mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-06 12:09:26 +08:00
bd9466d4aa
Signed-off-by: Ulf Samuelsson <ulf@emagii.com>
9775 lines
266 KiB
C
9775 lines
266 KiB
C
/* Linker command language support.
|
||
Copyright (C) 1991-2023 Free Software Foundation, Inc.
|
||
|
||
This file is part of the GNU Binutils.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
|
||
MA 02110-1301, USA. */
|
||
|
||
#include "sysdep.h"
|
||
#include <limits.h>
|
||
#include <time.h>
|
||
#include "bfd.h"
|
||
#include "libiberty.h"
|
||
#include "filenames.h"
|
||
#include "safe-ctype.h"
|
||
#include "obstack.h"
|
||
#include "bfdlink.h"
|
||
#include "ctf-api.h"
|
||
|
||
#include "ld.h"
|
||
#include "ldmain.h"
|
||
#include "ldexp.h"
|
||
#include "ldlang.h"
|
||
#include <ldgram.h>
|
||
#include "ldlex.h"
|
||
#include "ldmisc.h"
|
||
#include "ldctor.h"
|
||
#include "ldfile.h"
|
||
#include "ldemul.h"
|
||
#include "fnmatch.h"
|
||
#include "demangle.h"
|
||
#include "hashtab.h"
|
||
#include "elf-bfd.h"
|
||
#if BFD_SUPPORTS_PLUGINS
|
||
#include "plugin.h"
|
||
#endif /* BFD_SUPPORTS_PLUGINS */
|
||
|
||
#ifndef offsetof
|
||
#define offsetof(TYPE, MEMBER) ((size_t) & (((TYPE*) 0)->MEMBER))
|
||
#endif
|
||
|
||
/* Convert between addresses in bytes and sizes in octets.
|
||
For currently supported targets, octets_per_byte is always a power
|
||
of two, so we can use shifts. */
|
||
#define TO_ADDR(X) ((X) >> opb_shift)
|
||
#define TO_SIZE(X) ((X) << opb_shift)
|
||
|
||
/* Local variables. */
|
||
static struct obstack stat_obstack;
|
||
static struct obstack map_obstack;
|
||
static struct obstack pt_obstack;
|
||
|
||
#define obstack_chunk_alloc xmalloc
|
||
#define obstack_chunk_free free
|
||
static const char *entry_symbol_default = "start";
|
||
static bool map_head_is_link_order = false;
|
||
static lang_output_section_statement_type *default_common_section;
|
||
static bool map_option_f;
|
||
static bfd_vma print_dot;
|
||
static lang_input_statement_type *first_file;
|
||
static const char *current_target;
|
||
static lang_statement_list_type *stat_save[10];
|
||
static lang_statement_list_type **stat_save_ptr = &stat_save[0];
|
||
static struct unique_sections *unique_section_list;
|
||
static struct asneeded_minfo *asneeded_list_head;
|
||
static unsigned int opb_shift = 0;
|
||
|
||
/* Forward declarations. */
|
||
static void exp_init_os (etree_type *);
|
||
static lang_input_statement_type *lookup_name (const char *);
|
||
static void insert_undefined (const char *);
|
||
static bool sort_def_symbol (struct bfd_link_hash_entry *, void *);
|
||
static lang_statement_union_type *new_statement (enum statement_enum type,
|
||
size_t size,
|
||
lang_statement_list_type *list);
|
||
static void print_statement (lang_statement_union_type *,
|
||
lang_output_section_statement_type *);
|
||
static void print_statement_list (lang_statement_union_type *,
|
||
lang_output_section_statement_type *);
|
||
static void print_statements (void);
|
||
static void print_input_section (asection *, bool);
|
||
static bool lang_one_common (struct bfd_link_hash_entry *, void *);
|
||
static void lang_record_phdrs (void);
|
||
static void lang_do_version_exports_section (void);
|
||
static void lang_finalize_version_expr_head
|
||
(struct bfd_elf_version_expr_head *);
|
||
static void lang_do_memory_regions (bool);
|
||
|
||
/* Exported variables. */
|
||
const char *output_target;
|
||
lang_output_section_statement_type *abs_output_section;
|
||
/* Header for list of statements corresponding to any files involved in the
|
||
link, either specified from the command-line or added implicitely (eg.
|
||
archive member used to resolved undefined symbol, wildcard statement from
|
||
linker script, etc.). Next pointer is in next field of a
|
||
lang_statement_header_type (reached via header field in a
|
||
lang_statement_union). */
|
||
lang_statement_list_type statement_list;
|
||
lang_statement_list_type lang_os_list;
|
||
lang_statement_list_type *stat_ptr = &statement_list;
|
||
/* Header for list of statements corresponding to files used in the final
|
||
executable. This can be either object file specified on the command-line
|
||
or library member resolving an undefined reference. Next pointer is in next
|
||
field of a lang_input_statement_type (reached via input_statement field in a
|
||
lang_statement_union). */
|
||
lang_statement_list_type file_chain = { NULL, NULL };
|
||
/* Header for list of statements corresponding to files specified on the
|
||
command-line for linking. It thus contains real object files and archive
|
||
but not archive members. Next pointer is in next_real_file field of a
|
||
lang_input_statement_type statement (reached via input_statement field in a
|
||
lang_statement_union). */
|
||
lang_statement_list_type input_file_chain;
|
||
static const char *current_input_file;
|
||
struct bfd_elf_dynamic_list **current_dynamic_list_p;
|
||
struct bfd_sym_chain entry_symbol = { NULL, NULL };
|
||
const char *entry_section = ".text";
|
||
struct lang_input_statement_flags input_flags;
|
||
bool entry_from_cmdline;
|
||
bool lang_has_input_file = false;
|
||
bool had_output_filename = false;
|
||
bool lang_float_flag = false;
|
||
bool delete_output_file_on_failure = false;
|
||
struct lang_phdr *lang_phdr_list;
|
||
struct lang_nocrossrefs *nocrossref_list;
|
||
struct asneeded_minfo **asneeded_list_tail;
|
||
#ifdef ENABLE_LIBCTF
|
||
static ctf_dict_t *ctf_output;
|
||
#endif
|
||
|
||
/* Functions that traverse the linker script and might evaluate
|
||
DEFINED() need to increment this at the start of the traversal. */
|
||
int lang_statement_iteration = 0;
|
||
|
||
/* Count times through one_lang_size_sections_pass after mark phase. */
|
||
static int lang_sizing_iteration = 0;
|
||
|
||
/* Return TRUE if the PATTERN argument is a wildcard pattern.
|
||
Although backslashes are treated specially if a pattern contains
|
||
wildcards, we do not consider the mere presence of a backslash to
|
||
be enough to cause the pattern to be treated as a wildcard.
|
||
That lets us handle DOS filenames more naturally. */
|
||
#define wildcardp(pattern) (strpbrk ((pattern), "?*[") != NULL)
|
||
|
||
#define new_stat(x, y) \
|
||
(x##_type *) new_statement (x##_enum, sizeof (x##_type), y)
|
||
|
||
#define outside_section_address(q) \
|
||
((q)->output_offset + (q)->output_section->vma)
|
||
|
||
#define outside_symbol_address(q) \
|
||
((q)->value + outside_section_address (q->section))
|
||
|
||
/* CTF sections smaller than this are not compressed: compression of
|
||
dictionaries this small doesn't gain much, and this lets consumers mmap the
|
||
sections directly out of the ELF file and use them with no decompression
|
||
overhead if they want to. */
|
||
#define CTF_COMPRESSION_THRESHOLD 4096
|
||
|
||
void *
|
||
stat_alloc (size_t size)
|
||
{
|
||
return obstack_alloc (&stat_obstack, size);
|
||
}
|
||
|
||
/* Code for handling simple wildcards without going through fnmatch,
|
||
which can be expensive because of charset translations etc. */
|
||
|
||
/* A simple wild is a literal string followed by a single '*',
|
||
where the literal part is at least 4 characters long. */
|
||
|
||
static bool
|
||
is_simple_wild (const char *name)
|
||
{
|
||
size_t len = strcspn (name, "*?[");
|
||
return len >= 4 && name[len] == '*' && name[len + 1] == '\0';
|
||
}
|
||
|
||
static bool
|
||
match_simple_wild (const char *pattern, const char *name)
|
||
{
|
||
/* The first four characters of the pattern are guaranteed valid
|
||
non-wildcard characters. So we can go faster. */
|
||
if (pattern[0] != name[0] || pattern[1] != name[1]
|
||
|| pattern[2] != name[2] || pattern[3] != name[3])
|
||
return false;
|
||
|
||
pattern += 4;
|
||
name += 4;
|
||
while (*pattern != '*')
|
||
if (*name++ != *pattern++)
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
static int
|
||
name_match (const char *pattern, const char *name)
|
||
{
|
||
if (is_simple_wild (pattern))
|
||
return !match_simple_wild (pattern, name);
|
||
if (wildcardp (pattern))
|
||
return fnmatch (pattern, name, 0);
|
||
return strcmp (pattern, name);
|
||
}
|
||
|
||
/* Given an analyzed wildcard_spec SPEC, match it against NAME,
|
||
returns zero on a match, non-zero if there's no match. */
|
||
|
||
static int
|
||
spec_match (const struct wildcard_spec *spec, const char *name)
|
||
{
|
||
size_t nl = spec->namelen;
|
||
size_t pl = spec->prefixlen;
|
||
size_t sl = spec->suffixlen;
|
||
size_t inputlen = strlen (name);
|
||
int r;
|
||
|
||
if (pl)
|
||
{
|
||
if (inputlen < pl)
|
||
return 1;
|
||
|
||
r = memcmp (spec->name, name, pl);
|
||
if (r)
|
||
return r;
|
||
}
|
||
|
||
if (sl)
|
||
{
|
||
if (inputlen < sl)
|
||
return 1;
|
||
|
||
r = memcmp (spec->name + nl - sl, name + inputlen - sl, sl);
|
||
if (r)
|
||
return r;
|
||
}
|
||
|
||
if (nl == pl + sl + 1 && spec->name[pl] == '*')
|
||
return 0;
|
||
|
||
if (nl > pl)
|
||
return fnmatch (spec->name + pl, name + pl, 0);
|
||
|
||
if (inputlen >= nl)
|
||
return name[nl];
|
||
|
||
return 0;
|
||
}
|
||
|
||
static char *
|
||
ldirname (const char *name)
|
||
{
|
||
const char *base = lbasename (name);
|
||
char *dirname;
|
||
|
||
while (base > name && IS_DIR_SEPARATOR (base[-1]))
|
||
--base;
|
||
if (base == name)
|
||
return strdup (".");
|
||
dirname = strdup (name);
|
||
dirname[base - name] = '\0';
|
||
return dirname;
|
||
}
|
||
|
||
/* If PATTERN is of the form archive:file, return a pointer to the
|
||
separator. If not, return NULL. */
|
||
|
||
static char *
|
||
archive_path (const char *pattern)
|
||
{
|
||
char *p = NULL;
|
||
|
||
if (link_info.path_separator == 0)
|
||
return p;
|
||
|
||
p = strchr (pattern, link_info.path_separator);
|
||
#ifdef HAVE_DOS_BASED_FILE_SYSTEM
|
||
if (p == NULL || link_info.path_separator != ':')
|
||
return p;
|
||
|
||
/* Assume a match on the second char is part of drive specifier,
|
||
as in "c:\silly.dos". */
|
||
if (p == pattern + 1 && ISALPHA (*pattern))
|
||
p = strchr (p + 1, link_info.path_separator);
|
||
#endif
|
||
return p;
|
||
}
|
||
|
||
/* Given that FILE_SPEC results in a non-NULL SEP result from archive_path,
|
||
return whether F matches FILE_SPEC. */
|
||
|
||
static bool
|
||
input_statement_is_archive_path (const char *file_spec, char *sep,
|
||
lang_input_statement_type *f)
|
||
{
|
||
bool match = false;
|
||
|
||
if ((*(sep + 1) == 0
|
||
|| name_match (sep + 1, f->filename) == 0)
|
||
&& ((sep != file_spec)
|
||
== (f->the_bfd != NULL && f->the_bfd->my_archive != NULL)))
|
||
{
|
||
match = true;
|
||
|
||
if (sep != file_spec)
|
||
{
|
||
const char *aname = bfd_get_filename (f->the_bfd->my_archive);
|
||
*sep = 0;
|
||
match = name_match (file_spec, aname) == 0;
|
||
*sep = link_info.path_separator;
|
||
}
|
||
}
|
||
return match;
|
||
}
|
||
|
||
static bool
|
||
unique_section_p (const asection *sec,
|
||
const lang_output_section_statement_type *os)
|
||
{
|
||
struct unique_sections *unam;
|
||
const char *secnam;
|
||
|
||
if (!link_info.resolve_section_groups
|
||
&& sec->owner != NULL
|
||
&& bfd_is_group_section (sec->owner, sec))
|
||
return !(os != NULL
|
||
&& strcmp (os->name, DISCARD_SECTION_NAME) == 0);
|
||
|
||
secnam = sec->name;
|
||
for (unam = unique_section_list; unam; unam = unam->next)
|
||
if (name_match (unam->name, secnam) == 0)
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Generic traversal routines for finding matching sections. */
|
||
|
||
/* Return true if FILE matches a pattern in EXCLUDE_LIST, otherwise return
|
||
false. */
|
||
|
||
static bool
|
||
walk_wild_file_in_exclude_list (struct name_list *exclude_list,
|
||
lang_input_statement_type *file)
|
||
{
|
||
struct name_list *list_tmp;
|
||
|
||
for (list_tmp = exclude_list;
|
||
list_tmp;
|
||
list_tmp = list_tmp->next)
|
||
{
|
||
char *p = archive_path (list_tmp->name);
|
||
|
||
if (p != NULL)
|
||
{
|
||
if (input_statement_is_archive_path (list_tmp->name, p, file))
|
||
return true;
|
||
}
|
||
|
||
else if (name_match (list_tmp->name, file->filename) == 0)
|
||
return true;
|
||
|
||
/* FIXME: Perhaps remove the following at some stage? Matching
|
||
unadorned archives like this was never documented and has
|
||
been superceded by the archive:path syntax. */
|
||
else if (file->the_bfd != NULL
|
||
&& file->the_bfd->my_archive != NULL
|
||
&& name_match (list_tmp->name,
|
||
bfd_get_filename (file->the_bfd->my_archive)) == 0)
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Add SECTION (from input FILE) to the list of matching sections
|
||
within PTR (the matching wildcard is SEC). */
|
||
|
||
static void
|
||
add_matching_section (lang_wild_statement_type *ptr,
|
||
struct wildcard_list *sec,
|
||
asection *section,
|
||
lang_input_statement_type *file)
|
||
{
|
||
lang_input_matcher_type *new_section;
|
||
/* Add a section reference to the list. */
|
||
new_section = new_stat (lang_input_matcher, &ptr->matching_sections);
|
||
new_section->section = section;
|
||
new_section->pattern = sec;
|
||
new_section->input_stmt = file;
|
||
}
|
||
|
||
/* Process section S (from input file FILE) in relation to wildcard
|
||
statement PTR. We already know that a prefix of the name of S matches
|
||
some wildcard in PTR's wildcard list. Here we check if the filename
|
||
matches as well (if it's specified) and if any of the wildcards in fact
|
||
does match. */
|
||
|
||
static void
|
||
walk_wild_section_match (lang_wild_statement_type *ptr,
|
||
lang_input_statement_type *file,
|
||
asection *s)
|
||
{
|
||
struct wildcard_list *sec;
|
||
const char *file_spec = ptr->filename;
|
||
char *p;
|
||
|
||
/* Check if filenames match. */
|
||
if (file_spec == NULL)
|
||
;
|
||
else if ((p = archive_path (file_spec)) != NULL)
|
||
{
|
||
if (!input_statement_is_archive_path (file_spec, p, file))
|
||
return;
|
||
}
|
||
else if (wildcardp (file_spec))
|
||
{
|
||
if (fnmatch (file_spec, file->filename, 0) != 0)
|
||
return;
|
||
}
|
||
else
|
||
{
|
||
lang_input_statement_type *f;
|
||
/* Perform the iteration over a single file. */
|
||
f = lookup_name (file_spec);
|
||
if (f != file)
|
||
return;
|
||
}
|
||
|
||
/* If filename is excluded we're done. */
|
||
if (walk_wild_file_in_exclude_list (ptr->exclude_name_list, file))
|
||
return;
|
||
|
||
/* Check section name against each wildcard spec. If there's no
|
||
wildcard all sections match. */
|
||
sec = ptr->section_list;
|
||
if (sec == NULL)
|
||
add_matching_section (ptr, sec, s, file);
|
||
else
|
||
{
|
||
const char *sname = bfd_section_name (s);
|
||
for (; sec != NULL; sec = sec->next)
|
||
{
|
||
if (sec->spec.name != NULL
|
||
&& spec_match (&sec->spec, sname) != 0)
|
||
continue;
|
||
|
||
/* Don't process sections from files which were excluded. */
|
||
if (!walk_wild_file_in_exclude_list (sec->spec.exclude_name_list,
|
||
file))
|
||
add_matching_section (ptr, sec, s, file);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Return the numerical value of the init_priority attribute from
|
||
section name NAME. */
|
||
|
||
static int
|
||
get_init_priority (const asection *sec)
|
||
{
|
||
const char *name = bfd_section_name (sec);
|
||
const char *dot;
|
||
|
||
/* GCC uses the following section names for the init_priority
|
||
attribute with numerical values 101 to 65535 inclusive. A
|
||
lower value means a higher priority.
|
||
|
||
1: .init_array.NNNNN/.fini_array.NNNNN: Where NNNNN is the
|
||
decimal numerical value of the init_priority attribute.
|
||
The order of execution in .init_array is forward and
|
||
.fini_array is backward.
|
||
2: .ctors.NNNNN/.dtors.NNNNN: Where NNNNN is 65535 minus the
|
||
decimal numerical value of the init_priority attribute.
|
||
The order of execution in .ctors is backward and .dtors
|
||
is forward.
|
||
|
||
.init_array.NNNNN sections would normally be placed in an output
|
||
.init_array section, .fini_array.NNNNN in .fini_array,
|
||
.ctors.NNNNN in .ctors, and .dtors.NNNNN in .dtors. This means
|
||
we should sort by increasing number (and could just use
|
||
SORT_BY_NAME in scripts). However if .ctors.NNNNN sections are
|
||
being placed in .init_array (which may also contain
|
||
.init_array.NNNNN sections) or .dtors.NNNNN sections are being
|
||
placed in .fini_array then we need to extract the init_priority
|
||
attribute and sort on that. */
|
||
dot = strrchr (name, '.');
|
||
if (dot != NULL && ISDIGIT (dot[1]))
|
||
{
|
||
char *end;
|
||
unsigned long init_priority = strtoul (dot + 1, &end, 10);
|
||
if (*end == 0)
|
||
{
|
||
if (dot == name + 6
|
||
&& (strncmp (name, ".ctors", 6) == 0
|
||
|| strncmp (name, ".dtors", 6) == 0))
|
||
init_priority = 65535 - init_priority;
|
||
if (init_priority <= INT_MAX)
|
||
return init_priority;
|
||
}
|
||
}
|
||
return -1;
|
||
}
|
||
|
||
/* Compare sections ASEC and BSEC according to SORT. */
|
||
|
||
static int
|
||
compare_section (sort_type sort, asection *asec, asection *bsec)
|
||
{
|
||
int ret;
|
||
int a_priority, b_priority;
|
||
|
||
switch (sort)
|
||
{
|
||
default:
|
||
abort ();
|
||
|
||
case by_init_priority:
|
||
a_priority = get_init_priority (asec);
|
||
b_priority = get_init_priority (bsec);
|
||
if (a_priority < 0 || b_priority < 0)
|
||
goto sort_by_name;
|
||
ret = a_priority - b_priority;
|
||
if (ret)
|
||
break;
|
||
else
|
||
goto sort_by_name;
|
||
|
||
case by_alignment_name:
|
||
ret = bfd_section_alignment (bsec) - bfd_section_alignment (asec);
|
||
if (ret)
|
||
break;
|
||
/* Fall through. */
|
||
|
||
case by_name:
|
||
sort_by_name:
|
||
ret = strcmp (bfd_section_name (asec), bfd_section_name (bsec));
|
||
break;
|
||
|
||
case by_name_alignment:
|
||
ret = strcmp (bfd_section_name (asec), bfd_section_name (bsec));
|
||
if (ret)
|
||
break;
|
||
/* Fall through. */
|
||
|
||
case by_alignment:
|
||
ret = bfd_section_alignment (bsec) - bfd_section_alignment (asec);
|
||
break;
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* PE puts the sort key in the input statement. */
|
||
|
||
static const char *
|
||
sort_filename (bfd *abfd)
|
||
{
|
||
lang_input_statement_type *is = bfd_usrdata (abfd);
|
||
if (is->sort_key)
|
||
return is->sort_key;
|
||
return bfd_get_filename (abfd);
|
||
}
|
||
|
||
/* Handle wildcard sorting. This returns the place in a binary search tree
|
||
where this FILE:SECTION should be inserted for wild statement WILD where
|
||
the spec SEC was the matching one. The tree is later linearized. */
|
||
|
||
static lang_section_bst_type **
|
||
wild_sort (lang_wild_statement_type *wild,
|
||
struct wildcard_list *sec,
|
||
lang_input_statement_type *file,
|
||
asection *section)
|
||
{
|
||
lang_section_bst_type **tree;
|
||
|
||
if (!wild->filenames_sorted
|
||
&& (sec == NULL || sec->spec.sorted == none
|
||
|| sec->spec.sorted == by_none))
|
||
{
|
||
/* We might be called even if _this_ spec doesn't need sorting,
|
||
in which case we simply append at the right end of tree. */
|
||
return wild->rightmost;
|
||
}
|
||
|
||
tree = &wild->tree;
|
||
while (*tree)
|
||
{
|
||
/* Sorting by filename takes precedence over sorting by section
|
||
name. */
|
||
|
||
if (wild->filenames_sorted)
|
||
{
|
||
const char *fn, *ln;
|
||
bool fa, la;
|
||
int i;
|
||
asection *lsec = (*tree)->section;
|
||
|
||
/* The PE support for the .idata section as generated by
|
||
dlltool assumes that files will be sorted by the name of
|
||
the archive and then the name of the file within the
|
||
archive. */
|
||
|
||
fa = file->the_bfd->my_archive != NULL;
|
||
if (fa)
|
||
fn = sort_filename (file->the_bfd->my_archive);
|
||
else
|
||
fn = sort_filename (file->the_bfd);
|
||
|
||
la = lsec->owner->my_archive != NULL;
|
||
if (la)
|
||
ln = sort_filename (lsec->owner->my_archive);
|
||
else
|
||
ln = sort_filename (lsec->owner);
|
||
|
||
i = filename_cmp (fn, ln);
|
||
if (i > 0)
|
||
{ tree = &((*tree)->right); continue; }
|
||
else if (i < 0)
|
||
{ tree = &((*tree)->left); continue; }
|
||
|
||
if (fa || la)
|
||
{
|
||
if (fa)
|
||
fn = sort_filename (file->the_bfd);
|
||
if (la)
|
||
ln = sort_filename (lsec->owner);
|
||
|
||
i = filename_cmp (fn, ln);
|
||
if (i > 0)
|
||
{ tree = &((*tree)->right); continue; }
|
||
else if (i < 0)
|
||
{ tree = &((*tree)->left); continue; }
|
||
}
|
||
}
|
||
|
||
/* Here either the files are not sorted by name, or we are
|
||
looking at the sections for this file. */
|
||
|
||
/* Find the correct node to append this section. */
|
||
if (sec && sec->spec.sorted != none && sec->spec.sorted != by_none
|
||
&& compare_section (sec->spec.sorted, section, (*tree)->section) < 0)
|
||
tree = &((*tree)->left);
|
||
else
|
||
tree = &((*tree)->right);
|
||
}
|
||
|
||
return tree;
|
||
}
|
||
|
||
/* Use wild_sort to build a BST to sort sections. */
|
||
|
||
static void
|
||
output_section_callback_sort (lang_wild_statement_type *ptr,
|
||
struct wildcard_list *sec,
|
||
asection *section,
|
||
lang_input_statement_type *file,
|
||
void *output)
|
||
{
|
||
lang_section_bst_type *node;
|
||
lang_section_bst_type **tree;
|
||
lang_output_section_statement_type *os;
|
||
|
||
os = (lang_output_section_statement_type *) output;
|
||
|
||
if (unique_section_p (section, os))
|
||
return;
|
||
|
||
node = (lang_section_bst_type *) xmalloc (sizeof (lang_section_bst_type));
|
||
node->left = 0;
|
||
node->right = 0;
|
||
node->section = section;
|
||
node->pattern = ptr->section_list;
|
||
|
||
tree = wild_sort (ptr, sec, file, section);
|
||
if (tree != NULL)
|
||
{
|
||
*tree = node;
|
||
if (tree == ptr->rightmost)
|
||
ptr->rightmost = &node->right;
|
||
}
|
||
}
|
||
|
||
/* Convert a sorted sections' BST back to list form. */
|
||
|
||
static void
|
||
output_section_callback_tree_to_list (lang_wild_statement_type *ptr,
|
||
lang_section_bst_type *tree,
|
||
void *output)
|
||
{
|
||
if (tree->left)
|
||
output_section_callback_tree_to_list (ptr, tree->left, output);
|
||
|
||
lang_add_section (&ptr->children, tree->section, tree->pattern,
|
||
ptr->section_flag_list,
|
||
(lang_output_section_statement_type *) output);
|
||
|
||
if (tree->right)
|
||
output_section_callback_tree_to_list (ptr, tree->right, output);
|
||
|
||
free (tree);
|
||
}
|
||
|
||
|
||
/* Sections are matched against wildcard statements via a prefix tree.
|
||
The prefix tree holds prefixes of all matching patterns (up to the first
|
||
wildcard character), and the wild statement from which those patterns
|
||
came. When matching a section name against the tree we're walking through
|
||
the tree character by character. Each statement we hit is one that
|
||
potentially matches. This is checked by actually going through the
|
||
(glob) matching routines.
|
||
|
||
When the section name turns out to actually match we record that section
|
||
in the wild statements list of matching sections. */
|
||
|
||
/* A prefix can be matched by multiple statement, so we need a list of them. */
|
||
struct wild_stmt_list
|
||
{
|
||
lang_wild_statement_type *stmt;
|
||
struct wild_stmt_list *next;
|
||
};
|
||
|
||
/* The prefix tree itself. */
|
||
struct prefixtree
|
||
{
|
||
/* The list of all children (linked via .next). */
|
||
struct prefixtree *child;
|
||
struct prefixtree *next;
|
||
/* This tree node is responsible for the prefix of parent plus 'c'. */
|
||
char c;
|
||
/* The statements that potentially can match this prefix. */
|
||
struct wild_stmt_list *stmt;
|
||
};
|
||
|
||
/* We always have a root node in the prefix tree. It corresponds to the
|
||
empty prefix. E.g. a glob like "*" would sit in this root. */
|
||
static struct prefixtree the_root, *ptroot = &the_root;
|
||
|
||
/* Given a prefix tree in *TREE, corresponding to prefix P, find or
|
||
INSERT the tree node corresponding to prefix P+C. */
|
||
|
||
static struct prefixtree *
|
||
get_prefix_tree (struct prefixtree **tree, char c, bool insert)
|
||
{
|
||
struct prefixtree *t;
|
||
for (t = *tree; t; t = t->next)
|
||
if (t->c == c)
|
||
return t;
|
||
if (!insert)
|
||
return NULL;
|
||
t = (struct prefixtree *) obstack_alloc (&pt_obstack, sizeof *t);
|
||
t->child = NULL;
|
||
t->next = *tree;
|
||
t->c = c;
|
||
t->stmt = NULL;
|
||
*tree = t;
|
||
return t;
|
||
}
|
||
|
||
/* Add STMT to the set of statements that can be matched by the prefix
|
||
corresponding to prefix tree T. */
|
||
|
||
static void
|
||
pt_add_stmt (struct prefixtree *t, lang_wild_statement_type *stmt)
|
||
{
|
||
struct wild_stmt_list *sl, **psl;
|
||
sl = (struct wild_stmt_list *) obstack_alloc (&pt_obstack, sizeof *sl);
|
||
sl->stmt = stmt;
|
||
sl->next = NULL;
|
||
psl = &t->stmt;
|
||
while (*psl)
|
||
psl = &(*psl)->next;
|
||
*psl = sl;
|
||
}
|
||
|
||
/* Insert STMT into the global prefix tree. */
|
||
|
||
static void
|
||
insert_prefix_tree (lang_wild_statement_type *stmt)
|
||
{
|
||
struct wildcard_list *sec;
|
||
struct prefixtree *t;
|
||
|
||
if (!stmt->section_list)
|
||
{
|
||
/* If we have no section_list (no wildcards in the wild STMT),
|
||
then every section name will match, so add this to the root. */
|
||
pt_add_stmt (ptroot, stmt);
|
||
return;
|
||
}
|
||
|
||
for (sec = stmt->section_list; sec; sec = sec->next)
|
||
{
|
||
const char *name = sec->spec.name ? sec->spec.name : "*";
|
||
char c;
|
||
t = ptroot;
|
||
for (; (c = *name); name++)
|
||
{
|
||
if (c == '*' || c == '[' || c == '?')
|
||
break;
|
||
t = get_prefix_tree (&t->child, c, true);
|
||
}
|
||
/* If we hit a glob character, the matching prefix is what we saw
|
||
until now. If we hit the end of pattern (hence it's no glob) then
|
||
we can do better: we only need to record a match when a section name
|
||
completely matches, not merely a prefix, so record the trailing 0
|
||
as well. */
|
||
if (!c)
|
||
t = get_prefix_tree (&t->child, 0, true);
|
||
pt_add_stmt (t, stmt);
|
||
}
|
||
}
|
||
|
||
/* Dump T indented by INDENT spaces. */
|
||
|
||
static void
|
||
debug_prefix_tree_rec (struct prefixtree *t, int indent)
|
||
{
|
||
for (; t; t = t->next)
|
||
{
|
||
struct wild_stmt_list *sl;
|
||
printf ("%*s %c", indent, "", t->c);
|
||
for (sl = t->stmt; sl; sl = sl->next)
|
||
{
|
||
struct wildcard_list *curr;
|
||
printf (" %p ", sl->stmt);
|
||
for (curr = sl->stmt->section_list; curr; curr = curr->next)
|
||
printf ("%s ", curr->spec.name ? curr->spec.name : "*");
|
||
}
|
||
printf ("\n");
|
||
debug_prefix_tree_rec (t->child, indent + 2);
|
||
}
|
||
}
|
||
|
||
/* Dump the global prefix tree. */
|
||
|
||
static void
|
||
debug_prefix_tree (void)
|
||
{
|
||
debug_prefix_tree_rec (ptroot, 2);
|
||
}
|
||
|
||
/* Like strcspn() but start to look from the end to beginning of
|
||
S. Returns the length of the suffix of S consisting entirely
|
||
of characters not in REJECT. */
|
||
|
||
static size_t
|
||
rstrcspn (const char *s, const char *reject)
|
||
{
|
||
size_t len = strlen (s), sufflen = 0;
|
||
while (len--)
|
||
{
|
||
char c = s[len];
|
||
if (strchr (reject, c) != 0)
|
||
break;
|
||
sufflen++;
|
||
}
|
||
return sufflen;
|
||
}
|
||
|
||
/* Analyze the wildcards in wild statement PTR to setup various
|
||
things for quick matching. */
|
||
|
||
static void
|
||
analyze_walk_wild_section_handler (lang_wild_statement_type *ptr)
|
||
{
|
||
struct wildcard_list *sec;
|
||
|
||
ptr->tree = NULL;
|
||
ptr->rightmost = &ptr->tree;
|
||
|
||
for (sec = ptr->section_list; sec != NULL; sec = sec->next)
|
||
{
|
||
if (sec->spec.name)
|
||
{
|
||
sec->spec.namelen = strlen (sec->spec.name);
|
||
sec->spec.prefixlen = strcspn (sec->spec.name, "?*[");
|
||
sec->spec.suffixlen = rstrcspn (sec->spec.name + sec->spec.prefixlen,
|
||
"?*]");
|
||
}
|
||
else
|
||
sec->spec.namelen = sec->spec.prefixlen = sec->spec.suffixlen = 0;
|
||
}
|
||
|
||
insert_prefix_tree (ptr);
|
||
}
|
||
|
||
/* Match all sections from FILE against the global prefix tree,
|
||
and record them into each wild statement that has a match. */
|
||
|
||
static void
|
||
resolve_wild_sections (lang_input_statement_type *file)
|
||
{
|
||
asection *s;
|
||
|
||
if (file->flags.just_syms)
|
||
return;
|
||
|
||
for (s = file->the_bfd->sections; s != NULL; s = s->next)
|
||
{
|
||
const char *sname = bfd_section_name (s);
|
||
char c = 1;
|
||
struct prefixtree *t = ptroot;
|
||
//printf (" YYY consider %s of %s\n", sname, file->the_bfd->filename);
|
||
do
|
||
{
|
||
if (t->stmt)
|
||
{
|
||
struct wild_stmt_list *sl;
|
||
for (sl = t->stmt; sl; sl = sl->next)
|
||
{
|
||
walk_wild_section_match (sl->stmt, file, s);
|
||
//printf (" ZZZ maybe place into %p\n", sl->stmt);
|
||
}
|
||
}
|
||
if (!c)
|
||
break;
|
||
c = *sname++;
|
||
t = get_prefix_tree (&t->child, c, false);
|
||
}
|
||
while (t);
|
||
}
|
||
}
|
||
|
||
/* Match all sections from all input files against the global prefix tree. */
|
||
|
||
static void
|
||
resolve_wilds (void)
|
||
{
|
||
LANG_FOR_EACH_INPUT_STATEMENT (f)
|
||
{
|
||
//printf("XXX %s\n", f->filename);
|
||
if (f->the_bfd == NULL
|
||
|| !bfd_check_format (f->the_bfd, bfd_archive))
|
||
resolve_wild_sections (f);
|
||
else
|
||
{
|
||
bfd *member;
|
||
|
||
/* This is an archive file. We must map each member of the
|
||
archive separately. */
|
||
member = bfd_openr_next_archived_file (f->the_bfd, NULL);
|
||
while (member != NULL)
|
||
{
|
||
/* When lookup_name is called, it will call the add_symbols
|
||
entry point for the archive. For each element of the
|
||
archive which is included, BFD will call ldlang_add_file,
|
||
which will set the usrdata field of the member to the
|
||
lang_input_statement. */
|
||
if (bfd_usrdata (member) != NULL)
|
||
resolve_wild_sections (bfd_usrdata (member));
|
||
|
||
member = bfd_openr_next_archived_file (f->the_bfd, member);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* For each input section that matches wild statement S calls
|
||
CALLBACK with DATA. */
|
||
|
||
static void
|
||
walk_wild (lang_wild_statement_type *s, callback_t callback, void *data)
|
||
{
|
||
lang_statement_union_type *l;
|
||
|
||
for (l = s->matching_sections.head; l; l = l->header.next)
|
||
{
|
||
(*callback) (s, l->input_matcher.pattern, l->input_matcher.section,
|
||
l->input_matcher.input_stmt, data);
|
||
}
|
||
}
|
||
|
||
/* lang_for_each_statement walks the parse tree and calls the provided
|
||
function for each node, except those inside output section statements
|
||
with constraint set to -1. */
|
||
|
||
void
|
||
lang_for_each_statement_worker (void (*func) (lang_statement_union_type *),
|
||
lang_statement_union_type *s)
|
||
{
|
||
for (; s != NULL; s = s->header.next)
|
||
{
|
||
func (s);
|
||
|
||
switch (s->header.type)
|
||
{
|
||
case lang_constructors_statement_enum:
|
||
lang_for_each_statement_worker (func, constructor_list.head);
|
||
break;
|
||
case lang_output_section_statement_enum:
|
||
if (s->output_section_statement.constraint != -1)
|
||
lang_for_each_statement_worker
|
||
(func, s->output_section_statement.children.head);
|
||
break;
|
||
case lang_wild_statement_enum:
|
||
lang_for_each_statement_worker (func,
|
||
s->wild_statement.children.head);
|
||
break;
|
||
case lang_group_statement_enum:
|
||
lang_for_each_statement_worker (func,
|
||
s->group_statement.children.head);
|
||
break;
|
||
case lang_data_statement_enum:
|
||
case lang_reloc_statement_enum:
|
||
case lang_object_symbols_statement_enum:
|
||
case lang_output_statement_enum:
|
||
case lang_target_statement_enum:
|
||
case lang_input_section_enum:
|
||
case lang_input_statement_enum:
|
||
case lang_assignment_statement_enum:
|
||
case lang_padding_statement_enum:
|
||
case lang_address_statement_enum:
|
||
case lang_fill_statement_enum:
|
||
case lang_insert_statement_enum:
|
||
break;
|
||
default:
|
||
FAIL ();
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
void
|
||
lang_for_each_statement (void (*func) (lang_statement_union_type *))
|
||
{
|
||
lang_for_each_statement_worker (func, statement_list.head);
|
||
}
|
||
|
||
/*----------------------------------------------------------------------*/
|
||
|
||
void
|
||
lang_list_init (lang_statement_list_type *list)
|
||
{
|
||
list->head = NULL;
|
||
list->tail = &list->head;
|
||
}
|
||
|
||
static void
|
||
lang_statement_append (lang_statement_list_type *list,
|
||
void *element,
|
||
void *field)
|
||
{
|
||
*(list->tail) = element;
|
||
list->tail = field;
|
||
}
|
||
|
||
void
|
||
push_stat_ptr (lang_statement_list_type *new_ptr)
|
||
{
|
||
if (stat_save_ptr >= stat_save + sizeof (stat_save) / sizeof (stat_save[0]))
|
||
abort ();
|
||
*stat_save_ptr++ = stat_ptr;
|
||
stat_ptr = new_ptr;
|
||
}
|
||
|
||
void
|
||
pop_stat_ptr (void)
|
||
{
|
||
if (stat_save_ptr <= stat_save)
|
||
abort ();
|
||
stat_ptr = *--stat_save_ptr;
|
||
}
|
||
|
||
/* Build a new statement node for the parse tree. */
|
||
|
||
static lang_statement_union_type *
|
||
new_statement (enum statement_enum type,
|
||
size_t size,
|
||
lang_statement_list_type *list)
|
||
{
|
||
lang_statement_union_type *new_stmt;
|
||
|
||
new_stmt = stat_alloc (size);
|
||
new_stmt->header.type = type;
|
||
new_stmt->header.next = NULL;
|
||
lang_statement_append (list, new_stmt, &new_stmt->header.next);
|
||
return new_stmt;
|
||
}
|
||
|
||
/* Build a new input file node for the language. There are several
|
||
ways in which we treat an input file, eg, we only look at symbols,
|
||
or prefix it with a -l etc.
