 32 bit long, not
|
|
128. However an offset is necessary only for VSCR because it
|
|
occupies a whole vector, while VRSAVE occupies a full 4 bytes
|
|
slot. */
|
|
if (i == (num_of_vrregs - 2))
|
|
regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
|
|
*vrregsetp + i * vrregsize + offset);
|
|
else
|
|
regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
|
|
*vrregsetp + i * vrregsize);
|
|
}
|
|
}
|
|
|
|
static void
|
|
fetch_vsx_registers (struct regcache *regcache, int tid)
|
|
{
|
|
int ret;
|
|
gdb_vsxregset_t regs;
|
|
|
|
ret = ptrace (PTRACE_GETVSXREGS, tid, 0, ®s);
|
|
if (ret < 0)
|
|
{
|
|
if (errno == EIO)
|
|
{
|
|
have_ptrace_getsetvsxregs = 0;
|
|
return;
|
|
}
|
|
perror_with_name (_("Unable to fetch VSX registers"));
|
|
}
|
|
supply_vsxregset (regcache, ®s);
|
|
}
|
|
|
|
static void
|
|
fetch_altivec_registers (struct regcache *regcache, int tid)
|
|
{
|
|
int ret;
|
|
gdb_vrregset_t regs;
|
|
|
|
ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s);
|
|
if (ret < 0)
|
|
{
|
|
if (errno == EIO)
|
|
{
|
|
have_ptrace_getvrregs = 0;
|
|
return;
|
|
}
|
|
perror_with_name (_("Unable to fetch AltiVec registers"));
|
|
}
|
|
supply_vrregset (regcache, ®s);
|
|
}
|
|
|
|
/* This function actually issues the request to ptrace, telling
|
|
it to get all general-purpose registers and put them into the
|
|
specified regset.
|
|
|
|
If the ptrace request does not exist, this function returns 0
|
|
and properly sets the have_ptrace_* flag. If the request fails,
|
|
this function calls perror_with_name. Otherwise, if the request
|
|
succeeds, then the regcache gets filled and 1 is returned. */
|
|
static int
|
|
fetch_all_gp_regs (struct regcache *regcache, int tid)
|
|
{
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
gdb_gregset_t gregset;
|
|
|
|
if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
|
|
{
|
|
if (errno == EIO)
|
|
{
|
|
have_ptrace_getsetregs = 0;
|
|
return 0;
|
|
}
|
|
perror_with_name (_("Couldn't get general-purpose registers."));
|
|
}
|
|
|
|
supply_gregset (regcache, (const gdb_gregset_t *) &gregset);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* This is a wrapper for the fetch_all_gp_regs function. It is
|
|
responsible for verifying if this target has the ptrace request
|
|
that can be used to fetch all general-purpose registers at one
|
|
shot. If it doesn't, then we should fetch them using the
|
|
old-fashioned way, which is to iterate over the registers and
|
|
request them one by one. */
|
|
static void
|
|
fetch_gp_regs (struct regcache *regcache, int tid)
|
|
{
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
int i;
|
|
|
|
if (have_ptrace_getsetregs)
|
|
if (fetch_all_gp_regs (regcache, tid))
|
|
return;
|
|
|
|
/* If we've hit this point, it doesn't really matter which
|
|
architecture we are using. We just need to read the
|
|
registers in the "old-fashioned way". */
|
|
for (i = 0; i < ppc_num_gprs; i++)
|
|
fetch_register (regcache, tid, tdep->ppc_gp0_regnum + i);
|
|
}
|
|
|
|
/* This function actually issues the request to ptrace, telling
|
|
it to get all floating-point registers and put them into the
|
|
specified regset.
|
|
|
|
If the ptrace request does not exist, this function returns 0
|
|
and properly sets the have_ptrace_* flag. If the request fails,
|
|
this function calls perror_with_name. Otherwise, if the request
|
|
succeeds, then the regcache gets filled and 1 is returned. */
|
|
static int
|
|
fetch_all_fp_regs (struct regcache *regcache, int tid)
|
|
{
|
|
gdb_fpregset_t fpregs;
|
|
|
|
if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
|
|
{
|
|
if (errno == EIO)
|
|
{
|
|
have_ptrace_getsetfpregs = 0;
|
|
return 0;
|
|
}
|
|
perror_with_name (_("Couldn't get floating-point registers."));
|
|
}
|
|
|
|
supply_fpregset (regcache, (const gdb_fpregset_t *) &fpregs);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* This is a wrapper for the fetch_all_fp_regs function. It is
|
|
responsible for verifying if this target has the ptrace request
|
|
that can be used to fetch all floating-point registers at one
|
|
shot. If it doesn't, then we should fetch them using the
|
|
old-fashioned way, which is to iterate over the registers and
|
|
request them one by one. */
|
|
static void
|
|
fetch_fp_regs (struct regcache *regcache, int tid)
|
|
{
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
int i;
|
|
|
|
if (have_ptrace_getsetfpregs)
|
|
if (fetch_all_fp_regs (regcache, tid))
|
|
return;
|
|
|
|
/* If we've hit this point, it doesn't really matter which
|
|
architecture we are using. We just need to read the
|
|
registers in the "old-fashioned way". */
|
|
for (i = 0; i < ppc_num_fprs; i++)
|
|
fetch_register (regcache, tid, tdep->ppc_fp0_regnum + i);
|
|
}
|
|
|
|
static void
|
|
fetch_ppc_registers (struct regcache *regcache, int tid)
|
|
{
|
|
int i;
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
|
|
fetch_gp_regs (regcache, tid);
|
|
if (tdep->ppc_fp0_regnum >= 0)
|
|
fetch_fp_regs (regcache, tid);
|
|
fetch_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
|
|
if (tdep->ppc_ps_regnum != -1)
|
|
fetch_register (regcache, tid, tdep->ppc_ps_regnum);
|
|
if (tdep->ppc_cr_regnum != -1)
|
|
fetch_register (regcache, tid, tdep->ppc_cr_regnum);
|
|
if (tdep->ppc_lr_regnum != -1)
|
|
fetch_register (regcache, tid, tdep->ppc_lr_regnum);
|
|
if (tdep->ppc_ctr_regnum != -1)
|
|
fetch_register (regcache, tid, tdep->ppc_ctr_regnum);
|
|
if (tdep->ppc_xer_regnum != -1)
|
|
fetch_register (regcache, tid, tdep->ppc_xer_regnum);
|
|
if (tdep->ppc_mq_regnum != -1)
|
|
fetch_register (regcache, tid, tdep->ppc_mq_regnum);
|
|
if (ppc_linux_trap_reg_p (gdbarch))
|
|
{
|
|
fetch_register (regcache, tid, PPC_ORIG_R3_REGNUM);
|
|
fetch_register (regcache, tid, PPC_TRAP_REGNUM);
|
|
}
|
|
if (tdep->ppc_fpscr_regnum != -1)
|
|
fetch_register (regcache, tid, tdep->ppc_fpscr_regnum);
|
|
if (have_ptrace_getvrregs)
|
|
if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
|
|
fetch_altivec_registers (regcache, tid);
|
|
if (have_ptrace_getsetvsxregs)
|
|
if (tdep->ppc_vsr0_upper_regnum != -1)
|
|
fetch_vsx_registers (regcache, tid);
|
|
if (tdep->ppc_ev0_upper_regnum >= 0)
|
|
fetch_spe_register (regcache, tid, -1);
|
|
}
|
|
|
|
/* Fetch registers from the child process. Fetch all registers if
|
|
regno == -1, otherwise fetch all general registers or all floating
|
|
point registers depending upon the value of regno. */
|
|
static void
|
|
ppc_linux_fetch_inferior_registers (struct target_ops *ops,
|
|
struct regcache *regcache, int regno)
|
|
{
|
|
/* Overload thread id onto process id. */
|
|
int tid = ptid_get_lwp (inferior_ptid);
|
|
|
|
/* No thread id, just use process id. */
|
|
if (tid == 0)
|
|
tid = ptid_get_pid (inferior_ptid);
|
|
|
|
if (regno == -1)
|
|
fetch_ppc_registers (regcache, tid);
|
|
else
|
|
fetch_register (regcache, tid, regno);
|
|
}
|
|
|
|
/* Store one VSX register. */
|
|
static void
|
|
store_vsx_register (const struct regcache *regcache, int tid, int regno)
|
|
{
|
|
int ret;
|
|
gdb_vsxregset_t regs;
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
|
|
|
|
ret = ptrace (PTRACE_GETVSXREGS, tid, 0, ®s);
|
|
if (ret < 0)
|
|
{
|
|
if (errno == EIO)
|
|
{
|
|
have_ptrace_getsetvsxregs = 0;
|
|
return;
|
|
}
|
|
perror_with_name (_("Unable to fetch VSX register"));
|
|
}
|
|
|
|
regcache_raw_collect (regcache, regno, regs +
|
|
(regno - tdep->ppc_vsr0_upper_regnum) * vsxregsize);
|
|
|
|
ret = ptrace (PTRACE_SETVSXREGS, tid, 0, ®s);
|
|
if (ret < 0)
|
|
perror_with_name (_("Unable to store VSX register"));
|
|
}
|
|
|
|
/* Store one register. */
|
|
static void
|
|
store_altivec_register (const struct regcache *regcache, int tid, int regno)
|
|
{
|
|
int ret;
|
|
int offset = 0;
|
|
gdb_vrregset_t regs;
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
|
|
|
|
ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s);
|
|
if (ret < 0)
|
|
{
|
|
if (errno == EIO)
|
|
{
|
|
have_ptrace_getvrregs = 0;
|
|
return;
|
|
}
|
|
perror_with_name (_("Unable to fetch AltiVec register"));
|
|
}
|
|
|
|
/* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
|
|
long on the hardware. */
|
|
if (regno == (tdep->ppc_vrsave_regnum - 1))
|
|
offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
|
|
|
|
regcache_raw_collect (regcache, regno,
|
|
regs + (regno
|
|
- tdep->ppc_vr0_regnum) * vrregsize + offset);
|
|
|
|
ret = ptrace (PTRACE_SETVRREGS, tid, 0, ®s);
|
|
if (ret < 0)
|
|
perror_with_name (_("Unable to store AltiVec register"));
|
|
}
|
|
|
|
/* Assuming TID referrs to an SPE process, set the top halves of TID's
|
|
general-purpose registers and its SPE-specific registers to the
|
|
values in EVRREGSET. If we don't support PTRACE_SETEVRREGS, do
|
|
nothing.