|
||
|
||
We can be supplied with requests for input files more than once;
|
||
they may, for example be split over several lines like foo.o(.text)
|
||
foo.o(.data) etc, so when asked for a file we check that we haven't
|
||
got it already so we don't duplicate the bfd. */
|
||
|
||
static lang_input_statement_type *
|
||
new_afile (const char *name,
|
||
lang_input_file_enum_type file_type,
|
||
const char *target,
|
||
const char *from_filename)
|
||
{
|
||
lang_input_statement_type *p;
|
||
|
||
lang_has_input_file = true;
|
||
|
||
p = new_stat (lang_input_statement, stat_ptr);
|
||
memset (&p->the_bfd, 0,
|
||
sizeof (*p) - offsetof (lang_input_statement_type, the_bfd));
|
||
p->extra_search_path = NULL;
|
||
p->target = target;
|
||
p->flags.dynamic = input_flags.dynamic;
|
||
p->flags.add_DT_NEEDED_for_dynamic = input_flags.add_DT_NEEDED_for_dynamic;
|
||
p->flags.add_DT_NEEDED_for_regular = input_flags.add_DT_NEEDED_for_regular;
|
||
p->flags.whole_archive = input_flags.whole_archive;
|
||
p->flags.sysrooted = input_flags.sysrooted;
|
||
p->sort_key = NULL;
|
||
|
||
switch (file_type)
|
||
{
|
||
case lang_input_file_is_symbols_only_enum:
|
||
p->filename = name;
|
||
p->local_sym_name = name;
|
||
p->flags.real = true;
|
||
p->flags.just_syms = true;
|
||
break;
|
||
case lang_input_file_is_fake_enum:
|
||
p->filename = name;
|
||
p->local_sym_name = name;
|
||
break;
|
||
case lang_input_file_is_l_enum:
|
||
if (name[0] == ':' && name[1] != '\0')
|
||
{
|
||
p->filename = name + 1;
|
||
p->flags.full_name_provided = true;
|
||
}
|
||
else
|
||
p->filename = name;
|
||
p->local_sym_name = concat ("-l", name, (const char *) NULL);
|
||
p->flags.maybe_archive = true;
|
||
p->flags.real = true;
|
||
p->flags.search_dirs = true;
|
||
break;
|
||
case lang_input_file_is_marker_enum:
|
||
p->filename = name;
|
||
p->local_sym_name = name;
|
||
p->flags.search_dirs = true;
|
||
break;
|
||
case lang_input_file_is_search_file_enum:
|
||
p->filename = name;
|
||
p->local_sym_name = name;
|
||
/* If name is a relative path, search the directory of the current linker
|
||
script first. */
|
||
if (from_filename && !IS_ABSOLUTE_PATH (name))
|
||
p->extra_search_path = ldirname (from_filename);
|
||
p->flags.real = true;
|
||
p->flags.search_dirs = true;
|
||
break;
|
||
case lang_input_file_is_file_enum:
|
||
p->filename = name;
|
||
p->local_sym_name = name;
|
||
p->flags.real = true;
|
||
break;
|
||
default:
|
||
FAIL ();
|
||
}
|
||
|
||
lang_statement_append (&input_file_chain, p, &p->next_real_file);
|
||
return p;
|
||
}
|
||
|
||
lang_input_statement_type *
|
||
lang_add_input_file (const char *name,
|
||
lang_input_file_enum_type file_type,
|
||
const char *target)
|
||
{
|
||
if (name != NULL
|
||
&& (*name == '=' || startswith (name, "$SYSROOT")))
|
||
{
|
||
lang_input_statement_type *ret;
|
||
char *sysrooted_name
|
||
= concat (ld_sysroot,
|
||
name + (*name == '=' ? 1 : strlen ("$SYSROOT")),
|
||
(const char *) NULL);
|
||
|
||
/* We've now forcibly prepended the sysroot, making the input
|
||
file independent of the context. Therefore, temporarily
|
||
force a non-sysrooted context for this statement, so it won't
|
||
get the sysroot prepended again when opened. (N.B. if it's a
|
||
script, any child nodes with input files starting with "/"
|
||
will be handled as "sysrooted" as they'll be found to be
|
||
within the sysroot subdirectory.) */
|
||
unsigned int outer_sysrooted = input_flags.sysrooted;
|
||
input_flags.sysrooted = 0;
|
||
ret = new_afile (sysrooted_name, file_type, target, NULL);
|
||
input_flags.sysrooted = outer_sysrooted;
|
||
return ret;
|
||
}
|
||
|
||
return new_afile (name, file_type, target, current_input_file);
|
||
}
|
||
|
||
struct out_section_hash_entry
|
||
{
|
||
struct bfd_hash_entry root;
|
||
lang_statement_union_type s;
|
||
};
|
||
|
||
/* The hash table. */
|
||
|
||
static struct bfd_hash_table output_section_statement_table;
|
||
|
||
/* Support routines for the hash table used by lang_output_section_find,
|
||
initialize the table, fill in an entry and remove the table. */
|
||
|
||
static struct bfd_hash_entry *
|
||
output_section_statement_newfunc (struct bfd_hash_entry *entry,
|
||
struct bfd_hash_table *table,
|
||
const char *string)
|
||
{
|
||
lang_output_section_statement_type **nextp;
|
||
struct out_section_hash_entry *ret;
|
||
|
||
if (entry == NULL)
|
||
{
|
||
entry = (struct bfd_hash_entry *) bfd_hash_allocate (table,
|
||
sizeof (*ret));
|
||
if (entry == NULL)
|
||
return entry;
|
||
}
|
||
|
||
entry = bfd_hash_newfunc (entry, table, string);
|
||
if (entry == NULL)
|
||
return entry;
|
||
|
||
ret = (struct out_section_hash_entry *) entry;
|
||
memset (&ret->s, 0, sizeof (ret->s));
|
||
ret->s.header.type = lang_output_section_statement_enum;
|
||
ret->s.output_section_statement.subsection_alignment = NULL;
|
||
ret->s.output_section_statement.section_alignment = NULL;
|
||
ret->s.output_section_statement.block_value = 1;
|
||
lang_list_init (&ret->s.output_section_statement.children);
|
||
lang_statement_append (stat_ptr, &ret->s, &ret->s.header.next);
|
||
|
||
/* For every output section statement added to the list, except the
|
||
first one, lang_os_list.tail points to the "next"
|
||
field of the last element of the list. */
|
||
if (lang_os_list.head != NULL)
|
||
ret->s.output_section_statement.prev
|
||
= ((lang_output_section_statement_type *)
|
||
((char *) lang_os_list.tail
|
||
- offsetof (lang_output_section_statement_type, next)));
|
||
|
||
/* GCC's strict aliasing rules prevent us from just casting the
|
||
address, so we store the pointer in a variable and cast that
|
||
instead. */
|
||
nextp = &ret->s.output_section_statement.next;
|
||
lang_statement_append (&lang_os_list, &ret->s, nextp);
|
||
return &ret->root;
|
||
}
|
||
|
||
static void
|
||
output_section_statement_table_init (void)
|
||
{
|
||
if (!bfd_hash_table_init_n (&output_section_statement_table,
|
||
output_section_statement_newfunc,
|
||
sizeof (struct out_section_hash_entry),
|
||
61))
|
||
einfo (_("%F%P: can not create hash table: %E\n"));
|
||
}
|
||
|
||
static void
|
||
output_section_statement_table_free (void)
|
||
{
|
||
bfd_hash_table_free (&output_section_statement_table);
|
||
}
|
||
|
||
/* Build enough state so that the parser can build its tree. */
|
||
|
||
void
|
||
lang_init (void)
|
||
{
|
||
obstack_begin (&stat_obstack, 1000);
|
||
obstack_init (&pt_obstack);
|
||
|
||
stat_ptr = &statement_list;
|
||
|
||
output_section_statement_table_init ();
|
||
|
||
lang_list_init (stat_ptr);
|
||
|
||
lang_list_init (&input_file_chain);
|
||
lang_list_init (&lang_os_list);
|
||
lang_list_init (&file_chain);
|
||
first_file = lang_add_input_file (NULL, lang_input_file_is_marker_enum,
|
||
NULL);
|
||
abs_output_section =
|
||
lang_output_section_statement_lookup (BFD_ABS_SECTION_NAME, 0, 1);
|
||
|
||
abs_output_section->bfd_section = bfd_abs_section_ptr;
|
||
|
||
asneeded_list_head = NULL;
|
||
asneeded_list_tail = &asneeded_list_head;
|
||
}
|
||
|
||
void
|
||
lang_finish (void)
|
||
{
|
||
output_section_statement_table_free ();
|
||
}
|
||
|
||
/*----------------------------------------------------------------------
|
||
A region is an area of memory declared with the
|
||
MEMORY { name:org=exp, len=exp ... }
|
||
syntax.
|
||
|
||
We maintain a list of all the regions here.
|
||
|
||
If no regions are specified in the script, then the default is used
|
||
which is created when looked up to be the entire data space.
|
||
|
||
If create is true we are creating a region inside a MEMORY block.
|
||
In this case it is probably an error to create a region that has
|
||
already been created. If we are not inside a MEMORY block it is
|
||
dubious to use an undeclared region name (except DEFAULT_MEMORY_REGION)
|
||
and so we issue a warning.
|
||
|
||
Each region has at least one name. The first name is either
|
||
DEFAULT_MEMORY_REGION or the name given in the MEMORY block. You can add
|
||
alias names to an existing region within a script with
|
||
REGION_ALIAS (alias, region_name). Each name corresponds to at most one
|
||
region. */
|
||
|
||
static lang_memory_region_type *lang_memory_region_list;
|
||
static lang_memory_region_type **lang_memory_region_list_tail
|
||
= &lang_memory_region_list;
|
||
|
||
lang_memory_region_type *
|
||
lang_memory_region_lookup (const char *const name, bool create)
|
||
{
|
||
lang_memory_region_name *n;
|
||
lang_memory_region_type *r;
|
||
lang_memory_region_type *new_region;
|
||
|
||
/* NAME is NULL for LMA memspecs if no region was specified. */
|
||
if (name == NULL)
|
||
return NULL;
|
||
|
||
for (r = lang_memory_region_list; r != NULL; r = r->next)
|
||
for (n = &r->name_list; n != NULL; n = n->next)
|
||
if (strcmp (n->name, name) == 0)
|
||
{
|
||
if (create)
|
||
einfo (_("%P:%pS: warning: redeclaration of memory region `%s'\n"),
|
||
NULL, name);
|
||
return r;
|
||
}
|
||
|
||
if (!create && strcmp (name, DEFAULT_MEMORY_REGION))
|
||
einfo (_("%P:%pS: warning: memory region `%s' not declared\n"),
|
||
NULL, name);
|
||
|
||
new_region = stat_alloc (sizeof (lang_memory_region_type));
|
||
|
||
new_region->name_list.name = xstrdup (name);
|
||
new_region->name_list.next = NULL;
|
||
new_region->next = NULL;
|
||
new_region->origin_exp = NULL;
|
||
new_region->origin = 0;
|
||
new_region->length_exp = NULL;
|
||
new_region->length = ~(bfd_size_type) 0;
|
||
new_region->current = 0;
|
||
new_region->last_os = NULL;
|
||
new_region->flags = 0;
|
||
new_region->not_flags = 0;
|
||
new_region->had_full_message = false;
|
||
|
||
*lang_memory_region_list_tail = new_region;
|
||
lang_memory_region_list_tail = &new_region->next;
|
||
|
||
return new_region;
|
||
}
|
||
|
||
void
|
||
lang_memory_region_alias (const char *alias, const char *region_name)
|
||
{
|
||
lang_memory_region_name *n;
|
||
lang_memory_region_type *r;
|
||
lang_memory_region_type *region;
|
||
|
||
/* The default region must be unique. This ensures that it is not necessary
|
||
to iterate through the name list if someone wants the check if a region is
|
||
the default memory region. */
|
||
if (strcmp (region_name, DEFAULT_MEMORY_REGION) == 0
|
||
|| strcmp (alias, DEFAULT_MEMORY_REGION) == 0)
|
||
einfo (_("%F%P:%pS: error: alias for default memory region\n"), NULL);
|
||
|
||
/* Look for the target region and check if the alias is not already
|
||
in use. */
|
||
region = NULL;
|
||
for (r = lang_memory_region_list; r != NULL; r = r->next)
|
||
for (n = &r->name_list; n != NULL; n = n->next)
|
||
{
|
||
if (region == NULL && strcmp (n->name, region_name) == 0)
|
||
region = r;
|
||
if (strcmp (n->name, alias) == 0)
|
||
einfo (_("%F%P:%pS: error: redefinition of memory region "
|
||
"alias `%s'\n"),
|
||
NULL, alias);
|
||
}
|
||
|
||
/* Check if the target region exists. */
|
||
if (region == NULL)
|
||
einfo (_("%F%P:%pS: error: memory region `%s' "
|
||
"for alias `%s' does not exist\n"),
|
||
NULL, region_name, alias);
|
||
|
||
/* Add alias to region name list. */
|
||
n = stat_alloc (sizeof (lang_memory_region_name));
|
||
n->name = xstrdup (alias);
|
||
n->next = region->name_list.next;
|
||
region->name_list.next = n;
|
||
}
|
||
|
||
static lang_memory_region_type *
|
||
lang_memory_default (asection *section)
|
||
{
|
||
lang_memory_region_type *p;
|
||
|
||
flagword sec_flags = section->flags;
|
||
|
||
/* Override SEC_DATA to mean a writable section. */
|
||
if ((sec_flags & (SEC_ALLOC | SEC_READONLY | SEC_CODE)) == SEC_ALLOC)
|
||
sec_flags |= SEC_DATA;
|
||
|
||
for (p = lang_memory_region_list; p != NULL; p = p->next)
|
||
{
|
||
if ((p->flags & sec_flags) != 0
|
||
&& (p->not_flags & sec_flags) == 0)
|
||
{
|
||
return p;
|
||
}
|
||
}
|
||
return lang_memory_region_lookup (DEFAULT_MEMORY_REGION, false);
|
||
}
|
||
|
||
/* Get the output section statement directly from the userdata. */
|
||
|
||
lang_output_section_statement_type *
|
||
lang_output_section_get (const asection *output_section)
|
||
{
|
||
return bfd_section_userdata (output_section);
|
||
}
|
||
|
||
/* Find or create an output_section_statement with the given NAME.
|
||
If CONSTRAINT is non-zero match one with that constraint, otherwise
|
||
match any non-negative constraint. If CREATE is 0 return NULL when
|
||
no match exists. If CREATE is 1, create an output_section_statement
|
||
when no match exists or if CONSTRAINT is SPECIAL. If CREATE is 2,
|
||
always make a new output_section_statement. */
|
||
|
||
lang_output_section_statement_type *
|
||
lang_output_section_statement_lookup (const char *name,
|
||
int constraint,
|
||
int create)
|
||
{
|
||
struct out_section_hash_entry *entry;
|
||
|
||
entry = ((struct out_section_hash_entry *)
|
||
bfd_hash_lookup (&output_section_statement_table, name,
|
||
create != 0, false));
|
||
if (entry == NULL)
|
||
{
|
||
if (create)
|
||
einfo (_("%F%P: failed creating section `%s': %E\n"), name);
|
||
return NULL;
|
||
}
|
||
|
||
if (entry->s.output_section_statement.name != NULL)
|
||
{
|
||
/* We have a section of this name, but it might not have the correct
|
||
constraint. */
|
||
struct out_section_hash_entry *last_ent;
|
||
|
||
name = entry->s.output_section_statement.name;
|
||
do
|
||
{
|
||
if (create != 2
|
||
&& !(create && constraint == SPECIAL)
|
||
&& (constraint == entry->s.output_section_statement.constraint
|
||
|| (constraint == 0
|
||
&& entry->s.output_section_statement.constraint >= 0)))
|
||
return &entry->s.output_section_statement;
|
||
last_ent = entry;
|
||
entry = (struct out_section_hash_entry *) entry->root.next;
|
||
}
|
||
while (entry != NULL
|
||
&& name == entry->s.output_section_statement.name);
|
||
|
||
if (!create)
|
||
return NULL;
|
||
|
||
entry
|
||
= ((struct out_section_hash_entry *)
|
||
output_section_statement_newfunc (NULL,
|
||
&output_section_statement_table,
|
||
name));
|
||
if (entry == NULL)
|
||
{
|
||
einfo (_("%F%P: failed creating section `%s': %E\n"), name);
|
||
return NULL;
|
||
}
|
||
entry->root = last_ent->root;
|
||
last_ent->root.next = &entry->root;
|
||
}
|
||
|
||
entry->s.output_section_statement.name = name;
|
||
entry->s.output_section_statement.constraint = constraint;
|
||
entry->s.output_section_statement.dup_output = (create == 2
|
||
|| constraint == SPECIAL);
|
||
return &entry->s.output_section_statement;
|
||
}
|
||
|
||
/* Find the next output_section_statement with the same name as OS.
|
||
If CONSTRAINT is non-zero, find one with that constraint otherwise
|
||
match any non-negative constraint. */
|
||
|
||
lang_output_section_statement_type *
|
||
next_matching_output_section_statement (lang_output_section_statement_type *os,
|
||
int constraint)
|
||
{
|
||
/* All output_section_statements are actually part of a
|
||
struct out_section_hash_entry. */
|
||
struct out_section_hash_entry *entry = (struct out_section_hash_entry *)
|
||
((char *) os
|
||
- offsetof (struct out_section_hash_entry, s.output_section_statement));
|
||
const char *name = os->name;
|
||
|
||
ASSERT (name == entry->root.string);
|
||
do
|
||
{
|
||
entry = (struct out_section_hash_entry *) entry->root.next;
|
||
if (entry == NULL
|
||
|| name != entry->s.output_section_statement.name)
|
||
return NULL;
|
||
}
|
||
while (constraint != entry->s.output_section_statement.constraint
|
||
&& (constraint != 0
|
||
|| entry->s.output_section_statement.constraint < 0));
|
||
|
||
return &entry->s.output_section_statement;
|
||
}
|
||
|
||
/* A variant of lang_output_section_find used by place_orphan.
|
||
Returns the output statement that should precede a new output
|
||
statement for SEC. If an exact match is found on certain flags,
|
||
sets *EXACT too. */
|
||
|
||
lang_output_section_statement_type *
|
||
lang_output_section_find_by_flags (const asection *sec,
|
||
flagword sec_flags,
|
||
lang_output_section_statement_type **exact,
|
||
lang_match_sec_type_func match_type)
|
||
{
|
||
lang_output_section_statement_type *first, *look, *found;
|
||
flagword look_flags, differ;
|
||
|
||
/* We know the first statement on this list is *ABS*. May as well
|
||
skip it. */
|
||
first = (void *) lang_os_list.head;
|
||
first = first->next;
|
||
|
||
/* First try for an exact match. */
|
||
found = NULL;
|
||
for (look = first; look; look = look->next)
|
||
{
|
||
look_flags = look->flags;
|
||
if (look->bfd_section != NULL)
|
||
{
|
||
look_flags = look->bfd_section->flags;
|
||
if (match_type && !match_type (link_info.output_bfd,
|
||
look->bfd_section,
|
||
sec->owner, sec))
|
||
continue;
|
||
}
|
||
differ = look_flags ^ sec_flags;
|
||
if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_READONLY
|
||
| SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
|
||
found = look;
|
||
}
|
||
if (found != NULL)
|
||
{
|
||
if (exact != NULL)
|
||
*exact = found;
|
||
return found;
|
||
}
|
||
|
||
if ((sec_flags & SEC_CODE) != 0
|
||
&& (sec_flags & SEC_ALLOC) != 0)
|
||
{
|
||
/* Try for a rw code section. */
|
||
for (look = first; look; look = look->next)
|
||
{
|
||
look_flags = look->flags;
|
||
if (look->bfd_section != NULL)
|
||
{
|
||
look_flags = look->bfd_section->flags;
|
||
if (match_type && !match_type (link_info.output_bfd,
|
||
look->bfd_section,
|
||
sec->owner, sec))
|
||
continue;
|
||
}
|
||
differ = look_flags ^ sec_flags;
|
||
if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
|
||
| SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
|
||
found = look;
|
||
}
|
||
}
|
||
else if ((sec_flags & SEC_READONLY) != 0
|
||
&& (sec_flags & SEC_ALLOC) != 0)
|
||
{
|
||
/* .rodata can go after .text, .sdata2 after .rodata. */
|
||
for (look = first; look; look = look->next)
|
||
{
|
||
look_flags = look->flags;
|
||
if (look->bfd_section != NULL)
|
||
{
|
||
look_flags = look->bfd_section->flags;
|
||
if (match_type && !match_type (link_info.output_bfd,
|
||
look->bfd_section,
|
||
sec->owner, sec))
|
||
continue;
|
||
}
|
||
differ = look_flags ^ sec_flags;
|
||
if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
|
||
| SEC_READONLY | SEC_SMALL_DATA))
|
||
|| (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
|
||
| SEC_READONLY))
|
||
&& !(look_flags & SEC_SMALL_DATA)))
|
||
found = look;
|
||
}
|
||
}
|
||
else if ((sec_flags & SEC_THREAD_LOCAL) != 0
|
||
&& (sec_flags & SEC_ALLOC) != 0)
|
||
{
|
||
/* .tdata can go after .data, .tbss after .tdata. Treat .tbss
|
||
as if it were a loaded section, and don't use match_type. */
|
||
bool seen_thread_local = false;
|
||
|
||
match_type = NULL;
|
||
for (look = first; look; look = look->next)
|
||
{
|
||
look_flags = look->flags;
|
||
if (look->bfd_section != NULL)
|
||
look_flags = look->bfd_section->flags;
|
||
|
||
differ = look_flags ^ (sec_flags | SEC_LOAD | SEC_HAS_CONTENTS);
|
||
if (!(differ & (SEC_THREAD_LOCAL | SEC_ALLOC)))
|
||
{
|
||
/* .tdata and .tbss must be adjacent and in that order. */
|
||
if (!(look_flags & SEC_LOAD)
|
||
&& (sec_flags & SEC_LOAD))
|
||
/* ..so if we're at a .tbss section and we're placing
|
||
a .tdata section stop looking and return the
|
||
previous section. */
|
||
break;
|
||
found = look;
|
||
seen_thread_local = true;
|
||
}
|
||
else if (seen_thread_local)
|
||
break;
|
||
else if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD)))
|
||
found = look;
|
||
}
|
||
}
|
||
else if ((sec_flags & SEC_SMALL_DATA) != 0
|
||
&& (sec_flags & SEC_ALLOC) != 0)
|
||
{
|
||
/* .sdata goes after .data, .sbss after .sdata. */
|
||
for (look = first; look; look = look->next)
|
||
{
|
||
look_flags = look->flags;
|
||
if (look->bfd_section != NULL)
|
||
{
|
||
look_flags = look->bfd_section->flags;
|
||
if (match_type && !match_type (link_info.output_bfd,
|
||
look->bfd_section,
|
||
sec->owner, sec))
|
||
continue;
|
||
}
|
||
differ = look_flags ^ sec_flags;
|
||
if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
|
||
| SEC_THREAD_LOCAL))
|
||
|| ((look_flags & SEC_SMALL_DATA)
|
||
&& !(sec_flags & SEC_HAS_CONTENTS)))
|
||
found = look;
|
||
}
|
||
}
|
||
else if ((sec_flags & SEC_HAS_CONTENTS) != 0
|
||
&& (sec_flags & SEC_ALLOC) != 0)
|
||
{
|
||
/* .data goes after .rodata. */
|
||
for (look = first; look; look = look->next)
|
||
{
|
||
look_flags = look->flags;
|
||
if (look->bfd_section != NULL)
|
||
{
|
||
look_flags = look->bfd_section->flags;
|
||
if (match_type && !match_type (link_info.output_bfd,
|
||
look->bfd_section,
|
||
sec->owner, sec))
|
||
continue;
|
||
}
|
||
differ = look_flags ^ sec_flags;
|
||
if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
|
||
| SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
|
||
found = look;
|
||
}
|
||
}
|
||
else if ((sec_flags & SEC_ALLOC) != 0)
|
||
{
|
||
/* .bss goes after any other alloc section. */
|
||
for (look = first; look; look = look->next)
|
||
{
|
||
look_flags = look->flags;
|
||
if (look->bfd_section != NULL)
|
||
{
|
||
look_flags = look->bfd_section->flags;
|
||
if (match_type && !match_type (link_info.output_bfd,
|
||
look->bfd_section,
|
||
sec->owner, sec))
|
||
continue;
|
||
}
|
||
differ = look_flags ^ sec_flags;
|
||
if (!(differ & SEC_ALLOC))
|
||
found = look;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* non-alloc go last. */
|
||
for (look = first; look; look = look->next)
|
||
{
|
||
look_flags = look->flags;
|
||
if (look->bfd_section != NULL)
|
||
look_flags = look->bfd_section->flags;
|
||
differ = look_flags ^ sec_flags;
|
||
if (!(differ & SEC_DEBUGGING))
|
||
found = look;
|
||
}
|
||
return found;
|
||
}
|
||
|
||
if (found || !match_type)
|
||
return found;
|
||
|
||
return lang_output_section_find_by_flags (sec, sec_flags, NULL, NULL);
|
||
}
|
||
|
||
/* Find the last output section before given output statement.
|
||
Used by place_orphan. */
|
||
|
||
static asection *
|
||
output_prev_sec_find (lang_output_section_statement_type *os)
|
||
{
|
||
lang_output_section_statement_type *lookup;
|
||
|
||
for (lookup = os->prev; lookup != NULL; lookup = lookup->prev)
|
||
{
|
||
if (lookup->constraint < 0)
|
||
continue;
|
||
|
||
if (lookup->bfd_section != NULL)
|
||
return lookup->bfd_section;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Look for a suitable place for a new output section statement. The
|
||
idea is to skip over anything that might be inside a SECTIONS {}
|
||
statement in a script, before we find another output section
|
||
statement. Assignments to "dot" before an output section statement
|
||
are assumed to belong to it, except in two cases; The first
|
||
assignment to dot, and assignments before non-alloc sections.
|
||
Otherwise we might put an orphan before . = . + SIZEOF_HEADERS or
|
||
similar assignments that set the initial address, or we might
|
||
insert non-alloc note sections among assignments setting end of
|
||
image symbols. */
|
||
|
||
static lang_statement_union_type **
|
||
insert_os_after (lang_statement_union_type *after)
|
||
{
|
||
lang_statement_union_type **where;
|
||
lang_statement_union_type **assign = NULL;
|
||
bool ignore_first;
|
||
|
||
ignore_first = after == lang_os_list.head;
|
||
|
||
for (where = &after->header.next;
|
||
*where != NULL;
|
||
where = &(*where)->header.next)
|
||
{
|
||
switch ((*where)->header.type)
|
||
{
|
||
case lang_assignment_statement_enum:
|
||
if (assign == NULL)
|
||
{
|
||
lang_assignment_statement_type *ass;
|
||
|
||
ass = &(*where)->assignment_statement;
|
||
if (ass->exp->type.node_class != etree_assert
|
||
&& ass->exp->assign.dst[0] == '.'
|
||
&& ass->exp->assign.dst[1] == 0)
|
||
{
|
||
if (!ignore_first)
|
||
assign = where;
|
||
ignore_first = false;
|
||
}
|
||
}
|
||
continue;
|
||
case lang_wild_statement_enum:
|
||
case lang_input_section_enum:
|
||
case lang_object_symbols_statement_enum:
|
||
case lang_fill_statement_enum:
|
||
case lang_data_statement_enum:
|
||
case lang_reloc_statement_enum:
|
||
case lang_padding_statement_enum:
|
||
case lang_constructors_statement_enum:
|
||
assign = NULL;
|
||
ignore_first = false;
|
||
continue;
|
||
case lang_output_section_statement_enum:
|
||
if (assign != NULL)
|
||
{
|
||
asection *s = (*where)->output_section_statement.bfd_section;
|
||
|
||
if (s == NULL
|
||
|| s->map_head.s == NULL
|
||
|| (s->flags & SEC_ALLOC) != 0)
|
||
where = assign;
|
||
}
|
||
break;
|
||
case lang_input_statement_enum:
|
||
case lang_address_statement_enum:
|
||
case lang_target_statement_enum:
|
||
case lang_output_statement_enum:
|
||
case lang_group_statement_enum:
|
||
case lang_insert_statement_enum:
|
||
continue;
|
||
case lang_input_matcher_enum:
|
||
FAIL ();
|
||
}
|
||
break;
|
||
}
|
||
|
||
return where;
|
||
}
|
||
|
||
lang_output_section_statement_type *
|
||
lang_insert_orphan (asection *s,
|
||
const char *secname,
|
||
int constraint,
|
||
lang_output_section_statement_type *after,
|
||
struct orphan_save *place,
|
||
etree_type *address,
|
||
lang_statement_list_type *add_child)
|
||
{
|
||
lang_statement_list_type add;
|
||
lang_output_section_statement_type *os;
|
||
lang_output_section_statement_type **os_tail;
|
||
|
||
/* If we have found an appropriate place for the output section
|
||
statements for this orphan, add them to our own private list,
|
||
inserting them later into the global statement list. */
|
||
if (after != NULL)
|
||
{
|
||
lang_list_init (&add);
|
||
push_stat_ptr (&add);
|
||
}
|
||
|
||
if (bfd_link_relocatable (&link_info)
|
||
|| (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0)
|
||
address = exp_intop (0);
|
||
|
||
os_tail = (lang_output_section_statement_type **) lang_os_list.tail;
|
||
os = lang_enter_output_section_statement (
|
||
secname, address, normal_section, 0, NULL, NULL, NULL, constraint, 0);
|
||
|
||
if (add_child == NULL)
|
||
add_child = &os->children;
|
||
lang_add_section (add_child, s, NULL, NULL, os);
|
||
|
||
if (after && (s->flags & (SEC_LOAD | SEC_ALLOC)) != 0)
|
||
{
|
||
const char *region = (after->region
|
||
? after->region->name_list.name
|
||
: DEFAULT_MEMORY_REGION);
|
||
const char *lma_region = (after->lma_region
|
||
? after->lma_region->name_list.name
|
||
: NULL);
|
||
lang_leave_output_section_statement (NULL, region, after->phdrs,
|
||
lma_region);
|
||
}
|
||
else
|
||
lang_leave_output_section_statement (NULL, DEFAULT_MEMORY_REGION, NULL,
|
||
NULL);
|
||
|
||
/* Restore the global list pointer. */
|
||
if (after != NULL)
|
||
pop_stat_ptr ();
|
||
|
||
if (after != NULL && os->bfd_section != NULL)
|
||
{
|
||
asection *snew, *as;
|
||
bool place_after = place->stmt == NULL;
|
||
bool insert_after = true;
|
||
|
||
snew = os->bfd_section;
|
||
|
||
/* Shuffle the bfd section list to make the output file look
|
||
neater. This is really only cosmetic. */
|
||
if (place->section == NULL
|
||
&& after != (void *) lang_os_list.head)
|
||
{
|
||
asection *bfd_section = after->bfd_section;
|
||
|
||
/* If the output statement hasn't been used to place any input
|
||
sections (and thus doesn't have an output bfd_section),
|
||
look for the closest prior output statement having an
|
||
output section. */
|
||
if (bfd_section == NULL)
|
||
bfd_section = output_prev_sec_find (after);
|
||
|
||
if (bfd_section != NULL
|
||
&& bfd_section->owner != NULL
|
||
&& bfd_section != snew)
|
||
place->section = &bfd_section->next;
|
||
}
|
||
|
||
if (place->section == NULL)
|
||
place->section = &link_info.output_bfd->sections;
|
||
|
||
as = *place->section;
|
||
|
||
if (!as)
|
||
{
|
||
/* Put the section at the end of the list. */
|
||
|
||
/* Unlink the section. */
|
||
bfd_section_list_remove (link_info.output_bfd, snew);
|
||
|
||
/* Now tack it back on in the right place. */
|
||
bfd_section_list_append (link_info.output_bfd, snew);
|
||
}
|
||
else if ((bfd_get_flavour (link_info.output_bfd)
|
||
== bfd_target_elf_flavour)
|
||
&& (bfd_get_flavour (s->owner)
|
||
== bfd_target_elf_flavour)
|
||
&& ((elf_section_type (s) == SHT_NOTE
|
||
&& (s->flags & SEC_LOAD) != 0)
|
||
|| (elf_section_type (as) == SHT_NOTE
|
||
&& (as->flags & SEC_LOAD) != 0)))
|
||
{
|
||
/* Make sure that output note sections are grouped and sorted
|
||
by alignments when inserting a note section or insert a
|
||
section after a note section, */
|
||
asection *sec;
|
||
/* A specific section after which the output note section
|
||
should be placed. */
|
||
asection *after_sec;
|
||
/* True if we need to insert the orphan section after a
|
||
specific section to maintain output note section order. */
|
||
bool after_sec_note = false;
|
||
|
||
static asection *first_orphan_note = NULL;
|
||
|
||
/* Group and sort output note section by alignments in
|
||
ascending order. */
|
||
after_sec = NULL;
|
||
if (elf_section_type (s) == SHT_NOTE
|
||
&& (s->flags & SEC_LOAD) != 0)
|
||
{
|
||
/* Search from the beginning for the last output note
|
||
section with equal or larger alignments. NB: Don't
|
||
place orphan note section after non-note sections. */
|
||
|
||
first_orphan_note = NULL;
|
||
for (sec = link_info.output_bfd->sections;
|
||
(sec != NULL
|
||
&& !bfd_is_abs_section (sec));
|
||
sec = sec->next)
|
||
if (sec != snew
|
||
&& elf_section_type (sec) == SHT_NOTE
|
||
&& (sec->flags & SEC_LOAD) != 0)
|
||
{
|
||
if (!first_orphan_note)
|
||
first_orphan_note = sec;
|
||
if (sec->alignment_power >= s->alignment_power)
|
||
after_sec = sec;
|
||
}
|
||
else if (first_orphan_note)
|
||
{
|
||
/* Stop if there is non-note section after the first
|
||
orphan note section. */
|
||
break;
|
||
}
|
||
|
||
/* If this will be the first orphan note section, it can
|
||
be placed at the default location. */
|
||
after_sec_note = first_orphan_note != NULL;
|
||
if (after_sec == NULL && after_sec_note)
|
||
{
|
||
/* If all output note sections have smaller
|
||
alignments, place the section before all
|
||
output orphan note sections. */
|
||
after_sec = first_orphan_note;
|
||
insert_after = false;
|
||
}
|
||
}
|
||
else if (first_orphan_note)
|
||
{
|
||
/* Don't place non-note sections in the middle of orphan
|
||
note sections. */
|
||
after_sec_note = true;
|
||
after_sec = as;
|
||
for (sec = as->next;
|
||
(sec != NULL
|
||
&& !bfd_is_abs_section (sec));
|
||
sec = sec->next)
|
||
if (elf_section_type (sec) == SHT_NOTE
|
||
&& (sec->flags & SEC_LOAD) != 0)
|
||
after_sec = sec;
|
||
}
|
||
|
||
if (after_sec_note)
|
||
{
|
||
if (after_sec)
|
||
{
|
||
/* Search forward to insert OS after AFTER_SEC output
|
||
statement. */
|
||
lang_output_section_statement_type *stmt, *next;
|
||
bool found = false;
|
||
for (stmt = after; stmt != NULL; stmt = next)
|
||
{
|
||
next = stmt->next;
|
||
if (insert_after)
|
||
{
|
||
if (stmt->bfd_section == after_sec)
|
||
{
|
||
place_after = true;
|
||
found = true;
|
||
after = stmt;
|
||
break;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* If INSERT_AFTER is FALSE, place OS before
|
||
AFTER_SEC output statement. */
|
||
if (next && next->bfd_section == after_sec)
|
||
{
|
||
place_after = true;
|
||
found = true;
|
||
after = stmt;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Search backward to insert OS after AFTER_SEC output
|
||
statement. */
|
||
if (!found)
|
||
for (stmt = after; stmt != NULL; stmt = stmt->prev)
|
||
{
|
||
if (insert_after)
|
||
{
|
||
if (stmt->bfd_section == after_sec)
|
||
{
|
||
place_after = true;
|
||
after = stmt;
|
||
break;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* If INSERT_AFTER is FALSE, place OS before
|
||
AFTER_SEC output statement. */
|
||
if (stmt->next->bfd_section == after_sec)
|
||
{
|
||
place_after = true;
|
||
after = stmt;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if (after_sec == NULL
|
||
|| (insert_after && after_sec->next != snew)
|
||
|| (!insert_after && after_sec->prev != snew))
|
||
{
|
||
/* Unlink the section. */
|
||
bfd_section_list_remove (link_info.output_bfd, snew);
|
||
|
||
/* Place SNEW after AFTER_SEC. If AFTER_SEC is NULL,
|
||
prepend SNEW. */
|
||
if (after_sec)
|
||
{
|
||
if (insert_after)
|
||
bfd_section_list_insert_after (link_info.output_bfd,
|
||
after_sec, snew);
|
||
else
|
||
bfd_section_list_insert_before (link_info.output_bfd,
|
||
after_sec, snew);
|
||
}
|
||
else
|
||
bfd_section_list_prepend (link_info.output_bfd, snew);
|
||
}
|
||
}
|
||
else if (as != snew && as->prev != snew)
|
||
{
|
||
/* Unlink the section. */
|
||
bfd_section_list_remove (link_info.output_bfd, snew);
|
||
|
||
/* Now tack it back on in the right place. */
|
||
bfd_section_list_insert_before (link_info.output_bfd,
|
||
as, snew);
|
||
}
|
||
}
|
||
else if (as != snew && as->prev != snew)
|
||
{
|
||
/* Unlink the section. */
|
||
bfd_section_list_remove (link_info.output_bfd, snew);
|
||
|
||
/* Now tack it back on in the right place. */
|
||
bfd_section_list_insert_before (link_info.output_bfd, as, snew);
|
||
}
|
||
|
||
/* Save the end of this list. Further ophans of this type will
|
||
follow the one we've just added. */
|
||
place->section = &snew->next;
|
||
|
||
/* The following is non-cosmetic. We try to put the output
|
||
statements in some sort of reasonable order here, because they
|
||
determine the final load addresses of the orphan sections.
|
||
In addition, placing output statements in the wrong order may
|
||
require extra segments. For instance, given a typical
|
||
situation of all read-only sections placed in one segment and
|
||
following that a segment containing all the read-write
|
||
sections, we wouldn't want to place an orphan read/write
|
||
section before or amongst the read-only ones. */
|
||
if (add.head != NULL)
|
||
{
|
||
lang_output_section_statement_type *newly_added_os;
|
||
|
||
/* Place OS after AFTER if AFTER_NOTE is TRUE. */
|
||
if (place_after)
|
||
{
|
||
lang_statement_union_type **where;
|
||
|
||
where = insert_os_after ((lang_statement_union_type *) after);
|
||
*add.tail = *where;
|
||
*where = add.head;
|
||
|
||
place->os_tail = &after->next;
|
||
}
|
||
else
|
||
{
|
||
/* Put it after the last orphan statement we added. */
|
||
*add.tail = *place->stmt;
|
||
*place->stmt = add.head;
|
||
}
|
||
|
||
/* Fix the global list pointer if we happened to tack our
|
||
new list at the tail. */
|
||
if (*stat_ptr->tail == add.head)
|
||
stat_ptr->tail = add.tail;
|
||
|
||
/* Save the end of this list. */
|
||
place->stmt = add.tail;
|
||
|
||
/* Do the same for the list of output section statements. */
|
||
newly_added_os = *os_tail;
|
||
*os_tail = NULL;
|
||
newly_added_os->prev = (lang_output_section_statement_type *)
|
||
((char *) place->os_tail
|
||
- offsetof (lang_output_section_statement_type, next));
|
||
newly_added_os->next = *place->os_tail;
|
||
if (newly_added_os->next != NULL)
|
||
newly_added_os->next->prev = newly_added_os;
|
||
*place->os_tail = newly_added_os;
|
||
place->os_tail = &newly_added_os->next;
|
||
|
||
/* Fixing the global list pointer here is a little different.