|
|
|
|
All the logic to deal with whether or not the PTRACE_GETEVRREGS and
|
|
PTRACE_SETEVRREGS requests are supported is isolated here, and in
|
|
get_spe_registers. */
|
|
static void
|
|
set_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
|
|
{
|
|
if (have_ptrace_getsetevrregs)
|
|
{
|
|
if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0)
|
|
return;
|
|
else
|
|
{
|
|
/* EIO means that the PTRACE_SETEVRREGS request isn't
|
|
supported; we fail silently, and don't try the call
|
|
again. */
|
|
if (errno == EIO)
|
|
have_ptrace_getsetevrregs = 0;
|
|
else
|
|
/* Anything else needs to be reported. */
|
|
perror_with_name (_("Unable to set SPE registers"));
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Write GDB's value for the SPE-specific raw register REGNO to TID.
|
|
If REGNO is -1, write the values of all the SPE-specific
|
|
registers. */
|
|
static void
|
|
store_spe_register (const struct regcache *regcache, int tid, int regno)
|
|
{
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
struct gdb_evrregset_t evrregs;
|
|
|
|
gdb_assert (sizeof (evrregs.evr[0])
|
|
== register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
|
|
gdb_assert (sizeof (evrregs.acc)
|
|
== register_size (gdbarch, tdep->ppc_acc_regnum));
|
|
gdb_assert (sizeof (evrregs.spefscr)
|
|
== register_size (gdbarch, tdep->ppc_spefscr_regnum));
|
|
|
|
if (regno == -1)
|
|
/* Since we're going to write out every register, the code below
|
|
should store to every field of evrregs; if that doesn't happen,
|
|
make it obvious by initializing it with suspicious values. */
|
|
memset (&evrregs, 42, sizeof (evrregs));
|
|
else
|
|
/* We can only read and write the entire EVR register set at a
|
|
time, so to write just a single register, we do a
|
|
read-modify-write maneuver. */
|
|
get_spe_registers (tid, &evrregs);
|
|
|
|
if (regno == -1)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ppc_num_gprs; i++)
|
|
regcache_raw_collect (regcache,
|
|
tdep->ppc_ev0_upper_regnum + i,
|
|
&evrregs.evr[i]);
|
|
}
|
|
else if (tdep->ppc_ev0_upper_regnum <= regno
|
|
&& regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
|
|
regcache_raw_collect (regcache, regno,
|
|
&evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
|
|
|
|
if (regno == -1
|
|
|| regno == tdep->ppc_acc_regnum)
|
|
regcache_raw_collect (regcache,
|
|
tdep->ppc_acc_regnum,
|
|
&evrregs.acc);
|
|
|
|
if (regno == -1
|
|
|| regno == tdep->ppc_spefscr_regnum)
|
|
regcache_raw_collect (regcache,
|
|
tdep->ppc_spefscr_regnum,
|
|
&evrregs.spefscr);
|
|
|
|
/* Write back the modified register set. */
|
|
set_spe_registers (tid, &evrregs);
|
|
}
|
|
|
|
static void
|
|
store_register (const struct regcache *regcache, int tid, int regno)
|
|
{
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
/* This isn't really an address. But ptrace thinks of it as one. */
|
|
CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
|
|
int i;
|
|
size_t bytes_to_transfer;
|
|
gdb_byte buf[MAX_REGISTER_SIZE];
|
|
|
|
if (altivec_register_p (gdbarch, regno))
|
|
{
|
|
store_altivec_register (regcache, tid, regno);
|
|
return;
|
|
}
|
|
if (vsx_register_p (gdbarch, regno))
|
|
{
|
|
store_vsx_register (regcache, tid, regno);
|
|
return;
|
|
}
|
|
else if (spe_register_p (gdbarch, regno))
|
|
{
|
|
store_spe_register (regcache, tid, regno);
|
|
return;
|
|
}
|
|
|
|
if (regaddr == -1)
|
|
return;
|
|
|
|
/* First collect the register. Keep in mind that the regcache's
|
|
idea of the register's size may not be a multiple of sizeof
|
|
(long). */
|
|
memset (buf, 0, sizeof buf);
|
|
bytes_to_transfer = align_up (register_size (gdbarch, regno), sizeof (long));
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
|
|
{
|
|
/* Little-endian values always sit at the left end of the buffer. */
|
|
regcache_raw_collect (regcache, regno, buf);
|
|
}
|
|
else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
|
{
|
|
/* Big-endian values sit at the right end of the buffer. */
|
|
size_t padding = (bytes_to_transfer - register_size (gdbarch, regno));
|
|
regcache_raw_collect (regcache, regno, buf + padding);
|
|
}
|
|
|
|
for (i = 0; i < bytes_to_transfer; i += sizeof (long))
|
|
{
|
|
long l;
|
|
|
|
memcpy (&l, &buf[i], sizeof (l));
|
|
errno = 0;
|
|
ptrace (PTRACE_POKEUSER, tid, (PTRACE_TYPE_ARG3) regaddr, l);
|
|
regaddr += sizeof (long);
|
|
|
|
if (errno == EIO
|
|
&& (regno == tdep->ppc_fpscr_regnum
|
|
|| regno == PPC_ORIG_R3_REGNUM
|
|
|| regno == PPC_TRAP_REGNUM))
|
|
{
|
|
/* Some older kernel versions don't allow fpscr, orig_r3
|
|
or trap to be written. */
|
|
continue;
|
|
}
|
|
|
|
if (errno != 0)
|
|
{
|
|
char message[128];
|
|
xsnprintf (message, sizeof (message), "writing register %s (#%d)",
|
|
gdbarch_register_name (gdbarch, regno), regno);
|
|
perror_with_name (message);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
fill_vsxregset (const struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
|
|
{
|
|
int i;
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
|
|
|
|
for (i = 0; i < ppc_num_vshrs; i++)
|
|
regcache_raw_collect (regcache, tdep->ppc_vsr0_upper_regnum + i,
|
|
*vsxregsetp + i * vsxregsize);
|
|
}
|
|
|
|
static void
|
|
fill_vrregset (const struct regcache *regcache, gdb_vrregset_t *vrregsetp)
|
|
{
|
|
int i;
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
|
|
int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
|
|
int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
|
|
|
|
for (i = 0; i < num_of_vrregs; i++)
|
|
{
|
|
/* The last 2 registers of this set are only 32 bit long, not
|
|
128, but only VSCR is fetched as a 16 bytes quantity. */
|
|
if (i == (num_of_vrregs - 2))
|
|
regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
|
|
*vrregsetp + i * vrregsize + offset);
|
|
else
|
|
regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
|
|
*vrregsetp + i * vrregsize);
|
|
}
|
|
}
|
|
|
|
static void
|
|
store_vsx_registers (const struct regcache *regcache, int tid)
|
|
{
|
|
int ret;
|
|
gdb_vsxregset_t regs;
|
|
|
|
ret = ptrace (PTRACE_GETVSXREGS, tid, 0, ®s);
|
|
if (ret < 0)
|
|
{
|
|
if (errno == EIO)
|
|
{
|
|
have_ptrace_getsetvsxregs = 0;
|
|
return;
|
|
}
|
|
perror_with_name (_("Couldn't get VSX registers"));
|
|
}
|
|
|
|
fill_vsxregset (regcache, ®s);
|
|
|
|
if (ptrace (PTRACE_SETVSXREGS, tid, 0, ®s) < 0)
|
|
perror_with_name (_("Couldn't write VSX registers"));
|
|
}
|
|
|
|
static void
|
|
store_altivec_registers (const struct regcache *regcache, int tid)
|
|
{
|
|
int ret;
|
|
gdb_vrregset_t regs;
|
|
|
|
ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s);
|
|
if (ret < 0)
|
|
{
|
|
if (errno == EIO)
|
|
{
|
|
have_ptrace_getvrregs = 0;
|
|
return;
|
|
}
|
|
perror_with_name (_("Couldn't get AltiVec registers"));
|
|
}
|
|
|
|
fill_vrregset (regcache, ®s);
|
|
|
|
if (ptrace (PTRACE_SETVRREGS, tid, 0, ®s) < 0)
|
|
perror_with_name (_("Couldn't write AltiVec registers"));
|
|
}
|
|
|
|
/* This function actually issues the request to ptrace, telling
|
|
it to store all general-purpose registers present in the specified
|
|
regset.
|
|
|
|
If the ptrace request does not exist, this function returns 0
|
|
and properly sets the have_ptrace_* flag. If the request fails,
|
|
this function calls perror_with_name. Otherwise, if the request
|
|
succeeds, then the regcache is stored and 1 is returned. */
|
|
static int
|
|
store_all_gp_regs (const struct regcache *regcache, int tid, int regno)
|
|
{
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
gdb_gregset_t gregset;
|
|
|
|
if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
|
|
{
|
|
if (errno == EIO)
|
|
{
|
|
have_ptrace_getsetregs = 0;
|
|
return 0;
|
|
}
|
|
perror_with_name (_("Couldn't get general-purpose registers."));
|
|
}
|
|
|
|
fill_gregset (regcache, &gregset, regno);
|
|
|
|
if (ptrace (PTRACE_SETREGS, tid, 0, (void *) &gregset) < 0)
|
|
{
|
|
if (errno == EIO)
|
|
{
|
|
have_ptrace_getsetregs = 0;
|
|
return 0;
|
|
}
|
|
perror_with_name (_("Couldn't set general-purpose registers."));
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* This is a wrapper for the store_all_gp_regs function. It is
|
|
responsible for verifying if this target has the ptrace request
|
|
that can be used to store all general-purpose registers at one
|
|
shot. If it doesn't, then we should store them using the
|
|
old-fashioned way, which is to iterate over the registers and
|
|
store them one by one. */
|
|
static void
|
|
store_gp_regs (const struct regcache *regcache, int tid, int regno)
|
|
{
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
int i;
|
|
|
|
if (have_ptrace_getsetregs)
|
|
if (store_all_gp_regs (regcache, tid, regno))
|
|
return;
|
|
|
|
/* If we hit this point, it doesn't really matter which
|
|
architecture we are using. We just need to store the
|
|
registers in the "old-fashioned way". */
|
|
for (i = 0; i < ppc_num_gprs; i++)
|
|
store_register (regcache, tid, tdep->ppc_gp0_regnum + i);
|
|
}
|
|
|
|
/* This function actually issues the request to ptrace, telling
|
|
it to store all floating-point registers present in the specified
|
|
regset.
|
|
|
|
If the ptrace request does not exist, this function returns 0
|
|
and properly sets the have_ptrace_* flag. If the request fails,
|
|
this function calls perror_with_name. Otherwise, if the request
|
|
succeeds, then the regcache is stored and 1 is returned. */
|
|
static int
|
|
store_all_fp_regs (const struct regcache *regcache, int tid, int regno)
|
|
{
|
|
gdb_fpregset_t fpregs;
|
|
|
|
if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
|
|
{
|
|
if (errno == EIO)
|
|
{
|
|
have_ptrace_getsetfpregs = 0;
|
|
return 0;
|
|
}
|
|
perror_with_name (_("Couldn't get floating-point registers."));
|
|
}
|
|
|
|
fill_fpregset (regcache, &fpregs, regno);
|
|
|
|
if (ptrace (PTRACE_SETFPREGS, tid, 0, (void *) &fpregs) < 0)
|
|
{
|
|
if (errno == EIO)
|
|
{
|
|
have_ptrace_getsetfpregs = 0;
|
|
return 0;
|
|
}
|
|
perror_with_name (_("Couldn't set floating-point registers."));
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* This is a wrapper for the store_all_fp_regs function. It is
|
|
responsible for verifying if this target has the ptrace request
|
|
that can be used to store all floating-point registers at one
|
|
shot. If it doesn't, then we should store them using the
|
|
old-fashioned way, which is to iterate over the registers and
|
|
store them one by one. */
|
|
static void
|
|
store_fp_regs (const struct regcache *regcache, int tid, int regno)
|
|
{
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
int i;
|
|
|
|
if (have_ptrace_getsetfpregs)
|
|
if (store_all_fp_regs (regcache, tid, regno))
|
|
return;
|
|
|
|
/* If we hit this point, it doesn't really matter which
|
|
architecture we are using. We just need to store the
|
|
registers in the "old-fashioned way". */
|
|
for (i = 0; i < ppc_num_fprs; i++)
|
|
store_register (regcache, tid, tdep->ppc_fp0_regnum + i);
|
|
}
|
|
|
|
static void
|
|
store_ppc_registers (const struct regcache *regcache, int tid)
|
|
{
|
|
int i;
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
|
|
store_gp_regs (regcache, tid, -1);
|
|
if (tdep->ppc_fp0_regnum >= 0)
|
|
store_fp_regs (regcache, tid, -1);
|
|
store_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
|
|
if (tdep->ppc_ps_regnum != -1)
|
|
store_register (regcache, tid, tdep->ppc_ps_regnum);
|
|
if (tdep->ppc_cr_regnum != -1)
|
|
store_register (regcache, tid, tdep->ppc_cr_regnum);
|
|
if (tdep->ppc_lr_regnum != -1)
|
|
store_register (regcache, tid, tdep->ppc_lr_regnum);
|
|
if (tdep->ppc_ctr_regnum != -1)
|
|
store_register (regcache, tid, tdep->ppc_ctr_regnum);
|
|
if (tdep->ppc_xer_regnum != -1)
|
|
store_register (regcache, tid, tdep->ppc_xer_regnum);
|
|
if (tdep->ppc_mq_regnum != -1)
|
|
store_register (regcache, tid, tdep->ppc_mq_regnum);
|
|
if (tdep->ppc_fpscr_regnum != -1)
|
|
store_register (regcache, tid, tdep->ppc_fpscr_regnum);
|
|
if (ppc_linux_trap_reg_p (gdbarch))
|
|
{
|
|
store_register (regcache, tid, PPC_ORIG_R3_REGNUM);
|
|
store_register (regcache, tid, PPC_TRAP_REGNUM);
|
|
}
|
|
if (have_ptrace_getvrregs)
|
|
if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
|
|
store_altivec_registers (regcache, tid);
|
|
if (have_ptrace_getsetvsxregs)
|
|
if (tdep->ppc_vsr0_upper_regnum != -1)
|
|
store_vsx_registers (regcache, tid);
|
|
if (tdep->ppc_ev0_upper_regnum >= 0)
|
|
store_spe_register (regcache, tid, -1);
|
|
}
|
|
|
|
/* Fetch the AT_HWCAP entry from the aux vector. */
|
|
static unsigned long
|
|
ppc_linux_get_hwcap (void)
|
|
{
|
|
CORE_ADDR field;
|
|
|
|
if (target_auxv_search (¤t_target, AT_HWCAP, &field))
|
|
return (unsigned long) field;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* The cached DABR value, to install in new threads.
|
|
This variable is used when the PowerPC HWDEBUG ptrace
|
|
interface is not available. */
|
|
static long saved_dabr_value;
|
|
|
|
/* Global structure that will store information about the available
|
|
features provided by the PowerPC HWDEBUG ptrace interface. */
|
|
static struct ppc_debug_info hwdebug_info;
|
|
|
|
/* Global variable that holds the maximum number of slots that the
|
|
kernel will use. This is only used when PowerPC HWDEBUG ptrace interface
|
|
is available. */
|
|
static size_t max_slots_number = 0;
|
|
|
|
struct hw_break_tuple
|
|
{
|
|
long slot;
|
|
struct ppc_hw_breakpoint *hw_break;
|
|
};
|
|
|
|
/* This is an internal VEC created to store information about *points inserted
|
|
for each thread. This is used when PowerPC HWDEBUG ptrace interface is
|
|
available. */
|
|
typedef struct thread_points
|
|
{
|
|
/* The TID to which this *point relates. */
|
|
int tid;
|
|
/* Information about the *point, such as its address, type, etc.