|
||
We added to the list in lang_enter_output_section_statement,
|
||
trimmed off the new output_section_statment above when
|
||
assigning *os_tail = NULL, but possibly added it back in
|
||
the same place when assigning *place->os_tail. */
|
||
if (*os_tail == NULL)
|
||
lang_os_list.tail = (lang_statement_union_type **) os_tail;
|
||
}
|
||
}
|
||
return os;
|
||
}
|
||
|
||
static void
|
||
lang_print_asneeded (void)
|
||
{
|
||
struct asneeded_minfo *m;
|
||
|
||
if (asneeded_list_head == NULL)
|
||
return;
|
||
|
||
minfo (_("\nAs-needed library included to satisfy reference by file (symbol)\n\n"));
|
||
|
||
for (m = asneeded_list_head; m != NULL; m = m->next)
|
||
{
|
||
int len;
|
||
|
||
minfo ("%s", m->soname);
|
||
len = strlen (m->soname);
|
||
|
||
if (len >= 29)
|
||
{
|
||
print_nl ();
|
||
len = 0;
|
||
}
|
||
print_spaces (30 - len);
|
||
|
||
if (m->ref != NULL)
|
||
minfo ("%pB ", m->ref);
|
||
minfo ("(%pT)\n", m->name);
|
||
}
|
||
}
|
||
|
||
static void
|
||
lang_map_flags (flagword flag)
|
||
{
|
||
if (flag & SEC_ALLOC)
|
||
minfo ("a");
|
||
|
||
if (flag & SEC_CODE)
|
||
minfo ("x");
|
||
|
||
if (flag & SEC_READONLY)
|
||
minfo ("r");
|
||
|
||
if (flag & SEC_DATA)
|
||
minfo ("w");
|
||
|
||
if (flag & SEC_LOAD)
|
||
minfo ("l");
|
||
}
|
||
|
||
void
|
||
lang_map (void)
|
||
{
|
||
lang_memory_region_type *m;
|
||
bool dis_header_printed = false;
|
||
|
||
LANG_FOR_EACH_INPUT_STATEMENT (file)
|
||
{
|
||
asection *s;
|
||
|
||
if ((file->the_bfd->flags & (BFD_LINKER_CREATED | DYNAMIC)) != 0
|
||
|| file->flags.just_syms)
|
||
continue;
|
||
|
||
if (config.print_map_discarded)
|
||
for (s = file->the_bfd->sections; s != NULL; s = s->next)
|
||
if ((s->output_section == NULL
|
||
|| s->output_section->owner != link_info.output_bfd)
|
||
&& (s->flags & (SEC_LINKER_CREATED | SEC_KEEP)) == 0)
|
||
{
|
||
if (! dis_header_printed)
|
||
{
|
||
fprintf (config.map_file, _("\nDiscarded input sections\n\n"));
|
||
dis_header_printed = true;
|
||
}
|
||
|
||
print_input_section (s, true);
|
||
}
|
||
}
|
||
|
||
minfo (_("\nMemory Configuration\n\n"));
|
||
fprintf (config.map_file, "%-16s %-18s %-18s %s\n",
|
||
_("Name"), _("Origin"), _("Length"), _("Attributes"));
|
||
|
||
for (m = lang_memory_region_list; m != NULL; m = m->next)
|
||
{
|
||
fprintf (config.map_file, "%-16s", m->name_list.name);
|
||
|
||
char buf[32];
|
||
bfd_sprintf_vma (link_info.output_bfd, buf, m->origin);
|
||
fprintf (config.map_file, " 0x%-16s", buf);
|
||
bfd_sprintf_vma (link_info.output_bfd, buf, m->length);
|
||
fprintf (config.map_file,
|
||
" 0x%*s", m->flags || m->not_flags ? -17 : 0, buf);
|
||
if (m->flags)
|
||
lang_map_flags (m->flags);
|
||
|
||
if (m->not_flags)
|
||
{
|
||
minfo ("!");
|
||
lang_map_flags (m->not_flags);
|
||
}
|
||
|
||
print_nl ();
|
||
}
|
||
|
||
fprintf (config.map_file, _("\nLinker script and memory map\n\n"));
|
||
|
||
if (!link_info.reduce_memory_overheads)
|
||
{
|
||
obstack_begin (&map_obstack, 1000);
|
||
bfd_link_hash_traverse (link_info.hash, sort_def_symbol, 0);
|
||
}
|
||
expld.phase = lang_fixed_phase_enum;
|
||
lang_statement_iteration++;
|
||
print_statements ();
|
||
|
||
ldemul_extra_map_file_text (link_info.output_bfd, &link_info,
|
||
config.map_file);
|
||
}
|
||
|
||
static bool
|
||
sort_def_symbol (struct bfd_link_hash_entry *hash_entry,
|
||
void *info ATTRIBUTE_UNUSED)
|
||
{
|
||
if ((hash_entry->type == bfd_link_hash_defined
|
||
|| hash_entry->type == bfd_link_hash_defweak)
|
||
&& hash_entry->u.def.section->owner != link_info.output_bfd
|
||
&& hash_entry->u.def.section->owner != NULL)
|
||
{
|
||
input_section_userdata_type *ud;
|
||
struct map_symbol_def *def;
|
||
|
||
ud = bfd_section_userdata (hash_entry->u.def.section);
|
||
if (!ud)
|
||
{
|
||
ud = stat_alloc (sizeof (*ud));
|
||
bfd_set_section_userdata (hash_entry->u.def.section, ud);
|
||
ud->map_symbol_def_tail = &ud->map_symbol_def_head;
|
||
ud->map_symbol_def_count = 0;
|
||
}
|
||
else if (!ud->map_symbol_def_tail)
|
||
ud->map_symbol_def_tail = &ud->map_symbol_def_head;
|
||
|
||
def = (struct map_symbol_def *) obstack_alloc (&map_obstack, sizeof *def);
|
||
def->entry = hash_entry;
|
||
*(ud->map_symbol_def_tail) = def;
|
||
ud->map_symbol_def_tail = &def->next;
|
||
ud->map_symbol_def_count++;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/* Initialize an output section. */
|
||
|
||
static void
|
||
init_os (lang_output_section_statement_type *s, flagword flags)
|
||
{
|
||
if (strcmp (s->name, DISCARD_SECTION_NAME) == 0)
|
||
einfo (_("%F%P: illegal use of `%s' section\n"), DISCARD_SECTION_NAME);
|
||
|
||
if (!s->dup_output)
|
||
s->bfd_section = bfd_get_section_by_name (link_info.output_bfd, s->name);
|
||
if (s->bfd_section == NULL)
|
||
s->bfd_section = bfd_make_section_anyway_with_flags (link_info.output_bfd,
|
||
s->name, flags);
|
||
if (s->bfd_section == NULL)
|
||
{
|
||
einfo (_("%F%P: output format %s cannot represent section"
|
||
" called %s: %E\n"),
|
||
link_info.output_bfd->xvec->name, s->name);
|
||
}
|
||
s->bfd_section->output_section = s->bfd_section;
|
||
s->bfd_section->output_offset = 0;
|
||
|
||
/* Set the userdata of the output section to the output section
|
||
statement to avoid lookup. */
|
||
bfd_set_section_userdata (s->bfd_section, s);
|
||
|
||
/* If there is a base address, make sure that any sections it might
|
||
mention are initialized. */
|
||
if (s->addr_tree != NULL)
|
||
exp_init_os (s->addr_tree);
|
||
|
||
if (s->load_base != NULL)
|
||
exp_init_os (s->load_base);
|
||
|
||
/* If supplied an alignment, set it. */
|
||
if (s->section_alignment != NULL)
|
||
s->bfd_section->alignment_power = exp_get_power (s->section_alignment,
|
||
"section alignment");
|
||
}
|
||
|
||
/* Make sure that all output sections mentioned in an expression are
|
||
initialized. */
|
||
|
||
static void
|
||
exp_init_os (etree_type *exp)
|
||
{
|
||
switch (exp->type.node_class)
|
||
{
|
||
case etree_assign:
|
||
case etree_provide:
|
||
case etree_provided:
|
||
exp_init_os (exp->assign.src);
|
||
break;
|
||
|
||
case etree_binary:
|
||
exp_init_os (exp->binary.lhs);
|
||
exp_init_os (exp->binary.rhs);
|
||
break;
|
||
|
||
case etree_trinary:
|
||
exp_init_os (exp->trinary.cond);
|
||
exp_init_os (exp->trinary.lhs);
|
||
exp_init_os (exp->trinary.rhs);
|
||
break;
|
||
|
||
case etree_assert:
|
||
exp_init_os (exp->assert_s.child);
|
||
break;
|
||
|
||
case etree_unary:
|
||
exp_init_os (exp->unary.child);
|
||
break;
|
||
|
||
case etree_name:
|
||
switch (exp->type.node_code)
|
||
{
|
||
case ADDR:
|
||
case LOADADDR:
|
||
{
|
||
lang_output_section_statement_type *os;
|
||
|
||
os = lang_output_section_find (exp->name.name);
|
||
if (os != NULL && os->bfd_section == NULL)
|
||
init_os (os, 0);
|
||
}
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
static void
|
||
section_already_linked (bfd *abfd, asection *sec, void *data)
|
||
{
|
||
lang_input_statement_type *entry = (lang_input_statement_type *) data;
|
||
|
||
/* If we are only reading symbols from this object, then we want to
|
||
discard all sections. */
|
||
if (entry->flags.just_syms)
|
||
{
|
||
bfd_link_just_syms (abfd, sec, &link_info);
|
||
return;
|
||
}
|
||
|
||
/* Deal with SHF_EXCLUDE ELF sections. */
|
||
if (!bfd_link_relocatable (&link_info)
|
||
&& (abfd->flags & BFD_PLUGIN) == 0
|
||
&& (sec->flags & (SEC_GROUP | SEC_KEEP | SEC_EXCLUDE)) == SEC_EXCLUDE)
|
||
sec->output_section = bfd_abs_section_ptr;
|
||
|
||
if (!(abfd->flags & DYNAMIC))
|
||
bfd_section_already_linked (abfd, sec, &link_info);
|
||
}
|
||
|
||
|
||
/* Returns true if SECTION is one we know will be discarded based on its
|
||
section flags, otherwise returns false. */
|
||
|
||
static bool
|
||
lang_discard_section_p (asection *section)
|
||
{
|
||
bool discard;
|
||
flagword flags = section->flags;
|
||
|
||
/* Discard sections marked with SEC_EXCLUDE. */
|
||
discard = (flags & SEC_EXCLUDE) != 0;
|
||
|
||
/* Discard the group descriptor sections when we're finally placing the
|
||
sections from within the group. */
|
||
if ((flags & SEC_GROUP) != 0
|
||
&& link_info.resolve_section_groups)
|
||
discard = true;
|
||
|
||
/* Discard debugging sections if we are stripping debugging
|
||
information. */
|
||
if ((link_info.strip == strip_debugger || link_info.strip == strip_all)
|
||
&& (flags & SEC_DEBUGGING) != 0)
|
||
discard = true;
|
||
|
||
return discard;
|
||
}
|
||
|
||
/* The wild routines.
|
||
|
||
These expand statements like *(.text) and foo.o to a list of
|
||
explicit actions, like foo.o(.text), bar.o(.text) and
|
||
foo.o(.text, .data). */
|
||
|
||
/* Add SECTION to the output section OUTPUT. Do this by creating a
|
||
lang_input_section statement which is placed at PTR. */
|
||
|
||
void
|
||
lang_add_section (lang_statement_list_type *ptr,
|
||
asection *section,
|
||
struct wildcard_list *pattern,
|
||
struct flag_info *sflag_info,
|
||
lang_output_section_statement_type *output)
|
||
{
|
||
flagword flags = section->flags;
|
||
|
||
bool discard;
|
||
lang_input_section_type *new_section;
|
||
bfd *abfd = link_info.output_bfd;
|
||
|
||
/* Is this section one we know should be discarded? */
|
||
discard = lang_discard_section_p (section);
|
||
|
||
/* Discard input sections which are assigned to a section named
|
||
DISCARD_SECTION_NAME. */
|
||
if (strcmp (output->name, DISCARD_SECTION_NAME) == 0)
|
||
discard = true;
|
||
|
||
if (discard)
|
||
{
|
||
if (section->output_section == NULL)
|
||
{
|
||
/* This prevents future calls from assigning this section. */
|
||
section->output_section = bfd_abs_section_ptr;
|
||
}
|
||
else if (link_info.non_contiguous_regions_warnings)
|
||
einfo (_("%P:%pS: warning: --enable-non-contiguous-regions makes "
|
||
"section `%pA' from `%pB' match /DISCARD/ clause.\n"),
|
||
NULL, section, section->owner);
|
||
|
||
return;
|
||
}
|
||
|
||
if (sflag_info)
|
||
{
|
||
bool keep;
|
||
|
||
keep = bfd_lookup_section_flags (&link_info, sflag_info, section);
|
||
if (!keep)
|
||
return;
|
||
}
|
||
|
||
if (section->output_section != NULL)
|
||
{
|
||
if (!link_info.non_contiguous_regions)
|
||
return;
|
||
|
||
/* SECTION has already been handled in a special way
|
||
(eg. LINK_ONCE): skip it. */
|
||
if (bfd_is_abs_section (section->output_section))
|
||
return;
|
||
|
||
/* Already assigned to the same output section, do not process
|
||
it again, to avoid creating loops between duplicate sections
|
||
later. */
|
||
if (section->output_section == output->bfd_section)
|
||
return;
|
||
|
||
if (link_info.non_contiguous_regions_warnings && output->bfd_section)
|
||
einfo (_("%P:%pS: warning: --enable-non-contiguous-regions may "
|
||
"change behaviour for section `%pA' from `%pB' (assigned to "
|
||
"%pA, but additional match: %pA)\n"),
|
||
NULL, section, section->owner, section->output_section,
|
||
output->bfd_section);
|
||
|
||
/* SECTION has already been assigned to an output section, but
|
||
the user allows it to be mapped to another one in case it
|
||
overflows. We'll later update the actual output section in
|
||
size_input_section as appropriate. */
|
||
}
|
||
|
||
/* We don't copy the SEC_NEVER_LOAD flag from an input section
|
||
to an output section, because we want to be able to include a
|
||
SEC_NEVER_LOAD section in the middle of an otherwise loaded
|
||
section (I don't know why we want to do this, but we do).
|
||
build_link_order in ldwrite.c handles this case by turning
|
||
the embedded SEC_NEVER_LOAD section into a fill. */
|
||
flags &= ~ SEC_NEVER_LOAD;
|
||
|
||
/* If final link, don't copy the SEC_LINK_ONCE flags, they've
|
||
already been processed. One reason to do this is that on pe
|
||
format targets, .text$foo sections go into .text and it's odd
|
||
to see .text with SEC_LINK_ONCE set. */
|
||
if ((flags & (SEC_LINK_ONCE | SEC_GROUP)) == (SEC_LINK_ONCE | SEC_GROUP))
|
||
{
|
||
if (link_info.resolve_section_groups)
|
||
flags &= ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC);
|
||
else
|
||
flags &= ~(SEC_LINK_DUPLICATES | SEC_RELOC);
|
||
}
|
||
else if (!bfd_link_relocatable (&link_info))
|
||
flags &= ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC);
|
||
|
||
switch (output->sectype)
|
||
{
|
||
case normal_section:
|
||
case overlay_section:
|
||
case first_overlay_section:
|
||
case type_section:
|
||
break;
|
||
case noalloc_section:
|
||
flags &= ~SEC_ALLOC;
|
||
break;
|
||
case typed_readonly_section:
|
||
case readonly_section:
|
||
flags |= SEC_READONLY;
|
||
break;
|
||
case noload_section:
|
||
flags &= ~SEC_LOAD;
|
||
flags |= SEC_NEVER_LOAD;
|
||
/* Unfortunately GNU ld has managed to evolve two different
|
||
meanings to NOLOAD in scripts. ELF gets a .bss style noload,
|
||
alloc, no contents section. All others get a noload, noalloc
|
||
section. */
|
||
if (bfd_get_flavour (link_info.output_bfd) == bfd_target_elf_flavour)
|
||
flags &= ~SEC_HAS_CONTENTS;
|
||
else
|
||
flags &= ~SEC_ALLOC;
|
||
break;
|
||
}
|
||
|
||
if (output->bfd_section == NULL)
|
||
init_os (output, flags);
|
||
|
||
/* If SEC_READONLY is not set in the input section, then clear
|
||
it from the output section. */
|
||
output->bfd_section->flags &= flags | ~SEC_READONLY;
|
||
|
||
if (output->bfd_section->linker_has_input)
|
||
{
|
||
/* Only set SEC_READONLY flag on the first input section. */
|
||
flags &= ~ SEC_READONLY;
|
||
|
||
/* Keep SEC_MERGE and SEC_STRINGS only if they are the same. */
|
||
if ((output->bfd_section->flags & (SEC_MERGE | SEC_STRINGS))
|
||
!= (flags & (SEC_MERGE | SEC_STRINGS))
|
||
|| ((flags & SEC_MERGE) != 0
|
||
&& output->bfd_section->entsize != section->entsize))
|
||
{
|
||
output->bfd_section->flags &= ~ (SEC_MERGE | SEC_STRINGS);
|
||
flags &= ~ (SEC_MERGE | SEC_STRINGS);
|
||
}
|
||
}
|
||
output->bfd_section->flags |= flags;
|
||
|
||
if (!output->bfd_section->linker_has_input)
|
||
{
|
||
output->bfd_section->linker_has_input = 1;
|
||
/* This must happen after flags have been updated. The output
|
||
section may have been created before we saw its first input
|
||
section, eg. for a data statement. */
|
||
bfd_init_private_section_data (section->owner, section,
|
||
link_info.output_bfd,
|
||
output->bfd_section,
|
||
&link_info);
|
||
if ((flags & SEC_MERGE) != 0)
|
||
output->bfd_section->entsize = section->entsize;
|
||
}
|
||
|
||
if ((flags & SEC_TIC54X_BLOCK) != 0
|
||
&& bfd_get_arch (section->owner) == bfd_arch_tic54x)
|
||
{
|
||
/* FIXME: This value should really be obtained from the bfd... */
|
||
output->block_value = 128;
|
||
}
|
||
|
||
/* When a .ctors section is placed in .init_array it must be copied
|
||
in reverse order. Similarly for .dtors. Set that up. */
|
||
if (bfd_get_flavour (link_info.output_bfd) == bfd_target_elf_flavour
|
||
&& ((startswith (section->name, ".ctors")
|
||
&& strcmp (output->bfd_section->name, ".init_array") == 0)
|
||
|| (startswith (section->name, ".dtors")
|
||
&& strcmp (output->bfd_section->name, ".fini_array") == 0))
|
||
&& (section->name[6] == 0 || section->name[6] == '.'))
|
||
section->flags |= SEC_ELF_REVERSE_COPY;
|
||
|
||
if (section->alignment_power > output->bfd_section->alignment_power)
|
||
output->bfd_section->alignment_power = section->alignment_power;
|
||
|
||
section->output_section = output->bfd_section;
|
||
|
||
if (!map_head_is_link_order)
|
||
{
|
||
asection *s = output->bfd_section->map_tail.s;
|
||
output->bfd_section->map_tail.s = section;
|
||
section->map_head.s = NULL;
|
||
section->map_tail.s = s;
|
||
if (s != NULL)
|
||
s->map_head.s = section;
|
||
else
|
||
output->bfd_section->map_head.s = section;
|
||
}
|
||
|
||
/* Add a section reference to the list. */
|
||
new_section = new_stat (lang_input_section, ptr);
|
||
new_section->section = section;
|
||
new_section->pattern = pattern;
|
||
}
|
||
|
||
/* Expand a wild statement for a particular FILE. SECTION may be
|
||
NULL, in which case it is a wild card. This assumes that the
|
||
wild statement doesn't need any sorting (of filenames or sections). */
|
||
|
||
static void
|
||
output_section_callback_nosort (lang_wild_statement_type *ptr,
|
||
struct wildcard_list *sec ATTRIBUTE_UNUSED,
|
||
asection *section,
|
||
lang_input_statement_type *file ATTRIBUTE_UNUSED,
|
||
void *output)
|
||
{
|
||
lang_output_section_statement_type *os;
|
||
|
||
os = (lang_output_section_statement_type *) output;
|
||
|
||
/* Exclude sections that match UNIQUE_SECTION_LIST. */
|
||
if (unique_section_p (section, os))
|
||
return;
|
||
|
||
lang_add_section (&ptr->children, section, ptr->section_list,
|
||
ptr->section_flag_list, os);
|
||
}
|
||
|
||
/* Check if all sections in a wild statement for a particular FILE
|
||
are readonly. */
|
||
|
||
static void
|
||
check_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
|
||
struct wildcard_list *sec ATTRIBUTE_UNUSED,
|
||
asection *section,
|
||
lang_input_statement_type *file ATTRIBUTE_UNUSED,
|
||
void *output)
|
||
{
|
||
lang_output_section_statement_type *os;
|
||
|
||
os = (lang_output_section_statement_type *) output;
|
||
|
||
/* Exclude sections that match UNIQUE_SECTION_LIST. */
|
||
if (unique_section_p (section, os))
|
||
return;
|
||
|
||
if (section->output_section == NULL && (section->flags & SEC_READONLY) == 0)
|
||
os->all_input_readonly = false;
|
||
}
|
||
|
||
/* This is passed a file name which must have been seen already and
|
||
added to the statement tree. We will see if it has been opened
|
||
already and had its symbols read. If not then we'll read it. */
|
||
|
||
static lang_input_statement_type *
|
||
lookup_name (const char *name)
|
||
{
|
||
lang_input_statement_type *search;
|
||
|
||
for (search = (void *) input_file_chain.head;
|
||
search != NULL;
|
||
search = search->next_real_file)
|
||
{
|
||
/* Use the local_sym_name as the name of the file that has
|
||
already been loaded as filename might have been transformed
|
||
via the search directory lookup mechanism. */
|
||
const char *filename = search->local_sym_name;
|
||
|
||
if (filename != NULL
|
||
&& filename_cmp (filename, name) == 0)
|
||
break;
|
||
}
|
||
|
||
if (search == NULL)
|
||
{
|
||
/* Arrange to splice the input statement added by new_afile into
|
||
statement_list after the current input_file_chain tail.
|
||
We know input_file_chain is not an empty list, and that
|
||
lookup_name was called via open_input_bfds. Later calls to
|
||
lookup_name should always match an existing input_statement. */
|
||
lang_statement_union_type **tail = stat_ptr->tail;
|
||
lang_statement_union_type **after
|
||
= (void *) ((char *) input_file_chain.tail
|
||
- offsetof (lang_input_statement_type, next_real_file)
|
||
+ offsetof (lang_input_statement_type, header.next));
|
||
lang_statement_union_type *rest = *after;
|
||
stat_ptr->tail = after;
|
||
search = new_afile (name, lang_input_file_is_search_file_enum,
|
||
default_target, NULL);
|
||
*stat_ptr->tail = rest;
|
||
if (*tail == NULL)
|
||
stat_ptr->tail = tail;
|
||
}
|
||
|
||
/* If we have already added this file, or this file is not real
|
||
don't add this file. */
|
||
if (search->flags.loaded || !search->flags.real)
|
||
return search;
|
||
|
||
if (!load_symbols (search, NULL))
|
||
return NULL;
|
||
|
||
return search;
|
||
}
|
||
|
||
/* Save LIST as a list of libraries whose symbols should not be exported. */
|
||
|
||
struct excluded_lib
|
||
{
|
||
char *name;
|
||
struct excluded_lib *next;
|
||
};
|
||
static struct excluded_lib *excluded_libs;
|
||
|
||
void
|
||
add_excluded_libs (const char *list)
|
||
{
|
||
const char *p = list, *end;
|
||
|
||
while (*p != '\0')
|
||
{
|
||
struct excluded_lib *entry;
|
||
end = strpbrk (p, ",:");
|
||
if (end == NULL)
|
||
end = p + strlen (p);
|
||
entry = (struct excluded_lib *) xmalloc (sizeof (*entry));
|
||
entry->next = excluded_libs;
|
||
entry->name = (char *) xmalloc (end - p + 1);
|
||
memcpy (entry->name, p, end - p);
|
||
entry->name[end - p] = '\0';
|
||
excluded_libs = entry;
|
||
if (*end == '\0')
|
||
break;
|
||
p = end + 1;
|
||
}
|
||
}
|
||
|
||
static void
|
||
check_excluded_libs (bfd *abfd)
|
||
{
|
||
struct excluded_lib *lib = excluded_libs;
|
||
|
||
while (lib)
|
||
{
|
||
int len = strlen (lib->name);
|
||
const char *filename = lbasename (bfd_get_filename (abfd));
|
||
|
||
if (strcmp (lib->name, "ALL") == 0)
|
||
{
|
||
abfd->no_export = true;
|
||
return;
|
||
}
|
||
|
||
if (filename_ncmp (lib->name, filename, len) == 0
|
||
&& (filename[len] == '\0'
|
||
|| (filename[len] == '.' && filename[len + 1] == 'a'
|
||
&& filename[len + 2] == '\0')))
|
||
{
|
||
abfd->no_export = true;
|
||
return;
|
||
}
|
||
|
||
lib = lib->next;
|
||
}
|
||
}
|
||
|
||
/* Get the symbols for an input file. */
|
||
|
||
bool
|
||
load_symbols (lang_input_statement_type *entry,
|
||
lang_statement_list_type *place)
|
||
{
|
||
char **matching;
|
||
|
||
if (entry->flags.loaded)
|
||
return true;
|
||
|
||
ldfile_open_file (entry);
|
||
|
||
/* Do not process further if the file was missing. */
|
||
if (entry->flags.missing_file)
|
||
return true;
|
||
|
||
if (trace_files || verbose)
|
||
info_msg ("%pI\n", entry);
|
||
|
||
if (!bfd_check_format (entry->the_bfd, bfd_archive)
|
||
&& !bfd_check_format_matches (entry->the_bfd, bfd_object, &matching))
|
||
{
|
||
bfd_error_type err;
|
||
struct lang_input_statement_flags save_flags;
|
||
extern FILE *yyin;
|
||
|
||
err = bfd_get_error ();
|
||
|
||
/* See if the emulation has some special knowledge. */
|
||
if (ldemul_unrecognized_file (entry))
|
||
{
|
||
if (err == bfd_error_file_ambiguously_recognized)
|
||
free (matching);
|
||
return true;
|
||
}
|
||
|
||
if (err == bfd_error_file_ambiguously_recognized)
|
||
{
|
||
char **p;
|
||
|
||
einfo (_("%P: %pB: file not recognized: %E;"
|
||
" matching formats:"), entry->the_bfd);
|
||
for (p = matching; *p != NULL; p++)
|
||
einfo (" %s", *p);
|
||
free (matching);
|
||
einfo ("%F\n");
|
||
}
|
||
else if (err != bfd_error_file_not_recognized
|
||
|| place == NULL)
|
||
einfo (_("%F%P: %pB: file not recognized: %E\n"), entry->the_bfd);
|
||
|
||
bfd_close (entry->the_bfd);
|
||
entry->the_bfd = NULL;
|
||
|
||
/* Try to interpret the file as a linker script. */
|
||
save_flags = input_flags;
|
||
ldfile_open_command_file (entry->filename);
|
||
|
||
push_stat_ptr (place);
|
||
input_flags.add_DT_NEEDED_for_regular
|
||
= entry->flags.add_DT_NEEDED_for_regular;
|
||
input_flags.add_DT_NEEDED_for_dynamic
|
||
= entry->flags.add_DT_NEEDED_for_dynamic;
|
||
input_flags.whole_archive = entry->flags.whole_archive;
|
||
input_flags.dynamic = entry->flags.dynamic;
|
||
|
||
ldfile_assumed_script = true;
|
||
parser_input = input_script;
|
||
current_input_file = entry->filename;
|
||
yyparse ();
|
||
current_input_file = NULL;
|
||
ldfile_assumed_script = false;
|
||
|
||
/* missing_file is sticky. sysrooted will already have been
|
||
restored when seeing EOF in yyparse, but no harm to restore
|
||
again. */
|
||
save_flags.missing_file |= input_flags.missing_file;
|
||
input_flags = save_flags;
|
||
pop_stat_ptr ();
|
||
fclose (yyin);
|
||
yyin = NULL;
|
||
entry->flags.loaded = true;
|
||
|
||
return true;
|
||
}
|
||
|
||
if (ldemul_recognized_file (entry))
|
||
return true;
|
||
|
||
/* We don't call ldlang_add_file for an archive. Instead, the
|
||
add_symbols entry point will call ldlang_add_file, via the
|
||
add_archive_element callback, for each element of the archive
|
||
which is used. */
|
||
switch (bfd_get_format (entry->the_bfd))
|
||
{
|
||
default:
|
||
break;
|
||
|
||
case bfd_object:
|
||
if (!entry->flags.reload)
|
||
ldlang_add_file (entry);
|
||
break;
|
||
|
||
case bfd_archive:
|
||
check_excluded_libs (entry->the_bfd);
|
||
|
||
bfd_set_usrdata (entry->the_bfd, entry);
|
||
if (entry->flags.whole_archive)
|
||
{
|
||
bfd *member = NULL;
|
||
bool loaded = true;
|
||
|
||
for (;;)
|
||
{
|
||
bfd *subsbfd;
|
||
member = bfd_openr_next_archived_file (entry->the_bfd, member);
|
||
|
||
if (member == NULL)
|
||
break;
|
||
|
||
if (!bfd_check_format (member, bfd_object))
|
||
{
|
||
einfo (_("%F%P: %pB: member %pB in archive is not an object\n"),
|
||
entry->the_bfd, member);
|
||
loaded = false;
|
||
}
|
||
|
||
subsbfd = member;
|
||
if (!(*link_info.callbacks
|
||
->add_archive_element) (&link_info, member,
|
||
"--whole-archive", &subsbfd))
|
||
abort ();
|
||
|
||
/* Potentially, the add_archive_element hook may have set a
|
||
substitute BFD for us. */
|
||
if (!bfd_link_add_symbols (subsbfd, &link_info))
|
||
{
|
||
einfo (_("%F%P: %pB: error adding symbols: %E\n"), member);
|
||
loaded = false;
|
||
}
|
||
}
|
||
|
||
entry->flags.loaded = loaded;
|
||
return loaded;
|
||
}
|
||
break;
|
||
}
|
||
|
||
if (bfd_link_add_symbols (entry->the_bfd, &link_info))
|
||
entry->flags.loaded = true;
|
||
else
|
||
einfo (_("%F%P: %pB: error adding symbols: %E\n"), entry->the_bfd);
|
||
|
||
return entry->flags.loaded;
|
||
}
|
||
|
||
/* Handle a wild statement. S->FILENAME or S->SECTION_LIST or both
|
||
may be NULL, indicating that it is a wildcard. Separate
|
||
lang_input_section statements are created for each part of the
|
||
expansion; they are added after the wild statement S. OUTPUT is
|
||
the output section. */
|
||
|
||
static void
|
||
wild (lang_wild_statement_type *s,
|
||
const char *target ATTRIBUTE_UNUSED,
|
||
lang_output_section_statement_type *output)
|
||
{
|
||
struct wildcard_list *sec;
|
||
|
||
if (s->filenames_sorted || s->any_specs_sorted)
|
||
{
|
||
lang_section_bst_type *tree;
|
||
|
||
walk_wild (s, output_section_callback_sort, output);
|
||
|
||
tree = s->tree;
|
||
if (tree)
|
||
{
|
||
output_section_callback_tree_to_list (s, tree, output);
|
||
s->tree = NULL;
|
||
s->rightmost = &s->tree;
|
||
}
|
||
}
|
||
else
|
||
walk_wild (s, output_section_callback_nosort, output);
|
||
|
||
if (default_common_section == NULL)
|
||
for (sec = s->section_list; sec != NULL; sec = sec->next)
|
||
if (sec->spec.name != NULL && strcmp (sec->spec.name, "COMMON") == 0)
|
||
{
|
||
/* Remember the section that common is going to in case we
|
||
later get something which doesn't know where to put it. */
|
||
default_common_section = output;
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Return TRUE iff target is the sought target. */
|
||
|
||
static int
|
||
get_target (const bfd_target *target, void *data)
|
||
{
|
||
const char *sought = (const char *) data;
|
||
|
||
return strcmp (target->name, sought) == 0;
|
||
}
|
||
|
||
/* Like strcpy() but convert to lower case as well. */
|
||
|
||
static void
|
||
stricpy (char *dest, const char *src)
|
||
{
|
||
char c;
|
||
|
||
while ((c = *src++) != 0)
|
||
*dest++ = TOLOWER (c);
|
||
|
||
*dest = 0;
|
||
}
|
||
|
||
/* Remove the first occurrence of needle (if any) in haystack
|
||
from haystack. */
|
||
|
||
static void
|
||
strcut (char *haystack, const char *needle)
|
||
{
|
||
haystack = strstr (haystack, needle);
|
||
|
||
if (haystack)
|
||
{
|
||
char *src;
|
||
|
||
for (src = haystack + strlen (needle); *src;)
|
||
*haystack++ = *src++;
|
||
|
||
*haystack = 0;
|
||
}
|
||
}
|
||
|
||
/* Compare two target format name strings.
|
||
Return a value indicating how "similar" they are. */
|
||
|
||
static int
|
||
name_compare (const char *first, const char *second)
|
||
{
|
||
char *copy1;
|
||
char *copy2;
|
||
int result;
|
||
|
||
copy1 = (char *) xmalloc (strlen (first) + 1);
|
||
copy2 = (char *) xmalloc (strlen (second) + 1);
|
||
|
||
/* Convert the names to lower case. */
|
||
stricpy (copy1, first);
|
||
stricpy (copy2, second);
|
||
|
||
/* Remove size and endian strings from the name. */
|
||
strcut (copy1, "big");
|
||
strcut (copy1, "little");
|
||
strcut (copy2, "big");
|
||
strcut (copy2, "little");
|
||
|
||
/* Return a value based on how many characters match,
|
||
starting from the beginning. If both strings are
|
||
the same then return 10 * their length. */
|
||
for (result = 0; copy1[result] == copy2[result]; result++)
|
||
if (copy1[result] == 0)
|
||
{
|
||
result *= 10;
|
||
break;
|
||
}
|
||
|
||
free (copy1);
|
||
free (copy2);
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Set by closest_target_match() below. */
|
||
static const bfd_target *winner;
|
||
|
||
/* Scan all the valid bfd targets looking for one that has the endianness
|
||
requirement that was specified on the command line, and is the nearest
|
||
match to the original output target. */
|
||
|
||
static int
|
||
closest_target_match (const bfd_target *target, void *data)
|
||
{
|
||
const bfd_target *original = (const bfd_target *) data;
|
||
|
||
if (command_line.endian == ENDIAN_BIG
|
||
&& target->byteorder != BFD_ENDIAN_BIG)
|
||
return 0;
|
||
|
||
if (command_line.endian == ENDIAN_LITTLE
|
||
&& target->byteorder != BFD_ENDIAN_LITTLE)
|
||
return 0;
|
||
|
||
/* Must be the same flavour. */
|
||
if (target->flavour != original->flavour)
|
||
return 0;
|
||
|
||
/* Ignore generic big and little endian elf vectors. */
|
||
if (strcmp (target->name, "elf32-big") == 0
|
||
|| strcmp (target->name, "elf64-big") == 0
|
||
|| strcmp (target->name, "elf32-little") == 0
|
||
|| strcmp (target->name, "elf64-little") == 0)
|
||
return 0;
|
||
|
||
/* If we have not found a potential winner yet, then record this one. */
|
||
if (winner == NULL)
|
||
{
|
||
winner = target;
|
||
return 0;
|
||
}
|
||
|
||
/* Oh dear, we now have two potential candidates for a successful match.
|
||
Compare their names and choose the better one. */
|
||
if (name_compare (target->name, original->name)
|
||
> name_compare (winner->name, original->name))
|
||
winner = target;
|
||
|
||
/* Keep on searching until wqe have checked them all. */
|
||
return 0;
|
||
}
|
||
|
||
/* Return the BFD target format of the first input file. */
|
||
|
||
static const char *
|
||
get_first_input_target (void)
|
||
{
|
||
const char *target = NULL;
|
||
|
||
LANG_FOR_EACH_INPUT_STATEMENT (s)
|
||
{
|
||
if (s->header.type == lang_input_statement_enum
|
||
&& s->flags.real)
|
||
{
|
||
ldfile_open_file (s);
|
||
|
||
if (s->the_bfd != NULL
|
||
&& bfd_check_format (s->the_bfd, bfd_object))
|
||
{
|
||
target = bfd_get_target (s->the_bfd);
|
||
|
||
if (target != NULL)
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
return target;
|
||
}
|
||
|
||
const char *
|
||
lang_get_output_target (void)
|
||
{
|
||
const char *target;
|
||
|
||
/* Has the user told us which output format to use? */
|
||
if (output_target != NULL)
|
||
return output_target;
|
||
|
||
/* No - has the current target been set to something other than
|
||
the default? */
|
||
if (current_target != default_target && current_target != NULL)
|
||
return current_target;
|
||
|
||
/* No - can we determine the format of the first input file? */
|
||
target = get_first_input_target ();
|
||
if (target != NULL)
|
||
return target;
|
||
|
||
/* Failed - use the default output target. */
|
||
return default_target;
|
||
}
|
||
|
||
/* Open the output file. */
|
||
|
||
static void
|
||
open_output (const char *name)
|
||
{
|
||
lang_input_statement_type *f;
|
||
char *out = lrealpath (name);
|
||
|
||
for (f = (void *) input_file_chain.head;
|
||
f != NULL;
|
||
f = f->next_real_file)
|
||
if (f->flags.real)
|
||
{
|
||
char *in = lrealpath (f->local_sym_name);
|
||
if (filename_cmp (in, out) == 0)
|
||
einfo (_("%F%P: input file '%s' is the same as output file\n"),
|
||
f->filename);
|
||
free (in);
|
||
}
|
||
free (out);
|
||
|
||
output_target = lang_get_output_target ();
|
||
|
||
/* Has the user requested a particular endianness on the command
|
||
line? */
|
||
if (command_line.endian != ENDIAN_UNSET)
|
||
{
|
||
/* Get the chosen target. */
|
||
const bfd_target *target
|
||
= bfd_iterate_over_targets (get_target, (void *) output_target);
|
||
|
||
/* If the target is not supported, we cannot do anything. */
|
||
if (target != NULL)
|
||
{
|
||
enum bfd_endian desired_endian;
|
||
|
||
if (command_line.endian == ENDIAN_BIG)
|
||
desired_endian = BFD_ENDIAN_BIG;
|
||
else
|
||
desired_endian = BFD_ENDIAN_LITTLE;
|
||
|
||
/* See if the target has the wrong endianness. This should
|
||
not happen if the linker script has provided big and
|
||
little endian alternatives, but some scrips don't do
|
||
this. */
|
||
if (target->byteorder != desired_endian)
|
||
{
|
||
/* If it does, then see if the target provides
|
||
an alternative with the correct endianness. */
|
||
if (target->alternative_target != NULL
|
||
&& (target->alternative_target->byteorder == desired_endian))
|
||
output_target = target->alternative_target->name;
|
||
else
|
||
{
|
||
/* Try to find a target as similar as possible to
|
||
the default target, but which has the desired
|
||
endian characteristic. */
|
||
bfd_iterate_over_targets (closest_target_match,
|
||
(void *) target);
|
||
|
||
/* Oh dear - we could not find any targets that
|
||
satisfy our requirements. */
|
||
if (winner == NULL)
|
||
einfo (_("%P: warning: could not find any targets"
|
||
" that match endianness requirement\n"));
|
||
else
|
||
output_target = winner->name;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
link_info.output_bfd = bfd_openw (name, output_target);
|
||
|
||
if (link_info.output_bfd == NULL)
|
||
{
|
||
if (bfd_get_error () == bfd_error_invalid_target)
|
||
einfo (_("%F%P: target %s not found\n"), output_target);
|
||
|
||
einfo (_("%F%P: cannot open output file %s: %E\n"), name);
|
||
}
|
||
|
||
delete_output_file_on_failure = true;
|
||
|
||
if (!bfd_set_format (link_info.output_bfd, bfd_object))
|
||
einfo (_("%F%P: %s: can not make object file: %E\n"), name);
|
||
if (!bfd_set_arch_mach (link_info.output_bfd,
|
||
ldfile_output_architecture,
|
||
ldfile_output_machine))
|
||
einfo (_("%F%P: %s: can not set architecture: %E\n"), name);
|
||
|
||
link_info.hash = bfd_link_hash_table_create (link_info.output_bfd);
|
||
if (link_info.hash == NULL)
|
||
einfo (_("%F%P: can not create hash table: %E\n"));
|
||
|
||
bfd_set_gp_size (link_info.output_bfd, g_switch_value);
|
||
}
|
||
|
||
static void
|
||
ldlang_open_output (lang_statement_union_type *statement)
|
||
{
|
||
switch (statement->header.type)
|
||
{
|
||
case lang_output_statement_enum:
|
||
ASSERT (link_info.output_bfd == NULL);
|
||
open_output (statement->output_statement.name);
|
||
ldemul_set_output_arch ();
|
||
if (config.magic_demand_paged
|
||
&& !bfd_link_relocatable (&link_info))
|
||
link_info.output_bfd->flags |= D_PAGED;
|
||
else
|
||
link_info.output_bfd->flags &= ~D_PAGED;
|
||
if (config.text_read_only)
|
||
link_info.output_bfd->flags |= WP_TEXT;
|
||
else
|
||
link_info.output_bfd->flags &= ~WP_TEXT;
|
||
if (link_info.traditional_format)
|
||
link_info.output_bfd->flags |= BFD_TRADITIONAL_FORMAT;
|
||
else
|
||
link_info.output_bfd->flags &= ~BFD_TRADITIONAL_FORMAT;
|
||
break;
|
||
|
||
case lang_target_statement_enum:
|
||
current_target = statement->target_statement.target;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
static void
|
||
init_opb (asection *s)
|
||
{
|
||
unsigned int x;
|
||
|
||
opb_shift = 0;
|
||
if (bfd_get_flavour (link_info.output_bfd) == bfd_target_elf_flavour
|
||
&& s != NULL
|
||
&& (s->flags & SEC_ELF_OCTETS) != 0)
|
||
return;
|
||
|
||
x = bfd_arch_mach_octets_per_byte (ldfile_output_architecture,
|
||
ldfile_output_machine);
|
||
if (x > 1)
|
||
while ((x & 1) == 0)
|
||
{
|
||
x >>= 1;
|
||
++opb_shift;
|
||
}
|
||
ASSERT (x == 1);
|
||
}
|
||
|
||
/* Open all the input files. */
|
||
|
||
enum open_bfd_mode
|
||
{
|
||
OPEN_BFD_NORMAL = 0,
|
||
OPEN_BFD_FORCE = 1,
|
||
OPEN_BFD_RESCAN = 2
|
||
};
|
||
#if BFD_SUPPORTS_PLUGINS
|
||
static lang_input_statement_type *plugin_insert = NULL;
|
||
static struct bfd_link_hash_entry *plugin_undefs = NULL;
|
||
#endif
|
||
|
||
static void
|
||
open_input_bfds (lang_statement_union_type *s, enum open_bfd_mode mode)
|
||
{
|
||
for (; s != NULL; s = s->header.next)
|
||
{
|
||
switch (s->header.type)
|
||
{
|
||
case lang_constructors_statement_enum:
|
||
open_input_bfds (constructor_list.head, mode);
|
||
break;
|
||
case lang_output_section_statement_enum:
|
||
open_input_bfds (s->output_section_statement.children.head, mode);
|
||
break;
|
||
case lang_wild_statement_enum:
|
||
/* Maybe we should load the file's symbols. */
|
||
if ((mode & OPEN_BFD_RESCAN) == 0
|
||
&& s->wild_statement.filename
|
||
&& !wildcardp (s->wild_statement.filename)
|
||
&& !archive_path (s->wild_statement.filename))
|
||
lookup_name (s->wild_statement.filename);
|
||
open_input_bfds (s->wild_statement.children.head, mode);
|
||
break;
|
||
case lang_group_statement_enum:
|
||
{
|
||
struct bfd_link_hash_entry *undefs;
|
||
#if BFD_SUPPORTS_PLUGINS
|
||
lang_input_statement_type *plugin_insert_save;
|
||
#endif
|
||
|
||
/* We must continually search the entries in the group
|
||
until no new symbols are added to the list of undefined
|
||
symbols. */
|
||
|
||
do
|
||
{
|
||
#if BFD_SUPPORTS_PLUGINS
|
||
plugin_insert_save = plugin_insert;
|
||
#endif
|
||
undefs = link_info.hash->undefs_tail;
|
||
open_input_bfds (s->group_statement.children.head,
|
||
mode | OPEN_BFD_FORCE);
|
||
}
|
||
while (undefs != link_info.hash->undefs_tail
|
||
#if BFD_SUPPORTS_PLUGINS
|
||
/* Objects inserted by a plugin, which are loaded
|
||
before we hit this loop, may have added new
|
||
undefs. */
|
||
|| (plugin_insert != plugin_insert_save && plugin_undefs)
|
||
#endif
|
||
);
|
||
}
|
||
break;
|
||
case lang_target_statement_enum:
|
||
current_target = s->target_statement.target;
|
||
break;
|
||
case lang_input_statement_enum:
|
||
if (s->input_statement.flags.real)
|
||
{
|
||
lang_statement_union_type **os_tail;
|
||
lang_statement_list_type add;
|
||
bfd *abfd;
|
||
|
||
s->input_statement.target = current_target;
|
||
|
||
/* If we are being called from within a group, and this
|
||
is an archive which has already been searched, then
|
||
force it to be researched unless the whole archive
|
||
has been loaded already. Do the same for a rescan.