|
|
|
|
Each element inside this vector corresponds to a hardware
|
|
breakpoint or watchpoint in the thread represented by TID. The maximum
|
|
size of these vector is MAX_SLOTS_NUMBER. If the hw_break element of
|
|
the tuple is NULL, then the position in the vector is free. */
|
|
struct hw_break_tuple *hw_breaks;
|
|
} *thread_points_p;
|
|
DEF_VEC_P (thread_points_p);
|
|
|
|
VEC(thread_points_p) *ppc_threads = NULL;
|
|
|
|
/* The version of the PowerPC HWDEBUG kernel interface that we will use, if
|
|
available. */
|
|
#define PPC_DEBUG_CURRENT_VERSION 1
|
|
|
|
/* Returns non-zero if we support the PowerPC HWDEBUG ptrace interface. */
|
|
static int
|
|
have_ptrace_hwdebug_interface (void)
|
|
{
|
|
static int have_ptrace_hwdebug_interface = -1;
|
|
|
|
if (have_ptrace_hwdebug_interface == -1)
|
|
{
|
|
int tid;
|
|
|
|
tid = ptid_get_lwp (inferior_ptid);
|
|
if (tid == 0)
|
|
tid = ptid_get_pid (inferior_ptid);
|
|
|
|
/* Check for kernel support for PowerPC HWDEBUG ptrace interface. */
|
|
if (ptrace (PPC_PTRACE_GETHWDBGINFO, tid, 0, &hwdebug_info) >= 0)
|
|
{
|
|
/* Check whether PowerPC HWDEBUG ptrace interface is functional and
|
|
provides any supported feature. */
|
|
if (hwdebug_info.features != 0)
|
|
{
|
|
have_ptrace_hwdebug_interface = 1;
|
|
max_slots_number = hwdebug_info.num_instruction_bps
|
|
+ hwdebug_info.num_data_bps
|
|
+ hwdebug_info.num_condition_regs;
|
|
return have_ptrace_hwdebug_interface;
|
|
}
|
|
}
|
|
/* Old school interface and no PowerPC HWDEBUG ptrace support. */
|
|
have_ptrace_hwdebug_interface = 0;
|
|
memset (&hwdebug_info, 0, sizeof (struct ppc_debug_info));
|
|
}
|
|
|
|
return have_ptrace_hwdebug_interface;
|
|
}
|
|
|
|
static int
|
|
ppc_linux_can_use_hw_breakpoint (struct target_ops *self,
|
|
enum bptype type, int cnt, int ot)
|
|
{
|
|
int total_hw_wp, total_hw_bp;
|
|
|
|
if (have_ptrace_hwdebug_interface ())
|
|
{
|
|
/* When PowerPC HWDEBUG ptrace interface is available, the number of
|
|
available hardware watchpoints and breakpoints is stored at the
|
|
hwdebug_info struct. */
|
|
total_hw_bp = hwdebug_info.num_instruction_bps;
|
|
total_hw_wp = hwdebug_info.num_data_bps;
|
|
}
|
|
else
|
|
{
|
|
/* When we do not have PowerPC HWDEBUG ptrace interface, we should
|
|
consider having 1 hardware watchpoint and no hardware breakpoints. */
|
|
total_hw_bp = 0;
|
|
total_hw_wp = 1;
|
|
}
|
|
|
|
if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
|
|
|| type == bp_access_watchpoint || type == bp_watchpoint)
|
|
{
|
|
if (cnt + ot > total_hw_wp)
|
|
return -1;
|
|
}
|
|
else if (type == bp_hardware_breakpoint)
|
|
{
|
|
if (total_hw_bp == 0)
|
|
{
|
|
/* No hardware breakpoint support. */
|
|
return 0;
|
|
}
|
|
if (cnt > total_hw_bp)
|
|
return -1;
|
|
}
|
|
|
|
if (!have_ptrace_hwdebug_interface ())
|
|
{
|
|
int tid;
|
|
ptid_t ptid = inferior_ptid;
|
|
|
|
/* We need to know whether ptrace supports PTRACE_SET_DEBUGREG
|
|
and whether the target has DABR. If either answer is no, the
|
|
ptrace call will return -1. Fail in that case. */
|
|
tid = ptid_get_lwp (ptid);
|
|
if (tid == 0)
|
|
tid = ptid_get_pid (ptid);
|
|
|
|
if (ptrace (PTRACE_SET_DEBUGREG, tid, 0, 0) == -1)
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
ppc_linux_region_ok_for_hw_watchpoint (struct target_ops *self,
|
|
CORE_ADDR addr, int len)
|
|
{
|
|
/* Handle sub-8-byte quantities. */
|
|
if (len <= 0)
|
|
return 0;
|
|
|
|
/* The PowerPC HWDEBUG ptrace interface tells if there are alignment
|
|
restrictions for watchpoints in the processors. In that case, we use that
|
|
information to determine the hardcoded watchable region for
|
|
watchpoints. */
|
|
if (have_ptrace_hwdebug_interface ())
|
|
{
|
|
int region_size;
|
|
/* Embedded DAC-based processors, like the PowerPC 440 have ranged
|
|
watchpoints and can watch any access within an arbitrary memory
|
|
region. This is useful to watch arrays and structs, for instance. It
|
|
takes two hardware watchpoints though. */
|
|
if (len > 1
|
|
&& hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE
|
|
&& ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
|
|
return 2;
|
|
/* Check if the processor provides DAWR interface. */
|
|
if (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_DAWR)
|
|
/* DAWR interface allows to watch up to 512 byte wide ranges which
|
|
can't cross a 512 byte boundary. */
|
|
region_size = 512;
|
|
else
|
|
region_size = hwdebug_info.data_bp_alignment;
|
|
/* Server processors provide one hardware watchpoint and addr+len should
|
|
fall in the watchable region provided by the ptrace interface. */
|
|
if (region_size
|
|
&& (addr + len > (addr & ~(region_size - 1)) + region_size))
|
|
return 0;
|
|
}
|
|
/* addr+len must fall in the 8 byte watchable region for DABR-based
|
|
processors (i.e., server processors). Without the new PowerPC HWDEBUG
|
|
ptrace interface, DAC-based processors (i.e., embedded processors) will
|
|
use addresses aligned to 4-bytes due to the way the read/write flags are
|
|
passed in the old ptrace interface. */
|
|
else if (((ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
|
|
&& (addr + len) > (addr & ~3) + 4)
|
|
|| (addr + len) > (addr & ~7) + 8)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* This function compares two ppc_hw_breakpoint structs field-by-field. */
|
|
static int
|
|
hwdebug_point_cmp (struct ppc_hw_breakpoint *a, struct ppc_hw_breakpoint *b)
|
|
{
|
|
return (a->trigger_type == b->trigger_type
|
|
&& a->addr_mode == b->addr_mode
|
|
&& a->condition_mode == b->condition_mode
|
|
&& a->addr == b->addr
|
|
&& a->addr2 == b->addr2
|
|
&& a->condition_value == b->condition_value);
|
|
}
|
|
|
|
/* This function can be used to retrieve a thread_points by the TID of the
|
|
related process/thread. If nothing has been found, and ALLOC_NEW is 0,
|
|
it returns NULL. If ALLOC_NEW is non-zero, a new thread_points for the
|
|
provided TID will be created and returned. */
|
|
static struct thread_points *
|
|
hwdebug_find_thread_points_by_tid (int tid, int alloc_new)
|
|
{
|
|
int i;
|
|
struct thread_points *t;
|
|
|
|
for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, t); i++)
|
|
if (t->tid == tid)
|
|
return t;
|
|
|
|
t = NULL;
|
|
|
|
/* Do we need to allocate a new point_item
|
|
if the wanted one does not exist? */
|
|
if (alloc_new)
|
|
{
|
|
t = XNEW (struct thread_points);
|
|
t->hw_breaks = XCNEWVEC (struct hw_break_tuple, max_slots_number);
|
|
t->tid = tid;
|
|
VEC_safe_push (thread_points_p, ppc_threads, t);
|
|
}
|
|
|
|
return t;
|
|
}
|
|
|
|
/* This function is a generic wrapper that is responsible for inserting a
|
|
*point (i.e., calling `ptrace' in order to issue the request to the
|
|
kernel) and registering it internally in GDB. */
|
|
static void
|
|
hwdebug_insert_point (struct ppc_hw_breakpoint *b, int tid)
|
|
{
|
|
int i;
|
|
long slot;
|
|
struct ppc_hw_breakpoint *p = XNEW (struct ppc_hw_breakpoint);
|
|
struct hw_break_tuple *hw_breaks;
|
|
struct cleanup *c = make_cleanup (xfree, p);
|
|
struct thread_points *t;
|
|
struct hw_break_tuple *tuple;
|
|
|
|
memcpy (p, b, sizeof (struct ppc_hw_breakpoint));
|
|
|
|
errno = 0;
|
|
slot = ptrace (PPC_PTRACE_SETHWDEBUG, tid, 0, p);
|
|
if (slot < 0)
|
|
perror_with_name (_("Unexpected error setting breakpoint or watchpoint"));
|
|
|
|
/* Everything went fine, so we have to register this *point. */
|
|
t = hwdebug_find_thread_points_by_tid (tid, 1);
|
|
gdb_assert (t != NULL);
|
|
hw_breaks = t->hw_breaks;
|
|
|
|
/* Find a free element in the hw_breaks vector. */
|
|
for (i = 0; i < max_slots_number; i++)
|
|
if (hw_breaks[i].hw_break == NULL)
|
|
{
|
|
hw_breaks[i].slot = slot;
|
|
hw_breaks[i].hw_break = p;
|
|
break;
|
|
}
|
|
|
|
gdb_assert (i != max_slots_number);
|
|
|
|
discard_cleanups (c);
|
|
}
|
|
|
|
/* This function is a generic wrapper that is responsible for removing a
|
|
*point (i.e., calling `ptrace' in order to issue the request to the
|
|
kernel), and unregistering it internally at GDB. */
|
|
static void
|
|
hwdebug_remove_point (struct ppc_hw_breakpoint *b, int tid)
|
|
{
|
|
int i;
|
|
struct hw_break_tuple *hw_breaks;
|
|
struct thread_points *t;
|
|
|
|
t = hwdebug_find_thread_points_by_tid (tid, 0);
|
|
gdb_assert (t != NULL);
|
|
hw_breaks = t->hw_breaks;
|
|
|
|
for (i = 0; i < max_slots_number; i++)
|
|
if (hw_breaks[i].hw_break && hwdebug_point_cmp (hw_breaks[i].hw_break, b))
|
|
break;
|
|
|
|
gdb_assert (i != max_slots_number);
|
|
|
|
/* We have to ignore ENOENT errors because the kernel implements hardware
|
|
breakpoints/watchpoints as "one-shot", that is, they are automatically
|
|
deleted when hit. */
|
|
errno = 0;
|
|
if (ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot) < 0)
|
|
if (errno != ENOENT)
|
|
perror_with_name (_("Unexpected error deleting "
|
|
"breakpoint or watchpoint"));
|
|
|
|
xfree (hw_breaks[i].hw_break);
|
|
hw_breaks[i].hw_break = NULL;
|
|
}
|
|
|
|
/* Return the number of registers needed for a ranged breakpoint. */
|
|
|
|
static int
|
|
ppc_linux_ranged_break_num_registers (struct target_ops *target)
|
|
{
|
|
return ((have_ptrace_hwdebug_interface ()
|
|
&& hwdebug_info.features & PPC_DEBUG_FEATURE_INSN_BP_RANGE)?