|
||
Likewise reload --as-needed shared libs. */
|
||
if (mode != OPEN_BFD_NORMAL
|
||
#if BFD_SUPPORTS_PLUGINS
|
||
&& ((mode & OPEN_BFD_RESCAN) == 0
|
||
|| plugin_insert == NULL)
|
||
#endif
|
||
&& s->input_statement.flags.loaded
|
||
&& (abfd = s->input_statement.the_bfd) != NULL
|
||
&& ((bfd_get_format (abfd) == bfd_archive
|
||
&& !s->input_statement.flags.whole_archive)
|
||
|| (bfd_get_format (abfd) == bfd_object
|
||
&& ((abfd->flags) & DYNAMIC) != 0
|
||
&& s->input_statement.flags.add_DT_NEEDED_for_regular
|
||
&& bfd_get_flavour (abfd) == bfd_target_elf_flavour
|
||
&& (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)))
|
||
{
|
||
s->input_statement.flags.loaded = false;
|
||
s->input_statement.flags.reload = true;
|
||
}
|
||
|
||
os_tail = lang_os_list.tail;
|
||
lang_list_init (&add);
|
||
|
||
if (!load_symbols (&s->input_statement, &add))
|
||
config.make_executable = false;
|
||
|
||
if (add.head != NULL)
|
||
{
|
||
/* If this was a script with output sections then
|
||
tack any added statements on to the end of the
|
||
list. This avoids having to reorder the output
|
||
section statement list. Very likely the user
|
||
forgot -T, and whatever we do here will not meet
|
||
naive user expectations. */
|
||
if (os_tail != lang_os_list.tail)
|
||
{
|
||
einfo (_("%P: warning: %s contains output sections;"
|
||
" did you forget -T?\n"),
|
||
s->input_statement.filename);
|
||
*stat_ptr->tail = add.head;
|
||
stat_ptr->tail = add.tail;
|
||
}
|
||
else
|
||
{
|
||
*add.tail = s->header.next;
|
||
s->header.next = add.head;
|
||
}
|
||
}
|
||
}
|
||
#if BFD_SUPPORTS_PLUGINS
|
||
/* If we have found the point at which a plugin added new
|
||
files, clear plugin_insert to enable archive rescan. */
|
||
if (&s->input_statement == plugin_insert)
|
||
plugin_insert = NULL;
|
||
#endif
|
||
break;
|
||
case lang_assignment_statement_enum:
|
||
if (s->assignment_statement.exp->type.node_class != etree_assert)
|
||
exp_fold_tree_no_dot (s->assignment_statement.exp);
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Exit if any of the files were missing. */
|
||
if (input_flags.missing_file)
|
||
einfo ("%F");
|
||
}
|
||
|
||
#ifdef ENABLE_LIBCTF
|
||
/* Emit CTF errors and warnings. fp can be NULL to report errors/warnings
|
||
that happened specifically at CTF open time. */
|
||
static void
|
||
lang_ctf_errs_warnings (ctf_dict_t *fp)
|
||
{
|
||
ctf_next_t *i = NULL;
|
||
char *text;
|
||
int is_warning;
|
||
int err;
|
||
|
||
while ((text = ctf_errwarning_next (fp, &i, &is_warning, &err)) != NULL)
|
||
{
|
||
einfo (_("%s: %s\n"), is_warning ? _("CTF warning"): _("CTF error"),
|
||
text);
|
||
free (text);
|
||
}
|
||
if (err != ECTF_NEXT_END)
|
||
{
|
||
einfo (_("CTF error: cannot get CTF errors: `%s'\n"),
|
||
ctf_errmsg (err));
|
||
}
|
||
|
||
/* `err' returns errors from the error/warning iterator in particular.
|
||
These never assert. But if we have an fp, that could have recorded
|
||
an assertion failure: assert if it has done so. */
|
||
ASSERT (!fp || ctf_errno (fp) != ECTF_INTERNAL);
|
||
}
|
||
|
||
/* Open the CTF sections in the input files with libctf: if any were opened,
|
||
create a fake input file that we'll write the merged CTF data to later
|
||
on. */
|
||
|
||
static void
|
||
ldlang_open_ctf (void)
|
||
{
|
||
int any_ctf = 0;
|
||
int err;
|
||
|
||
LANG_FOR_EACH_INPUT_STATEMENT (file)
|
||
{
|
||
asection *sect;
|
||
|
||
/* Incoming files from the compiler have a single ctf_dict_t in them
|
||
(which is presented to us by the libctf API in a ctf_archive_t
|
||
wrapper): files derived from a previous relocatable link have a CTF
|
||
archive containing possibly many CTF files. */
|
||
|
||
if ((file->the_ctf = ctf_bfdopen (file->the_bfd, &err)) == NULL)
|
||
{
|
||
if (err != ECTF_NOCTFDATA)
|
||
{
|
||
lang_ctf_errs_warnings (NULL);
|
||
einfo (_("%P: warning: CTF section in %pB not loaded; "
|
||
"its types will be discarded: %s\n"), file->the_bfd,
|
||
ctf_errmsg (err));
|
||
}
|
||
continue;
|
||
}
|
||
|
||
/* Prevent the contents of this section from being written, while
|
||
requiring the section itself to be duplicated in the output, but only
|
||
once. */
|
||
/* This section must exist if ctf_bfdopen() succeeded. */
|
||
sect = bfd_get_section_by_name (file->the_bfd, ".ctf");
|
||
sect->size = 0;
|
||
sect->flags |= SEC_NEVER_LOAD | SEC_HAS_CONTENTS | SEC_LINKER_CREATED;
|
||
|
||
if (any_ctf)
|
||
sect->flags |= SEC_EXCLUDE;
|
||
any_ctf = 1;
|
||
}
|
||
|
||
if (!any_ctf)
|
||
{
|
||
ctf_output = NULL;
|
||
return;
|
||
}
|
||
|
||
if ((ctf_output = ctf_create (&err)) != NULL)
|
||
return;
|
||
|
||
einfo (_("%P: warning: CTF output not created: `%s'\n"),
|
||
ctf_errmsg (err));
|
||
|
||
LANG_FOR_EACH_INPUT_STATEMENT (errfile)
|
||
ctf_close (errfile->the_ctf);
|
||
}
|
||
|
||
/* Merge together CTF sections. After this, only the symtab-dependent
|
||
function and data object sections need adjustment. */
|
||
|
||
static void
|
||
lang_merge_ctf (void)
|
||
{
|
||
asection *output_sect;
|
||
int flags = 0;
|
||
|
||
if (!ctf_output)
|
||
return;
|
||
|
||
output_sect = bfd_get_section_by_name (link_info.output_bfd, ".ctf");
|
||
|
||
/* If the section was discarded, don't waste time merging. */
|
||
if (output_sect == NULL)
|
||
{
|
||
ctf_dict_close (ctf_output);
|
||
ctf_output = NULL;
|
||
|
||
LANG_FOR_EACH_INPUT_STATEMENT (file)
|
||
{
|
||
ctf_close (file->the_ctf);
|
||
file->the_ctf = NULL;
|
||
}
|
||
return;
|
||
}
|
||
|
||
LANG_FOR_EACH_INPUT_STATEMENT (file)
|
||
{
|
||
if (!file->the_ctf)
|
||
continue;
|
||
|
||
/* Takes ownership of file->the_ctf. */
|
||
if (ctf_link_add_ctf (ctf_output, file->the_ctf, file->filename) < 0)
|
||
{
|
||
einfo (_("%P: warning: CTF section in %pB cannot be linked: `%s'\n"),
|
||
file->the_bfd, ctf_errmsg (ctf_errno (ctf_output)));
|
||
ctf_close (file->the_ctf);
|
||
file->the_ctf = NULL;
|
||
continue;
|
||
}
|
||
}
|
||
|
||
if (!config.ctf_share_duplicated)
|
||
flags = CTF_LINK_SHARE_UNCONFLICTED;
|
||
else
|
||
flags = CTF_LINK_SHARE_DUPLICATED;
|
||
if (!config.ctf_variables)
|
||
flags |= CTF_LINK_OMIT_VARIABLES_SECTION;
|
||
if (bfd_link_relocatable (&link_info))
|
||
flags |= CTF_LINK_NO_FILTER_REPORTED_SYMS;
|
||
|
||
if (ctf_link (ctf_output, flags) < 0)
|
||
{
|
||
lang_ctf_errs_warnings (ctf_output);
|
||
einfo (_("%P: warning: CTF linking failed; "
|
||
"output will have no CTF section: %s\n"),
|
||
ctf_errmsg (ctf_errno (ctf_output)));
|
||
if (output_sect)
|
||
{
|
||
output_sect->size = 0;
|
||
output_sect->flags |= SEC_EXCLUDE;
|
||
}
|
||
}
|
||
/* Output any lingering errors that didn't come from ctf_link. */
|
||
lang_ctf_errs_warnings (ctf_output);
|
||
}
|
||
|
||
/* Let the emulation acquire strings from the dynamic strtab to help it optimize
|
||
the CTF, if supported. */
|
||
|
||
void
|
||
ldlang_ctf_acquire_strings (struct elf_strtab_hash *dynstrtab)
|
||
{
|
||
ldemul_acquire_strings_for_ctf (ctf_output, dynstrtab);
|
||
}
|
||
|
||
/* Inform the emulation about the addition of a new dynamic symbol, in BFD
|
||
internal format. */
|
||
void ldlang_ctf_new_dynsym (int symidx, struct elf_internal_sym *sym)
|
||
{
|
||
ldemul_new_dynsym_for_ctf (ctf_output, symidx, sym);
|
||
}
|
||
|
||
/* Write out the CTF section. Called early, if the emulation isn't going to
|
||
need to dedup against the strtab and symtab, then possibly called from the
|
||
target linker code if the dedup has happened. */
|
||
static void
|
||
lang_write_ctf (int late)
|
||
{
|
||
size_t output_size;
|
||
asection *output_sect;
|
||
|
||
if (!ctf_output)
|
||
return;
|
||
|
||
if (late)
|
||
{
|
||
/* Emit CTF late if this emulation says it can do so. */
|
||
if (ldemul_emit_ctf_early ())
|
||
return;
|
||
}
|
||
else
|
||
{
|
||
if (!ldemul_emit_ctf_early ())
|
||
return;
|
||
}
|
||
|
||
/* Inform the emulation that all the symbols that will be received have
|
||
been. */
|
||
|
||
ldemul_new_dynsym_for_ctf (ctf_output, 0, NULL);
|
||
|
||
/* Emit CTF. */
|
||
|
||
output_sect = bfd_get_section_by_name (link_info.output_bfd, ".ctf");
|
||
if (output_sect)
|
||
{
|
||
output_sect->contents = ctf_link_write (ctf_output, &output_size,
|
||
CTF_COMPRESSION_THRESHOLD);
|
||
output_sect->size = output_size;
|
||
output_sect->flags |= SEC_IN_MEMORY | SEC_KEEP;
|
||
|
||
lang_ctf_errs_warnings (ctf_output);
|
||
if (!output_sect->contents)
|
||
{
|
||
einfo (_("%P: warning: CTF section emission failed; "
|
||
"output will have no CTF section: %s\n"),
|
||
ctf_errmsg (ctf_errno (ctf_output)));
|
||
output_sect->size = 0;
|
||
output_sect->flags |= SEC_EXCLUDE;
|
||
}
|
||
}
|
||
|
||
/* This also closes every CTF input file used in the link. */
|
||
ctf_dict_close (ctf_output);
|
||
ctf_output = NULL;
|
||
|
||
LANG_FOR_EACH_INPUT_STATEMENT (file)
|
||
file->the_ctf = NULL;
|
||
}
|
||
|
||
/* Write out the CTF section late, if the emulation needs that. */
|
||
|
||
void
|
||
ldlang_write_ctf_late (void)
|
||
{
|
||
/* Trigger a "late call", if the emulation needs one. */
|
||
|
||
lang_write_ctf (1);
|
||
}
|
||
#else
|
||
static void
|
||
ldlang_open_ctf (void)
|
||
{
|
||
LANG_FOR_EACH_INPUT_STATEMENT (file)
|
||
{
|
||
asection *sect;
|
||
|
||
/* If built without CTF, warn and delete all CTF sections from the output.
|
||
(The alternative would be to simply concatenate them, which does not
|
||
yield a valid CTF section.) */
|
||
|
||
if ((sect = bfd_get_section_by_name (file->the_bfd, ".ctf")) != NULL)
|
||
{
|
||
einfo (_("%P: warning: CTF section in %pB not linkable: "
|
||
"%P was built without support for CTF\n"), file->the_bfd);
|
||
sect->size = 0;
|
||
sect->flags |= SEC_EXCLUDE;
|
||
}
|
||
}
|
||
}
|
||
|
||
static void lang_merge_ctf (void) {}
|
||
void
|
||
ldlang_ctf_acquire_strings (struct elf_strtab_hash *dynstrtab
|
||
ATTRIBUTE_UNUSED) {}
|
||
void
|
||
ldlang_ctf_new_dynsym (int symidx ATTRIBUTE_UNUSED,
|
||
struct elf_internal_sym *sym ATTRIBUTE_UNUSED) {}
|
||
static void lang_write_ctf (int late ATTRIBUTE_UNUSED) {}
|
||
void ldlang_write_ctf_late (void) {}
|
||
#endif
|
||
|
||
/* Add the supplied name to the symbol table as an undefined reference.
|
||
This is a two step process as the symbol table doesn't even exist at
|
||
the time the ld command line is processed. First we put the name
|
||
on a list, then, once the output file has been opened, transfer the
|
||
name to the symbol table. */
|
||
|
||
typedef struct bfd_sym_chain ldlang_undef_chain_list_type;
|
||
|
||
#define ldlang_undef_chain_list_head entry_symbol.next
|
||
|
||
void
|
||
ldlang_add_undef (const char *const name, bool cmdline ATTRIBUTE_UNUSED)
|
||
{
|
||
ldlang_undef_chain_list_type *new_undef;
|
||
|
||
new_undef = stat_alloc (sizeof (*new_undef));
|
||
new_undef->next = ldlang_undef_chain_list_head;
|
||
ldlang_undef_chain_list_head = new_undef;
|
||
|
||
new_undef->name = xstrdup (name);
|
||
|
||
if (link_info.output_bfd != NULL)
|
||
insert_undefined (new_undef->name);
|
||
}
|
||
|
||
/* Insert NAME as undefined in the symbol table. */
|
||
|
||
static void
|
||
insert_undefined (const char *name)
|
||
{
|
||
struct bfd_link_hash_entry *h;
|
||
|
||
h = bfd_link_hash_lookup (link_info.hash, name, true, false, true);
|
||
if (h == NULL)
|
||
einfo (_("%F%P: bfd_link_hash_lookup failed: %E\n"));
|
||
if (h->type == bfd_link_hash_new)
|
||
{
|
||
h->type = bfd_link_hash_undefined;
|
||
h->u.undef.abfd = NULL;
|
||
h->non_ir_ref_regular = true;
|
||
bfd_link_add_undef (link_info.hash, h);
|
||
}
|
||
}
|
||
|
||
/* Run through the list of undefineds created above and place them
|
||
into the linker hash table as undefined symbols belonging to the
|
||
script file. */
|
||
|
||
static void
|
||
lang_place_undefineds (void)
|
||
{
|
||
ldlang_undef_chain_list_type *ptr;
|
||
|
||
for (ptr = ldlang_undef_chain_list_head; ptr != NULL; ptr = ptr->next)
|
||
insert_undefined (ptr->name);
|
||
}
|
||
|
||
/* Mark -u symbols against garbage collection. */
|
||
|
||
static void
|
||
lang_mark_undefineds (void)
|
||
{
|
||
ldlang_undef_chain_list_type *ptr;
|
||
|
||
if (is_elf_hash_table (link_info.hash))
|
||
for (ptr = ldlang_undef_chain_list_head; ptr != NULL; ptr = ptr->next)
|
||
{
|
||
struct elf_link_hash_entry *h = (struct elf_link_hash_entry *)
|
||
bfd_link_hash_lookup (link_info.hash, ptr->name, false, false, true);
|
||
if (h != NULL)
|
||
h->mark = 1;
|
||
}
|
||
}
|
||
|
||
/* Structure used to build the list of symbols that the user has required
|
||
be defined. */
|
||
|
||
struct require_defined_symbol
|
||
{
|
||
const char *name;
|
||
struct require_defined_symbol *next;
|
||
};
|
||
|
||
/* The list of symbols that the user has required be defined. */
|
||
|
||
static struct require_defined_symbol *require_defined_symbol_list;
|
||
|
||
/* Add a new symbol NAME to the list of symbols that are required to be
|
||
defined. */
|
||
|
||
void
|
||
ldlang_add_require_defined (const char *const name)
|
||
{
|
||
struct require_defined_symbol *ptr;
|
||
|
||
ldlang_add_undef (name, true);
|
||
ptr = stat_alloc (sizeof (*ptr));
|
||
ptr->next = require_defined_symbol_list;
|
||
ptr->name = strdup (name);
|
||
require_defined_symbol_list = ptr;
|
||
}
|
||
|
||
/* Check that all symbols the user required to be defined, are defined,
|
||
raise an error if we find a symbol that is not defined. */
|
||
|
||
static void
|
||
ldlang_check_require_defined_symbols (void)
|
||
{
|
||
struct require_defined_symbol *ptr;
|
||
|
||
for (ptr = require_defined_symbol_list; ptr != NULL; ptr = ptr->next)
|
||
{
|
||
struct bfd_link_hash_entry *h;
|
||
|
||
h = bfd_link_hash_lookup (link_info.hash, ptr->name,
|
||
false, false, true);
|
||
if (h == NULL
|
||
|| (h->type != bfd_link_hash_defined
|
||
&& h->type != bfd_link_hash_defweak))
|
||
einfo(_("%X%P: required symbol `%s' not defined\n"), ptr->name);
|
||
}
|
||
}
|
||
|
||
/* Check for all readonly or some readwrite sections. */
|
||
|
||
static void
|
||
check_input_sections
|
||
(lang_statement_union_type *s,
|
||
lang_output_section_statement_type *output_section_statement)
|
||
{
|
||
for (; s != NULL; s = s->header.next)
|
||
{
|
||
switch (s->header.type)
|
||
{
|
||
case lang_wild_statement_enum:
|
||
walk_wild (&s->wild_statement, check_section_callback,
|
||
output_section_statement);
|
||
if (!output_section_statement->all_input_readonly)
|
||
return;
|
||
break;
|
||
case lang_constructors_statement_enum:
|
||
check_input_sections (constructor_list.head,
|
||
output_section_statement);
|
||
if (!output_section_statement->all_input_readonly)
|
||
return;
|
||
break;
|
||
case lang_group_statement_enum:
|
||
check_input_sections (s->group_statement.children.head,
|
||
output_section_statement);
|
||
if (!output_section_statement->all_input_readonly)
|
||
return;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Update wildcard statements if needed. */
|
||
|
||
static void
|
||
update_wild_statements (lang_statement_union_type *s)
|
||
{
|
||
struct wildcard_list *sec;
|
||
|
||
switch (sort_section)
|
||
{
|
||
default:
|
||
FAIL ();
|
||
|
||
case none:
|
||
break;
|
||
|
||
case by_name:
|
||
case by_alignment:
|
||
for (; s != NULL; s = s->header.next)
|
||
{
|
||
switch (s->header.type)
|
||
{
|
||
default:
|
||
break;
|
||
|
||
case lang_wild_statement_enum:
|
||
for (sec = s->wild_statement.section_list; sec != NULL;
|
||
sec = sec->next)
|
||
/* Don't sort .init/.fini sections. */
|
||
if (strcmp (sec->spec.name, ".init") != 0
|
||
&& strcmp (sec->spec.name, ".fini") != 0)
|
||
{
|
||
switch (sec->spec.sorted)
|
||
{
|
||
case none:
|
||
sec->spec.sorted = sort_section;
|
||
break;
|
||
case by_name:
|
||
if (sort_section == by_alignment)
|
||
sec->spec.sorted = by_name_alignment;
|
||
break;
|
||
case by_alignment:
|
||
if (sort_section == by_name)
|
||
sec->spec.sorted = by_alignment_name;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
s->wild_statement.any_specs_sorted = true;
|
||
}
|
||
break;
|
||
|
||
case lang_constructors_statement_enum:
|
||
update_wild_statements (constructor_list.head);
|
||
break;
|
||
|
||
case lang_output_section_statement_enum:
|
||
update_wild_statements
|
||
(s->output_section_statement.children.head);
|
||
break;
|
||
|
||
case lang_group_statement_enum:
|
||
update_wild_statements (s->group_statement.children.head);
|
||
break;
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Open input files and attach to output sections. */
|
||
|
||
static void
|
||
map_input_to_output_sections
|
||
(lang_statement_union_type *s, const char *target,
|
||
lang_output_section_statement_type *os)
|
||
{
|
||
for (; s != NULL; s = s->header.next)
|
||
{
|
||
lang_output_section_statement_type *tos;
|
||
flagword flags;
|
||
unsigned int type = 0;
|
||
|
||
switch (s->header.type)
|
||
{
|
||
case lang_wild_statement_enum:
|
||
wild (&s->wild_statement, target, os);
|
||
break;
|
||
case lang_constructors_statement_enum:
|
||
map_input_to_output_sections (constructor_list.head,
|
||
target,
|
||
os);
|
||
break;
|
||
case lang_output_section_statement_enum:
|
||
tos = &s->output_section_statement;
|
||
if (tos->constraint == ONLY_IF_RW
|
||
|| tos->constraint == ONLY_IF_RO)
|
||
{
|
||
tos->all_input_readonly = true;
|
||
check_input_sections (tos->children.head, tos);
|
||
if (tos->all_input_readonly != (tos->constraint == ONLY_IF_RO))
|
||
tos->constraint = -1;
|
||
}
|
||
if (tos->constraint >= 0)
|
||
map_input_to_output_sections (tos->children.head,
|
||
target,
|
||
tos);
|
||
break;
|
||
case lang_output_statement_enum:
|
||
break;
|
||
case lang_target_statement_enum:
|
||
target = s->target_statement.target;
|
||
break;
|
||
case lang_group_statement_enum:
|
||
map_input_to_output_sections (s->group_statement.children.head,
|
||
target,
|
||
os);
|
||
break;
|
||
case lang_data_statement_enum:
|
||
/* Make sure that any sections mentioned in the expression
|
||
are initialized. */
|
||
exp_init_os (s->data_statement.exp);
|
||
/* The output section gets CONTENTS, ALLOC and LOAD, but
|
||
these may be overridden by the script. */
|
||
flags = SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD;
|
||
switch (os->sectype)
|
||
{
|
||
case normal_section:
|
||
case overlay_section:
|
||
case first_overlay_section:
|
||
break;
|
||
case noalloc_section:
|
||
flags = SEC_HAS_CONTENTS;
|
||
break;
|
||
case readonly_section:
|
||
flags |= SEC_READONLY;
|
||
break;
|
||
case typed_readonly_section:
|
||
flags |= SEC_READONLY;
|
||
/* Fall through. */
|
||
case type_section:
|
||
if (os->sectype_value->type.node_class == etree_name
|
||
&& os->sectype_value->type.node_code == NAME)
|
||
{
|
||
const char *name = os->sectype_value->name.name;
|
||
if (strcmp (name, "SHT_PROGBITS") == 0)
|
||
type = SHT_PROGBITS;
|
||
else if (strcmp (name, "SHT_STRTAB") == 0)
|
||
type = SHT_STRTAB;
|
||
else if (strcmp (name, "SHT_NOTE") == 0)
|
||
type = SHT_NOTE;
|
||
else if (strcmp (name, "SHT_NOBITS") == 0)
|
||
type = SHT_NOBITS;
|
||
else if (strcmp (name, "SHT_INIT_ARRAY") == 0)
|
||
type = SHT_INIT_ARRAY;
|
||
else if (strcmp (name, "SHT_FINI_ARRAY") == 0)
|
||
type = SHT_FINI_ARRAY;
|
||
else if (strcmp (name, "SHT_PREINIT_ARRAY") == 0)
|
||
type = SHT_PREINIT_ARRAY;
|
||
else
|
||
einfo (_ ("%F%P: invalid type for output section `%s'\n"),
|
||
os->name);
|
||
}
|
||
else
|
||
{
|
||
exp_fold_tree_no_dot (os->sectype_value);
|
||
if (expld.result.valid_p)
|
||
type = expld.result.value;
|
||
else
|
||
einfo (_ ("%F%P: invalid type for output section `%s'\n"),
|
||
os->name);
|
||
}
|
||
break;
|
||
case noload_section:
|
||
if (bfd_get_flavour (link_info.output_bfd)
|
||
== bfd_target_elf_flavour)
|
||
flags = SEC_NEVER_LOAD | SEC_ALLOC;
|
||
else
|
||
flags = SEC_NEVER_LOAD | SEC_HAS_CONTENTS;
|
||
break;
|
||
}
|
||
if (os->bfd_section == NULL)
|
||
init_os (os, flags | SEC_READONLY);
|
||
else
|
||
os->bfd_section->flags |= flags;
|
||
os->bfd_section->type = type;
|
||
break;
|
||
case lang_input_section_enum:
|
||
break;
|
||
case lang_fill_statement_enum:
|
||
case lang_object_symbols_statement_enum:
|
||
case lang_reloc_statement_enum:
|
||
case lang_padding_statement_enum:
|
||
case lang_input_statement_enum:
|
||
if (os != NULL && os->bfd_section == NULL)
|
||
init_os (os, 0);
|
||
break;
|
||
case lang_assignment_statement_enum:
|
||
if (os != NULL && os->bfd_section == NULL)
|
||
init_os (os, 0);
|
||
|
||
/* Make sure that any sections mentioned in the assignment
|
||
are initialized. */
|
||
exp_init_os (s->assignment_statement.exp);
|
||
break;
|
||
case lang_address_statement_enum:
|
||
/* Mark the specified section with the supplied address.
|
||
If this section was actually a segment marker, then the
|
||
directive is ignored if the linker script explicitly
|
||
processed the segment marker. Originally, the linker
|
||
treated segment directives (like -Ttext on the
|
||
command-line) as section directives. We honor the
|
||
section directive semantics for backwards compatibility;
|
||
linker scripts that do not specifically check for
|
||
SEGMENT_START automatically get the old semantics. */
|
||
if (!s->address_statement.segment
|
||
|| !s->address_statement.segment->used)
|
||
{
|
||
const char *name = s->address_statement.section_name;
|
||
|
||
/* Create the output section statement here so that
|
||
orphans with a set address will be placed after other
|
||
script sections. If we let the orphan placement code
|
||
place them in amongst other sections then the address
|
||
will affect following script sections, which is
|
||
likely to surprise naive users. */
|
||
tos = lang_output_section_statement_lookup (name, 0, 1);
|
||
tos->addr_tree = s->address_statement.address;
|
||
if (tos->bfd_section == NULL)
|
||
init_os (tos, 0);
|
||
}
|
||
break;
|
||
case lang_insert_statement_enum:
|
||
break;
|
||
case lang_input_matcher_enum:
|
||
FAIL ();
|
||
}
|
||
}
|
||
}
|
||
|
||
/* An insert statement snips out all the linker statements from the
|
||
start of the list and places them after the output section
|
||
statement specified by the insert. This operation is complicated
|
||
by the fact that we keep a doubly linked list of output section
|
||
statements as well as the singly linked list of all statements.
|
||
FIXME someday: Twiddling with the list not only moves statements
|
||
from the user's script but also input and group statements that are
|
||
built from command line object files and --start-group. We only
|
||
get away with this because the list pointers used by file_chain
|
||
and input_file_chain are not reordered, and processing via
|
||
statement_list after this point mostly ignores input statements.
|
||
One exception is the map file, where LOAD and START GROUP/END GROUP
|
||
can end up looking odd. */
|
||
|
||
static void
|
||
process_insert_statements (lang_statement_union_type **start)
|
||
{
|
||
lang_statement_union_type **s;
|
||
lang_output_section_statement_type *first_os = NULL;
|
||
lang_output_section_statement_type *last_os = NULL;
|
||
lang_output_section_statement_type *os;
|
||
|
||
s = start;
|
||
while (*s != NULL)
|
||
{
|
||
if ((*s)->header.type == lang_output_section_statement_enum)
|
||
{
|
||
/* Keep pointers to the first and last output section
|
||
statement in the sequence we may be about to move. */
|
||
os = &(*s)->output_section_statement;
|
||
|
||
ASSERT (last_os == NULL || last_os->next == os);
|
||
last_os = os;
|
||
|
||
/* Set constraint negative so that lang_output_section_find
|
||
won't match this output section statement. At this
|
||
stage in linking constraint has values in the range
|
||
[-1, ONLY_IN_RW]. */
|
||
last_os->constraint = -2 - last_os->constraint;
|
||
if (first_os == NULL)
|
||
first_os = last_os;
|
||
}
|
||
else if ((*s)->header.type == lang_group_statement_enum)
|
||
{
|
||
/* A user might put -T between --start-group and
|
||
--end-group. One way this odd construct might arise is
|
||
from a wrapper around ld to change library search
|
||
behaviour. For example:
|
||
#! /bin/sh
|
||
exec real_ld --start-group "$@" --end-group
|
||
This isn't completely unreasonable so go looking inside a
|
||
group statement for insert statements. */
|
||
process_insert_statements (&(*s)->group_statement.children.head);
|
||
}
|
||
else if ((*s)->header.type == lang_insert_statement_enum)
|
||
{
|
||
lang_insert_statement_type *i = &(*s)->insert_statement;
|
||
lang_output_section_statement_type *where;
|
||
lang_statement_union_type **ptr;
|
||
lang_statement_union_type *first;
|
||
|
||
if (link_info.non_contiguous_regions)
|
||
{
|
||
einfo (_("warning: INSERT statement in linker script is "
|
||
"incompatible with --enable-non-contiguous-regions.\n"));
|
||
}
|
||
|
||
where = lang_output_section_find (i->where);
|
||
if (where != NULL && i->is_before)
|
||
{
|
||
do
|
||
where = where->prev;
|
||
while (where != NULL && where->constraint < 0);
|
||
}
|
||
if (where == NULL)
|
||
{
|
||
einfo (_("%F%P: %s not found for insert\n"), i->where);
|
||
return;
|
||
}
|
||
|
||
/* Deal with reordering the output section statement list. */
|
||
if (last_os != NULL)
|
||
{
|
||
asection *first_sec, *last_sec;
|
||
struct lang_output_section_statement_struct **next;
|
||
|
||
/* Snip out the output sections we are moving. */
|
||
first_os->prev->next = last_os->next;
|
||
if (last_os->next == NULL)
|
||
{
|
||
next = &first_os->prev->next;
|
||
lang_os_list.tail = (lang_statement_union_type **) next;
|
||
}
|
||
else
|
||
last_os->next->prev = first_os->prev;
|
||
/* Add them in at the new position. */
|
||
last_os->next = where->next;
|
||
if (where->next == NULL)
|
||
{
|
||
next = &last_os->next;
|
||
lang_os_list.tail = (lang_statement_union_type **) next;
|
||
}
|
||
else
|
||
where->next->prev = last_os;
|
||
first_os->prev = where;
|
||
where->next = first_os;
|
||
|
||
/* Move the bfd sections in the same way. */
|
||
first_sec = NULL;
|
||
last_sec = NULL;
|
||
for (os = first_os; os != NULL; os = os->next)
|
||
{
|
||
os->constraint = -2 - os->constraint;
|
||
if (os->bfd_section != NULL
|
||
&& os->bfd_section->owner != NULL)
|
||
{
|
||
last_sec = os->bfd_section;
|
||
if (first_sec == NULL)
|
||
first_sec = last_sec;
|
||
}
|
||
if (os == last_os)
|
||
break;
|
||
}
|
||
if (last_sec != NULL)
|
||
{
|
||
asection *sec = where->bfd_section;
|
||
if (sec == NULL)
|
||
sec = output_prev_sec_find (where);
|
||
|
||
/* The place we want to insert must come after the
|
||
sections we are moving. So if we find no
|
||
section or if the section is the same as our
|
||
last section, then no move is needed. */
|
||
if (sec != NULL && sec != last_sec)
|
||
{
|
||
/* Trim them off. */
|
||
if (first_sec->prev != NULL)
|
||
first_sec->prev->next = last_sec->next;
|
||
else
|
||
link_info.output_bfd->sections = last_sec->next;
|
||
if (last_sec->next != NULL)
|
||
last_sec->next->prev = first_sec->prev;
|
||
else
|
||
link_info.output_bfd->section_last = first_sec->prev;
|
||
/* Add back. */
|
||
if (sec->owner == NULL)
|
||
/* SEC is the absolute section, from the
|
||
first dummy output section statement. Add
|
||
back the sections we trimmed off to the
|
||
start of the bfd sections. */
|
||
sec = NULL;
|
||
if (sec != NULL)
|
||
last_sec->next = sec->next;
|
||
else
|
||
last_sec->next = link_info.output_bfd->sections;
|
||
if (last_sec->next != NULL)
|
||
last_sec->next->prev = last_sec;
|
||
else
|
||
link_info.output_bfd->section_last = last_sec;
|
||
first_sec->prev = sec;
|
||
if (first_sec->prev != NULL)
|
||
first_sec->prev->next = first_sec;
|
||
else
|
||
link_info.output_bfd->sections = first_sec;
|
||
}
|
||
}
|
||
}
|
||
|
||
lang_statement_union_type *after = (void *) where;
|
||
if (where == &lang_os_list.head->output_section_statement
|
||
&& where->next == first_os)
|
||
{
|
||
/* PR30155. Handle a corner case where the statement
|
||
list is something like the following:
|
||
. LOAD t.o
|
||
. .data 0x0000000000000000 0x0
|
||
. [0x0000000000000000] b = .
|
||
. *(.data)
|
||
. .data 0x0000000000000000 0x0 t.o
|
||
. 0x0000000000000000 0x4 LONG 0x0
|
||
. INSERT BEFORE .text.start
|
||
. [0x0000000000000004] a = .
|
||
. .text.start 0x0000000000000000 0x0
|
||
. [0x0000000000000000] c = .
|
||
. OUTPUT(a.out elf64-x86-64)
|
||
Here we do not want to allow insert_os_after to
|
||
choose a point inside the list we are moving.