|
|
2 : -1);
|
|
}
|
|
|
|
/* Insert the hardware breakpoint described by BP_TGT. Returns 0 for
|
|
success, 1 if hardware breakpoints are not supported or -1 for failure. */
|
|
|
|
static int
|
|
ppc_linux_insert_hw_breakpoint (struct target_ops *self,
|
|
struct gdbarch *gdbarch,
|
|
struct bp_target_info *bp_tgt)
|
|
{
|
|
struct lwp_info *lp;
|
|
struct ppc_hw_breakpoint p;
|
|
|
|
if (!have_ptrace_hwdebug_interface ())
|
|
return -1;
|
|
|
|
p.version = PPC_DEBUG_CURRENT_VERSION;
|
|
p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
|
|
p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
|
|
p.addr = (uint64_t) (bp_tgt->placed_address = bp_tgt->reqstd_address);
|
|
p.condition_value = 0;
|
|
|
|
if (bp_tgt->length)
|
|
{
|
|
p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
|
|
|
|
/* The breakpoint will trigger if the address of the instruction is
|
|
within the defined range, as follows: p.addr <= address < p.addr2. */
|
|
p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
|
|
}
|
|
else
|
|
{
|
|
p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
|
|
p.addr2 = 0;
|
|
}
|
|
|
|
ALL_LWPS (lp)
|
|
hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
ppc_linux_remove_hw_breakpoint (struct target_ops *self,
|
|
struct gdbarch *gdbarch,
|
|
struct bp_target_info *bp_tgt)
|
|
{
|
|
struct lwp_info *lp;
|
|
struct ppc_hw_breakpoint p;
|
|
|
|
if (!have_ptrace_hwdebug_interface ())
|
|
return -1;
|
|
|
|
p.version = PPC_DEBUG_CURRENT_VERSION;
|
|
p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
|
|
p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
|
|
p.addr = (uint64_t) bp_tgt->placed_address;
|
|
p.condition_value = 0;
|
|
|
|
if (bp_tgt->length)
|
|
{
|
|
p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
|
|
|
|
/* The breakpoint will trigger if the address of the instruction is within
|
|
the defined range, as follows: p.addr <= address < p.addr2. */
|
|
p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
|
|
}
|
|
else
|
|
{
|
|
p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
|
|
p.addr2 = 0;
|
|
}
|
|
|
|
ALL_LWPS (lp)
|
|
hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
get_trigger_type (enum target_hw_bp_type type)
|
|
{
|
|
int t;
|
|
|
|
if (type == hw_read)
|
|
t = PPC_BREAKPOINT_TRIGGER_READ;
|
|
else if (type == hw_write)
|
|
t = PPC_BREAKPOINT_TRIGGER_WRITE;
|
|
else
|
|
t = PPC_BREAKPOINT_TRIGGER_READ | PPC_BREAKPOINT_TRIGGER_WRITE;
|
|
|
|
return t;
|
|
}
|
|
|
|
/* Insert a new masked watchpoint at ADDR using the mask MASK.
|
|
RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
|
|
or hw_access for an access watchpoint. Returns 0 on success and throws
|
|
an error on failure. */
|
|
|
|
static int
|
|
ppc_linux_insert_mask_watchpoint (struct target_ops *ops, CORE_ADDR addr,
|
|
CORE_ADDR mask, enum target_hw_bp_type rw)
|
|
{
|
|
struct lwp_info *lp;
|
|
struct ppc_hw_breakpoint p;
|
|
|
|
gdb_assert (have_ptrace_hwdebug_interface ());
|
|
|
|
p.version = PPC_DEBUG_CURRENT_VERSION;
|
|
p.trigger_type = get_trigger_type (rw);
|
|
p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
|
|
p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
|
|
p.addr = addr;
|
|
p.addr2 = mask;
|
|
p.condition_value = 0;
|
|
|
|
ALL_LWPS (lp)
|
|
hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Remove a masked watchpoint at ADDR with the mask MASK.
|
|
RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
|
|
or hw_access for an access watchpoint. Returns 0 on success and throws
|
|
an error on failure. */
|
|
|
|
static int
|
|
ppc_linux_remove_mask_watchpoint (struct target_ops *ops, CORE_ADDR addr,
|
|
CORE_ADDR mask, enum target_hw_bp_type rw)
|
|
{
|
|
struct lwp_info *lp;
|
|
struct ppc_hw_breakpoint p;
|
|
|
|
gdb_assert (have_ptrace_hwdebug_interface ());
|
|
|
|
p.version = PPC_DEBUG_CURRENT_VERSION;
|
|
p.trigger_type = get_trigger_type (rw);
|
|
p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
|
|
p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
|
|
p.addr = addr;
|
|
p.addr2 = mask;
|
|
p.condition_value = 0;
|
|
|
|
ALL_LWPS (lp)
|
|
hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Check whether we have at least one free DVC register. */
|
|
static int
|
|
can_use_watchpoint_cond_accel (void)
|
|
{
|
|
struct thread_points *p;
|
|
int tid = ptid_get_lwp (inferior_ptid);
|
|
int cnt = hwdebug_info.num_condition_regs, i;
|
|
CORE_ADDR tmp_value;
|
|
|
|
if (!have_ptrace_hwdebug_interface () || cnt == 0)
|
|
return 0;
|
|
|
|
p = hwdebug_find_thread_points_by_tid (tid, 0);
|
|
|
|
if (p)
|
|
{
|
|
for (i = 0; i < max_slots_number; i++)
|
|
if (p->hw_breaks[i].hw_break != NULL
|
|
&& (p->hw_breaks[i].hw_break->condition_mode
|
|
!= PPC_BREAKPOINT_CONDITION_NONE))
|
|
cnt--;
|
|
|
|
/* There are no available slots now. */
|
|
if (cnt <= 0)
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Calculate the enable bits and the contents of the Data Value Compare
|
|
debug register present in BookE processors.
|
|
|
|
ADDR is the address to be watched, LEN is the length of watched data
|
|
and DATA_VALUE is the value which will trigger the watchpoint.
|
|
On exit, CONDITION_MODE will hold the enable bits for the DVC, and
|
|
CONDITION_VALUE will hold the value which should be put in the
|
|
DVC register. */
|
|
static void
|
|
calculate_dvc (CORE_ADDR addr, int len, CORE_ADDR data_value,
|
|
uint32_t *condition_mode, uint64_t *condition_value)
|
|
{
|
|
int i, num_byte_enable, align_offset, num_bytes_off_dvc,
|
|
rightmost_enabled_byte;
|
|
CORE_ADDR addr_end_data, addr_end_dvc;
|
|
|
|
/* The DVC register compares bytes within fixed-length windows which
|
|
are word-aligned, with length equal to that of the DVC register.
|
|
We need to calculate where our watch region is relative to that
|
|
window and enable comparison of the bytes which fall within it. */
|
|
|
|
align_offset = addr % hwdebug_info.sizeof_condition;
|
|
addr_end_data = addr + len;
|
|
addr_end_dvc = (addr - align_offset
|
|
+ hwdebug_info.sizeof_condition);
|
|
num_bytes_off_dvc = (addr_end_data > addr_end_dvc)?
|
|
addr_end_data - addr_end_dvc : 0;
|
|
num_byte_enable = len - num_bytes_off_dvc;
|
|
/* Here, bytes are numbered from right to left. */
|
|
rightmost_enabled_byte = (addr_end_data < addr_end_dvc)?
|
|
addr_end_dvc - addr_end_data : 0;
|
|
|
|
*condition_mode = PPC_BREAKPOINT_CONDITION_AND;
|
|
for (i = 0; i < num_byte_enable; i++)
|
|
*condition_mode
|
|
|= PPC_BREAKPOINT_CONDITION_BE (i + rightmost_enabled_byte);
|
|
|
|
/* Now we need to match the position within the DVC of the comparison
|
|
value with where the watch region is relative to the window
|
|
(i.e., the ALIGN_OFFSET). */
|
|
|
|
*condition_value = ((uint64_t) data_value >> num_bytes_off_dvc * 8
|
|
<< rightmost_enabled_byte * 8);
|
|
}
|
|
|
|
/* Return the number of memory locations that need to be accessed to
|
|
evaluate the expression which generated the given value chain.
|
|
Returns -1 if there's any register access involved, or if there are
|
|
other kinds of values which are not acceptable in a condition
|
|
expression (e.g., lval_computed or lval_internalvar). */
|
|
static int
|
|
num_memory_accesses (struct value *v)
|
|
{
|
|
int found_memory_cnt = 0;
|
|
struct value *head = v;
|
|
|
|
/* The idea here is that evaluating an expression generates a series
|
|
of values, one holding the value of every subexpression. (The
|
|
expression a*b+c has five subexpressions: a, b, a*b, c, and
|
|
a*b+c.) GDB's values hold almost enough information to establish
|
|
the criteria given above --- they identify memory lvalues,
|
|
register lvalues, computed values, etcetera. So we can evaluate
|
|
the expression, and then scan the chain of values that leaves
|
|
behind to determine the memory locations involved in the evaluation
|
|
of an expression.
|
|
|
|
However, I don't think that the values returned by inferior
|
|
function calls are special in any way. So this function may not
|
|
notice that an expression contains an inferior function call.
|
|
FIXME. */
|
|
|
|
for (; v; v = value_next (v))
|
|
{
|
|
/* Constants and values from the history are fine. */
|
|
if (VALUE_LVAL (v) == not_lval || deprecated_value_modifiable (v) == 0)
|
|
continue;
|
|
else if (VALUE_LVAL (v) == lval_memory)
|
|
{
|
|
/* A lazy memory lvalue is one that GDB never needed to fetch;
|
|
we either just used its address (e.g., `a' in `a.b') or
|
|
we never needed it at all (e.g., `a' in `a,b'). */
|
|
if (!value_lazy (v))
|
|
found_memory_cnt++;
|
|
}
|
|
/* Other kinds of values are not fine. */
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
return found_memory_cnt;
|
|
}
|
|
|
|
/* Verifies whether the expression COND can be implemented using the
|
|
DVC (Data Value Compare) register in BookE processors. The expression
|
|
must test the watch value for equality with a constant expression.
|
|
If the function returns 1, DATA_VALUE will contain the constant against
|
|
which the watch value should be compared and LEN will contain the size
|
|
of the constant. */
|
|
static int
|
|
check_condition (CORE_ADDR watch_addr, struct expression *cond,
|
|
CORE_ADDR *data_value, int *len)
|
|
{
|
|
int pc = 1, num_accesses_left, num_accesses_right;
|
|
struct value *left_val, *right_val, *left_chain, *right_chain;
|
|
|
|
if (cond->elts[0].opcode != BINOP_EQUAL)
|
|
return 0;
|
|
|
|
fetch_subexp_value (cond, &pc, &left_val, NULL, &left_chain, 0);
|
|
num_accesses_left = num_memory_accesses (left_chain);
|
|
|
|
if (left_val == NULL || num_accesses_left < 0)
|
|
{
|
|
free_value_chain (left_chain);
|
|
|
|
return 0;
|
|
}
|
|
|
|
fetch_subexp_value (cond, &pc, &right_val, NULL, &right_chain, 0);
|
|
num_accesses_right = num_memory_accesses (right_chain);
|
|
|
|
if (right_val == NULL || num_accesses_right < 0)
|
|
{
|
|
free_value_chain (left_chain);
|
|
free_value_chain (right_chain);
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (num_accesses_left == 1 && num_accesses_right == 0
|
|
&& VALUE_LVAL (left_val) == lval_memory
|
|
&& value_address (left_val) == watch_addr)
|
|
{
|
|
*data_value = value_as_long (right_val);
|
|
|
|
/* DATA_VALUE is the constant in RIGHT_VAL, but actually has
|
|
the same type as the memory region referenced by LEFT_VAL. */
|
|
*len = TYPE_LENGTH (check_typedef (value_type (left_val)));
|
|
}
|
|
else if (num_accesses_left == 0 && num_accesses_right == 1
|
|
&& VALUE_LVAL (right_val) == lval_memory
|
|
&& value_address (right_val) == watch_addr)
|
|
{
|
|
*data_value = value_as_long (left_val);
|
|
|
|
/* DATA_VALUE is the constant in LEFT_VAL, but actually has
|
|
the same type as the memory region referenced by RIGHT_VAL. */
|
|
*len = TYPE_LENGTH (check_typedef (value_type (right_val)));
|
|
}
|
|
else
|
|
{
|
|
free_value_chain (left_chain);
|
|
free_value_chain (right_chain);
|
|
|
|
return 0;
|
|
}
|
|
|
|
free_value_chain (left_chain);
|
|
free_value_chain (right_chain);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Return non-zero if the target is capable of using hardware to evaluate
|
|
the condition expression, thus only triggering the watchpoint when it is
|
|
true. */
|
|
static int
|
|
ppc_linux_can_accel_watchpoint_condition (struct target_ops *self,
|
|
CORE_ADDR addr, int len, int rw,
|
|
struct expression *cond)
|
|
{
|
|
CORE_ADDR data_value;
|
|
|
|
return (have_ptrace_hwdebug_interface ()
|
|
&& hwdebug_info.num_condition_regs > 0
|
|
&& check_condition (addr, cond, &data_value, &len));
|
|
}
|
|
|
|
/* Set up P with the parameters necessary to request a watchpoint covering
|
|
LEN bytes starting at ADDR and if possible with condition expression COND
|
|
evaluated by hardware. INSERT tells if we are creating a request for
|
|
inserting or removing the watchpoint. */
|
|
|
|
static void
|
|
create_watchpoint_request (struct ppc_hw_breakpoint *p, CORE_ADDR addr,
|
|
int len, enum target_hw_bp_type type,
|
|
struct expression *cond, int insert)
|
|
{
|
|
if (len == 1
|
|
|| !(hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE))
|
|
{
|
|
int use_condition;
|
|
CORE_ADDR data_value;
|
|
|
|
use_condition = (insert? can_use_watchpoint_cond_accel ()
|
|
: hwdebug_info.num_condition_regs > 0);
|
|
if (cond && use_condition && check_condition (addr, cond,
|
|
&data_value, &len))
|
|
calculate_dvc (addr, len, data_value, &p->condition_mode,
|
|
&p->condition_value);
|
|
else
|
|
{
|
|
p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
|
|
p->condition_value = 0;
|
|
}
|
|
|
|
p->addr_mode = PPC_BREAKPOINT_MODE_EXACT;
|
|
p->addr2 = 0;
|
|
}
|
|
else
|
|
{
|
|
p->addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
|
|
p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
|
|
p->condition_value = 0;
|
|
|
|
/* The watchpoint will trigger if the address of the memory access is
|
|
within the defined range, as follows: p->addr <= address < p->addr2.