|
||
That would lose the list. Instead, let
|
||
insert_os_after work from the INSERT, which in this
|
||
particular example will result in inserting after
|
||
the assignment "a = .". */
|
||
after = *s;
|
||
}
|
||
ptr = insert_os_after (after);
|
||
/* Snip everything from the start of the list, up to and
|
||
including the insert statement we are currently processing. */
|
||
first = *start;
|
||
*start = (*s)->header.next;
|
||
/* Add them back where they belong, minus the insert. */
|
||
*s = *ptr;
|
||
if (*s == NULL)
|
||
statement_list.tail = s;
|
||
*ptr = first;
|
||
s = start;
|
||
first_os = NULL;
|
||
last_os = NULL;
|
||
continue;
|
||
}
|
||
s = &(*s)->header.next;
|
||
}
|
||
|
||
/* Undo constraint twiddling. */
|
||
for (os = first_os; os != NULL; os = os->next)
|
||
{
|
||
os->constraint = -2 - os->constraint;
|
||
if (os == last_os)
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* An output section might have been removed after its statement was
|
||
added. For example, ldemul_before_allocation can remove dynamic
|
||
sections if they turn out to be not needed. Clean them up here. */
|
||
|
||
void
|
||
strip_excluded_output_sections (void)
|
||
{
|
||
lang_output_section_statement_type *os;
|
||
|
||
/* Run lang_size_sections (if not already done). */
|
||
if (expld.phase != lang_mark_phase_enum)
|
||
{
|
||
expld.phase = lang_mark_phase_enum;
|
||
expld.dataseg.phase = exp_seg_none;
|
||
one_lang_size_sections_pass (NULL, false);
|
||
lang_reset_memory_regions ();
|
||
}
|
||
|
||
for (os = (void *) lang_os_list.head;
|
||
os != NULL;
|
||
os = os->next)
|
||
{
|
||
asection *output_section;
|
||
bool exclude;
|
||
|
||
if (os->constraint < 0)
|
||
continue;
|
||
|
||
output_section = os->bfd_section;
|
||
if (output_section == NULL)
|
||
continue;
|
||
|
||
exclude = (output_section->rawsize == 0
|
||
&& (output_section->flags & SEC_KEEP) == 0
|
||
&& !bfd_section_removed_from_list (link_info.output_bfd,
|
||
output_section));
|
||
|
||
/* Some sections have not yet been sized, notably .gnu.version,
|
||
.dynsym, .dynstr and .hash. These all have SEC_LINKER_CREATED
|
||
input sections, so don't drop output sections that have such
|
||
input sections unless they are also marked SEC_EXCLUDE. */
|
||
if (exclude && output_section->map_head.s != NULL)
|
||
{
|
||
asection *s;
|
||
|
||
for (s = output_section->map_head.s; s != NULL; s = s->map_head.s)
|
||
if ((s->flags & SEC_EXCLUDE) == 0
|
||
&& ((s->flags & SEC_LINKER_CREATED) != 0
|
||
|| link_info.emitrelocations))
|
||
{
|
||
exclude = false;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (exclude)
|
||
{
|
||
/* We don't set bfd_section to NULL since bfd_section of the
|
||
removed output section statement may still be used. */
|
||
if (!os->update_dot)
|
||
os->ignored = true;
|
||
output_section->flags |= SEC_EXCLUDE;
|
||
bfd_section_list_remove (link_info.output_bfd, output_section);
|
||
link_info.output_bfd->section_count--;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Called from ldwrite to clear out asection.map_head and
|
||
asection.map_tail for use as link_orders in ldwrite. */
|
||
|
||
void
|
||
lang_clear_os_map (void)
|
||
{
|
||
lang_output_section_statement_type *os;
|
||
|
||
if (map_head_is_link_order)
|
||
return;
|
||
|
||
for (os = (void *) lang_os_list.head;
|
||
os != NULL;
|
||
os = os->next)
|
||
{
|
||
asection *output_section;
|
||
|
||
if (os->constraint < 0)
|
||
continue;
|
||
|
||
output_section = os->bfd_section;
|
||
if (output_section == NULL)
|
||
continue;
|
||
|
||
/* TODO: Don't just junk map_head.s, turn them into link_orders. */
|
||
output_section->map_head.link_order = NULL;
|
||
output_section->map_tail.link_order = NULL;
|
||
}
|
||
|
||
/* Stop future calls to lang_add_section from messing with map_head
|
||
and map_tail link_order fields. */
|
||
map_head_is_link_order = true;
|
||
}
|
||
|
||
static void
|
||
print_output_section_statement
|
||
(lang_output_section_statement_type *output_section_statement)
|
||
{
|
||
asection *section = output_section_statement->bfd_section;
|
||
int len;
|
||
|
||
if (output_section_statement != abs_output_section)
|
||
{
|
||
minfo ("\n%s", output_section_statement->name);
|
||
|
||
if (section != NULL)
|
||
{
|
||
print_dot = section->vma;
|
||
|
||
len = strlen (output_section_statement->name);
|
||
if (len >= SECTION_NAME_MAP_LENGTH - 1)
|
||
{
|
||
print_nl ();
|
||
len = 0;
|
||
}
|
||
print_spaces (SECTION_NAME_MAP_LENGTH - len);
|
||
|
||
minfo ("0x%V %W", section->vma, TO_ADDR (section->size));
|
||
|
||
if (section->vma != section->lma)
|
||
minfo (_(" load address 0x%V"), section->lma);
|
||
|
||
if (output_section_statement->update_dot_tree != NULL)
|
||
exp_fold_tree (output_section_statement->update_dot_tree,
|
||
bfd_abs_section_ptr, &print_dot);
|
||
}
|
||
|
||
print_nl ();
|
||
}
|
||
|
||
print_statement_list (output_section_statement->children.head,
|
||
output_section_statement);
|
||
}
|
||
|
||
static void
|
||
print_assignment (lang_assignment_statement_type *assignment,
|
||
lang_output_section_statement_type *output_section)
|
||
{
|
||
bool is_dot;
|
||
etree_type *tree;
|
||
asection *osec;
|
||
|
||
print_spaces (SECTION_NAME_MAP_LENGTH);
|
||
|
||
if (assignment->exp->type.node_class == etree_assert)
|
||
{
|
||
is_dot = false;
|
||
tree = assignment->exp->assert_s.child;
|
||
}
|
||
else
|
||
{
|
||
const char *dst = assignment->exp->assign.dst;
|
||
|
||
is_dot = (dst[0] == '.' && dst[1] == 0);
|
||
tree = assignment->exp;
|
||
}
|
||
|
||
osec = output_section->bfd_section;
|
||
if (osec == NULL)
|
||
osec = bfd_abs_section_ptr;
|
||
|
||
if (assignment->exp->type.node_class != etree_provide)
|
||
exp_fold_tree (tree, osec, &print_dot);
|
||
else
|
||
expld.result.valid_p = false;
|
||
|
||
char buf[32];
|
||
const char *str = buf;
|
||
if (expld.result.valid_p)
|
||
{
|
||
bfd_vma value;
|
||
|
||
if (assignment->exp->type.node_class == etree_assert
|
||
|| is_dot
|
||
|| expld.assign_name != NULL)
|
||
{
|
||
value = expld.result.value;
|
||
|
||
if (expld.result.section != NULL)
|
||
value += expld.result.section->vma;
|
||
|
||
buf[0] = '0';
|
||
buf[1] = 'x';
|
||
bfd_sprintf_vma (link_info.output_bfd, buf + 2, value);
|
||
if (is_dot)
|
||
print_dot = value;
|
||
}
|
||
else
|
||
{
|
||
struct bfd_link_hash_entry *h;
|
||
|
||
h = bfd_link_hash_lookup (link_info.hash, assignment->exp->assign.dst,
|
||
false, false, true);
|
||
if (h != NULL
|
||
&& (h->type == bfd_link_hash_defined
|
||
|| h->type == bfd_link_hash_defweak))
|
||
{
|
||
value = h->u.def.value;
|
||
value += h->u.def.section->output_section->vma;
|
||
value += h->u.def.section->output_offset;
|
||
|
||
buf[0] = '[';
|
||
buf[1] = '0';
|
||
buf[2] = 'x';
|
||
bfd_sprintf_vma (link_info.output_bfd, buf + 3, value);
|
||
strcat (buf, "]");
|
||
}
|
||
else
|
||
str = "[unresolved]";
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (assignment->exp->type.node_class == etree_provide)
|
||
str = "[!provide]";
|
||
else
|
||
str = "*undef*";
|
||
}
|
||
expld.assign_name = NULL;
|
||
|
||
fprintf (config.map_file, "%-34s", str);
|
||
exp_print_tree (assignment->exp);
|
||
print_nl ();
|
||
}
|
||
|
||
static void
|
||
print_input_statement (lang_input_statement_type *statm)
|
||
{
|
||
if (statm->filename != NULL)
|
||
fprintf (config.map_file, "LOAD %s\n", statm->filename);
|
||
}
|
||
|
||
/* Print all symbols defined in a particular section. This is called
|
||
via bfd_link_hash_traverse, or by print_all_symbols. */
|
||
|
||
bool
|
||
print_one_symbol (struct bfd_link_hash_entry *hash_entry, void *ptr)
|
||
{
|
||
asection *sec = (asection *) ptr;
|
||
|
||
if ((hash_entry->type == bfd_link_hash_defined
|
||
|| hash_entry->type == bfd_link_hash_defweak)
|
||
&& sec == hash_entry->u.def.section)
|
||
{
|
||
print_spaces (SECTION_NAME_MAP_LENGTH);
|
||
minfo ("0x%V ",
|
||
(hash_entry->u.def.value
|
||
+ hash_entry->u.def.section->output_offset
|
||
+ hash_entry->u.def.section->output_section->vma));
|
||
|
||
minfo (" %pT\n", hash_entry->root.string);
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
static int
|
||
hash_entry_addr_cmp (const void *a, const void *b)
|
||
{
|
||
const struct bfd_link_hash_entry *l = *(const struct bfd_link_hash_entry **)a;
|
||
const struct bfd_link_hash_entry *r = *(const struct bfd_link_hash_entry **)b;
|
||
|
||
if (l->u.def.value < r->u.def.value)
|
||
return -1;
|
||
else if (l->u.def.value > r->u.def.value)
|
||
return 1;
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
static void
|
||
print_all_symbols (asection *sec)
|
||
{
|
||
input_section_userdata_type *ud = bfd_section_userdata (sec);
|
||
struct map_symbol_def *def;
|
||
struct bfd_link_hash_entry **entries;
|
||
unsigned int i;
|
||
|
||
if (!ud)
|
||
return;
|
||
|
||
*ud->map_symbol_def_tail = 0;
|
||
|
||
/* Sort the symbols by address. */
|
||
entries = (struct bfd_link_hash_entry **)
|
||
obstack_alloc (&map_obstack,
|
||
ud->map_symbol_def_count * sizeof (*entries));
|
||
|
||
for (i = 0, def = ud->map_symbol_def_head; def; def = def->next, i++)
|
||
entries[i] = def->entry;
|
||
|
||
qsort (entries, ud->map_symbol_def_count, sizeof (*entries),
|
||
hash_entry_addr_cmp);
|
||
|
||
/* Print the symbols. */
|
||
for (i = 0; i < ud->map_symbol_def_count; i++)
|
||
ldemul_print_symbol (entries[i], sec);
|
||
|
||
obstack_free (&map_obstack, entries);
|
||
}
|
||
|
||
/* Print information about an input section to the map file. */
|
||
|
||
static void
|
||
print_input_section (asection *i, bool is_discarded)
|
||
{
|
||
bfd_size_type size = i->size;
|
||
int len;
|
||
bfd_vma addr;
|
||
|
||
init_opb (i);
|
||
|
||
minfo (" %s", i->name);
|
||
|
||
len = 1 + strlen (i->name);
|
||
if (len >= SECTION_NAME_MAP_LENGTH - 1)
|
||
{
|
||
print_nl ();
|
||
len = 0;
|
||
}
|
||
print_spaces (SECTION_NAME_MAP_LENGTH - len);
|
||
|
||
if (i->output_section != NULL
|
||
&& i->output_section->owner == link_info.output_bfd)
|
||
addr = i->output_section->vma + i->output_offset;
|
||
else
|
||
{
|
||
addr = print_dot;
|
||
if (!is_discarded)
|
||
size = 0;
|
||
}
|
||
|
||
char buf[32];
|
||
bfd_sprintf_vma (link_info.output_bfd, buf, addr);
|
||
minfo ("0x%s %W %pB\n", buf, TO_ADDR (size), i->owner);
|
||
|
||
if (size != i->rawsize && i->rawsize != 0)
|
||
{
|
||
len = SECTION_NAME_MAP_LENGTH + 3 + strlen (buf);
|
||
print_spaces (len);
|
||
minfo (_("%W (size before relaxing)\n"), TO_ADDR (i->rawsize));
|
||
}
|
||
|
||
if (i->output_section != NULL
|
||
&& i->output_section->owner == link_info.output_bfd)
|
||
{
|
||
if (link_info.reduce_memory_overheads)
|
||
bfd_link_hash_traverse (link_info.hash, ldemul_print_symbol, i);
|
||
else
|
||
print_all_symbols (i);
|
||
|
||
/* Update print_dot, but make sure that we do not move it
|
||
backwards - this could happen if we have overlays and a
|
||
later overlay is shorter than an earier one. */
|
||
if (addr + TO_ADDR (size) > print_dot)
|
||
print_dot = addr + TO_ADDR (size);
|
||
}
|
||
}
|
||
|
||
static void
|
||
print_fill_statement (lang_fill_statement_type *fill)
|
||
{
|
||
size_t size;
|
||
unsigned char *p;
|
||
fputs (" FILL mask 0x", config.map_file);
|
||
for (p = fill->fill->data, size = fill->fill->size; size != 0; p++, size--)
|
||
fprintf (config.map_file, "%02x", *p);
|
||
fputs ("\n", config.map_file);
|
||
}
|
||
|
||
static void
|
||
print_data_statement (lang_data_statement_type *data)
|
||
{
|
||
bfd_vma addr;
|
||
bfd_size_type size;
|
||
const char *name;
|
||
|
||
init_opb (data->output_section);
|
||
print_spaces (SECTION_NAME_MAP_LENGTH);
|
||
|
||
addr = data->output_offset;
|
||
if (data->output_section != NULL)
|
||
addr += data->output_section->vma;
|
||
|
||
switch (data->type)
|
||
{
|
||
default:
|
||
abort ();
|
||
case BYTE:
|
||
size = BYTE_SIZE;
|
||
name = "BYTE";
|
||
break;
|
||
case SHORT:
|
||
size = SHORT_SIZE;
|
||
name = "SHORT";
|
||
break;
|
||
case LONG:
|
||
size = LONG_SIZE;
|
||
name = "LONG";
|
||
break;
|
||
case QUAD:
|
||
size = QUAD_SIZE;
|
||
name = "QUAD";
|
||
break;
|
||
case SQUAD:
|
||
size = QUAD_SIZE;
|
||
name = "SQUAD";
|
||
break;
|
||
}
|
||
|
||
if (size < TO_SIZE ((unsigned) 1))
|
||
size = TO_SIZE ((unsigned) 1);
|
||
minfo ("0x%V %W %s 0x%v", addr, TO_ADDR (size), name, data->value);
|
||
|
||
if (data->exp->type.node_class != etree_value)
|
||
{
|
||
print_space ();
|
||
exp_print_tree (data->exp);
|
||
}
|
||
|
||
print_nl ();
|
||
|
||
print_dot = addr + TO_ADDR (size);
|
||
}
|
||
|
||
/* Print an address statement. These are generated by options like
|
||
-Ttext. */
|
||
|
||
static void
|
||
print_address_statement (lang_address_statement_type *address)
|
||
{
|
||
minfo (_("Address of section %s set to "), address->section_name);
|
||
exp_print_tree (address->address);
|
||
print_nl ();
|
||
}
|
||
|
||
/* Print a reloc statement. */
|
||
|
||
static void
|
||
print_reloc_statement (lang_reloc_statement_type *reloc)
|
||
{
|
||
bfd_vma addr;
|
||
bfd_size_type size;
|
||
|
||
init_opb (reloc->output_section);
|
||
print_spaces (SECTION_NAME_MAP_LENGTH);
|
||
|
||
addr = reloc->output_offset;
|
||
if (reloc->output_section != NULL)
|
||
addr += reloc->output_section->vma;
|
||
|
||
size = bfd_get_reloc_size (reloc->howto);
|
||
|
||
minfo ("0x%V %W RELOC %s ", addr, TO_ADDR (size), reloc->howto->name);
|
||
|
||
if (reloc->name != NULL)
|
||
minfo ("%s+", reloc->name);
|
||
else
|
||
minfo ("%s+", reloc->section->name);
|
||
|
||
exp_print_tree (reloc->addend_exp);
|
||
|
||
print_nl ();
|
||
|
||
print_dot = addr + TO_ADDR (size);
|
||
}
|
||
|
||
static void
|
||
print_padding_statement (lang_padding_statement_type *s)
|
||
{
|
||
int len;
|
||
bfd_vma addr;
|
||
|
||
init_opb (s->output_section);
|
||
minfo (" *fill*");
|
||
|
||
len = sizeof " *fill*" - 1;
|
||
print_spaces (SECTION_NAME_MAP_LENGTH - len);
|
||
|
||
addr = s->output_offset;
|
||
if (s->output_section != NULL)
|
||
addr += s->output_section->vma;
|
||
minfo ("0x%V %W ", addr, TO_ADDR (s->size));
|
||
|
||
if (s->fill->size != 0)
|
||
{
|
||
size_t size;
|
||
unsigned char *p;
|
||
for (p = s->fill->data, size = s->fill->size; size != 0; p++, size--)
|
||
fprintf (config.map_file, "%02x", *p);
|
||
}
|
||
|
||
print_nl ();
|
||
|
||
print_dot = addr + TO_ADDR (s->size);
|
||
}
|
||
|
||
static void
|
||
print_wild_statement (lang_wild_statement_type *w,
|
||
lang_output_section_statement_type *os)
|
||
{
|
||
struct wildcard_list *sec;
|
||
|
||
print_space ();
|
||
|
||
if (w->exclude_name_list)
|
||
{
|
||
name_list *tmp;
|
||
minfo ("EXCLUDE_FILE(%s", w->exclude_name_list->name);
|
||
for (tmp = w->exclude_name_list->next; tmp; tmp = tmp->next)
|
||
minfo (" %s", tmp->name);
|
||
minfo (") ");
|
||
}
|
||
|
||
if (w->filenames_sorted)
|
||
minfo ("SORT_BY_NAME(");
|
||
if (w->filename != NULL)
|
||
minfo ("%s", w->filename);
|
||
else
|
||
minfo ("*");
|
||
if (w->filenames_sorted)
|
||
minfo (")");
|
||
|
||
minfo ("(");
|
||
for (sec = w->section_list; sec; sec = sec->next)
|
||
{
|
||
int closing_paren = 0;
|
||
|
||
switch (sec->spec.sorted)
|
||
{
|
||
case none:
|
||
break;
|
||
|
||
case by_name:
|
||
minfo ("SORT_BY_NAME(");
|
||
closing_paren = 1;
|
||
break;
|
||
|
||
case by_alignment:
|
||
minfo ("SORT_BY_ALIGNMENT(");
|
||
closing_paren = 1;
|
||
break;
|
||
|
||
case by_name_alignment:
|
||
minfo ("SORT_BY_NAME(SORT_BY_ALIGNMENT(");
|
||
closing_paren = 2;
|
||
break;
|
||
|
||
case by_alignment_name:
|
||
minfo ("SORT_BY_ALIGNMENT(SORT_BY_NAME(");
|
||
closing_paren = 2;
|
||
break;
|
||
|
||
case by_none:
|
||
minfo ("SORT_NONE(");
|
||
closing_paren = 1;
|
||
break;
|
||
|
||
case by_init_priority:
|
||
minfo ("SORT_BY_INIT_PRIORITY(");
|
||
closing_paren = 1;
|
||
break;
|
||
}
|
||
|
||
if (sec->spec.exclude_name_list != NULL)
|
||
{
|
||
name_list *tmp;
|
||
minfo ("EXCLUDE_FILE(%s", sec->spec.exclude_name_list->name);
|
||
for (tmp = sec->spec.exclude_name_list->next; tmp; tmp = tmp->next)
|
||
minfo (" %s", tmp->name);
|
||
minfo (") ");
|
||
}
|
||
if (sec->spec.name != NULL)
|
||
minfo ("%s", sec->spec.name);
|
||
else
|
||
minfo ("*");
|
||
for (;closing_paren > 0; closing_paren--)
|
||
minfo (")");
|
||
if (sec->next)
|
||
minfo (" ");
|
||
}
|
||
minfo (")");
|
||
|
||
print_nl ();
|
||
|
||
print_statement_list (w->children.head, os);
|
||
}
|
||
|
||
/* Print a group statement. */
|
||
|
||
static void
|
||
print_group (lang_group_statement_type *s,
|
||
lang_output_section_statement_type *os)
|
||
{
|
||
fprintf (config.map_file, "START GROUP\n");
|
||
print_statement_list (s->children.head, os);
|
||
fprintf (config.map_file, "END GROUP\n");
|
||
}
|
||
|
||
/* Print the list of statements in S.
|
||
This can be called for any statement type. */
|
||
|
||
static void
|
||
print_statement_list (lang_statement_union_type *s,
|
||
lang_output_section_statement_type *os)
|
||
{
|
||
while (s != NULL)
|
||
{
|
||
print_statement (s, os);
|
||
s = s->header.next;
|
||
}
|
||
}
|
||
|
||
/* Print the first statement in statement list S.
|
||
This can be called for any statement type. */
|
||
|
||
static void
|
||
print_statement (lang_statement_union_type *s,
|
||
lang_output_section_statement_type *os)
|
||
{
|
||
switch (s->header.type)
|
||
{
|
||
default:
|
||
fprintf (config.map_file, _("Fail with %d\n"), s->header.type);
|
||
FAIL ();
|
||
break;
|
||
case lang_constructors_statement_enum:
|
||
if (constructor_list.head != NULL)
|
||
{
|
||
if (constructors_sorted)
|
||
minfo (" SORT (CONSTRUCTORS)\n");
|
||
else
|
||
minfo (" CONSTRUCTORS\n");
|
||
print_statement_list (constructor_list.head, os);
|
||
}
|
||
break;
|
||
case lang_wild_statement_enum:
|
||
print_wild_statement (&s->wild_statement, os);
|
||
break;
|
||
case lang_address_statement_enum:
|
||
print_address_statement (&s->address_statement);
|
||
break;
|
||
case lang_object_symbols_statement_enum:
|
||
minfo (" CREATE_OBJECT_SYMBOLS\n");
|
||
break;
|
||
case lang_fill_statement_enum:
|
||
print_fill_statement (&s->fill_statement);
|
||
break;
|
||
case lang_data_statement_enum:
|
||
print_data_statement (&s->data_statement);
|
||
break;
|
||
case lang_reloc_statement_enum:
|
||
print_reloc_statement (&s->reloc_statement);
|
||
break;
|
||
case lang_input_section_enum:
|
||
print_input_section (s->input_section.section, false);
|
||
break;
|
||
case lang_padding_statement_enum:
|
||
print_padding_statement (&s->padding_statement);
|
||
break;
|
||
case lang_output_section_statement_enum:
|
||
print_output_section_statement (&s->output_section_statement);
|
||
break;
|
||
case lang_assignment_statement_enum:
|
||
print_assignment (&s->assignment_statement, os);
|
||
break;
|
||
case lang_target_statement_enum:
|
||
fprintf (config.map_file, "TARGET(%s)\n", s->target_statement.target);
|
||
break;
|
||
case lang_output_statement_enum:
|
||
minfo ("OUTPUT(%s", s->output_statement.name);
|
||
if (output_target != NULL)
|
||
minfo (" %s", output_target);
|
||
minfo (")\n");
|
||
break;
|
||
case lang_input_statement_enum:
|
||
print_input_statement (&s->input_statement);
|
||
break;
|
||
case lang_group_statement_enum:
|
||
print_group (&s->group_statement, os);
|
||
break;
|
||
case lang_insert_statement_enum:
|
||
minfo ("INSERT %s %s\n",
|
||
s->insert_statement.is_before ? "BEFORE" : "AFTER",
|
||
s->insert_statement.where);
|
||
break;
|
||
}
|
||
}
|
||
|
||
static void
|
||
print_statements (void)
|
||
{
|
||
print_statement_list (statement_list.head, abs_output_section);
|
||
}
|
||
|
||
/* Print the first N statements in statement list S to STDERR.
|
||
If N == 0, nothing is printed.
|
||
If N < 0, the entire list is printed.
|
||
Intended to be called from GDB. */
|
||
|
||
void
|
||
dprint_statement (lang_statement_union_type *s, int n)
|
||
{
|
||
FILE *map_save = config.map_file;
|
||
|
||
config.map_file = stderr;
|
||
|
||
if (n < 0)
|
||
print_statement_list (s, abs_output_section);
|
||
else
|
||
{
|
||
while (s && --n >= 0)
|
||
{
|
||
print_statement (s, abs_output_section);
|
||
s = s->header.next;
|
||
}
|
||
}
|
||
|
||
config.map_file = map_save;
|
||
}
|
||
|
||
static void
|
||
insert_pad (lang_statement_union_type **ptr,
|
||
fill_type *fill,
|
||
bfd_size_type alignment_needed,
|
||
asection *output_section,
|
||
bfd_vma dot)
|
||
{
|
||
static fill_type zero_fill;
|
||
lang_statement_union_type *pad = NULL;
|
||
|
||
if (ptr != &statement_list.head)
|
||
pad = ((lang_statement_union_type *)
|
||
((char *) ptr - offsetof (lang_statement_union_type, header.next)));
|
||
if (pad != NULL
|
||
&& pad->header.type == lang_padding_statement_enum
|
||
&& pad->padding_statement.output_section == output_section)
|
||
{
|
||
/* Use the existing pad statement. */
|
||
}
|
||
else if ((pad = *ptr) != NULL
|
||
&& pad->header.type == lang_padding_statement_enum
|
||
&& pad->padding_statement.output_section == output_section)
|
||
{
|
||
/* Use the existing pad statement. */
|
||
}
|
||
else
|
||
{
|
||
/* Make a new padding statement, linked into existing chain. */
|
||
pad = stat_alloc (sizeof (lang_padding_statement_type));
|
||
pad->header.next = *ptr;
|
||
*ptr = pad;
|
||
pad->header.type = lang_padding_statement_enum;
|
||
pad->padding_statement.output_section = output_section;
|
||
if (fill == NULL)
|
||
fill = &zero_fill;
|
||
pad->padding_statement.fill = fill;
|
||
}
|
||
pad->padding_statement.output_offset = dot - output_section->vma;
|
||
pad->padding_statement.size = alignment_needed;
|
||
if (!(output_section->flags & SEC_FIXED_SIZE))
|
||
output_section->size = TO_SIZE (dot + TO_ADDR (alignment_needed)
|
||
- output_section->vma);
|
||
}
|
||
|
||
/* Work out how much this section will move the dot point. */
|
||
|
||
static bfd_vma
|
||
size_input_section
|
||
(lang_statement_union_type **this_ptr,
|
||
lang_output_section_statement_type *output_section_statement,
|
||
fill_type *fill,
|
||
bool *removed,
|
||
bfd_vma dot)
|
||
{
|
||
lang_input_section_type *is = &((*this_ptr)->input_section);
|
||
asection *i = is->section;
|
||
asection *o = output_section_statement->bfd_section;
|
||
*removed = 0;
|
||
|
||
if (link_info.non_contiguous_regions)
|
||
{
|
||
/* If the input section I has already been successfully assigned
|
||
to an output section other than O, don't bother with it and
|
||
let the caller remove it from the list. Keep processing in
|
||
case we have already handled O, because the repeated passes
|
||
have reinitialized its size. */
|
||
if (i->already_assigned && i->already_assigned != o)
|
||
{
|
||
*removed = 1;
|
||
return dot;
|
||
}
|
||
}
|
||
|
||
if (i->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
|
||
i->output_offset = i->vma - o->vma;
|
||
else if (((i->flags & SEC_EXCLUDE) != 0)
|
||
|| output_section_statement->ignored)
|
||
i->output_offset = dot - o->vma;
|
||
else
|
||
{
|
||
bfd_size_type alignment_needed;
|
||
|
||
/* Align this section first to the input sections requirement,
|
||
then to the output section's requirement. If this alignment
|
||
is greater than any seen before, then record it too. Perform
|
||
the alignment by inserting a magic 'padding' statement. */
|
||
|
||
if (output_section_statement->subsection_alignment != NULL)
|
||
i->alignment_power
|
||
= exp_get_power (output_section_statement->subsection_alignment,
|
||
"subsection alignment");
|
||
|
||
if (o->alignment_power < i->alignment_power)
|
||
o->alignment_power = i->alignment_power;
|
||
|
||
alignment_needed = align_power (dot, i->alignment_power) - dot;
|
||
|
||
if (alignment_needed != 0)
|
||
{
|
||
insert_pad (this_ptr, fill, TO_SIZE (alignment_needed), o, dot);
|
||
dot += alignment_needed;
|
||
}
|
||
|
||
if (link_info.non_contiguous_regions)
|
||
{
|
||
/* If I would overflow O, let the caller remove I from the
|
||
list. */
|
||
if (output_section_statement->region)
|
||
{
|
||
bfd_vma end = output_section_statement->region->origin
|
||
+ output_section_statement->region->length;
|
||
|
||
if (dot + TO_ADDR (i->size) > end)
|
||
{
|
||
if (i->flags & SEC_LINKER_CREATED)
|
||
einfo (_("%F%P: Output section `%pA' not large enough for "
|
||
"the linker-created stubs section `%pA'.\n"),
|
||
i->output_section, i);
|
||
|
||
if (i->rawsize && i->rawsize != i->size)
|
||
einfo (_("%F%P: Relaxation not supported with "
|
||
"--enable-non-contiguous-regions (section `%pA' "
|
||
"would overflow `%pA' after it changed size).\n"),
|
||
i, i->output_section);
|
||
|
||
*removed = 1;
|
||
dot = end;
|
||
i->output_section = NULL;
|
||
return dot;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Remember where in the output section this input section goes. */
|
||
i->output_offset = dot - o->vma;
|
||
|
||
/* Mark how big the output section must be to contain this now. */
|
||
dot += TO_ADDR (i->size);
|
||
if (!(o->flags & SEC_FIXED_SIZE))
|
||
o->size = TO_SIZE (dot - o->vma);
|
||
|
||
if (link_info.non_contiguous_regions)
|
||
{
|
||
/* Record that I was successfully assigned to O, and update
|
||
its actual output section too. */
|
||
i->already_assigned = o;
|
||
i->output_section = o;
|
||
}
|
||
}
|
||
|
||
return dot;
|
||
}
|
||
|
||
struct check_sec
|
||
{
|
||
asection *sec;
|
||
bool warned;
|
||
};
|
||
|
||
static int
|
||
sort_sections_by_lma (const void *arg1, const void *arg2)
|
||
{
|
||
const asection *sec1 = ((const struct check_sec *) arg1)->sec;
|
||
const asection *sec2 = ((const struct check_sec *) arg2)->sec;
|
||
|
||
if (sec1->lma < sec2->lma)
|
||
return -1;
|
||
else if (sec1->lma > sec2->lma)
|
||
return 1;
|
||
else if (sec1->id < sec2->id)
|
||
return -1;
|
||
else if (sec1->id > sec2->id)
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int
|
||
sort_sections_by_vma (const void *arg1, const void *arg2)
|
||
{
|
||
const asection *sec1 = ((const struct check_sec *) arg1)->sec;
|
||
const asection *sec2 = ((const struct check_sec *) arg2)->sec;
|
||
|
||
if (sec1->vma < sec2->vma)
|
||
return -1;
|
||
else if (sec1->vma > sec2->vma)
|
||
return 1;
|
||
else if (sec1->id < sec2->id)
|
||
return -1;
|
||
else if (sec1->id > sec2->id)
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
#define IS_TBSS(s) \
|
||
((s->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == SEC_THREAD_LOCAL)
|
||
|
||
#define IGNORE_SECTION(s) \
|
||
((s->flags & SEC_ALLOC) == 0 || IS_TBSS (s))
|
||
|
||
/* Check to see if any allocated sections overlap with other allocated
|
||
sections. This can happen if a linker script specifies the output
|
||
section addresses of the two sections. Also check whether any memory
|
||
region has overflowed. */
|
||
|
||
static void
|
||
lang_check_section_addresses (void)
|
||
{
|
||
asection *s, *p;
|
||
struct check_sec *sections;
|
||
size_t i, count;
|
||
bfd_vma addr_mask;
|
||
bfd_vma s_start;
|
||
bfd_vma s_end;
|
||
bfd_vma p_start = 0;
|
||
bfd_vma p_end = 0;
|
||
lang_memory_region_type *m;
|
||
bool overlays;
|
||
|
||
/* Detect address space overflow on allocated sections. */
|
||
addr_mask = ((bfd_vma) 1 <<
|
||
(bfd_arch_bits_per_address (link_info.output_bfd) - 1)) - 1;
|
||
addr_mask = (addr_mask << 1) + 1;
|
||
for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
|
||
if ((s->flags & SEC_ALLOC) != 0)
|
||
{
|
||
s_end = (s->vma + s->size) & addr_mask;
|
||
if (s_end != 0 && s_end < (s->vma & addr_mask))
|
||
einfo (_("%X%P: section %s VMA wraps around address space\n"),
|
||
s->name);
|
||
else
|
||
{
|
||
s_end = (s->lma + s->size) & addr_mask;
|
||
if (s_end != 0 && s_end < (s->lma & addr_mask))
|
||
einfo (_("%X%P: section %s LMA wraps around address space\n"),
|
||
s->name);
|
||
}
|
||
}
|
||
|
||
if (bfd_count_sections (link_info.output_bfd) <= 1)
|
||
return;
|
||
|
||
count = bfd_count_sections (link_info.output_bfd);
|
||
sections = XNEWVEC (struct check_sec, count);
|
||
|
||
/* Scan all sections in the output list. */
|
||
count = 0;
|
||
for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
|
||
{
|
||
if (IGNORE_SECTION (s)
|
||
|| s->size == 0)
|
||
continue;
|
||
|
||
sections[count].sec = s;
|
||
sections[count].warned = false;
|
||
count++;
|
||
}
|
||
|
||
if (count <= 1)
|
||
{
|
||
free (sections);
|
||
return;
|
||
}
|
||
|
||
qsort (sections, count, sizeof (*sections), sort_sections_by_lma);
|
||
|
||
/* First check section LMAs. There should be no overlap of LMAs on
|
||
loadable sections, even with overlays. */
|
||
for (p = NULL, i = 0; i < count; i++)
|
||
{
|
||
s = sections[i].sec;
|
||
init_opb (s);
|
||
if ((s->flags & SEC_LOAD) != 0)
|
||
{
|
||
s_start = s->lma;
|
||
s_end = s_start + TO_ADDR (s->size) - 1;
|
||
|
||
/* Look for an overlap. We have sorted sections by lma, so
|
||
we know that s_start >= p_start. Besides the obvious
|
||
case of overlap when the current section starts before
|
||
the previous one ends, we also must have overlap if the
|
||
previous section wraps around the address space. */
|
||
if (p != NULL
|
||
&& (s_start <= p_end
|
||
|| p_end < p_start))
|
||
{
|
||
einfo (_("%X%P: section %s LMA [%V,%V]"
|
||
" overlaps section %s LMA [%V,%V]\n"),
|
||
s->name, s_start, s_end, p->name, p_start, p_end);
|
||
sections[i].warned = true;
|
||
}
|
||
p = s;
|
||
p_start = s_start;
|
||
p_end = s_end;
|
||
}
|
||
}
|
||
|
||
/* If any non-zero size allocated section (excluding tbss) starts at
|
||
exactly the same VMA as another such section, then we have
|
||
overlays. Overlays generated by the OVERLAY keyword will have
|
||
this property. It is possible to intentionally generate overlays
|
||
that fail this test, but it would be unusual. */
|
||
qsort (sections, count, sizeof (*sections), sort_sections_by_vma);
|
||
overlays = false;
|
||
p_start = sections[0].sec->vma;
|
||
for (i = 1; i < count; i++)
|
||
{
|
||
s_start = sections[i].sec->vma;
|
||
if (p_start == s_start)
|
||
{
|
||
overlays = true;
|
||
break;
|
||
}
|
||
p_start = s_start;
|
||
}
|
||
|
||
/* Now check section VMAs if no overlays were detected. */
|
||
if (!overlays)
|
||
{
|
||
for (p = NULL, i = 0; i < count; i++)
|
||
{
|
||
s = sections[i].sec;
|
||
init_opb (s);
|
||
s_start = s->vma;
|
||
s_end = s_start + TO_ADDR (s->size) - 1;
|
||
|
||
if (p != NULL
|
||
&& !sections[i].warned
|
||
&& (s_start <= p_end
|
||
|| p_end < p_start))
|
||
einfo (_("%X%P: section %s VMA [%V,%V]"
|
||
" overlaps section %s VMA [%V,%V]\n"),
|
||
s->name, s_start, s_end, p->name, p_start, p_end);
|
||
p = s;
|
||
p_start = s_start;
|
||
p_end = s_end;
|
||
}
|
||
}
|
||
|
||
free (sections);
|
||
|
||
/* If any memory region has overflowed, report by how much.
|
||
We do not issue this diagnostic for regions that had sections
|
||
explicitly placed outside their bounds; os_region_check's
|
||
diagnostics are adequate for that case.
|
||
|
||
FIXME: It is conceivable that m->current - (m->origin + m->length)
|
||
might overflow a 32-bit integer. There is, alas, no way to print
|
||
a bfd_vma quantity in decimal. */
|
||
for (m = lang_memory_region_list; m; m = m->next)
|
||
if (m->had_full_message)
|
||
{
|
||
unsigned long over = m->current - (m->origin + m->length);
|
||
einfo (ngettext ("%X%P: region `%s' overflowed by %lu byte\n",
|
||
"%X%P: region `%s' overflowed by %lu bytes\n",
|
||
over),
|
||
m->name_list.name, over);
|
||
}
|
||
}
|
||
|
||
/* Make sure the new address is within the region. We explicitly permit the
|
||
current address to be at the exact end of the region when the address is
|
||
non-zero, in case the region is at the end of addressable memory and the
|
||
calculation wraps around. */
|
||
|
||
static void
|
||
os_region_check (lang_output_section_statement_type *os,
|
||
lang_memory_region_type *region,
|
||
etree_type *tree,
|
||
bfd_vma rbase)
|
||
{
|
||
if ((region->current < region->origin
|
||
|| (region->current - region->origin > region->length))
|
||
&& ((region->current != region->origin + region->length)
|
||
|| rbase == 0))
|
||
{
|
||
if (tree != NULL)
|
||
{
|
||
einfo (_("%X%P: address 0x%v of %pB section `%s'"
|
||
" is not within region `%s'\n"),
|
||
region->current,
|
||
os->bfd_section->owner,
|
||
os->bfd_section->name,
|
||
region->name_list.name);
|
||
}
|
||
else if (!region->had_full_message)
|
||
{
|
||
region->had_full_message = true;
|
||
|
||
einfo (_("%X%P: %pB section `%s' will not fit in region `%s'\n"),
|
||
os->bfd_section->owner,
|
||
os->bfd_section->name,
|
||
region->name_list.name);
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
ldlang_check_relro_region (lang_statement_union_type *s)
|
||
{
|
||
seg_align_type *seg = &expld.dataseg;
|
||
|
||
if (seg->relro == exp_seg_relro_start)
|
||
{
|
||
if (!seg->relro_start_stat)
|
||
seg->relro_start_stat = s;
|
||
else
|
||
{
|
||
ASSERT (seg->relro_start_stat == s);
|
||
}
|
||
}
|
||
else if (seg->relro == exp_seg_relro_end)
|
||
{
|
||
if (!seg->relro_end_stat)
|
||
seg->relro_end_stat = s;
|
||
else
|
||
{
|
||
ASSERT (seg->relro_end_stat == s);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Set the sizes for all the output sections. */
|
||
|
||
static bfd_vma
|
||
lang_size_sections_1
|
||
(lang_statement_union_type **prev,
|
||
lang_output_section_statement_type *output_section_statement,
|
||
fill_type *fill,
|
||
bfd_vma dot,
|
||
bool *relax,
|
||
bool check_regions)
|
||
{
|
||
lang_statement_union_type *s;
|
||
lang_statement_union_type *prev_s = NULL;
|
||
bool removed_prev_s = false;
|
||
|
||
/* Size up the sections from their constituent parts. */
|
||
for (s = *prev; s != NULL; prev_s = s, s = s->header.next)
|
||
{
|
||
bool removed = false;
|
||
|
||
switch (s->header.type)
|
||
{
|
||
case lang_output_section_statement_enum:
|
||
{
|
||
bfd_vma newdot, after, dotdelta;
|
||
lang_output_section_statement_type *os;
|
||
lang_memory_region_type *r;
|
||
int section_alignment = 0;
|
||
|
||
os = &s->output_section_statement;
|
||
init_opb (os->bfd_section);
|
||
if (os->constraint == -1)
|
||
break;
|
||
|
||
/* FIXME: We shouldn't need to zero section vmas for ld -r
|
||
here, in lang_insert_orphan, or in the default linker scripts.
|
||
This is covering for coff backend linker bugs. See PR6945. */
|
||
if (os->addr_tree == NULL
|
||
&& bfd_link_relocatable (&link_info)
|
||
&& (bfd_get_flavour (link_info.output_bfd)
|
||
== bfd_target_coff_flavour))
|
||
os->addr_tree = exp_intop (0);
|
||
if (os->addr_tree != NULL)
|
||
{
|
||
exp_fold_tree (os->addr_tree, bfd_abs_section_ptr, &dot);
|
||
|
||
if (expld.result.valid_p)
|
||
{
|
||
dot = expld.result.value;
|
||
if (expld.result.section != NULL)
|
||
dot += expld.result.section->vma;
|
||
}
|
||
else if (expld.phase != lang_mark_phase_enum)
|
||
einfo (_("%F%P:%pS: non constant or forward reference"
|
||
" address expression for section %s\n"),
|
||
os->addr_tree, os->name);
|
||
}
|
||
|
||
if (os->bfd_section == NULL)
|
||
/* This section was removed or never actually created. */
|
||
break;
|
||
|
||
/* If this is a COFF shared library section, use the size and
|
||
address from the input section. FIXME: This is COFF
|
||
specific; it would be cleaner if there were some other way
|
||
to do this, but nothing simple comes to mind. */
|
||
if (((bfd_get_flavour (link_info.output_bfd)
|
||
== bfd_target_ecoff_flavour)
|
||
|| (bfd_get_flavour (link_info.output_bfd)
|
||
== bfd_target_coff_flavour))
|
||
&& (os->bfd_section->flags & SEC_COFF_SHARED_LIBRARY) != 0)
|
||
{
|
||
asection *input;
|
||
|
||
if (os->children.head == NULL
|
||
|| os->children.head->header.next != NULL
|
||
|| (os->children.head->header.type
|
||
!= lang_input_section_enum))
|
||
einfo (_("%X%P: internal error on COFF shared library"
|
||
" section %s\n"), os->name);
|
||
|
||
input = os->children.head->input_section.section;
|
||
bfd_set_section_vma (os->bfd_section,
|
||
bfd_section_vma (input));
|
||
if (!(os->bfd_section->flags & SEC_FIXED_SIZE))
|
||
os->bfd_section->size = input->size;
|
||
break;
|
||
}
|
||
|
||
newdot = dot;
|
||
dotdelta = 0;
|
||
if (bfd_is_abs_section (os->bfd_section))
|
||
{
|
||
/* No matter what happens, an abs section starts at zero. */
|
||
ASSERT (os->bfd_section->vma == 0);
|
||
}
|
||
else
|
||
{
|
||
if (os->addr_tree == NULL)
|
||
{
|
||
/* No address specified for this section, get one
|
||
from the region specification. */
|
||
if (os->region == NULL
|
||
|| ((os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD))
|
||
&& os->region->name_list.name[0] == '*'
|
||
&& strcmp (os->region->name_list.name,
|
||
DEFAULT_MEMORY_REGION) == 0))
|
||
{
|
||
os->region = lang_memory_default (os->bfd_section);
|
||
}
|
||
|
||
/* If a loadable section is using the default memory
|
||
region, and some non default memory regions were
|
||
defined, issue an error message. */
|
||
if (!os->ignored
|
||
&& !IGNORE_SECTION (os->bfd_section)
|
||
&& !bfd_link_relocatable (&link_info)
|
||
&& check_regions
|
||
&& strcmp (os->region->name_list.name,
|
||
DEFAULT_MEMORY_REGION) == 0
|
||
&& lang_memory_region_list != NULL
|
||
&& (strcmp (lang_memory_region_list->name_list.name,
|
||
DEFAULT_MEMORY_REGION) != 0
|
||
|| lang_memory_region_list->next != NULL)
|
||
&& lang_sizing_iteration == 1)
|
||
{
|
||
/* By default this is an error rather than just a
|
||
warning because if we allocate the section to the
|
||
default memory region we can end up creating an
|
||
excessively large binary, or even seg faulting when
|
||
attempting to perform a negative seek. See
|
||
sources.redhat.com/ml/binutils/2003-04/msg00423.html
|
||
for an example of this. This behaviour can be
|
||
overridden by the using the --no-check-sections
|
||
switch. */
|
||
if (command_line.check_section_addresses)
|
||
einfo (_("%F%P: error: no memory region specified"
|
||
" for loadable section `%s'\n"),
|
||
bfd_section_name (os->bfd_section));
|
||
else
|
||
einfo (_("%P: warning: no memory region specified"
|
||
" for loadable section `%s'\n"),
|
||
bfd_section_name (os->bfd_section));
|
||
}
|
||
|
||
newdot = os->region->current;
|
||
section_alignment = os->bfd_section->alignment_power;
|
||
}
|
||
else
|
||
section_alignment = exp_get_power (os->section_alignment,
|
||
"section alignment");
|
||
|
||
/* Align to what the section needs. */
|
||
if (section_alignment > 0)
|
||
{
|
||
bfd_vma savedot = newdot;
|
||
bfd_vma diff = 0;
|
||
|
||
newdot = align_power (newdot, section_alignment);
|
||
dotdelta = newdot - savedot;
|
||
|
||
if (lang_sizing_iteration == 1)
|
||
diff = dotdelta;
|
||
else if (lang_sizing_iteration > 1)
|
||
{
|
||
/* Only report adjustments that would change
|
||
alignment from what we have already reported. */
|
||
diff = newdot - os->bfd_section->vma;
|
||
if (!(diff & (((bfd_vma) 1 << section_alignment) - 1)))
|
||
diff = 0;
|
||
}
|
||
if (diff != 0
|
||
&& (config.warn_section_align
|
||
|| os->addr_tree != NULL))
|
||
einfo (_("%P: warning: "
|
||
"start of section %s changed by %ld\n"),
|
||
os->name, (long) diff);
|
||
}
|
||
|
||
bfd_set_section_vma (os->bfd_section, newdot);
|
||
|
||
os->bfd_section->output_offset = 0;
|
||
}
|
||
|
||
lang_size_sections_1 (&os->children.head, os,
|
||
os->fill, newdot, relax, check_regions);
|
||
|
||
os->processed_vma = true;
|
||
|
||
if (bfd_is_abs_section (os->bfd_section) || os->ignored)
|
||
/* Except for some special linker created sections,
|
||
no output section should change from zero size
|
||
after strip_excluded_output_sections. A non-zero
|
||
size on an ignored section indicates that some
|
||
input section was not sized early enough. */
|
||
ASSERT (os->bfd_section->size == 0);
|
||
else
|
||
{
|
||
dot = os->bfd_section->vma;
|
||
|
||
/* Put the section within the requested block size, or
|
||
align at the block boundary. */
|
||
after = ((dot
|
||
+ TO_ADDR (os->bfd_section->size)
|
||
+ os->block_value - 1)
|
||
& - (bfd_vma) os->block_value);
|
||
|
||
if (!(os->bfd_section->flags & SEC_FIXED_SIZE))
|
||
os->bfd_section->size = TO_SIZE (after
|
||
- os->bfd_section->vma);
|
||
}
|
||
|
||
/* Set section lma. */
|
||
r = os->region;
|
||
if (r == NULL)
|
||
r = lang_memory_region_lookup (DEFAULT_MEMORY_REGION, false);
|
||
|
||
if (os->load_base)
|
||
{
|
||
bfd_vma lma = exp_get_abs_int (os->load_base, 0, "load base");
|
||
os->bfd_section->lma = lma;
|
||
}
|
||
else if (os->lma_region != NULL)
|
||
{
|
||
bfd_vma lma = os->lma_region->current;
|
||
|
||
if (os->align_lma_with_input)
|
||
lma += dotdelta;
|
||
else
|
||
{
|
||
/* When LMA_REGION is the same as REGION, align the LMA
|
||
as we did for the VMA, possibly including alignment
|
||
from the bfd section. If a different region, then
|
||
only align according to the value in the output
|
||
statement. */
|
||
if (os->lma_region != os->region)
|
||
section_alignment = exp_get_power (os->section_alignment,
|
||
"section alignment");
|
||
if (section_alignment > 0)
|
||
lma = align_power (lma, section_alignment);
|
||
}
|
||
os->bfd_section->lma = lma;
|
||
}
|
||
else if (r->last_os != NULL
|
||
&& (os->bfd_section->flags & SEC_ALLOC) != 0)
|
||
{
|
||
bfd_vma lma;
|
||
asection *last;
|
||
|
||
last = r->last_os->output_section_statement.bfd_section;
|
||
|
||
/* A backwards move of dot should be accompanied by
|
||
an explicit assignment to the section LMA (ie.
|
||
os->load_base set) because backwards moves can
|
||
create overlapping LMAs. */
|
||
if (dot < last->vma
|
||
&& os->bfd_section->size != 0
|
||
&& dot + TO_ADDR (os->bfd_section->size) <= last->vma)
|
||
{
|
||
/* If dot moved backwards then leave lma equal to
|
||
vma. This is the old default lma, which might
|
||
just happen to work when the backwards move is
|
||
sufficiently large. Nag if this changes anything,
|
||
so people can fix their linker scripts. */
|
||
|
||
if (last->vma != last->lma)
|
||
einfo (_("%P: warning: dot moved backwards "
|
||
"before `%s'\n"), os->name);
|
||
}
|
||
else
|
||
{
|
||
/* If this is an overlay, set the current lma to that
|
||
at the end of the previous section. */
|
||
if (os->sectype == overlay_section)
|
||
lma = last->lma + TO_ADDR (last->size);
|
||
|
||
/* Otherwise, keep the same lma to vma relationship
|
||
as the previous section. */
|
||
else
|
||
lma = os->bfd_section->vma + last->lma - last->vma;
|
||
|
||
if (section_alignment > 0)
|
||
lma = align_power (lma, section_alignment);
|
||
os->bfd_section->lma = lma;
|
||
}
|
||
}
|
||
os->processed_lma = true;
|
||
|
||
/* Keep track of normal sections using the default
|
||
lma region. We use this to set the lma for
|
||
following sections. Overlays or other linker
|
||
script assignment to lma might mean that the
|
||
default lma == vma is incorrect.
|
||
To avoid warnings about dot moving backwards when using
|
||
-Ttext, don't start tracking sections until we find one
|
||
of non-zero size or with lma set differently to vma.
|
||
Do this tracking before we short-cut the loop so that we
|
||
track changes for the case where the section size is zero,
|
||
but the lma is set differently to the vma. This is
|
||
important, if an orphan section is placed after an
|
||
otherwise empty output section that has an explicit lma
|
||
set, we want that lma reflected in the orphans lma. */
|
||
if (((!IGNORE_SECTION (os->bfd_section)
|
||
&& (os->bfd_section->size != 0
|
||
|| (r->last_os == NULL
|
||
&& os->bfd_section->vma != os->bfd_section->lma)
|
||
|| (r->last_os != NULL
|
||
&& dot >= (r->last_os->output_section_statement
|
||
.bfd_section->vma))))
|
||
|| os->sectype == first_overlay_section)
|
||
&& os->lma_region == NULL
|
||
&& !bfd_link_relocatable (&link_info))
|
||
r->last_os = s;
|
||
|
||
if (bfd_is_abs_section (os->bfd_section) || os->ignored)
|
||
break;
|
||
|
||
/* .tbss sections effectively have zero size. */
|
||
if (!IS_TBSS (os->bfd_section)
|
||
|| bfd_link_relocatable (&link_info))
|
||
dotdelta = TO_ADDR (os->bfd_section->size);
|
||
else
|
||
dotdelta = 0;
|
||
dot += dotdelta;
|
||
|
||
if (os->update_dot_tree != 0)
|
||
exp_fold_tree (os->update_dot_tree, bfd_abs_section_ptr, &dot);
|
||
|
||
/* Update dot in the region ?
|
||
We only do this if the section is going to be allocated,
|
||
since unallocated sections do not contribute to the region's
|
||
overall size in memory. */
|
||
if (os->region != NULL
|
||
&& (os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD)))
|
||
{
|
||
os->region->current = dot;
|
||
|
||
if (check_regions)
|
||
/* Make sure the new address is within the region. */
|
||
os_region_check (os, os->region, os->addr_tree,
|
||
os->bfd_section->vma);
|
||
|
||
if (os->lma_region != NULL && os->lma_region != os->region
|
||
&& ((os->bfd_section->flags & SEC_LOAD)
|
||
|| os->align_lma_with_input))
|
||
{
|
||
os->lma_region->current = os->bfd_section->lma + dotdelta;
|
||
|
||
if (check_regions)
|
||
os_region_check (os, os->lma_region, NULL,
|
||
os->bfd_section->lma);
|
||
}
|
||
}
|
||
}
|
||
break;
|
||
|
||
case lang_constructors_statement_enum:
|
||
dot = lang_size_sections_1 (&constructor_list.head,
|
||
output_section_statement,
|
||
fill, dot, relax, check_regions);
|
||
break;
|
||
|
||
case lang_data_statement_enum:
|
||
{
|
||
unsigned int size = 0;
|
||
|
||
s->data_statement.output_offset =
|
||
dot - output_section_statement->bfd_section->vma;
|
||
s->data_statement.output_section =
|
||
output_section_statement->bfd_section;
|
||
|
||
/* We might refer to provided symbols in the expression, and
|
||
need to mark them as needed. */
|
||
exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
|
||
|
||
switch (s->data_statement.type)
|
||
{
|
||
default:
|
||
abort ();
|
||
case QUAD:
|
||
case SQUAD:
|
||
size = QUAD_SIZE;
|
||
break;
|
||
case LONG:
|
||
size = LONG_SIZE;
|
||
break;
|
||
case SHORT:
|
||
size = SHORT_SIZE;
|
||
break;
|
||
case BYTE:
|
||
size = BYTE_SIZE;
|
||
break;
|
||
}
|
||
if (size < TO_SIZE ((unsigned) 1))
|
||
size = TO_SIZE ((unsigned) 1);
|
||
dot += TO_ADDR (size);
|
||
if (!(output_section_statement->bfd_section->flags
|
||
& SEC_FIXED_SIZE))
|
||
output_section_statement->bfd_section->size
|
||
= TO_SIZE (dot - output_section_statement->bfd_section->vma);
|
||
|
||
}
|
||
break;
|
||
|
||
case lang_reloc_statement_enum:
|
||
{
|
||
int size;
|
||
|
||
s->reloc_statement.output_offset =
|
||
dot - output_section_statement->bfd_section->vma;
|
||
s->reloc_statement.output_section =
|
||
output_section_statement->bfd_section;
|
||
size = bfd_get_reloc_size (s->reloc_statement.howto);
|
||
dot += TO_ADDR (size);
|
||
if (!(output_section_statement->bfd_section->flags
|
||
& SEC_FIXED_SIZE))
|
||
output_section_statement->bfd_section->size
|
||
= TO_SIZE (dot - output_section_statement->bfd_section->vma);
|
||
}
|
||
break;
|
||
|
||
case lang_wild_statement_enum:
|
||
dot = lang_size_sections_1 (&s->wild_statement.children.head,
|
||
output_section_statement,
|
||
fill, dot, relax, check_regions);
|
||
break;
|
||
|
||
case lang_object_symbols_statement_enum:
|
||
link_info.create_object_symbols_section
|
||
= output_section_statement->bfd_section;
|
||
output_section_statement->bfd_section->flags |= SEC_KEEP;
|
||
break;
|
||
|
||
case lang_output_statement_enum:
|
||
case lang_target_statement_enum:
|
||
break;
|
||
|
||
case lang_input_section_enum:
|
||
{
|
||
asection *i;
|
||
|
||
i = s->input_section.section;
|
||
if (relax)
|
||
{
|
||
bool again;
|
||
|
||
if (!bfd_relax_section (i->owner, i, &link_info, &again))
|
||
einfo (_("%F%P: can't relax section: %E\n"));
|
||
if (again)
|
||
*relax = true;
|
||
}
|
||
dot = size_input_section (prev, output_section_statement,
|
||
fill, &removed, dot);
|
||
}
|
||
break;
|
||
|
||
case lang_input_statement_enum:
|
||
break;
|
||
|
||
case lang_fill_statement_enum:
|
||
s->fill_statement.output_section =
|
||
output_section_statement->bfd_section;
|
||
|
||
fill = s->fill_statement.fill;
|
||
break;
|
||
|
||
case lang_assignment_statement_enum:
|
||
{
|
||
bfd_vma newdot = dot;
|
||
etree_type *tree = s->assignment_statement.exp;
|
||
|
||
expld.dataseg.relro = exp_seg_relro_none;
|
||
|
||
exp_fold_tree (tree,
|
||
output_section_statement->bfd_section,
|
||
&newdot);
|
||
|
||
ldlang_check_relro_region (s);
|
||
|
||
expld.dataseg.relro = exp_seg_relro_none;
|
||
|
||
/* This symbol may be relative to this section. */
|
||
if ((tree->type.node_class == etree_provided
|
||
|| tree->type.node_class == etree_assign)
|
||
&& (tree->assign.dst [0] != '.'
|
||
|| tree->assign.dst [1] != '\0'))
|
||
output_section_statement->update_dot = 1;
|
||
|
||
if (!output_section_statement->ignored)
|
||
{
|
||
if (output_section_statement == abs_output_section)
|
||
{
|
||
/* If we don't have an output section, then just adjust
|
||
the default memory address. */
|
||
lang_memory_region_lookup (DEFAULT_MEMORY_REGION,
|
||
false)->current = newdot;
|
||
}
|
||
else if (newdot != dot)
|
||
{
|
||
/* Insert a pad after this statement. We can't
|
||
put the pad before when relaxing, in case the
|
||
assignment references dot. */
|
||
insert_pad (&s->header.next, fill, TO_SIZE (newdot - dot),
|
||
output_section_statement->bfd_section, dot);
|
||
|
||
/* Don't neuter the pad below when relaxing. */
|
||
s = s->header.next;
|
||
|
||
/* If dot is advanced, this implies that the section
|
||
should have space allocated to it, unless the
|
||
user has explicitly stated that the section
|
||
should not be allocated. */
|
||
if (output_section_statement->sectype != noalloc_section
|
||
&& (output_section_statement->sectype != noload_section
|
||
|| (bfd_get_flavour (link_info.output_bfd)
|
||
== bfd_target_elf_flavour)))
|
||
output_section_statement->bfd_section->flags |= SEC_ALLOC;
|
||
}
|
||
dot = newdot;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case lang_padding_statement_enum:
|
||
/* If this is the first time lang_size_sections is called,
|
||
we won't have any padding statements. If this is the
|
||
second or later passes when relaxing, we should allow
|
||
padding to shrink. If padding is needed on this pass, it
|
||
will be added back in. */
|
||
s->padding_statement.size = 0;
|
||
|
||
/* Make sure output_offset is valid. If relaxation shrinks
|
||
the section and this pad isn't needed, it's possible to
|
||
have output_offset larger than the final size of the
|
||
section. bfd_set_section_contents will complain even for
|
||
a pad size of zero. */
|
||
s->padding_statement.output_offset
|
||
= dot - output_section_statement->bfd_section->vma;
|
||
break;
|
||
|
||
case lang_group_statement_enum:
|
||
dot = lang_size_sections_1 (&s->group_statement.children.head,
|
||
output_section_statement,
|
||
fill, dot, relax, check_regions);
|
||
break;
|
||
|
||
case lang_insert_statement_enum:
|
||
break;
|
||
|
||
/* We can only get here when relaxing is turned on. */
|
||
case lang_address_statement_enum:
|
||
break;
|
||
|
||
default:
|
||
FAIL ();
|
||
break;
|
||
}
|
||
|
||
/* If an input section doesn't fit in the current output
|
||
section, remove it from the list. Handle the case where we
|
||
have to remove an input_section statement here: there is a
|
||
special case to remove the first element of the list. */
|
||
if (link_info.non_contiguous_regions && removed)
|
||
{
|
||
/* If we removed the first element during the previous
|
||
iteration, override the loop assignment of prev_s. */
|
||
if (removed_prev_s)
|
||
prev_s = NULL;
|
||
|
||
if (prev_s)
|
||
{
|
||
/* If there was a real previous input section, just skip
|
||
the current one. */
|
||
prev_s->header.next=s->header.next;
|
||
s = prev_s;
|
||
removed_prev_s = false;
|
||
}
|
||
else
|
||
{
|
||
/* Remove the first input section of the list. */
|
||
*prev = s->header.next;
|
||
removed_prev_s = true;
|
||
}
|
||
|
||
/* Move to next element, unless we removed the head of the
|
||
list. */
|
||
if (!removed_prev_s)
|
||
prev = &s->header.next;
|
||
}
|
||
else
|
||
{
|
||
prev = &s->header.next;
|
||
removed_prev_s = false;
|
||
}
|
||
}
|
||
return dot;
|
||
}
|
||
|
||
/* Callback routine that is used in _bfd_elf_map_sections_to_segments.
|
||
The BFD library has set NEW_SEGMENT to TRUE iff it thinks that
|
||
CURRENT_SECTION and PREVIOUS_SECTION ought to be placed into different
|
||
segments. We are allowed an opportunity to override this decision. */
|
||
|
||
bool
|
||
ldlang_override_segment_assignment (struct bfd_link_info *info ATTRIBUTE_UNUSED,
|
||
bfd *abfd ATTRIBUTE_UNUSED,
|
||
asection *current_section,
|
||
asection *previous_section,
|
||
bool new_segment)
|
||
{
|
||
lang_output_section_statement_type *cur;
|
||
lang_output_section_statement_type *prev;
|
||
|
||
/* The checks below are only necessary when the BFD library has decided
|
||
that the two sections ought to be placed into the same segment. */
|
||
if (new_segment)
|
||
return true;
|
||
|
||
/* Paranoia checks. */
|
||
if (current_section == NULL || previous_section == NULL)
|
||
return new_segment;
|
||
|
||
/* If this flag is set, the target never wants code and non-code
|
||
sections comingled in the same segment. */
|
||
if (config.separate_code
|
||
&& ((current_section->flags ^ previous_section->flags) & SEC_CODE))
|
||
return true;
|
||
|
||
/* Find the memory regions associated with the two sections.
|
||
We call lang_output_section_find() here rather than scanning the list
|
||
of output sections looking for a matching section pointer because if
|
||
we have a large number of sections then a hash lookup is faster. */
|
||
cur = lang_output_section_find (current_section->name);
|
||
prev = lang_output_section_find (previous_section->name);
|
||
|
||
/* More paranoia. */
|
||
if (cur == NULL || prev == NULL)
|
||
return new_segment;
|
||
|
||
/* If the regions are different then force the sections to live in
|
||
different segments. See the email thread starting at the following
|
||
URL for the reasons why this is necessary:
|
||
http://sourceware.org/ml/binutils/2007-02/msg00216.html */
|
||
return cur->region != prev->region;
|
||
}
|
||
|
||
void
|
||
one_lang_size_sections_pass (bool *relax, bool check_regions)
|
||
{
|
||
lang_statement_iteration++;
|
||
if (expld.phase != lang_mark_phase_enum)
|
||
lang_sizing_iteration++;
|
||
lang_size_sections_1 (&statement_list.head, abs_output_section,
|
||
0, 0, relax, check_regions);
|
||
}
|
||
|
||
static bool
|
||
lang_size_segment (void)
|
||
{
|
||
/* If XXX_SEGMENT_ALIGN XXX_SEGMENT_END pair was seen, check whether
|
||
a page could be saved in the data segment. */
|
||
seg_align_type *seg = &expld.dataseg;
|
||
bfd_vma first, last;
|
||
|
||
first = -seg->base & (seg->commonpagesize - 1);
|
||
last = seg->end & (seg->commonpagesize - 1);
|
||
if (first && last
|
||
&& ((seg->base & ~(seg->commonpagesize - 1))
|
||
!= (seg->end & ~(seg->commonpagesize - 1)))
|
||
&& first + last <= seg->commonpagesize)
|
||
{
|
||
seg->phase = exp_seg_adjust;
|
||
return true;
|
||
}
|
||
|
||
seg->phase = exp_seg_done;
|
||
return false;
|
||
}
|
||
|
||
static bfd_vma
|
||
lang_size_relro_segment_1 (void)
|
||
{
|
||
seg_align_type *seg = &expld.dataseg;
|
||
bfd_vma relro_end, desired_end;
|
||
asection *sec;
|
||
|
||
/* Compute the expected PT_GNU_RELRO/PT_LOAD segment end. */
|
||
relro_end = (seg->relro_end + seg->relropagesize - 1) & -seg->relropagesize;
|
||
|
||
/* Adjust by the offset arg of XXX_SEGMENT_RELRO_END. */
|
||
desired_end = relro_end - seg->relro_offset;
|
||
|
||
/* For sections in the relro segment.. */
|
||
for (sec = link_info.output_bfd->section_last; sec; sec = sec->prev)
|
||
if ((sec->flags & SEC_ALLOC) != 0
|
||
&& sec->vma >= seg->base
|
||
&& sec->vma < seg->relro_end - seg->relro_offset)
|
||
{
|
||
/* Where do we want to put this section so that it ends as
|
||
desired? */
|
||
bfd_vma start, end, bump;
|
||
|
||
end = start = sec->vma;
|
||
if (!IS_TBSS (sec))
|
||
end += TO_ADDR (sec->size);
|
||
bump = desired_end - end;
|
||
/* We'd like to increase START by BUMP, but we must heed
|
||
alignment so the increase might be less than optimum. */
|
||
start += bump;
|
||
start &= ~(((bfd_vma) 1 << sec->alignment_power) - 1);
|
||
/* This is now the desired end for the previous section. */
|
||
desired_end = start;
|
||
}
|
||
|
||
seg->phase = exp_seg_relro_adjust;
|
||
ASSERT (desired_end >= seg->base);
|
||
seg->base = desired_end;
|
||
return relro_end;
|
||
}
|
||
|
||
static bool
|
||
lang_size_relro_segment (bool *relax, bool check_regions)
|
||
{
|
||
bool do_reset = false;
|
||
|
||
if (link_info.relro && expld.dataseg.relro_end)
|
||
{
|
||
bfd_vma data_initial_base = expld.dataseg.base;
|
||
bfd_vma data_relro_end = lang_size_relro_segment_1 ();
|
||
|
||
lang_reset_memory_regions ();
|
||
one_lang_size_sections_pass (relax, check_regions);
|
||
|
||
/* Assignments to dot, or to output section address in a user
|
||
script have increased padding over the original. Revert. */
|
||
if (expld.dataseg.relro_end > data_relro_end)
|
||
{
|
||
expld.dataseg.base = data_initial_base;
|
||
do_reset = true;
|
||
}
|
||
}
|
||
else if (lang_size_segment ())
|
||
do_reset = true;
|
||
|
||
return do_reset;
|
||
}
|
||
|
||
void
|
||
lang_size_sections (bool *relax, bool check_regions)
|
||
{
|
||
expld.phase = lang_allocating_phase_enum;
|
||
expld.dataseg.phase = exp_seg_none;
|
||
|
||
one_lang_size_sections_pass (relax, check_regions);
|
||
|
||
if (expld.dataseg.phase != exp_seg_end_seen)
|
||
expld.dataseg.phase = exp_seg_done;
|
||
|
||
if (expld.dataseg.phase == exp_seg_end_seen)
|
||
{
|
||
bool do_reset
|
||
= lang_size_relro_segment (relax, check_regions);
|
||
|
||
if (do_reset)
|
||
{
|
||
lang_reset_memory_regions ();
|
||
one_lang_size_sections_pass (relax, check_regions);
|
||
}
|
||
|
||
if (link_info.relro && expld.dataseg.relro_end)
|
||
{
|
||
link_info.relro_start = expld.dataseg.base;
|
||
link_info.relro_end = expld.dataseg.relro_end;
|
||
}
|
||
}
|
||
}
|
||
|
||
static lang_output_section_statement_type *current_section;
|
||
static lang_assignment_statement_type *current_assign;
|
||
static bool prefer_next_section;
|
||
|
||
/* Worker function for lang_do_assignments. Recursiveness goes here. */
|
||
|
||
static bfd_vma
|
||
lang_do_assignments_1 (lang_statement_union_type *s,
|
||
lang_output_section_statement_type *current_os,
|
||
fill_type *fill,
|
||
bfd_vma dot,
|
||
bool *found_end)
|
||
{
|
||
for (; s != NULL; s = s->header.next)
|
||
{
|
||
switch (s->header.type)
|
||
{
|
||
case lang_constructors_statement_enum:
|
||
dot = lang_do_assignments_1 (constructor_list.head,
|
||
current_os, fill, dot, found_end);
|
||
break;
|
||
|
||
case lang_output_section_statement_enum:
|
||
{
|
||
lang_output_section_statement_type *os;
|
||
bfd_vma newdot;
|
||
|
||
os = &(s->output_section_statement);
|
||
os->after_end = *found_end;
|
||
init_opb (os->bfd_section);
|
||
newdot = dot;
|
||
if (os->bfd_section != NULL)
|
||
{
|
||
if (!os->ignored && (os->bfd_section->flags & SEC_ALLOC) != 0)
|
||
{
|
||
current_section = os;
|
||
prefer_next_section = false;
|
||
}
|
||
newdot = os->bfd_section->vma;
|
||
}
|
||
newdot = lang_do_assignments_1 (os->children.head,
|
||
os, os->fill, newdot, found_end);
|
||
if (!os->ignored)
|
||
{
|
||
if (os->bfd_section != NULL)
|
||
{
|
||
newdot = os->bfd_section->vma;
|
||
|
||
/* .tbss sections effectively have zero size. */
|
||
if (!IS_TBSS (os->bfd_section)
|
||
|| bfd_link_relocatable (&link_info))
|
||
newdot += TO_ADDR (os->bfd_section->size);
|
||
|
||
if (os->update_dot_tree != NULL)
|
||
exp_fold_tree (os->update_dot_tree,
|
||
bfd_abs_section_ptr, &newdot);
|
||
}
|
||
dot = newdot;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case lang_wild_statement_enum:
|
||
|
||
dot = lang_do_assignments_1 (s->wild_statement.children.head,
|
||
current_os, fill, dot, found_end);
|
||
break;
|
||
|
||
case lang_object_symbols_statement_enum:
|
||
case lang_output_statement_enum:
|
||
case lang_target_statement_enum:
|
||
break;
|
||
|
||
case lang_data_statement_enum:
|
||
exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
|
||
if (expld.result.valid_p)
|
||
{
|
||
s->data_statement.value = expld.result.value;
|
||
if (expld.result.section != NULL)
|
||
s->data_statement.value += expld.result.section->vma;
|
||
}
|
||
else if (expld.phase == lang_final_phase_enum)
|
||
einfo (_("%F%P: invalid data statement\n"));
|
||
{
|
||
unsigned int size;
|
||
switch (s->data_statement.type)
|
||
{
|
||
default:
|
||
abort ();
|
||
case QUAD:
|
||
case SQUAD:
|
||
size = QUAD_SIZE;
|
||
break;
|
||
case LONG:
|
||
size = LONG_SIZE;
|
||
break;
|
||
case SHORT:
|
||
size = SHORT_SIZE;
|
||
break;
|
||
case BYTE:
|
||
size = BYTE_SIZE;
|
||
break;
|
||
}
|
||
if (size < TO_SIZE ((unsigned) 1))
|
||
size = TO_SIZE ((unsigned) 1);
|
||
dot += TO_ADDR (size);
|
||
}
|
||
break;
|
||
|
||
case lang_reloc_statement_enum:
|
||
exp_fold_tree (s->reloc_statement.addend_exp,
|
||
bfd_abs_section_ptr, &dot);
|
||
if (expld.result.valid_p)
|
||
s->reloc_statement.addend_value = expld.result.value;
|
||
else if (expld.phase == lang_final_phase_enum)
|
||
einfo (_("%F%P: invalid reloc statement\n"));
|
||
dot += TO_ADDR (bfd_get_reloc_size (s->reloc_statement.howto));
|
||
break;
|
||
|
||
case lang_input_section_enum:
|
||
{
|
||
asection *in = s->input_section.section;
|
||
|
||
if ((in->flags & SEC_EXCLUDE) == 0)
|
||
dot += TO_ADDR (in->size);
|
||
}
|
||
break;
|
||
|
||
case lang_input_statement_enum:
|
||
break;
|
||
|
||
case lang_fill_statement_enum:
|
||
fill = s->fill_statement.fill;
|
||
break;
|
||
|
||
case lang_assignment_statement_enum:
|
||
current_assign = &s->assignment_statement;
|
||
if (current_assign->exp->type.node_class != etree_assert)
|
||
{
|
||
const char *p = current_assign->exp->assign.dst;
|
||
|
||
if (current_os == abs_output_section && p[0] == '.' && p[1] == 0)
|
||
prefer_next_section = true;
|
||
|
||
while (*p == '_')
|
||
++p;
|
||
if (strcmp (p, "end") == 0)
|
||
*found_end = true;
|
||
}
|
||
exp_fold_tree (s->assignment_statement.exp,
|
||
(current_os->bfd_section != NULL
|
||
? current_os->bfd_section : bfd_und_section_ptr),
|
||
&dot);
|
||
break;
|
||
|
||
case lang_padding_statement_enum:
|
||
dot += TO_ADDR (s->padding_statement.size);
|
||
break;
|
||
|
||
case lang_group_statement_enum:
|
||
dot = lang_do_assignments_1 (s->group_statement.children.head,
|
||
current_os, fill, dot, found_end);
|
||
break;
|
||
|
||
case lang_insert_statement_enum:
|
||
break;
|
||
|
||
case lang_address_statement_enum:
|
||
break;
|
||
|
||
default:
|
||
FAIL ();
|
||
break;
|
||
}
|
||
}
|
||
return dot;
|
||
}
|
||
|
||
void
|
||
lang_do_assignments (lang_phase_type phase)
|
||
{
|
||
bool found_end = false;
|
||
|
||
current_section = NULL;
|
||
prefer_next_section = false;
|
||
expld.phase = phase;
|
||
lang_statement_iteration++;
|
||
lang_do_assignments_1 (statement_list.head,
|
||
abs_output_section, NULL, 0, &found_end);
|
||
}
|
||
|
||
/* For an assignment statement outside of an output section statement,
|
||
choose the best of neighbouring output sections to use for values
|
||
of "dot". */
|
||
|
||
asection *
|
||
section_for_dot (void)
|
||
{
|
||
asection *s;
|
||
|
||
/* Assignments belong to the previous output section, unless there
|
||
has been an assignment to "dot", in which case following
|
||
assignments belong to the next output section. (The assumption
|
||
is that an assignment to "dot" is setting up the address for the
|
||
next output section.) Except that past the assignment to "_end"
|
||
we always associate with the previous section. This exception is
|
||
for targets like SH that define an alloc .stack or other
|
||
weirdness after non-alloc sections. */
|
||
if (current_section == NULL || prefer_next_section)
|
||
{
|
||
lang_statement_union_type *stmt;
|
||
lang_output_section_statement_type *os;
|
||
|
||
for (stmt = (lang_statement_union_type *) current_assign;
|
||
stmt != NULL;
|
||
stmt = stmt->header.next)
|
||
if (stmt->header.type == lang_output_section_statement_enum)
|
||
break;
|
||
|
||
os = stmt ? &stmt->output_section_statement : NULL;
|
||
while (os != NULL
|
||
&& !os->after_end
|
||
&& (os->bfd_section == NULL
|
||
|| (os->bfd_section->flags & SEC_EXCLUDE) != 0
|
||
|| bfd_section_removed_from_list (link_info.output_bfd,
|
||
os->bfd_section)))
|
||
os = os->next;
|
||
|
||
if (current_section == NULL || os == NULL || !os->after_end)
|
||
{
|
||
if (os != NULL)
|
||
s = os->bfd_section;
|
||
else
|
||
s = link_info.output_bfd->section_last;
|
||
while (s != NULL
|
||
&& ((s->flags & SEC_ALLOC) == 0
|
||
|| (s->flags & SEC_THREAD_LOCAL) != 0))
|
||
s = s->prev;
|
||
if (s != NULL)
|
||
return s;
|
||
|
||
return bfd_abs_section_ptr;
|
||
}
|
||
}
|
||
|
||
s = current_section->bfd_section;
|
||
|
||
/* The section may have been stripped. */
|
||
while (s != NULL
|
||
&& ((s->flags & SEC_EXCLUDE) != 0
|
||
|| (s->flags & SEC_ALLOC) == 0
|
||
|| (s->flags & SEC_THREAD_LOCAL) != 0
|
||
|| bfd_section_removed_from_list (link_info.output_bfd, s)))
|
||
s = s->prev;
|
||
if (s == NULL)
|
||
s = link_info.output_bfd->sections;
|
||
while (s != NULL
|
||
&& ((s->flags & SEC_ALLOC) == 0
|
||
|| (s->flags & SEC_THREAD_LOCAL) != 0))
|
||
s = s->next;
|
||
if (s != NULL)
|
||
return s;
|
||
|
||
return bfd_abs_section_ptr;
|
||
}
|
||
|
||
/* Array of __start/__stop/.startof./.sizeof/ symbols. */
|
||
|
||
static struct bfd_link_hash_entry **start_stop_syms;
|
||
static size_t start_stop_count = 0;
|
||
static size_t start_stop_alloc = 0;
|
||
|
||
/* Give start/stop SYMBOL for SEC a preliminary definition, and add it
|
||
to start_stop_syms. */
|
||
|
||
static void
|
||
lang_define_start_stop (const char *symbol, asection *sec)
|
||
{
|
||
struct bfd_link_hash_entry *h;
|
||
|
||
h = bfd_define_start_stop (link_info.output_bfd, &link_info, symbol, sec);
|
||
if (h != NULL)
|
||
{
|
||
if (start_stop_count == start_stop_alloc)
|
||
{
|
||
start_stop_alloc = 2 * start_stop_alloc + 10;
|
||
start_stop_syms
|
||
= xrealloc (start_stop_syms,
|
||
start_stop_alloc * sizeof (*start_stop_syms));
|
||
}
|
||
start_stop_syms[start_stop_count++] = h;
|
||
}
|
||
}
|
||
|
||
/* Check for input sections whose names match references to
|
||
__start_SECNAME or __stop_SECNAME symbols. Give the symbols
|
||
preliminary definitions. */
|
||
|
||
static void
|
||
lang_init_start_stop (void)
|
||
{
|
||
bfd *abfd;
|
||
asection *s;
|
||
char leading_char = bfd_get_symbol_leading_char (link_info.output_bfd);
|
||
|
||
for (abfd = link_info.input_bfds; abfd != NULL; abfd = abfd->link.next)
|
||
for (s = abfd->sections; s != NULL; s = s->next)
|
||
{
|
||
const char *ps;
|
||
const char *secname = s->name;
|
||
|
||
for (ps = secname; *ps != '\0'; ps++)
|
||
if (!ISALNUM ((unsigned char) *ps) && *ps != '_')
|
||
break;
|
||
if (*ps == '\0')
|
||
{
|
||
char *symbol = (char *) xmalloc (10 + strlen (secname));
|
||
|
||
symbol[0] = leading_char;
|
||
sprintf (symbol + (leading_char != 0), "__start_%s", secname);
|
||
lang_define_start_stop (symbol, s);
|
||
|
||
symbol[1] = leading_char;
|
||
memcpy (symbol + 1 + (leading_char != 0), "__stop", 6);
|
||
lang_define_start_stop (symbol + 1, s);
|
||
|
||
free (symbol);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Iterate over start_stop_syms. */
|
||
|
||
static void
|
||
foreach_start_stop (void (*func) (struct bfd_link_hash_entry *))
|
||
{
|
||
size_t i;
|
||
|
||
for (i = 0; i < start_stop_count; ++i)
|
||
func (start_stop_syms[i]);
|
||
}
|
||
|
||
/* __start and __stop symbols are only supposed to be defined by the
|
||
linker for orphan sections, but we now extend that to sections that
|
||
map to an output section of the same name. The symbols were
|
||
defined early for --gc-sections, before we mapped input to output
|
||
sections, so undo those that don't satisfy this rule. */
|
||
|
||
static void
|
||
undef_start_stop (struct bfd_link_hash_entry *h)
|
||
{
|
||
if (h->ldscript_def)
|
||
return;
|
||
|
||
if (h->u.def.section->output_section == NULL
|
||
|| h->u.def.section->output_section->owner != link_info.output_bfd
|
||
|| strcmp (h->u.def.section->name,
|
||
h->u.def.section->output_section->name) != 0)
|
||
{
|
||
asection *sec = bfd_get_section_by_name (link_info.output_bfd,
|
||
h->u.def.section->name);
|
||
if (sec != NULL)
|
||
{
|
||
/* When there are more than one input sections with the same
|
||
section name, SECNAME, linker picks the first one to define
|
||
__start_SECNAME and __stop_SECNAME symbols. When the first
|
||
input section is removed by comdat group, we need to check
|
||
if there is still an output section with section name
|
||
SECNAME. */
|
||
asection *i;
|
||
for (i = sec->map_head.s; i != NULL; i = i->map_head.s)
|
||
if (strcmp (h->u.def.section->name, i->name) == 0)
|
||
{
|
||
h->u.def.section = i;
|
||
return;
|
||
}
|
||
}
|
||
h->type = bfd_link_hash_undefined;
|
||
h->u.undef.abfd = NULL;
|
||
if (is_elf_hash_table (link_info.hash))
|
||
{
|
||
const struct elf_backend_data *bed;
|
||
struct elf_link_hash_entry *eh = (struct elf_link_hash_entry *) h;
|
||
unsigned int was_forced = eh->forced_local;
|
||
|
||
bed = get_elf_backend_data (link_info.output_bfd);
|
||
(*bed->elf_backend_hide_symbol) (&link_info, eh, true);
|
||
if (!eh->ref_regular_nonweak)
|
||
h->type = bfd_link_hash_undefweak;
|
||
eh->def_regular = 0;
|
||
eh->forced_local = was_forced;
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
lang_undef_start_stop (void)
|
||
{
|
||
foreach_start_stop (undef_start_stop);
|
||
}
|
||
|
||
/* Check for output sections whose names match references to
|
||
.startof.SECNAME or .sizeof.SECNAME symbols. Give the symbols
|
||
preliminary definitions. */
|
||
|
||
static void
|
||
lang_init_startof_sizeof (void)
|
||
{
|
||
asection *s;
|
||
|
||
for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
|
||
{
|
||
const char *secname = s->name;
|
||
char *symbol = (char *) xmalloc (10 + strlen (secname));
|
||
|
||
sprintf (symbol, ".startof.%s", secname);
|
||
lang_define_start_stop (symbol, s);
|
||
|
||
memcpy (symbol + 1, ".size", 5);
|
||
lang_define_start_stop (symbol + 1, s);
|
||
free (symbol);
|
||
}
|
||
}
|
||
|
||
/* Set .startof., .sizeof., __start and __stop symbols final values. */
|
||
|
||
static void
|
||
set_start_stop (struct bfd_link_hash_entry *h)
|
||
{
|
||
if (h->ldscript_def
|
||
|| h->type != bfd_link_hash_defined)
|
||
return;
|
||
|
||
if (h->root.string[0] == '.')
|
||
{
|
||
/* .startof. or .sizeof. symbol.