|
|
|
|
Note that the above sentence just documents how ptrace interprets
|
|
its arguments; the watchpoint is set to watch the range defined by
|
|
the user _inclusively_, as specified by the user interface. */
|
|
p->addr2 = (uint64_t) addr + len;
|
|
}
|
|
|
|
p->version = PPC_DEBUG_CURRENT_VERSION;
|
|
p->trigger_type = get_trigger_type (type);
|
|
p->addr = (uint64_t) addr;
|
|
}
|
|
|
|
static int
|
|
ppc_linux_insert_watchpoint (struct target_ops *self, CORE_ADDR addr, int len,
|
|
enum target_hw_bp_type type,
|
|
struct expression *cond)
|
|
{
|
|
struct lwp_info *lp;
|
|
int ret = -1;
|
|
|
|
if (have_ptrace_hwdebug_interface ())
|
|
{
|
|
struct ppc_hw_breakpoint p;
|
|
|
|
create_watchpoint_request (&p, addr, len, type, cond, 1);
|
|
|
|
ALL_LWPS (lp)
|
|
hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid));
|
|
|
|
ret = 0;
|
|
}
|
|
else
|
|
{
|
|
long dabr_value;
|
|
long read_mode, write_mode;
|
|
|
|
if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
|
|
{
|
|
/* PowerPC 440 requires only the read/write flags to be passed
|
|
to the kernel. */
|
|
read_mode = 1;
|
|
write_mode = 2;
|
|
}
|
|
else
|
|
{
|
|
/* PowerPC 970 and other DABR-based processors are required to pass
|
|
the Breakpoint Translation bit together with the flags. */
|
|
read_mode = 5;
|
|
write_mode = 6;
|
|
}
|
|
|
|
dabr_value = addr & ~(read_mode | write_mode);
|
|
switch (type)
|
|
{
|
|
case hw_read:
|
|
/* Set read and translate bits. */
|
|
dabr_value |= read_mode;
|
|
break;
|
|
case hw_write:
|
|
/* Set write and translate bits. */
|
|
dabr_value |= write_mode;
|
|
break;
|
|
case hw_access:
|
|
/* Set read, write and translate bits. */
|
|
dabr_value |= read_mode | write_mode;
|
|
break;
|
|
}
|
|
|
|
saved_dabr_value = dabr_value;
|
|
|
|
ALL_LWPS (lp)
|
|
if (ptrace (PTRACE_SET_DEBUGREG, ptid_get_lwp (lp->ptid), 0,
|
|
saved_dabr_value) < 0)
|
|
return -1;
|
|
|
|
ret = 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
ppc_linux_remove_watchpoint (struct target_ops *self, CORE_ADDR addr, int len,
|
|
enum target_hw_bp_type type,
|
|
struct expression *cond)
|
|
{
|
|
struct lwp_info *lp;
|
|
int ret = -1;
|
|
|
|
if (have_ptrace_hwdebug_interface ())
|
|
{
|
|
struct ppc_hw_breakpoint p;
|
|
|
|
create_watchpoint_request (&p, addr, len, type, cond, 0);
|
|
|
|
ALL_LWPS (lp)
|
|
hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid));
|
|
|
|
ret = 0;
|
|
}
|
|
else
|
|
{
|
|
saved_dabr_value = 0;
|
|
ALL_LWPS (lp)
|
|
if (ptrace (PTRACE_SET_DEBUGREG, ptid_get_lwp (lp->ptid), 0,
|
|
saved_dabr_value) < 0)
|
|
return -1;
|
|
|
|
ret = 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
ppc_linux_new_thread (struct lwp_info *lp)
|
|
{
|
|
int tid = ptid_get_lwp (lp->ptid);
|
|
|
|
if (have_ptrace_hwdebug_interface ())
|
|
{
|
|
int i;
|
|
struct thread_points *p;
|
|
struct hw_break_tuple *hw_breaks;
|
|
|
|
if (VEC_empty (thread_points_p, ppc_threads))
|
|
return;
|
|
|
|
/* Get a list of breakpoints from any thread. */
|
|
p = VEC_last (thread_points_p, ppc_threads);
|
|
hw_breaks = p->hw_breaks;
|
|
|
|
/* Copy that thread's breakpoints and watchpoints to the new thread. */
|
|
for (i = 0; i < max_slots_number; i++)
|
|
if (hw_breaks[i].hw_break)
|
|
{
|
|
/* Older kernels did not make new threads inherit their parent
|
|
thread's debug state, so we always clear the slot and replicate
|
|
the debug state ourselves, ensuring compatibility with all
|
|
kernels. */
|
|
|
|
/* The ppc debug resource accounting is done through "slots".
|
|
Ask the kernel the deallocate this specific *point's slot. */
|
|
ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot);
|
|
|
|
hwdebug_insert_point (hw_breaks[i].hw_break, tid);
|
|
}
|
|
}
|
|
else
|
|
ptrace (PTRACE_SET_DEBUGREG, tid, 0, saved_dabr_value);
|
|
}
|
|
|
|
static void
|
|
ppc_linux_thread_exit (struct thread_info *tp, int silent)
|
|
{
|
|
int i;
|
|
int tid = ptid_get_lwp (tp->ptid);
|
|
struct hw_break_tuple *hw_breaks;
|
|
struct thread_points *t = NULL, *p;
|
|
|
|
if (!have_ptrace_hwdebug_interface ())
|
|
return;
|
|
|
|
for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, p); i++)
|
|
if (p->tid == tid)
|
|
{
|
|
t = p;
|
|
break;
|
|
}
|
|
|
|
if (t == NULL)
|
|
return;
|
|
|
|
VEC_unordered_remove (thread_points_p, ppc_threads, i);
|
|
|
|
hw_breaks = t->hw_breaks;
|
|
|
|
for (i = 0; i < max_slots_number; i++)
|
|
if (hw_breaks[i].hw_break)
|
|
xfree (hw_breaks[i].hw_break);
|
|
|
|
xfree (t->hw_breaks);
|
|
xfree (t);
|
|
}
|
|
|
|
static int
|
|
ppc_linux_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
|
|
{
|
|
siginfo_t siginfo;
|
|
|
|
if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
|
|
return 0;
|
|
|
|
if (siginfo.si_signo != SIGTRAP
|
|
|| (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
|
|
return 0;
|
|
|
|
if (have_ptrace_hwdebug_interface ())
|
|
{
|
|
int i;
|
|
struct thread_points *t;
|
|
struct hw_break_tuple *hw_breaks;
|
|
/* The index (or slot) of the *point is passed in the si_errno field. */
|
|
int slot = siginfo.si_errno;
|
|
|
|
t = hwdebug_find_thread_points_by_tid (ptid_get_lwp (inferior_ptid), 0);
|
|
|
|
/* Find out if this *point is a hardware breakpoint.
|
|
If so, we should return 0. */
|
|
if (t)
|
|
{
|
|
hw_breaks = t->hw_breaks;
|
|
for (i = 0; i < max_slots_number; i++)
|
|
if (hw_breaks[i].hw_break && hw_breaks[i].slot == slot
|
|
&& hw_breaks[i].hw_break->trigger_type
|
|
== PPC_BREAKPOINT_TRIGGER_EXECUTE)
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
*addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr;
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
ppc_linux_stopped_by_watchpoint (struct target_ops *ops)
|
|
{
|
|
CORE_ADDR addr;
|
|
return ppc_linux_stopped_data_address (ops, &addr);
|
|
}
|
|
|
|
static int
|
|
ppc_linux_watchpoint_addr_within_range (struct target_ops *target,
|
|
CORE_ADDR addr,
|
|
CORE_ADDR start, int length)
|
|
{
|
|
int mask;
|
|
|
|
if (have_ptrace_hwdebug_interface ()
|
|
&& ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
|
|
return start <= addr && start + length >= addr;
|
|
else if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
|
|
mask = 3;
|
|
else
|
|
mask = 7;
|
|
|
|
addr &= ~mask;
|
|
|
|
/* Check whether [start, start+length-1] intersects [addr, addr+mask]. */
|
|
return start <= addr + mask && start + length - 1 >= addr;
|
|
}
|
|
|
|
/* Return the number of registers needed for a masked hardware watchpoint. */
|
|
|
|
static int
|
|
ppc_linux_masked_watch_num_registers (struct target_ops *target,
|
|
CORE_ADDR addr, CORE_ADDR mask)
|
|
{
|
|
if (!have_ptrace_hwdebug_interface ()
|
|
|| (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_MASK) == 0)
|
|
return -1;
|
|
else if ((mask & 0xC0000000) != 0xC0000000)
|
|
{
|
|
warning (_("The given mask covers kernel address space "
|
|
"and cannot be used.\n"));
|
|
|
|
return -2;
|
|
}
|
|
else
|
|
return 2;
|
|
}
|
|
|
|
static void
|
|
ppc_linux_store_inferior_registers (struct target_ops *ops,
|
|
struct regcache *regcache, int regno)
|
|
{
|
|
/* Overload thread id onto process id. */
|
|
int tid = ptid_get_lwp (inferior_ptid);
|
|
|
|
/* No thread id, just use process id. */
|
|
if (tid == 0)
|
|
tid = ptid_get_pid (inferior_ptid);
|
|
|
|
if (regno >= 0)
|
|
store_register (regcache, tid, regno);
|
|
else
|
|
store_ppc_registers (regcache, tid);
|
|
}
|
|
|
|
/* Functions for transferring registers between a gregset_t or fpregset_t
|
|
(see sys/ucontext.h) and gdb's regcache. The word size is that used
|
|
by the ptrace interface, not the current program's ABI. Eg. if a
|
|
powerpc64-linux gdb is being used to debug a powerpc32-linux app, we
|
|
read or write 64-bit gregsets. This is to suit the host libthread_db. */
|
|
|
|
void
|
|
supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
|
|
{
|
|
const struct regset *regset = ppc_linux_gregset (sizeof (long));
|
|
|
|
ppc_supply_gregset (regset, regcache, -1, gregsetp, sizeof (*gregsetp));
|
|
}
|
|
|
|
void
|
|
fill_gregset (const struct regcache *regcache,
|
|
gdb_gregset_t *gregsetp, int regno)
|
|
{
|
|
const struct regset *regset = ppc_linux_gregset (sizeof (long));
|
|
|
|
if (regno == -1)
|
|
memset (gregsetp, 0, sizeof (*gregsetp));
|
|
ppc_collect_gregset (regset, regcache, regno, gregsetp, sizeof (*gregsetp));
|
|
}
|
|
|
|
void
|
|
supply_fpregset (struct regcache *regcache, const gdb_fpregset_t * fpregsetp)
|
|
{
|
|
const struct regset *regset = ppc_linux_fpregset ();
|
|
|
|
ppc_supply_fpregset (regset, regcache, -1,
|
|
fpregsetp, sizeof (*fpregsetp));
|
|
}
|
|
|
|
void
|
|
fill_fpregset (const struct regcache *regcache,
|
|
gdb_fpregset_t *fpregsetp, int regno)
|
|
{
|
|
const struct regset *regset = ppc_linux_fpregset ();
|
|
|
|
ppc_collect_fpregset (regset, regcache, regno,
|
|
fpregsetp, sizeof (*fpregsetp));
|
|
}
|
|
|
|
static int
|
|
ppc_linux_target_wordsize (void)
|
|
{
|
|
int wordsize = 4;
|
|
|
|
/* Check for 64-bit inferior process. This is the case when the host is
|
|
64-bit, and in addition the top bit of the MSR register is set. */
|
|
#ifdef __powerpc64__
|
|
long msr;
|
|
|
|
int tid = ptid_get_lwp (inferior_ptid);
|
|
if (tid == 0)
|
|
tid = ptid_get_pid (inferior_ptid);
|
|
|
|
errno = 0;
|
|
msr = (long) ptrace (PTRACE_PEEKUSER, tid, PT_MSR * 8, 0);
|
|
if (errno == 0 && ppc64_64bit_inferior_p (msr))
|
|
wordsize = 8;
|
|
#endif
|
|
|
|
return wordsize;
|
|
}
|
|
|
|
static int
|
|
ppc_linux_auxv_parse (struct target_ops *ops, gdb_byte **readptr,
|
|
gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
|
|
{
|
|
int sizeof_auxv_field = ppc_linux_target_wordsize ();
|
|
enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
|
|
gdb_byte *ptr = *readptr;
|
|
|
|
if (endptr == ptr)
|
|
return 0;
|
|
|
|
if (endptr - ptr < sizeof_auxv_field * 2)
|
|
return -1;
|
|
|
|
*typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
|
|
ptr += sizeof_auxv_field;
|
|
*valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
|
|
ptr += sizeof_auxv_field;
|
|
|
|
*readptr = ptr;
|
|
return 1;
|
|
}
|
|
|
|
static const struct target_desc *
|
|
ppc_linux_read_description (struct target_ops *ops)
|
|
{
|
|
int altivec = 0;
|
|
int vsx = 0;
|
|
int isa205 = 0;
|
|
int cell = 0;
|
|
|
|
int tid = ptid_get_lwp (inferior_ptid);
|
|
if (tid == 0)
|
|
tid = ptid_get_pid (inferior_ptid);
|
|
|
|
if (have_ptrace_getsetevrregs)
|
|
{
|
|
struct gdb_evrregset_t evrregset;
|
|
|
|
if (ptrace (PTRACE_GETEVRREGS, tid, 0, &evrregset) >= 0)
|
|
return tdesc_powerpc_e500l;
|
|
|
|
/* EIO means that the PTRACE_GETEVRREGS request isn't supported.
|
|
Anything else needs to be reported. */
|
|
else if (errno != EIO)
|
|
perror_with_name (_("Unable to fetch SPE registers"));
|
|
}
|
|
|
|
if (have_ptrace_getsetvsxregs
|
|
&& (ppc_linux_get_hwcap () & PPC_FEATURE_HAS_VSX))
|
|
{
|
|
gdb_vsxregset_t vsxregset;
|
|
|
|
if (ptrace (PTRACE_GETVSXREGS, tid, 0, &vsxregset) >= 0)
|
|
vsx = 1;
|
|
|
|
/* EIO means that the PTRACE_GETVSXREGS request isn't supported.
|
|
Anything else needs to be reported. */
|
|
else if (errno != EIO)
|
|
perror_with_name (_("Unable to fetch VSX registers"));
|
|
}
|
|
|
|
if (have_ptrace_getvrregs
|
|
&& (ppc_linux_get_hwcap () & PPC_FEATURE_HAS_ALTIVEC))
|
|
{
|
|
gdb_vrregset_t vrregset;
|
|
|
|
if (ptrace (PTRACE_GETVRREGS, tid, 0, &vrregset) >= 0)
|
|
altivec = 1;
|
|
|
|
/* EIO means that the PTRACE_GETVRREGS request isn't supported.
|
|
Anything else needs to be reported. */
|
|
else if (errno != EIO)
|
|
perror_with_name (_("Unable to fetch AltiVec registers"));
|
|
}
|
|
|
|
/* Power ISA 2.05 (implemented by Power 6 and newer processors) increases
|
|
the FPSCR from 32 bits to 64 bits. Even though Power 7 supports this
|
|
ISA version, it doesn't have PPC_FEATURE_ARCH_2_05 set, only
|
|
PPC_FEATURE_ARCH_2_06. Since for now the only bits used in the higher
|
|
half of the register are for Decimal Floating Point, we check if that
|
|
feature is available to decide the size of the FPSCR. */
|
|
if (ppc_linux_get_hwcap () & PPC_FEATURE_HAS_DFP)
|
|
isa205 = 1;
|
|
|
|
if (ppc_linux_get_hwcap () & PPC_FEATURE_CELL)
|
|
cell = 1;
|
|
|
|
if (ppc_linux_target_wordsize () == 8)
|
|
{
|
|
if (cell)
|
|
return tdesc_powerpc_cell64l;
|
|
else if (vsx)
|
|
return isa205? tdesc_powerpc_isa205_vsx64l : tdesc_powerpc_vsx64l;
|
|
else if (altivec)
|
|
return isa205
|
|
? tdesc_powerpc_isa205_altivec64l : tdesc_powerpc_altivec64l;
|
|
|
|
return isa205? tdesc_powerpc_isa205_64l : tdesc_powerpc_64l;
|
|
}
|
|
|
|
if (cell)
|
|
return tdesc_powerpc_cell32l;
|
|
else if (vsx)
|
|
return isa205? tdesc_powerpc_isa205_vsx32l : tdesc_powerpc_vsx32l;
|
|
else if (altivec)
|
|
return isa205? tdesc_powerpc_isa205_altivec32l : tdesc_powerpc_altivec32l;
|
|
|
|
return isa205? tdesc_powerpc_isa205_32l : tdesc_powerpc_32l;
|
|
}
|
|
|
|
void _initialize_ppc_linux_nat (void);
|
|
|
|
void
|
|
_initialize_ppc_linux_nat (void)
|
|
{
|
|
struct target_ops *t;
|
|
|
|
/* Fill in the generic GNU/Linux methods. */
|
|
t = linux_target ();
|
|
|
|
/* Add our register access methods. */
|
|
t->to_fetch_registers = ppc_linux_fetch_inferior_registers;
|
|
t->to_store_registers = ppc_linux_store_inferior_registers;
|
|
|
|
/* Add our breakpoint/watchpoint methods. */
|
|
t->to_can_use_hw_breakpoint = ppc_linux_can_use_hw_breakpoint;
|
|
t->to_insert_hw_breakpoint = ppc_linux_insert_hw_breakpoint;
|
|
t->to_remove_hw_breakpoint = ppc_linux_remove_hw_breakpoint;
|
|
t->to_region_ok_for_hw_watchpoint = ppc_linux_region_ok_for_hw_watchpoint;
|
|
t->to_insert_watchpoint = ppc_linux_insert_watchpoint;
|
|
t->to_remove_watchpoint = ppc_linux_remove_watchpoint;
|
|
t->to_insert_mask_watchpoint = ppc_linux_insert_mask_watchpoint;
|
|
t->to_remove_mask_watchpoint = ppc_linux_remove_mask_watchpoint;
|
|
t->to_stopped_by_watchpoint = ppc_linux_stopped_by_watchpoint;
|
|
t->to_stopped_data_address = ppc_linux_stopped_data_address;
|
|
t->to_watchpoint_addr_within_range = ppc_linux_watchpoint_addr_within_range;
|
|
t->to_can_accel_watchpoint_condition
|
|
= ppc_linux_can_accel_watchpoint_condition;
|
|
t->to_masked_watch_num_registers = ppc_linux_masked_watch_num_registers;
|
|
t->to_ranged_break_num_registers = ppc_linux_ranged_break_num_registers;
|
|
|
|
t->to_read_description = ppc_linux_read_description;
|
|
t->to_auxv_parse = ppc_linux_auxv_parse;
|
|
|
|
observer_attach_thread_exit (ppc_linux_thread_exit);
|
|
|
|
/* Register the target. */
|
|
linux_nat_add_target (t);
|
|
linux_nat_set_new_thread (t, ppc_linux_new_thread);
|
|
}
|