|
||
.startof. already has final value. */
|
||
if (h->root.string[2] == 'i')
|
||
{
|
||
/* .sizeof. */
|
||
h->u.def.value = TO_ADDR (h->u.def.section->size);
|
||
h->u.def.section = bfd_abs_section_ptr;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* __start or __stop symbol. */
|
||
int has_lead = bfd_get_symbol_leading_char (link_info.output_bfd) != 0;
|
||
|
||
h->u.def.section = h->u.def.section->output_section;
|
||
if (h->root.string[4 + has_lead] == 'o')
|
||
{
|
||
/* __stop_ */
|
||
h->u.def.value = TO_ADDR (h->u.def.section->size);
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
lang_finalize_start_stop (void)
|
||
{
|
||
foreach_start_stop (set_start_stop);
|
||
}
|
||
|
||
static void
|
||
lang_symbol_tweaks (void)
|
||
{
|
||
/* Give initial values for __start and __stop symbols, so that ELF
|
||
gc_sections will keep sections referenced by these symbols. Must
|
||
be done before lang_do_assignments. */
|
||
if (config.build_constructors)
|
||
lang_init_start_stop ();
|
||
|
||
/* Make __ehdr_start hidden, and set def_regular even though it is
|
||
likely undefined at this stage. For lang_check_relocs. */
|
||
if (is_elf_hash_table (link_info.hash)
|
||
&& !bfd_link_relocatable (&link_info))
|
||
{
|
||
struct elf_link_hash_entry *h = (struct elf_link_hash_entry *)
|
||
bfd_link_hash_lookup (link_info.hash, "__ehdr_start",
|
||
false, false, true);
|
||
|
||
/* Only adjust the export class if the symbol was referenced
|
||
and not defined, otherwise leave it alone. */
|
||
if (h != NULL
|
||
&& (h->root.type == bfd_link_hash_new
|
||
|| h->root.type == bfd_link_hash_undefined
|
||
|| h->root.type == bfd_link_hash_undefweak
|
||
|| h->root.type == bfd_link_hash_common))
|
||
{
|
||
const struct elf_backend_data *bed;
|
||
bed = get_elf_backend_data (link_info.output_bfd);
|
||
(*bed->elf_backend_hide_symbol) (&link_info, h, true);
|
||
if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
|
||
h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
|
||
h->def_regular = 1;
|
||
h->root.linker_def = 1;
|
||
h->root.rel_from_abs = 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
lang_end (void)
|
||
{
|
||
struct bfd_link_hash_entry *h;
|
||
bool warn;
|
||
|
||
if ((bfd_link_relocatable (&link_info) && !link_info.gc_sections)
|
||
|| bfd_link_dll (&link_info))
|
||
warn = entry_from_cmdline;
|
||
else
|
||
warn = true;
|
||
|
||
/* Force the user to specify a root when generating a relocatable with
|
||
--gc-sections, unless --gc-keep-exported was also given. */
|
||
if (bfd_link_relocatable (&link_info)
|
||
&& link_info.gc_sections
|
||
&& !link_info.gc_keep_exported)
|
||
{
|
||
struct bfd_sym_chain *sym;
|
||
|
||
for (sym = link_info.gc_sym_list; sym != NULL; sym = sym->next)
|
||
{
|
||
h = bfd_link_hash_lookup (link_info.hash, sym->name,
|
||
false, false, false);
|
||
if (h != NULL
|
||
&& (h->type == bfd_link_hash_defined
|
||
|| h->type == bfd_link_hash_defweak)
|
||
&& !bfd_is_const_section (h->u.def.section))
|
||
break;
|
||
}
|
||
if (!sym)
|
||
einfo (_("%F%P: --gc-sections requires a defined symbol root "
|
||
"specified by -e or -u\n"));
|
||
}
|
||
|
||
if (entry_symbol.name == NULL)
|
||
{
|
||
/* No entry has been specified. Look for the default entry, but
|
||
don't warn if we don't find it. */
|
||
entry_symbol.name = entry_symbol_default;
|
||
warn = false;
|
||
}
|
||
|
||
h = bfd_link_hash_lookup (link_info.hash, entry_symbol.name,
|
||
false, false, true);
|
||
if (h != NULL
|
||
&& (h->type == bfd_link_hash_defined
|
||
|| h->type == bfd_link_hash_defweak)
|
||
&& h->u.def.section->output_section != NULL)
|
||
{
|
||
bfd_vma val;
|
||
|
||
val = (h->u.def.value
|
||
+ bfd_section_vma (h->u.def.section->output_section)
|
||
+ h->u.def.section->output_offset);
|
||
if (!bfd_set_start_address (link_info.output_bfd, val))
|
||
einfo (_("%F%P: %s: can't set start address\n"), entry_symbol.name);
|
||
}
|
||
else
|
||
{
|
||
bfd_vma val;
|
||
const char *send;
|
||
|
||
/* We couldn't find the entry symbol. Try parsing it as a
|
||
number. */
|
||
val = bfd_scan_vma (entry_symbol.name, &send, 0);
|
||
if (*send == '\0')
|
||
{
|
||
if (!bfd_set_start_address (link_info.output_bfd, val))
|
||
einfo (_("%F%P: can't set start address\n"));
|
||
}
|
||
/* BZ 2004952: Only use the start of the entry section for executables. */
|
||
else if bfd_link_executable (&link_info)
|
||
{
|
||
asection *ts;
|
||
|
||
/* Can't find the entry symbol, and it's not a number. Use
|
||
the first address in the text section. */
|
||
ts = bfd_get_section_by_name (link_info.output_bfd, entry_section);
|
||
if (ts != NULL)
|
||
{
|
||
if (warn)
|
||
einfo (_("%P: warning: cannot find entry symbol %s;"
|
||
" defaulting to %V\n"),
|
||
entry_symbol.name,
|
||
bfd_section_vma (ts));
|
||
if (!bfd_set_start_address (link_info.output_bfd,
|
||
bfd_section_vma (ts)))
|
||
einfo (_("%F%P: can't set start address\n"));
|
||
}
|
||
else
|
||
{
|
||
if (warn)
|
||
einfo (_("%P: warning: cannot find entry symbol %s;"
|
||
" not setting start address\n"),
|
||
entry_symbol.name);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (warn)
|
||
einfo (_("%P: warning: cannot find entry symbol %s;"
|
||
" not setting start address\n"),
|
||
entry_symbol.name);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* This is a small function used when we want to ignore errors from
|
||
BFD. */
|
||
|
||
static void
|
||
ignore_bfd_errors (const char *fmt ATTRIBUTE_UNUSED,
|
||
va_list ap ATTRIBUTE_UNUSED)
|
||
{
|
||
/* Don't do anything. */
|
||
}
|
||
|
||
/* Check that the architecture of all the input files is compatible
|
||
with the output file. Also call the backend to let it do any
|
||
other checking that is needed. */
|
||
|
||
static void
|
||
lang_check (void)
|
||
{
|
||
lang_input_statement_type *file;
|
||
bfd *input_bfd;
|
||
const bfd_arch_info_type *compatible;
|
||
|
||
for (file = (void *) file_chain.head;
|
||
file != NULL;
|
||
file = file->next)
|
||
{
|
||
#if BFD_SUPPORTS_PLUGINS
|
||
/* Don't check format of files claimed by plugin. */
|
||
if (file->flags.claimed)
|
||
continue;
|
||
#endif /* BFD_SUPPORTS_PLUGINS */
|
||
input_bfd = file->the_bfd;
|
||
compatible
|
||
= bfd_arch_get_compatible (input_bfd, link_info.output_bfd,
|
||
command_line.accept_unknown_input_arch);
|
||
|
||
/* In general it is not possible to perform a relocatable
|
||
link between differing object formats when the input
|
||
file has relocations, because the relocations in the
|
||
input format may not have equivalent representations in
|
||
the output format (and besides BFD does not translate
|
||
relocs for other link purposes than a final link). */
|
||
if (!file->flags.just_syms
|
||
&& (bfd_link_relocatable (&link_info)
|
||
|| link_info.emitrelocations)
|
||
&& (compatible == NULL
|
||
|| (bfd_get_flavour (input_bfd)
|
||
!= bfd_get_flavour (link_info.output_bfd)))
|
||
&& (bfd_get_file_flags (input_bfd) & HAS_RELOC) != 0)
|
||
{
|
||
einfo (_("%F%P: relocatable linking with relocations from"
|
||
" format %s (%pB) to format %s (%pB) is not supported\n"),
|
||
bfd_get_target (input_bfd), input_bfd,
|
||
bfd_get_target (link_info.output_bfd), link_info.output_bfd);
|
||
/* einfo with %F exits. */
|
||
}
|
||
|
||
if (compatible == NULL)
|
||
{
|
||
if (command_line.warn_mismatch)
|
||
einfo (_("%X%P: %s architecture of input file `%pB'"
|
||
" is incompatible with %s output\n"),
|
||
bfd_printable_name (input_bfd), input_bfd,
|
||
bfd_printable_name (link_info.output_bfd));
|
||
}
|
||
|
||
/* If the input bfd has no contents, it shouldn't set the
|
||
private data of the output bfd. */
|
||
else if (!file->flags.just_syms
|
||
&& ((input_bfd->flags & DYNAMIC) != 0
|
||
|| bfd_count_sections (input_bfd) != 0))
|
||
{
|
||
bfd_error_handler_type pfn = NULL;
|
||
|
||
/* If we aren't supposed to warn about mismatched input
|
||
files, temporarily set the BFD error handler to a
|
||
function which will do nothing. We still want to call
|
||
bfd_merge_private_bfd_data, since it may set up
|
||
information which is needed in the output file. */
|
||
if (!command_line.warn_mismatch)
|
||
pfn = bfd_set_error_handler (ignore_bfd_errors);
|
||
if (!bfd_merge_private_bfd_data (input_bfd, &link_info))
|
||
{
|
||
if (command_line.warn_mismatch)
|
||
einfo (_("%X%P: failed to merge target specific data"
|
||
" of file %pB\n"), input_bfd);
|
||
}
|
||
if (!command_line.warn_mismatch)
|
||
bfd_set_error_handler (pfn);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Look through all the global common symbols and attach them to the
|
||
correct section. The -sort-common command line switch may be used
|
||
to roughly sort the entries by alignment. */
|
||
|
||
static void
|
||
lang_common (void)
|
||
{
|
||
if (link_info.inhibit_common_definition)
|
||
return;
|
||
if (bfd_link_relocatable (&link_info)
|
||
&& !command_line.force_common_definition)
|
||
return;
|
||
|
||
if (!config.sort_common)
|
||
bfd_link_hash_traverse (link_info.hash, lang_one_common, NULL);
|
||
else
|
||
{
|
||
unsigned int power;
|
||
|
||
if (config.sort_common == sort_descending)
|
||
{
|
||
for (power = 4; power > 0; power--)
|
||
bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
|
||
|
||
power = 0;
|
||
bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
|
||
}
|
||
else
|
||
{
|
||
for (power = 0; power <= 4; power++)
|
||
bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
|
||
|
||
power = (unsigned int) -1;
|
||
bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Place one common symbol in the correct section. */
|
||
|
||
static bool
|
||
lang_one_common (struct bfd_link_hash_entry *h, void *info)
|
||
{
|
||
unsigned int power_of_two;
|
||
bfd_vma size;
|
||
asection *section;
|
||
|
||
if (h->type != bfd_link_hash_common)
|
||
return true;
|
||
|
||
size = h->u.c.size;
|
||
power_of_two = h->u.c.p->alignment_power;
|
||
|
||
if (config.sort_common == sort_descending
|
||
&& power_of_two < *(unsigned int *) info)
|
||
return true;
|
||
else if (config.sort_common == sort_ascending
|
||
&& power_of_two > *(unsigned int *) info)
|
||
return true;
|
||
|
||
section = h->u.c.p->section;
|
||
if (!bfd_define_common_symbol (link_info.output_bfd, &link_info, h))
|
||
einfo (_("%F%P: could not define common symbol `%pT': %E\n"),
|
||
h->root.string);
|
||
|
||
if (config.map_file != NULL)
|
||
{
|
||
static bool header_printed;
|
||
int len;
|
||
char *name;
|
||
char buf[32];
|
||
|
||
if (!header_printed)
|
||
{
|
||
minfo (_("\nAllocating common symbols\n"));
|
||
minfo (_("Common symbol size file\n\n"));
|
||
header_printed = true;
|
||
}
|
||
|
||
name = bfd_demangle (link_info.output_bfd, h->root.string,
|
||
DMGL_ANSI | DMGL_PARAMS);
|
||
if (name == NULL)
|
||
{
|
||
minfo ("%s", h->root.string);
|
||
len = strlen (h->root.string);
|
||
}
|
||
else
|
||
{
|
||
minfo ("%s", name);
|
||
len = strlen (name);
|
||
free (name);
|
||
}
|
||
|
||
if (len >= 19)
|
||
{
|
||
print_nl ();
|
||
len = 0;
|
||
}
|
||
|
||
sprintf (buf, "%" PRIx64, (uint64_t) size);
|
||
fprintf (config.map_file, "%*s0x%-16s", 20 - len, "", buf);
|
||
|
||
minfo ("%pB\n", section->owner);
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Handle a single orphan section S, placing the orphan into an appropriate
|
||
output section. The effects of the --orphan-handling command line
|
||
option are handled here. */
|
||
|
||
static void
|
||
ldlang_place_orphan (asection *s)
|
||
{
|
||
if (config.orphan_handling == orphan_handling_discard)
|
||
{
|
||
lang_output_section_statement_type *os;
|
||
os = lang_output_section_statement_lookup (DISCARD_SECTION_NAME, 0, 1);
|
||
if (os->addr_tree == NULL
|
||
&& (bfd_link_relocatable (&link_info)
|
||
|| (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0))
|
||
os->addr_tree = exp_intop (0);
|
||
lang_add_section (&os->children, s, NULL, NULL, os);
|
||
}
|
||
else
|
||
{
|
||
lang_output_section_statement_type *os;
|
||
const char *name = s->name;
|
||
int constraint = 0;
|
||
|
||
if (config.orphan_handling == orphan_handling_error)
|
||
einfo (_("%X%P: error: unplaced orphan section `%pA' from `%pB'\n"),
|
||
s, s->owner);
|
||
|
||
if (config.unique_orphan_sections || unique_section_p (s, NULL))
|
||
constraint = SPECIAL;
|
||
|
||
os = ldemul_place_orphan (s, name, constraint);
|
||
if (os == NULL)
|
||
{
|
||
os = lang_output_section_statement_lookup (name, constraint, 1);
|
||
if (os->addr_tree == NULL
|
||
&& (bfd_link_relocatable (&link_info)
|
||
|| (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0))
|
||
os->addr_tree = exp_intop (0);
|
||
lang_add_section (&os->children, s, NULL, NULL, os);
|
||
}
|
||
|
||
if (config.orphan_handling == orphan_handling_warn)
|
||
einfo (_("%P: warning: orphan section `%pA' from `%pB' being "
|
||
"placed in section `%s'\n"),
|
||
s, s->owner, os->name);
|
||
}
|
||
}
|
||
|
||
/* Run through the input files and ensure that every input section has
|
||
somewhere to go. If one is found without a destination then create
|
||
an input request and place it into the statement tree. */
|
||
|
||
static void
|
||
lang_place_orphans (void)
|
||
{
|
||
LANG_FOR_EACH_INPUT_STATEMENT (file)
|
||
{
|
||
asection *s;
|
||
|
||
for (s = file->the_bfd->sections; s != NULL; s = s->next)
|
||
{
|
||
if (s->output_section == NULL)
|
||
{
|
||
/* This section of the file is not attached, root
|
||
around for a sensible place for it to go. */
|
||
|
||
if (file->flags.just_syms)
|
||
bfd_link_just_syms (file->the_bfd, s, &link_info);
|
||
else if (lang_discard_section_p (s))
|
||
s->output_section = bfd_abs_section_ptr;
|
||
else if (strcmp (s->name, "COMMON") == 0)
|
||
{
|
||
/* This is a lonely common section which must have
|
||
come from an archive. We attach to the section
|
||
with the wildcard. */
|
||
if (!bfd_link_relocatable (&link_info)
|
||
|| command_line.force_common_definition)
|
||
{
|
||
if (default_common_section == NULL)
|
||
default_common_section
|
||
= lang_output_section_statement_lookup (".bss", 0, 1);
|
||
lang_add_section (&default_common_section->children, s,
|
||
NULL, NULL, default_common_section);
|
||
}
|
||
}
|
||
else
|
||
ldlang_place_orphan (s);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
void
|
||
lang_set_flags (lang_memory_region_type *ptr, const char *flags, int invert)
|
||
{
|
||
flagword *ptr_flags;
|
||
|
||
ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
|
||
|
||
while (*flags)
|
||
{
|
||
switch (*flags)
|
||
{
|
||
/* PR 17900: An exclamation mark in the attributes reverses
|
||
the sense of any of the attributes that follow. */
|
||
case '!':
|
||
invert = !invert;
|
||
ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
|
||
break;
|
||
|
||
case 'A': case 'a':
|
||
*ptr_flags |= SEC_ALLOC;
|
||
break;
|
||
|
||
case 'R': case 'r':
|
||
*ptr_flags |= SEC_READONLY;
|
||
break;
|
||
|
||
case 'W': case 'w':
|
||
*ptr_flags |= SEC_DATA;
|
||
break;
|
||
|
||
case 'X': case 'x':
|
||
*ptr_flags |= SEC_CODE;
|
||
break;
|
||
|
||
case 'L': case 'l':
|
||
case 'I': case 'i':
|
||
*ptr_flags |= SEC_LOAD;
|
||
break;
|
||
|
||
default:
|
||
einfo (_("%F%P: invalid character %c (%d) in flags\n"),
|
||
*flags, *flags);
|
||
break;
|
||
}
|
||
flags++;
|
||
}
|
||
}
|
||
|
||
/* Call a function on each real input file. This function will be
|
||
called on an archive, but not on the elements. */
|
||
|
||
void
|
||
lang_for_each_input_file (void (*func) (lang_input_statement_type *))
|
||
{
|
||
lang_input_statement_type *f;
|
||
|
||
for (f = (void *) input_file_chain.head;
|
||
f != NULL;
|
||
f = f->next_real_file)
|
||
if (f->flags.real)
|
||
func (f);
|
||
}
|
||
|
||
/* Call a function on each real file. The function will be called on
|
||
all the elements of an archive which are included in the link, but
|
||
will not be called on the archive file itself. */
|
||
|
||
void
|
||
lang_for_each_file (void (*func) (lang_input_statement_type *))
|
||
{
|
||
LANG_FOR_EACH_INPUT_STATEMENT (f)
|
||
{
|
||
if (f->flags.real)
|
||
func (f);
|
||
}
|
||
}
|
||
|
||
void
|
||
ldlang_add_file (lang_input_statement_type *entry)
|
||
{
|
||
lang_statement_append (&file_chain, entry, &entry->next);
|
||
|
||
/* The BFD linker needs to have a list of all input BFDs involved in
|
||
a link. */
|
||
ASSERT (link_info.input_bfds_tail != &entry->the_bfd->link.next
|
||
&& entry->the_bfd->link.next == NULL);
|
||
ASSERT (entry->the_bfd != link_info.output_bfd);
|
||
|
||
*link_info.input_bfds_tail = entry->the_bfd;
|
||
link_info.input_bfds_tail = &entry->the_bfd->link.next;
|
||
bfd_set_usrdata (entry->the_bfd, entry);
|
||
bfd_set_gp_size (entry->the_bfd, g_switch_value);
|
||
|
||
/* Look through the sections and check for any which should not be
|
||
included in the link. We need to do this now, so that we can
|
||
notice when the backend linker tries to report multiple
|
||
definition errors for symbols which are in sections we aren't
|
||
going to link. FIXME: It might be better to entirely ignore
|
||
symbols which are defined in sections which are going to be
|
||
discarded. This would require modifying the backend linker for
|
||
each backend which might set the SEC_LINK_ONCE flag. If we do
|
||
this, we should probably handle SEC_EXCLUDE in the same way. */
|
||
|
||
bfd_map_over_sections (entry->the_bfd, section_already_linked, entry);
|
||
}
|
||
|
||
void
|
||
lang_add_output (const char *name, int from_script)
|
||
{
|
||
/* Make -o on command line override OUTPUT in script. */
|
||
if (!had_output_filename || !from_script)
|
||
{
|
||
output_filename = name;
|
||
had_output_filename = true;
|
||
}
|
||
}
|
||
|
||
lang_output_section_statement_type *
|
||
lang_enter_output_section_statement (const char *output_section_statement_name,
|
||
etree_type *address_exp,
|
||
enum section_type sectype,
|
||
etree_type *sectype_value,
|
||
etree_type *align,
|
||
etree_type *subalign,
|
||
etree_type *ebase,
|
||
int constraint,
|
||
int align_with_input)
|
||
{
|
||
lang_output_section_statement_type *os;
|
||
|
||
os = lang_output_section_statement_lookup (output_section_statement_name,
|
||
constraint, 2);
|
||
current_section = os;
|
||
|
||
if (os->addr_tree == NULL)
|
||
{
|
||
os->addr_tree = address_exp;
|
||
}
|
||
os->sectype = sectype;
|
||
if (sectype == type_section || sectype == typed_readonly_section)
|
||
os->sectype_value = sectype_value;
|
||
else if (sectype == noload_section)
|
||
os->flags = SEC_NEVER_LOAD;
|
||
else
|
||
os->flags = SEC_NO_FLAGS;
|
||
os->block_value = 1;
|
||
|
||
/* Make next things chain into subchain of this. */
|
||
push_stat_ptr (&os->children);
|
||
|
||
os->align_lma_with_input = align_with_input == ALIGN_WITH_INPUT;
|
||
if (os->align_lma_with_input && align != NULL)
|
||
einfo (_("%F%P:%pS: error: align with input and explicit align specified\n"),
|
||
NULL);
|
||
|
||
os->subsection_alignment = subalign;
|
||
os->section_alignment = align;
|
||
|
||
os->load_base = ebase;
|
||
return os;
|
||
}
|
||
|
||
void
|
||
lang_final (void)
|
||
{
|
||
lang_output_statement_type *new_stmt;
|
||
|
||
new_stmt = new_stat (lang_output_statement, stat_ptr);
|
||
new_stmt->name = output_filename;
|
||
}
|
||
|
||
/* Reset the current counters in the regions. */
|
||
|
||
void
|
||
lang_reset_memory_regions (void)
|
||
{
|
||
lang_memory_region_type *p = lang_memory_region_list;
|
||
asection *o;
|
||
lang_output_section_statement_type *os;
|
||
|
||
for (p = lang_memory_region_list; p != NULL; p = p->next)
|
||
{
|
||
p->current = p->origin;
|
||
p->last_os = NULL;
|
||
}
|
||
|
||
for (os = (void *) lang_os_list.head;
|
||
os != NULL;
|
||
os = os->next)
|
||
{
|
||
os->processed_vma = false;
|
||
os->processed_lma = false;
|
||
}
|
||
|
||
for (o = link_info.output_bfd->sections; o != NULL; o = o->next)
|
||
{
|
||
/* Save the last size for possible use by bfd_relax_section. */
|
||
o->rawsize = o->size;
|
||
if (!(o->flags & SEC_FIXED_SIZE))
|
||
o->size = 0;
|
||
}
|
||
}
|
||
|
||
/* Worker for lang_gc_sections_1. */
|
||
|
||
static void
|
||
gc_section_callback (lang_wild_statement_type *ptr,
|
||
struct wildcard_list *sec ATTRIBUTE_UNUSED,
|
||
asection *section,
|
||
lang_input_statement_type *file ATTRIBUTE_UNUSED,
|
||
void *data ATTRIBUTE_UNUSED)
|
||
{
|
||
/* If the wild pattern was marked KEEP, the member sections
|
||
should be as well. */
|
||
if (ptr->keep_sections)
|
||
section->flags |= SEC_KEEP;
|
||
}
|
||
|
||
/* Iterate over sections marking them against GC. */
|
||
|
||
static void
|
||
lang_gc_sections_1 (lang_statement_union_type *s)
|
||
{
|
||
for (; s != NULL; s = s->header.next)
|
||
{
|
||
switch (s->header.type)
|
||
{
|
||
case lang_wild_statement_enum:
|
||
walk_wild (&s->wild_statement, gc_section_callback, NULL);
|
||
break;
|
||
case lang_constructors_statement_enum:
|
||
lang_gc_sections_1 (constructor_list.head);
|
||
break;
|
||
case lang_output_section_statement_enum:
|
||
lang_gc_sections_1 (s->output_section_statement.children.head);
|
||
break;
|
||
case lang_group_statement_enum:
|
||
lang_gc_sections_1 (s->group_statement.children.head);
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
lang_gc_sections (void)
|
||
{
|
||
/* Keep all sections so marked in the link script. */
|
||
lang_gc_sections_1 (statement_list.head);
|
||
|
||
/* SEC_EXCLUDE is ignored when doing a relocatable link, except in
|
||
the special case of .stabstr debug info. (See bfd/stabs.c)
|
||
Twiddle the flag here, to simplify later linker code. */
|
||
if (bfd_link_relocatable (&link_info))
|
||
{
|
||
LANG_FOR_EACH_INPUT_STATEMENT (f)
|
||
{
|
||
asection *sec;
|
||
#if BFD_SUPPORTS_PLUGINS
|
||
if (f->flags.claimed)
|
||
continue;
|
||
#endif
|
||
for (sec = f->the_bfd->sections; sec != NULL; sec = sec->next)
|
||
if ((sec->flags & SEC_DEBUGGING) == 0
|
||
|| strcmp (sec->name, ".stabstr") != 0)
|
||
sec->flags &= ~SEC_EXCLUDE;
|
||
}
|
||
}
|
||
|
||
if (link_info.gc_sections)
|
||
bfd_gc_sections (link_info.output_bfd, &link_info);
|
||
}
|
||
|
||
/* Worker for lang_find_relro_sections_1. */
|
||
|
||
static void
|
||
find_relro_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
|
||
struct wildcard_list *sec ATTRIBUTE_UNUSED,
|
||
asection *section,
|
||
lang_input_statement_type *file ATTRIBUTE_UNUSED,
|
||
void *data)
|
||
{
|
||
/* Discarded, excluded and ignored sections effectively have zero
|
||
size. */
|
||
if (section->output_section != NULL
|
||
&& section->output_section->owner == link_info.output_bfd
|
||
&& (section->output_section->flags & SEC_EXCLUDE) == 0
|
||
&& !IGNORE_SECTION (section)
|
||
&& section->size != 0)
|
||
{
|
||
bool *has_relro_section = (bool *) data;
|
||
*has_relro_section = true;
|
||
}
|
||
}
|
||
|
||
/* Iterate over sections for relro sections. */
|
||
|
||
static void
|
||
lang_find_relro_sections_1 (lang_statement_union_type *s,
|
||
bool *has_relro_section)
|
||
{
|
||
if (*has_relro_section)
|
||
return;
|
||
|
||
for (; s != NULL; s = s->header.next)
|
||
{
|
||
if (s == expld.dataseg.relro_end_stat)
|
||
break;
|
||
|
||
switch (s->header.type)
|
||
{
|
||
case lang_wild_statement_enum:
|
||
walk_wild (&s->wild_statement,
|
||
find_relro_section_callback,
|
||
has_relro_section);
|
||
break;
|
||
case lang_constructors_statement_enum:
|
||
lang_find_relro_sections_1 (constructor_list.head,
|
||
has_relro_section);
|
||
break;
|
||
case lang_output_section_statement_enum:
|
||
lang_find_relro_sections_1 (s->output_section_statement.children.head,
|
||
has_relro_section);
|
||
break;
|
||
case lang_group_statement_enum:
|
||
lang_find_relro_sections_1 (s->group_statement.children.head,
|
||
has_relro_section);
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
lang_find_relro_sections (void)
|
||
{
|
||
bool has_relro_section = false;
|
||
|
||
/* Check all sections in the link script. */
|
||
|
||
lang_find_relro_sections_1 (expld.dataseg.relro_start_stat,
|
||
&has_relro_section);
|
||
|
||
if (!has_relro_section)
|
||
link_info.relro = false;
|
||
}
|
||
|
||
/* Relax all sections until bfd_relax_section gives up. */
|
||
|
||
void
|
||
lang_relax_sections (bool need_layout)
|
||
{
|
||
/* NB: Also enable relaxation to layout sections for DT_RELR. */
|
||
if (RELAXATION_ENABLED || link_info.enable_dt_relr)
|
||
{
|
||
/* We may need more than one relaxation pass. */
|
||
int i = link_info.relax_pass;
|
||
|
||
/* The backend can use it to determine the current pass. */
|
||
link_info.relax_pass = 0;
|
||
|
||
while (i--)
|
||
{
|
||
/* Keep relaxing until bfd_relax_section gives up. */
|
||
bool relax_again;
|
||
|
||
link_info.relax_trip = -1;
|
||
do
|
||
{
|
||
link_info.relax_trip++;
|
||
|
||
/* Note: pe-dll.c does something like this also. If you find
|
||
you need to change this code, you probably need to change
|
||
pe-dll.c also. DJ */
|
||
|
||
/* Do all the assignments with our current guesses as to
|
||
section sizes. */
|
||
lang_do_assignments (lang_assigning_phase_enum);
|
||
|
||
/* We must do this after lang_do_assignments, because it uses
|
||
size. */
|
||
lang_reset_memory_regions ();
|
||
|
||
/* Perform another relax pass - this time we know where the
|
||
globals are, so can make a better guess. */
|
||
relax_again = false;
|
||
lang_size_sections (&relax_again, false);
|
||
}
|
||
while (relax_again);
|
||
|
||
link_info.relax_pass++;
|
||
}
|
||
need_layout = true;
|
||
}
|
||
|
||
if (need_layout)
|
||
{
|
||
/* Final extra sizing to report errors. */
|
||
lang_do_assignments (lang_assigning_phase_enum);
|
||
lang_reset_memory_regions ();
|
||
lang_size_sections (NULL, true);
|
||
}
|
||
}
|
||
|
||
#if BFD_SUPPORTS_PLUGINS
|
||
/* Find the insert point for the plugin's replacement files. We
|
||
place them after the first claimed real object file, or if the
|
||
first claimed object is an archive member, after the last real
|
||
object file immediately preceding the archive. In the event
|
||
no objects have been claimed at all, we return the first dummy
|
||
object file on the list as the insert point; that works, but
|
||
the callee must be careful when relinking the file_chain as it
|
||
is not actually on that chain, only the statement_list and the
|
||
input_file list; in that case, the replacement files must be
|
||
inserted at the head of the file_chain. */
|
||
|
||
static lang_input_statement_type *
|
||
find_replacements_insert_point (bool *before)
|
||
{
|
||
lang_input_statement_type *claim1, *lastobject;
|
||
lastobject = (void *) input_file_chain.head;
|
||
for (claim1 = (void *) file_chain.head;
|
||
claim1 != NULL;
|
||
claim1 = claim1->next)
|
||
{
|
||
if (claim1->flags.claimed)
|
||
{
|
||
*before = claim1->flags.claim_archive;
|
||
return claim1->flags.claim_archive ? lastobject : claim1;
|
||
}
|
||
/* Update lastobject if this is a real object file. */
|
||
if (claim1->the_bfd != NULL && claim1->the_bfd->my_archive == NULL)
|
||
lastobject = claim1;
|
||
}
|
||
/* No files were claimed by the plugin. Choose the last object
|
||
file found on the list (maybe the first, dummy entry) as the
|
||
insert point. */
|
||
*before = false;
|
||
return lastobject;
|
||
}
|
||
|
||
/* Find where to insert ADD, an archive element or shared library
|
||
added during a rescan. */
|
||
|
||
static lang_input_statement_type **
|
||
find_rescan_insertion (lang_input_statement_type *add)
|
||
{
|
||
bfd *add_bfd = add->the_bfd;
|
||
lang_input_statement_type *f;
|
||
lang_input_statement_type *last_loaded = NULL;
|
||
lang_input_statement_type *before = NULL;
|
||
lang_input_statement_type **iter = NULL;
|
||
|
||
if (add_bfd->my_archive != NULL)
|
||
add_bfd = add_bfd->my_archive;
|
||
|
||
/* First look through the input file chain, to find an object file
|
||
before the one we've rescanned. Normal object files always
|
||
appear on both the input file chain and the file chain, so this
|
||
lets us get quickly to somewhere near the correct place on the
|
||
file chain if it is full of archive elements. Archives don't
|
||
appear on the file chain, but if an element has been extracted
|
||
then their input_statement->next points at it. */
|
||
for (f = (void *) input_file_chain.head;
|
||
f != NULL;
|
||
f = f->next_real_file)
|
||
{
|
||
if (f->the_bfd == add_bfd)
|
||
{
|
||
before = last_loaded;
|
||
if (f->next != NULL)
|
||
return &f->next->next;
|
||
}
|
||
if (f->the_bfd != NULL && f->next != NULL)
|
||
last_loaded = f;
|
||
}
|
||
|
||
for (iter = before ? &before->next : &file_chain.head->input_statement.next;
|
||
*iter != NULL;
|
||
iter = &(*iter)->next)
|
||
if (!(*iter)->flags.claim_archive
|
||
&& (*iter)->the_bfd->my_archive == NULL)
|
||
break;
|
||
|
||
return iter;
|
||
}
|
||
|
||
/* Insert SRCLIST into DESTLIST after given element by chaining
|
||
on FIELD as the next-pointer. (Counterintuitively does not need
|
||
a pointer to the actual after-node itself, just its chain field.) */
|
||
|
||
static void
|
||
lang_list_insert_after (lang_statement_list_type *destlist,
|
||
lang_statement_list_type *srclist,
|
||
lang_statement_union_type **field)
|
||
{
|
||
*(srclist->tail) = *field;
|
||
*field = srclist->head;
|
||
if (destlist->tail == field)
|
||
destlist->tail = srclist->tail;
|
||
}
|
||
|
||
/* Detach new nodes added to DESTLIST since the time ORIGLIST
|
||
was taken as a copy of it and leave them in ORIGLIST. */
|
||
|
||
static void
|
||
lang_list_remove_tail (lang_statement_list_type *destlist,
|
||
lang_statement_list_type *origlist)
|
||
{
|
||
union lang_statement_union **savetail;
|
||
/* Check that ORIGLIST really is an earlier state of DESTLIST. */
|
||
ASSERT (origlist->head == destlist->head);
|
||
savetail = origlist->tail;
|
||
origlist->head = *(savetail);
|
||
origlist->tail = destlist->tail;
|
||
destlist->tail = savetail;
|
||
*savetail = NULL;
|
||
}
|
||
|
||
static lang_statement_union_type **
|
||
find_next_input_statement (lang_statement_union_type **s)
|
||
{
|
||
for ( ; *s; s = &(*s)->header.next)
|
||
{
|
||
lang_statement_union_type **t;
|
||
switch ((*s)->header.type)
|
||
{
|
||
case lang_input_statement_enum:
|
||
return s;
|
||
case lang_wild_statement_enum:
|
||
t = &(*s)->wild_statement.children.head;
|
||
break;
|
||
case lang_group_statement_enum:
|
||
t = &(*s)->group_statement.children.head;
|
||
break;
|
||
case lang_output_section_statement_enum:
|
||
t = &(*s)->output_section_statement.children.head;
|
||
break;
|
||
default:
|
||
continue;
|
||
}
|
||
t = find_next_input_statement (t);
|
||
if (*t)
|
||
return t;
|
||
}
|
||
return s;
|
||
}
|
||
#endif /* BFD_SUPPORTS_PLUGINS */
|
||
|
||
/* Add NAME to the list of garbage collection entry points. */
|
||
|
||
void
|
||
lang_add_gc_name (const char *name)
|
||
{
|
||
struct bfd_sym_chain *sym;
|
||
|
||
if (name == NULL)
|
||
return;
|
||
|
||
sym = stat_alloc (sizeof (*sym));
|
||
|
||
sym->next = link_info.gc_sym_list;
|
||
sym->name = name;
|
||
link_info.gc_sym_list = sym;
|
||
}
|
||
|
||
/* Check relocations. */
|
||
|
||
static void
|
||
lang_check_relocs (void)
|
||
{
|
||
if (link_info.check_relocs_after_open_input)
|
||
{
|
||
bfd *abfd;
|
||
|
||
for (abfd = link_info.input_bfds;
|
||
abfd != (bfd *) NULL; abfd = abfd->link.next)
|
||
if (!bfd_link_check_relocs (abfd, &link_info))
|
||
{
|
||
/* No object output, fail return. */
|
||
config.make_executable = false;
|
||
/* Note: we do not abort the loop, but rather
|
||
continue the scan in case there are other
|
||
bad relocations to report. */
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Look through all output sections looking for places where we can
|
||
propagate forward the lma region. */
|
||
|
||
static void
|
||
lang_propagate_lma_regions (void)
|
||
{
|
||
lang_output_section_statement_type *os;
|
||
|
||
for (os = (void *) lang_os_list.head;
|
||
os != NULL;
|
||
os = os->next)
|
||
{
|
||
if (os->prev != NULL
|
||
&& os->lma_region == NULL
|
||
&& os->load_base == NULL
|
||
&& os->addr_tree == NULL
|
||
&& os->region == os->prev->region)
|
||
os->lma_region = os->prev->lma_region;
|
||
}
|
||
}
|
||
|
||
static void
|
||
warn_non_contiguous_discards (void)
|
||
{
|
||
LANG_FOR_EACH_INPUT_STATEMENT (file)
|
||
{
|
||
if ((file->the_bfd->flags & (BFD_LINKER_CREATED | DYNAMIC)) != 0
|
||
|| file->flags.just_syms)
|
||
continue;
|
||
|
||
for (asection *s = file->the_bfd->sections; s != NULL; s = s->next)
|
||
if (s->output_section == NULL
|
||
&& (s->flags & SEC_LINKER_CREATED) == 0)
|
||
einfo (_("%P: warning: --enable-non-contiguous-regions "
|
||
"discards section `%pA' from `%pB'\n"),
|
||
s, file->the_bfd);
|
||
}
|
||
}
|
||
|
||
static void
|
||
reset_one_wild (lang_statement_union_type *statement)
|
||
{
|
||
if (statement->header.type == lang_wild_statement_enum)
|
||
{
|
||
lang_wild_statement_type *stmt = &statement->wild_statement;
|
||
lang_list_init (&stmt->matching_sections);
|
||
}
|
||
}
|
||
|
||
static void
|
||
reset_resolved_wilds (void)
|
||
{
|
||
lang_for_each_statement (reset_one_wild);
|
||
}
|
||
|
||
void
|
||
lang_process (void)
|
||
{
|
||
/* Finalize dynamic list. */
|
||
if (link_info.dynamic_list)
|
||
lang_finalize_version_expr_head (&link_info.dynamic_list->head);
|
||
|
||
current_target = default_target;
|
||
|
||
/* Open the output file. */
|
||
lang_for_each_statement (ldlang_open_output);
|
||
init_opb (NULL);
|
||
|
||
ldemul_create_output_section_statements ();
|
||
|
||
/* Add to the hash table all undefineds on the command line. */
|
||
lang_place_undefineds ();
|
||
|
||
if (!bfd_section_already_linked_table_init ())
|
||
einfo (_("%F%P: can not create hash table: %E\n"));
|
||
|
||
/* A first pass through the memory regions ensures that if any region
|
||
references a symbol for its origin or length then this symbol will be
|
||
added to the symbol table. Having these symbols in the symbol table
|
||
means that when we call open_input_bfds PROVIDE statements will
|
||
trigger to provide any needed symbols. The regions origins and
|
||
lengths are not assigned as a result of this call. */
|
||
lang_do_memory_regions (false);
|
||
|
||
/* Create a bfd for each input file. */
|
||
current_target = default_target;
|
||
lang_statement_iteration++;
|
||
open_input_bfds (statement_list.head, OPEN_BFD_NORMAL);
|
||
|
||
/* Now that open_input_bfds has processed assignments and provide
|
||
statements we can give values to symbolic origin/length now. */
|
||
lang_do_memory_regions (true);
|
||
|
||
#if BFD_SUPPORTS_PLUGINS
|
||
if (link_info.lto_plugin_active)
|
||
{
|
||
lang_statement_list_type added;
|
||
lang_statement_list_type files, inputfiles;
|
||
|
||
ldemul_before_plugin_all_symbols_read ();
|
||
|
||
/* Now all files are read, let the plugin(s) decide if there
|
||
are any more to be added to the link before we call the
|
||
emulation's after_open hook. We create a private list of
|
||
input statements for this purpose, which we will eventually
|
||
insert into the global statement list after the first claimed
|
||
file. */
|
||
added = *stat_ptr;
|
||
/* We need to manipulate all three chains in synchrony. */
|
||
files = file_chain;
|
||
inputfiles = input_file_chain;
|
||
if (plugin_call_all_symbols_read ())
|
||
einfo (_("%F%P: %s: plugin reported error after all symbols read\n"),
|
||
plugin_error_plugin ());
|
||
link_info.lto_all_symbols_read = true;
|
||
/* Open any newly added files, updating the file chains. */
|
||
plugin_undefs = link_info.hash->undefs_tail;
|
||
open_input_bfds (*added.tail, OPEN_BFD_NORMAL);
|
||
if (plugin_undefs == link_info.hash->undefs_tail)
|
||
plugin_undefs = NULL;
|
||
/* Restore the global list pointer now they have all been added. */
|
||
lang_list_remove_tail (stat_ptr, &added);
|
||
/* And detach the fresh ends of the file lists. */
|
||
lang_list_remove_tail (&file_chain, &files);
|
||
lang_list_remove_tail (&input_file_chain, &inputfiles);
|
||
/* Were any new files added? */
|
||
if (added.head != NULL)
|
||
{
|
||
/* If so, we will insert them into the statement list immediately
|
||
after the first input file that was claimed by the plugin,
|
||
unless that file was an archive in which case it is inserted
|
||
immediately before. */
|
||
bool before;
|
||
lang_statement_union_type **prev;
|
||
plugin_insert = find_replacements_insert_point (&before);
|
||
/* If a plugin adds input files without having claimed any, we
|
||
don't really have a good idea where to place them. Just putting
|
||
them at the start or end of the list is liable to leave them
|
||
outside the crtbegin...crtend range. */
|
||
ASSERT (plugin_insert != NULL);
|
||
/* Splice the new statement list into the old one. */
|
||
prev = &plugin_insert->header.next;
|
||
if (before)
|
||
{
|
||
prev = find_next_input_statement (prev);
|
||
if (*prev != (void *) plugin_insert->next_real_file)
|
||
{
|
||
/* We didn't find the expected input statement.
|
||
Fall back to adding after plugin_insert. */
|
||
prev = &plugin_insert->header.next;
|
||
}
|
||
}
|
||
lang_list_insert_after (stat_ptr, &added, prev);
|
||
/* Likewise for the file chains. */
|
||
lang_list_insert_after (&input_file_chain, &inputfiles,
|
||
(void *) &plugin_insert->next_real_file);
|
||
/* We must be careful when relinking file_chain; we may need to
|
||
insert the new files at the head of the list if the insert
|
||
point chosen is the dummy first input file. */
|
||
if (plugin_insert->filename)
|
||
lang_list_insert_after (&file_chain, &files,
|
||
(void *) &plugin_insert->next);
|
||
else
|
||
lang_list_insert_after (&file_chain, &files, &file_chain.head);
|
||
|
||
/* Rescan archives in case new undefined symbols have appeared. */
|
||
files = file_chain;
|
||
lang_statement_iteration++;
|
||
open_input_bfds (statement_list.head, OPEN_BFD_RESCAN);
|
||
lang_list_remove_tail (&file_chain, &files);
|
||
while (files.head != NULL)
|
||
{
|
||
lang_input_statement_type **insert;
|
||
lang_input_statement_type **iter, *temp;
|
||
bfd *my_arch;
|
||
|
||
insert = find_rescan_insertion (&files.head->input_statement);
|
||
/* All elements from an archive can be added at once. */
|
||
iter = &files.head->input_statement.next;
|
||
my_arch = files.head->input_statement.the_bfd->my_archive;
|
||
if (my_arch != NULL)
|
||
for (; *iter != NULL; iter = &(*iter)->next)
|
||
if ((*iter)->the_bfd->my_archive != my_arch)
|
||
break;
|
||
temp = *insert;
|
||
*insert = &files.head->input_statement;
|
||
files.head = (lang_statement_union_type *) *iter;
|
||
*iter = temp;
|
||
if (file_chain.tail == (lang_statement_union_type **) insert)
|
||
file_chain.tail = (lang_statement_union_type **) iter;
|
||
if (my_arch != NULL)
|
||
{
|
||
lang_input_statement_type *parent = bfd_usrdata (my_arch);
|
||
if (parent != NULL)
|
||
parent->next = (lang_input_statement_type *)
|
||
((char *) iter
|
||
- offsetof (lang_input_statement_type, next));
|
||
}
|
||
}
|
||
}
|
||
}
|
||
#endif /* BFD_SUPPORTS_PLUGINS */
|
||
|
||
/* Make sure that nobody has tried to add a symbol to this list
|
||
before now. */
|
||
ASSERT (link_info.gc_sym_list == NULL);
|
||
|
||
link_info.gc_sym_list = &entry_symbol;
|
||
|
||
if (entry_symbol.name == NULL)
|
||
{
|
||
link_info.gc_sym_list = ldlang_undef_chain_list_head;
|
||
|
||
/* entry_symbol is normally initialied by a ENTRY definition in the
|
||
linker script or the -e command line option. But if neither of
|
||
these have been used, the target specific backend may still have
|
||
provided an entry symbol via a call to lang_default_entry().
|
||
Unfortunately this value will not be processed until lang_end()
|
||
is called, long after this function has finished. So detect this
|
||
case here and add the target's entry symbol to the list of starting
|
||
points for garbage collection resolution. */
|
||
lang_add_gc_name (entry_symbol_default);
|
||
}
|
||
|
||
lang_add_gc_name (link_info.init_function);
|
||
lang_add_gc_name (link_info.fini_function);
|
||
|
||
ldemul_after_open ();
|
||
if (config.map_file != NULL)
|
||
lang_print_asneeded ();
|
||
|
||
ldlang_open_ctf ();
|
||
|
||
bfd_section_already_linked_table_free ();
|
||
|
||
/* Make sure that we're not mixing architectures. We call this
|
||
after all the input files have been opened, but before we do any
|
||
other processing, so that any operations merge_private_bfd_data
|
||
does on the output file will be known during the rest of the
|
||
link. */
|
||
lang_check ();
|
||
|
||
/* Handle .exports instead of a version script if we're told to do so. */
|
||
if (command_line.version_exports_section)
|
||
lang_do_version_exports_section ();
|
||
|
||
/* Build all sets based on the information gathered from the input
|
||
files. */
|
||
ldctor_build_sets ();
|
||
|
||
lang_symbol_tweaks ();
|
||
|
||
/* PR 13683: We must rerun the assignments prior to running garbage
|
||
collection in order to make sure that all symbol aliases are resolved. */
|
||
lang_do_assignments (lang_mark_phase_enum);
|
||
expld.phase = lang_first_phase_enum;
|
||
|
||
/* Size up the common data. */
|
||
lang_common ();
|
||
|
||
if (0)
|
||
debug_prefix_tree ();
|
||
|
||
resolve_wilds ();
|
||
|
||
/* Remove unreferenced sections if asked to. */
|
||
lang_gc_sections ();
|
||
|
||
lang_mark_undefineds ();
|
||
|
||
/* Check relocations. */
|
||
lang_check_relocs ();
|
||
|
||
ldemul_after_check_relocs ();
|
||
|
||
/* There might have been new sections created (e.g. as result of
|
||
checking relocs to need a .got, or suchlike), so to properly order
|
||
them into our lists of matching sections reset them here. */
|
||
reset_resolved_wilds ();
|
||
resolve_wilds ();
|
||
|
||
/* Update wild statements in case the user gave --sort-section.
|
||
Note how the option might have come after the linker script and
|
||
so couldn't have been set when the wild statements were created. */
|
||
update_wild_statements (statement_list.head);
|
||
|
||
/* Run through the contours of the script and attach input sections
|
||
to the correct output sections. */
|
||
lang_statement_iteration++;
|
||
map_input_to_output_sections (statement_list.head, NULL, NULL);
|
||
|
||
/* Start at the statement immediately after the special abs_section
|
||
output statement, so that it isn't reordered. */
|
||
process_insert_statements (&lang_os_list.head->header.next);
|
||
|
||
ldemul_before_place_orphans ();
|
||
|
||
/* Find any sections not attached explicitly and handle them. */
|
||
lang_place_orphans ();
|
||
|
||
if (!bfd_link_relocatable (&link_info))
|
||
{
|
||
asection *found;
|
||
|
||
/* Merge SEC_MERGE sections. This has to be done after GC of
|
||
sections, so that GCed sections are not merged, but before
|
||
assigning dynamic symbols, since removing whole input sections
|
||
is hard then. */
|
||
bfd_merge_sections (link_info.output_bfd, &link_info);
|
||
|
||
/* Look for a text section and set the readonly attribute in it. */
|
||
found = bfd_get_section_by_name (link_info.output_bfd, ".text");
|
||
|
||
if (found != NULL)
|
||
{
|
||
if (config.text_read_only)
|
||
found->flags |= SEC_READONLY;
|
||
else
|
||
found->flags &= ~SEC_READONLY;
|
||
}
|
||
}
|
||
|
||
/* Merge together CTF sections. After this, only the symtab-dependent
|
||
function and data object sections need adjustment. */
|
||
lang_merge_ctf ();
|
||
|
||
/* Emit the CTF, iff the emulation doesn't need to do late emission after
|
||
examining things laid out late, like the strtab. */
|
||
lang_write_ctf (0);
|
||
|
||
/* Copy forward lma regions for output sections in same lma region. */
|
||
lang_propagate_lma_regions ();
|
||
|
||
/* Defining __start/__stop symbols early for --gc-sections to work
|
||
around a glibc build problem can result in these symbols being
|
||
defined when they should not be. Fix them now. */
|
||
if (config.build_constructors)
|
||
lang_undef_start_stop ();
|
||
|
||
/* Define .startof./.sizeof. symbols with preliminary values before
|
||
dynamic symbols are created. */
|
||
if (!bfd_link_relocatable (&link_info))
|
||
lang_init_startof_sizeof ();
|
||
|
||
/* Do anything special before sizing sections. This is where ELF
|
||
and other back-ends size dynamic sections. */
|
||
ldemul_before_allocation ();
|
||
|
||
/* We must record the program headers before we try to fix the
|
||
section positions, since they will affect SIZEOF_HEADERS. */
|
||
lang_record_phdrs ();
|
||
|
||
/* Check relro sections. */
|
||
if (link_info.relro && !bfd_link_relocatable (&link_info))
|
||
lang_find_relro_sections ();
|
||
|
||
/* Size up the sections. */
|
||
lang_size_sections (NULL, !RELAXATION_ENABLED);
|
||
|
||
/* See if anything special should be done now we know how big
|
||
everything is. This is where relaxation is done. */
|
||
ldemul_after_allocation ();
|
||
|
||
/* Fix any __start, __stop, .startof. or .sizeof. symbols. */
|
||
lang_finalize_start_stop ();
|
||
|
||
/* Do all the assignments again, to report errors. Assignment
|
||
statements are processed multiple times, updating symbols; In
|
||
open_input_bfds, lang_do_assignments, and lang_size_sections.
|
||
Since lang_relax_sections calls lang_do_assignments, symbols are
|
||
also updated in ldemul_after_allocation. */
|
||
lang_do_assignments (lang_final_phase_enum);
|
||
|
||
ldemul_finish ();
|
||
|
||
/* Convert absolute symbols to section relative. */
|
||
ldexp_finalize_syms ();
|
||
|
||
/* Make sure that the section addresses make sense. */
|
||
if (command_line.check_section_addresses)
|
||
lang_check_section_addresses ();
|
||
|
||
if (link_info.non_contiguous_regions
|
||
&& link_info.non_contiguous_regions_warnings)
|
||
warn_non_contiguous_discards ();
|
||
|
||
/* Check any required symbols are known. */
|
||
ldlang_check_require_defined_symbols ();
|
||
|
||
lang_end ();
|
||
}
|
||
|
||
/* EXPORTED TO YACC */
|
||
|
||
void
|
||
lang_add_wild (struct wildcard_spec *filespec,
|
||
struct wildcard_list *section_list,
|
||
bool keep_sections)
|
||
{
|
||
struct wildcard_list *curr, *next;
|
||
lang_wild_statement_type *new_stmt;
|
||
bool any_specs_sorted = false;
|
||
|
||
/* Reverse the list as the parser puts it back to front. */
|
||
for (curr = section_list, section_list = NULL;
|
||
curr != NULL;
|
||
section_list = curr, curr = next)
|
||
{
|
||
if (curr->spec.sorted != none && curr->spec.sorted != by_none)
|
||
any_specs_sorted = true;
|
||
next = curr->next;
|
||
curr->next = section_list;
|
||
}
|
||
|
||
if (filespec != NULL && filespec->name != NULL)
|
||
{
|
||
if (strcmp (filespec->name, "*") == 0)
|
||
filespec->name = NULL;
|
||
else if (!wildcardp (filespec->name))
|
||
lang_has_input_file = true;
|
||
}
|
||
|
||
new_stmt = new_stat (lang_wild_statement, stat_ptr);
|
||
new_stmt->filename = NULL;
|
||
new_stmt->filenames_sorted = false;
|
||
new_stmt->any_specs_sorted = any_specs_sorted;
|
||
new_stmt->section_flag_list = NULL;
|
||
new_stmt->exclude_name_list = NULL;
|
||
if (filespec != NULL)
|
||
{
|
||
new_stmt->filename = filespec->name;
|
||
new_stmt->filenames_sorted = filespec->sorted == by_name;
|
||
new_stmt->section_flag_list = filespec->section_flag_list;
|
||
new_stmt->exclude_name_list = filespec->exclude_name_list;
|
||
}
|
||
new_stmt->section_list = section_list;
|
||
new_stmt->keep_sections = keep_sections;
|
||
lang_list_init (&new_stmt->children);
|
||
lang_list_init (&new_stmt->matching_sections);
|
||
analyze_walk_wild_section_handler (new_stmt);
|
||
if (0)
|
||
{
|
||
printf ("wild %s(", new_stmt->filename ? new_stmt->filename : "*");
|
||
for (curr = new_stmt->section_list; curr; curr = curr->next)
|
||
printf ("%s ", curr->spec.name ? curr->spec.name : "*");
|
||
printf (")\n");
|
||
}
|
||
}
|
||
|
||
void
|
||
lang_section_start (const char *name, etree_type *address,
|
||
const segment_type *segment)
|
||
{
|
||
lang_address_statement_type *ad;
|
||
|
||
ad = new_stat (lang_address_statement, stat_ptr);
|
||
ad->section_name = name;
|
||
ad->address = address;
|
||
ad->segment = segment;
|
||
}
|
||
|
||
/* Set the start symbol to NAME. CMDLINE is nonzero if this is called
|
||
because of a -e argument on the command line, or zero if this is
|
||
called by ENTRY in a linker script. Command line arguments take
|
||
precedence. */
|
||
|
||
void
|
||
lang_add_entry (const char *name, bool cmdline)
|
||
{
|
||
if (entry_symbol.name == NULL
|
||
|| cmdline
|
||
|| !entry_from_cmdline)
|
||
{
|
||
entry_symbol.name = name;
|
||
entry_from_cmdline = cmdline;
|
||
}
|
||
}
|
||
|
||
/* Set the default start symbol to NAME. .em files should use this,
|
||
not lang_add_entry, to override the use of "start" if neither the
|
||
linker script nor the command line specifies an entry point. NAME
|
||
must be permanently allocated. */
|
||
void
|
||
lang_default_entry (const char *name)
|
||
{
|
||
entry_symbol_default = name;
|
||
}
|
||
|
||
void
|
||
lang_add_target (const char *name)
|
||
{
|
||
lang_target_statement_type *new_stmt;
|
||
|
||
new_stmt = new_stat (lang_target_statement, stat_ptr);
|
||
new_stmt->target = name;
|
||
}
|
||
|
||
void
|
||
lang_add_map (const char *name)
|
||
{
|
||
while (*name)
|
||
{
|
||
switch (*name)
|
||
{
|
||
case 'F':
|
||
map_option_f = true;
|
||
break;
|
||
}
|
||
name++;
|
||
}
|
||
}
|
||
|
||
void
|
||
lang_add_fill (fill_type *fill)
|
||
{
|
||
lang_fill_statement_type *new_stmt;
|
||
|
||
new_stmt = new_stat (lang_fill_statement, stat_ptr);
|
||
new_stmt->fill = fill;
|
||
}
|
||
|
||
void
|
||
lang_add_data (int type, union etree_union *exp)
|
||
{
|
||
lang_data_statement_type *new_stmt;
|
||
|
||
new_stmt = new_stat (lang_data_statement, stat_ptr);
|
||
new_stmt->exp = exp;
|
||
new_stmt->type = type;
|
||
}
|
||
|
||
/* Convert escape codes in S.
|
||
Supports \n, \r, \t and \NNN octals.
|
||
Returns a copy of S in a malloc'ed buffer. */
|
||
|
||
static char *
|
||
convert_string (const char * s)
|
||
{
|
||
size_t len = strlen (s);
|
||
size_t i;
|
||
bool escape = false;
|
||
char * buffer = malloc (len + 1);
|
||
char * b;
|
||
|
||
for (i = 0, b = buffer; i < len; i++)
|
||
{
|
||
char c = *s++;
|
||
|
||
if (escape)
|
||
{
|
||
switch (c)
|
||
{
|
||
default:
|
||
/* Ignore the escape. */
|
||
break;
|
||
|
||
case 'n': c = '\n'; break;
|
||
case 'r': c = '\r'; break;
|
||
case 't': c = '\t'; break;
|
||
|
||
case '0':
|
||
case '1':
|
||
case '2':
|
||
case '3':
|
||
case '4':
|
||
case '5':
|
||
case '6':
|
||
case '7':
|
||
/* We have an octal number. */
|
||
{
|
||
unsigned int value = c - '0';
|
||
|
||
c = *s;
|
||
if ((c >= '0') && (c <= '7'))
|
||
{
|
||
value <<= 3;
|
||
value += (c - '0');
|
||
i++;
|
||
s++;
|
||
|
||
c = *s;
|
||
if ((c >= '0') && (c <= '7'))
|
||
{
|
||
value <<= 3;
|
||
value += (c - '0');
|
||
i++;
|
||
s++;
|
||
}
|
||
}
|
||
|
||
if (value > 0xff)
|
||
{
|
||
/* octal: \777 is treated as '\077' + '7' */
|
||
value >>= 3;
|
||
i--;
|
||
s--;
|
||
}
|
||
|
||
c = value;
|
||
}
|
||
break;
|
||
}
|
||
escape = false;
|
||
}
|
||
else
|
||
{
|
||
if (c == '\\')
|
||
{
|
||
escape = true;
|
||
continue;
|
||
}
|
||
}
|
||
|
||
* b ++ = c;
|
||
}
|
||
|
||
* b = 0;
|
||
return buffer;
|
||
}
|
||
|
||
void
|
||
lang_add_string (size_t size, const char *s)
|
||
{
|
||
size_t len;
|
||
size_t i;
|
||
char * string;
|
||
|
||
string = convert_string (s);
|
||
len = strlen (string);
|
||
|
||
/* Check if it is ASCIZ command (len == 0) */
|
||
if (size == 0)
|
||
/* Make sure that we include the terminating nul byte. */
|
||
size = len + 1;
|
||
else if (len >= size)
|
||
{
|
||
len = size - 1;
|
||
|
||
einfo (_("%P:%pS: warning: ASCII string does not fit in allocated space,"
|
||
" truncated\n"), NULL);
|
||
}
|
||
|
||
for (i = 0 ; i < len ; i++)
|
||
lang_add_data (BYTE, exp_intop (string[i]));
|
||
|
||
while (i++ < size)
|
||
lang_add_data (BYTE, exp_intop ('\0'));
|
||
|
||
free (string);
|
||
}
|
||
|
||
/* Store the time of linking in the image */
|
||
void
|
||
lang_add_timestamp (void)
|
||
{
|
||
lang_add_data (QUAD, exp_intop ((bfd_vma) time (0)));
|
||
}
|
||
|
||
/* Create a new reloc statement. RELOC is the BFD relocation type to
|
||
generate. HOWTO is the corresponding howto structure (we could
|
||
look this up, but the caller has already done so). SECTION is the
|
||
section to generate a reloc against, or NAME is the name of the
|
||
symbol to generate a reloc against. Exactly one of SECTION and
|
||
NAME must be NULL. ADDEND is an expression for the addend. */
|
||
|
||
void
|
||
lang_add_reloc (bfd_reloc_code_real_type reloc,
|
||
reloc_howto_type *howto,
|
||
asection *section,
|
||
const char *name,
|
||
union etree_union *addend)
|
||
{
|
||
lang_reloc_statement_type *p = new_stat (lang_reloc_statement, stat_ptr);
|
||
|
||
p->reloc = reloc;
|
||
p->howto = howto;
|
||
p->section = section;
|
||
p->name = name;
|
||
p->addend_exp = addend;
|
||
|
||
p->addend_value = 0;
|
||
p->output_section = NULL;
|
||
p->output_offset = 0;
|
||
}
|
||
|
||
lang_assignment_statement_type *
|
||
lang_add_assignment (etree_type *exp)
|
||
{
|
||
lang_assignment_statement_type *new_stmt;
|
||
|
||
new_stmt = new_stat (lang_assignment_statement, stat_ptr);
|
||
new_stmt->exp = exp;
|
||
return new_stmt;
|
||
}
|
||
|
||
void
|
||
lang_add_attribute (enum statement_enum attribute)
|
||
{
|
||
new_statement (attribute, sizeof (lang_statement_header_type), stat_ptr);
|
||
}
|
||
|
||
void
|
||
lang_startup (const char *name)
|
||
{
|
||
if (first_file->filename != NULL)
|
||
{
|
||
einfo (_("%F%P: multiple STARTUP files\n"));
|
||
}
|
||
first_file->filename = name;
|
||
first_file->local_sym_name = name;
|
||
first_file->flags.real = true;
|
||
}
|
||
|
||
void
|
||
lang_float (bool maybe)
|
||
{
|
||
lang_float_flag = maybe;
|
||
}
|
||
|
||
|
||
/* Work out the load- and run-time regions from a script statement, and
|
||
store them in *LMA_REGION and *REGION respectively.
|
||
|
||
MEMSPEC is the name of the run-time region, or the value of
|
||
DEFAULT_MEMORY_REGION if the statement didn't specify one.
|
||
LMA_MEMSPEC is the name of the load-time region, or null if the
|
||
statement didn't specify one.HAVE_LMA_P is TRUE if the statement
|
||
had an explicit load address.
|
||
|
||
It is an error to specify both a load region and a load address. */
|
||
|
||
static void
|
||
lang_get_regions (lang_memory_region_type **region,
|
||
lang_memory_region_type **lma_region,
|
||
const char *memspec,
|
||
const char *lma_memspec,
|
||
bool have_lma,
|
||
bool have_vma)
|
||
{
|
||
*lma_region = lang_memory_region_lookup (lma_memspec, false);
|
||
|
||
/* If no runtime region or VMA has been specified, but the load region
|
||
has been specified, then use the load region for the runtime region
|
||
as well. */
|
||
if (lma_memspec != NULL
|
||
&& !have_vma
|
||
&& strcmp (memspec, DEFAULT_MEMORY_REGION) == 0)
|
||
*region = *lma_region;
|
||
else
|
||
*region = lang_memory_region_lookup (memspec, false);
|
||
|
||
if (have_lma && lma_memspec != 0)
|
||
einfo (_("%X%P:%pS: section has both a load address and a load region\n"),
|
||
NULL);
|
||
}
|
||
|
||
void
|
||
lang_leave_output_section_statement (fill_type *fill, const char *memspec,
|
||
lang_output_section_phdr_list *phdrs,
|
||
const char *lma_memspec)
|
||
{
|
||
lang_get_regions (¤t_section->region,
|
||
¤t_section->lma_region,
|
||
memspec, lma_memspec,
|
||
current_section->load_base != NULL,
|
||
current_section->addr_tree != NULL);
|
||
|
||
current_section->fill = fill;
|
||
current_section->phdrs = phdrs;
|
||
pop_stat_ptr ();
|
||
}
|
||
|
||
/* Set the output format type. -oformat overrides scripts. */
|
||
|
||
void
|
||
lang_add_output_format (const char *format,
|
||
const char *big,
|
||
const char *little,
|
||
int from_script)
|
||
{
|
||
if (output_target == NULL || !from_script)
|
||
{
|
||
if (command_line.endian == ENDIAN_BIG
|
||
&& big != NULL)
|
||
format = big;
|
||
else if (command_line.endian == ENDIAN_LITTLE
|
||
&& little != NULL)
|
||
format = little;
|
||
|
||
output_target = format;
|
||
}
|
||
}
|
||
|
||
void
|
||
lang_add_insert (const char *where, int is_before)
|
||
{
|
||
lang_insert_statement_type *new_stmt;
|
||
|
||
new_stmt = new_stat (lang_insert_statement, stat_ptr);
|
||
new_stmt->where = where;
|
||
new_stmt->is_before = is_before;
|
||
saved_script_handle = previous_script_handle;
|
||
}
|
||
|
||
/* Enter a group. This creates a new lang_group_statement, and sets
|
||
stat_ptr to build new statements within the group. */
|
||
|
||
void
|
||
lang_enter_group (void)
|
||
{
|
||
lang_group_statement_type *g;
|
||
|
||
g = new_stat (lang_group_statement, stat_ptr);
|
||
lang_list_init (&g->children);
|
||
push_stat_ptr (&g->children);
|
||
}
|
||
|
||
/* Leave a group. This just resets stat_ptr to start writing to the
|
||
regular list of statements again. Note that this will not work if
|
||
groups can occur inside anything else which can adjust stat_ptr,
|
||
but currently they can't. */
|
||
|
||
void
|
||
lang_leave_group (void)
|
||
{
|
||
pop_stat_ptr ();
|
||
}
|
||
|
||
/* Add a new program header. This is called for each entry in a PHDRS
|
||
command in a linker script. */
|
||
|
||
void
|
||
lang_new_phdr (const char *name,
|
||
etree_type *type,
|
||
bool filehdr,
|
||
bool phdrs,
|
||
etree_type *at,
|
||
etree_type *flags)
|
||
{
|
||
struct lang_phdr *n, **pp;
|
||
bool hdrs;
|
||
|
||
n = stat_alloc (sizeof (struct lang_phdr));
|
||
n->next = NULL;
|
||
n->name = name;
|
||
n->type = exp_get_vma (type, 0, "program header type");
|
||
n->filehdr = filehdr;
|
||
n->phdrs = phdrs;
|
||
n->at = at;
|
||
n->flags = flags;
|
||
|
||
hdrs = n->type == 1 && (phdrs || filehdr);
|
||
|
||
for (pp = &lang_phdr_list; *pp != NULL; pp = &(*pp)->next)
|
||
if (hdrs
|
||
&& (*pp)->type == 1
|
||
&& !((*pp)->filehdr || (*pp)->phdrs))
|
||
{
|
||
einfo (_("%X%P:%pS: PHDRS and FILEHDR are not supported"
|
||
" when prior PT_LOAD headers lack them\n"), NULL);
|
||
hdrs = false;
|
||
}
|
||
|
||
*pp = n;
|
||
}
|
||
|
||
/* Record the program header information in the output BFD. FIXME: We
|
||
should not be calling an ELF specific function here. */
|
||
|
||
static void
|
||
lang_record_phdrs (void)
|
||
{
|
||
unsigned int alc;
|
||
asection **secs;
|
||
lang_output_section_phdr_list *last;
|
||
struct lang_phdr *l;
|
||
lang_output_section_statement_type *os;
|
||
|
||
alc = 10;
|
||
secs = (asection **) xmalloc (alc * sizeof (asection *));
|
||
last = NULL;
|
||
|
||
for (l = lang_phdr_list; l != NULL; l = l->next)
|
||
{
|
||
unsigned int c;
|
||
flagword flags;
|
||
bfd_vma at;
|
||
|
||
c = 0;
|
||
for (os = (void *) lang_os_list.head;
|
||
os != NULL;
|
||
os = os->next)
|
||
{
|
||
lang_output_section_phdr_list *pl;
|
||
|
||
if (os->constraint < 0)
|
||
continue;
|
||
|
||
pl = os->phdrs;
|
||
if (pl != NULL)
|
||
last = pl;
|
||
else
|
||
{
|
||
if (os->sectype == noload_section
|
||
|| os->bfd_section == NULL
|
||
|| (os->bfd_section->flags & SEC_ALLOC) == 0)
|
||
continue;
|
||
|
||
/* Don't add orphans to PT_INTERP header. */
|
||
if (l->type == 3)
|
||
continue;
|
||
|
||
if (last == NULL)
|
||
{
|
||
lang_output_section_statement_type *tmp_os;
|
||
|
||
/* If we have not run across a section with a program
|
||
header assigned to it yet, then scan forwards to find
|
||
one. This prevents inconsistencies in the linker's
|
||
behaviour when a script has specified just a single
|
||
header and there are sections in that script which are
|
||
not assigned to it, and which occur before the first
|
||
use of that header. See here for more details:
|
||
http://sourceware.org/ml/binutils/2007-02/msg00291.html */
|
||
for (tmp_os = os; tmp_os; tmp_os = tmp_os->next)
|
||
if (tmp_os->phdrs)
|
||
{
|
||
last = tmp_os->phdrs;
|
||
break;
|
||
}
|
||
if (last == NULL)
|
||
einfo (_("%F%P: no sections assigned to phdrs\n"));
|
||
}
|
||
pl = last;
|
||
}
|
||
|
||
if (os->bfd_section == NULL)
|
||
continue;
|
||
|
||
for (; pl != NULL; pl = pl->next)
|
||
{
|
||
if (strcmp (pl->name, l->name) == 0)
|
||
{
|
||
if (c >= alc)
|
||
{
|
||
alc *= 2;
|
||
secs = (asection **) xrealloc (secs,
|
||
alc * sizeof (asection *));
|
||
}
|
||
secs[c] = os->bfd_section;
|
||
++c;
|
||
pl->used = true;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (l->flags == NULL)
|
||
flags = 0;
|
||
else
|
||
flags = exp_get_vma (l->flags, 0, "phdr flags");
|
||
|
||
if (l->at == NULL)
|
||
at = 0;
|
||
else
|
||
at = exp_get_vma (l->at, 0, "phdr load address");
|
||
|
||
if (!bfd_record_phdr (link_info.output_bfd, l->type,
|
||
l->flags != NULL, flags, l->at != NULL,
|
||
at, l->filehdr, l->phdrs, c, secs))
|
||
einfo (_("%F%P: bfd_record_phdr failed: %E\n"));
|
||
}
|
||
|
||
free (secs);
|
||
|
||
/* Make sure all the phdr assignments succeeded. */
|
||
for (os = (void *) lang_os_list.head;
|
||
os != NULL;
|
||
os = os->next)
|
||
{
|
||
lang_output_section_phdr_list *pl;
|
||
|
||
if (os->constraint < 0
|
||
|| os->bfd_section == NULL)
|
||
continue;
|
||
|
||
for (pl = os->phdrs;
|
||
pl != NULL;
|
||
pl = pl->next)
|
||
if (!pl->used && strcmp (pl->name, "NONE") != 0)
|
||
einfo (_("%X%P: section `%s' assigned to non-existent phdr `%s'\n"),
|
||
os->name, pl->name);
|
||
}
|
||
}
|
||
|
||
/* Record a list of sections which may not be cross referenced. */
|
||
|
||
void
|
||
lang_add_nocrossref (lang_nocrossref_type *l)
|
||
{
|
||
struct lang_nocrossrefs *n;
|
||
|
||
n = (struct lang_nocrossrefs *) xmalloc (sizeof *n);
|
||
n->next = nocrossref_list;
|
||
n->list = l;
|
||
n->onlyfirst = false;
|
||
nocrossref_list = n;
|
||
|
||
/* Set notice_all so that we get informed about all symbols. */
|
||
link_info.notice_all = true;
|
||
}
|
||
|
||
/* Record a section that cannot be referenced from a list of sections. */
|
||
|
||
void
|
||
lang_add_nocrossref_to (lang_nocrossref_type *l)
|
||
{
|
||
lang_add_nocrossref (l);
|
||
nocrossref_list->onlyfirst = true;
|
||
}
|
||
|
||
/* Overlay handling. We handle overlays with some static variables. */
|
||
|
||
/* The overlay virtual address. */
|
||
static etree_type *overlay_vma;
|
||
/* And subsection alignment. */
|
||
static etree_type *overlay_subalign;
|
||
|
||
/* An expression for the maximum section size seen so far. */
|
||
static etree_type *overlay_max;
|
||
|
||
/* A list of all the sections in this overlay. */
|
||
|
||
struct overlay_list {
|
||
struct overlay_list *next;
|
||
lang_output_section_statement_type *os;
|
||
};
|
||
|
||
static struct overlay_list *overlay_list;
|
||
|
||
/* Start handling an overlay. */
|
||
|
||
void
|
||
lang_enter_overlay (etree_type *vma_expr, etree_type *subalign)
|
||
{
|
||
/* The grammar should prevent nested overlays from occurring. */
|
||
ASSERT (overlay_vma == NULL
|
||
&& overlay_subalign == NULL
|
||
&& overlay_max == NULL);
|
||
|
||
overlay_vma = vma_expr;
|
||
overlay_subalign = subalign;
|
||
}
|
||
|
||
/* Start a section in an overlay. We handle this by calling
|
||
lang_enter_output_section_statement with the correct VMA.
|
||
lang_leave_overlay sets up the LMA and memory regions. */
|
||
|
||
void
|
||
lang_enter_overlay_section (const char *name)
|
||
{
|
||
struct overlay_list *n;
|
||
etree_type *size;
|
||
|
||
lang_enter_output_section_statement (name, overlay_vma, overlay_section,
|
||
0, 0, overlay_subalign, 0, 0, 0);
|
||
|
||
/* If this is the first section, then base the VMA of future
|
||
sections on this one. This will work correctly even if `.' is
|
||
used in the addresses. */
|
||
if (overlay_list == NULL)
|
||
overlay_vma = exp_nameop (ADDR, name);
|
||
|
||
/* Remember the section. */
|
||
n = (struct overlay_list *) xmalloc (sizeof *n);
|
||
n->os = current_section;
|
||
n->next = overlay_list;
|
||
overlay_list = n;
|
||
|
||
size = exp_nameop (SIZEOF, name);
|
||
|
||
/* Arrange to work out the maximum section end address. */
|
||
if (overlay_max == NULL)
|
||
overlay_max = size;
|
||
else
|
||
overlay_max = exp_binop (MAX_K, overlay_max, size);
|
||
}
|
||
|
||
/* Finish a section in an overlay. There isn't any special to do
|
||
here. */
|
||
|
||
void
|
||
lang_leave_overlay_section (fill_type *fill,
|
||
lang_output_section_phdr_list *phdrs)
|
||
{
|
||
const char *name;
|
||
char *clean, *s2;
|
||
const char *s1;
|
||
char *buf;
|
||
|
||
name = current_section->name;
|
||
|
||
/* For now, assume that DEFAULT_MEMORY_REGION is the run-time memory
|
||
region and that no load-time region has been specified. It doesn't
|
||
really matter what we say here, since lang_leave_overlay will
|
||
override it. */
|
||
lang_leave_output_section_statement (fill, DEFAULT_MEMORY_REGION, phdrs, 0);
|
||
|
||
/* Define the magic symbols. */
|
||
|
||
clean = (char *) xmalloc (strlen (name) + 1);
|
||
s2 = clean;
|
||
for (s1 = name; *s1 != '\0'; s1++)
|
||
if (ISALNUM (*s1) || *s1 == '_')
|
||
*s2++ = *s1;
|
||
*s2 = '\0';
|
||
|
||
buf = (char *) xmalloc (strlen (clean) + sizeof "__load_start_");
|
||
sprintf (buf, "__load_start_%s", clean);
|
||
lang_add_assignment (exp_provide (buf,
|
||
exp_nameop (LOADADDR, name),
|
||
false));
|
||
|
||
buf = (char *) xmalloc (strlen (clean) + sizeof "__load_stop_");
|
||
sprintf (buf, "__load_stop_%s", clean);
|
||
lang_add_assignment (exp_provide (buf,
|
||
exp_binop ('+',
|
||
exp_nameop (LOADADDR, name),
|
||
exp_nameop (SIZEOF, name)),
|
||
false));
|
||
|
||
free (clean);
|
||
}
|
||
|
||
/* Finish an overlay. If there are any overlay wide settings, this
|
||
looks through all the sections in the overlay and sets them. */
|
||
|
||
void
|
||
lang_leave_overlay (etree_type *lma_expr,
|
||
int nocrossrefs,
|
||
fill_type *fill,
|
||
const char *memspec,
|
||
lang_output_section_phdr_list *phdrs,
|
||
const char *lma_memspec)
|
||
{
|
||
lang_memory_region_type *region;
|
||
lang_memory_region_type *lma_region;
|
||
struct overlay_list *l;
|
||
lang_nocrossref_type *nocrossref;
|
||
|
||
lang_get_regions (®ion, &lma_region,
|
||
memspec, lma_memspec,
|
||
lma_expr != NULL, false);
|
||
|
||
nocrossref = NULL;
|
||
|
||
/* After setting the size of the last section, set '.' to end of the
|
||
overlay region. */
|
||
if (overlay_list != NULL)
|
||
{
|
||
overlay_list->os->update_dot = 1;
|
||
overlay_list->os->update_dot_tree
|
||
= exp_assign (".", exp_binop ('+', overlay_vma, overlay_max), false);
|
||
}
|
||
|
||
l = overlay_list;
|
||
while (l != NULL)
|
||
{
|
||
struct overlay_list *next;
|
||
|
||
if (fill != NULL && l->os->fill == NULL)
|
||
l->os->fill = fill;
|
||
|
||
l->os->region = region;
|
||
l->os->lma_region = lma_region;
|
||
|
||
/* The first section has the load address specified in the
|
||
OVERLAY statement. The rest are worked out from that.
|
||
The base address is not needed (and should be null) if
|
||
an LMA region was specified. */
|
||
if (l->next == 0)
|
||
{
|
||
l->os->load_base = lma_expr;
|
||
l->os->sectype = first_overlay_section;
|
||
}
|
||
if (phdrs != NULL && l->os->phdrs == NULL)
|
||
l->os->phdrs = phdrs;
|
||
|
||
if (nocrossrefs)
|
||
{
|
||
lang_nocrossref_type *nc;
|
||
|
||
nc = (lang_nocrossref_type *) xmalloc (sizeof *nc);
|
||
nc->name = l->os->name;
|
||
nc->next = nocrossref;
|
||
nocrossref = nc;
|
||
}
|
||
|
||
next = l->next;
|
||
free (l);
|
||
l = next;
|
||
}
|
||
|
||
if (nocrossref != NULL)
|
||
lang_add_nocrossref (nocrossref);
|
||
|
||
overlay_vma = NULL;
|
||
overlay_list = NULL;
|
||
overlay_max = NULL;
|
||
overlay_subalign = NULL;
|
||
}
|
||
|
||
/* Version handling. This is only useful for ELF. */
|
||
|
||
/* If PREV is NULL, return first version pattern matching particular symbol.
|
||
If PREV is non-NULL, return first version pattern matching particular
|
||
symbol after PREV (previously returned by lang_vers_match). */
|
||
|
||
static struct bfd_elf_version_expr *
|
||
lang_vers_match (struct bfd_elf_version_expr_head *head,
|
||
struct bfd_elf_version_expr *prev,
|
||
const char *sym)
|
||
{
|
||
const char *c_sym;
|
||
const char *cxx_sym = sym;
|
||
const char *java_sym = sym;
|
||
struct bfd_elf_version_expr *expr = NULL;
|
||
enum demangling_styles curr_style;
|
||
|
||
curr_style = CURRENT_DEMANGLING_STYLE;
|
||
cplus_demangle_set_style (no_demangling);
|
||
c_sym = bfd_demangle (link_info.output_bfd, sym, DMGL_NO_OPTS);
|
||
if (!c_sym)
|
||
c_sym = sym;
|
||
cplus_demangle_set_style (curr_style);
|
||
|
||
if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
|
||
{
|
||
cxx_sym = bfd_demangle (link_info.output_bfd, sym,
|
||
DMGL_PARAMS | DMGL_ANSI);
|
||
if (!cxx_sym)
|
||
cxx_sym = sym;
|
||
}
|
||
if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
|
||
{
|
||
java_sym = bfd_demangle (link_info.output_bfd, sym, DMGL_JAVA);
|
||
if (!java_sym)
|
||
java_sym = sym;
|
||
}
|
||
|
||
if (head->htab && (prev == NULL || prev->literal))
|
||
{
|
||
struct bfd_elf_version_expr e;
|
||
|
||
switch (prev ? prev->mask : 0)
|
||
{
|
||
case 0:
|
||
if (head->mask & BFD_ELF_VERSION_C_TYPE)
|
||
{
|
||
e.pattern = c_sym;
|
||
expr = (struct bfd_elf_version_expr *)
|
||
htab_find ((htab_t) head->htab, &e);
|
||
while (expr && strcmp (expr->pattern, c_sym) == 0)
|
||
if (expr->mask == BFD_ELF_VERSION_C_TYPE)
|
||
goto out_ret;
|
||
else
|
||
expr = expr->next;
|
||
}
|
||
/* Fallthrough */
|
||
case BFD_ELF_VERSION_C_TYPE:
|
||
if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
|
||
{
|
||
e.pattern = cxx_sym;
|
||
expr = (struct bfd_elf_version_expr *)
|
||
htab_find ((htab_t) head->htab, &e);
|
||
while (expr && strcmp (expr->pattern, cxx_sym) == 0)
|
||
if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
|
||
goto out_ret;
|
||
else
|
||
expr = expr->next;
|
||
}
|
||
/* Fallthrough */
|
||
case BFD_ELF_VERSION_CXX_TYPE:
|
||
if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
|
||
{
|
||
e.pattern = java_sym;
|
||
expr = (struct bfd_elf_version_expr *)
|
||
htab_find ((htab_t) head->htab, &e);
|
||
while (expr && strcmp (expr->pattern, java_sym) == 0)
|
||
if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
|
||
goto out_ret;
|
||
else
|
||
expr = expr->next;
|
||
}
|
||
/* Fallthrough */
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Finally, try the wildcards. */
|
||
if (prev == NULL || prev->literal)
|
||
expr = head->remaining;
|
||
else
|
||
expr = prev->next;
|
||
for (; expr; expr = expr->next)
|
||
{
|
||
const char *s;
|
||
|
||
if (!expr->pattern)
|
||
continue;
|
||
|
||
if (expr->pattern[0] == '*' && expr->pattern[1] == '\0')
|
||
break;
|
||
|
||
if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
|
||
s = java_sym;
|
||
else if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
|
||
s = cxx_sym;
|
||
else
|
||
s = c_sym;
|
||
if (fnmatch (expr->pattern, s, 0) == 0)
|
||
break;
|
||
}
|
||
|
||
out_ret:
|
||
if (c_sym != sym)
|
||
free ((char *) c_sym);
|
||
if (cxx_sym != sym)
|
||
free ((char *) cxx_sym);
|
||
if (java_sym != sym)
|
||
free ((char *) java_sym);
|
||
return expr;
|
||
}
|
||
|
||
/* Return NULL if the PATTERN argument is a glob pattern, otherwise,
|
||
return a pointer to the symbol name with any backslash quotes removed. */
|
||
|
||
static const char *
|
||
realsymbol (const char *pattern)
|
||
{
|
||
const char *p;
|
||
bool changed = false, backslash = false;
|
||
char *s, *symbol = (char *) xmalloc (strlen (pattern) + 1);
|
||
|
||
for (p = pattern, s = symbol; *p != '\0'; ++p)
|
||
{
|
||
/* It is a glob pattern only if there is no preceding
|
||
backslash. */
|
||
if (backslash)
|
||
{
|
||
/* Remove the preceding backslash. */
|
||
*(s - 1) = *p;
|
||
backslash = false;
|
||
changed = true;
|
||
}
|
||
else
|
||
{
|
||
if (*p == '?' || *p == '*' || *p == '[')
|
||
{
|
||
free (symbol);
|
||
return NULL;
|
||
}
|
||
|
||
*s++ = *p;
|
||
backslash = *p == '\\';
|
||
}
|
||
}
|
||
|
||
if (changed)
|
||
{
|
||
*s = '\0';
|
||
return symbol;
|
||
}
|
||
else
|
||
{
|
||
free (symbol);
|
||
return pattern;
|
||
}
|
||
}
|
||
|
||
/* This is called for each variable name or match expression. NEW_NAME is
|
||
the name of the symbol to match, or, if LITERAL_P is FALSE, a glob
|
||
pattern to be matched against symbol names. */
|
||
|
||
struct bfd_elf_version_expr *
|
||
lang_new_vers_pattern (struct bfd_elf_version_expr *orig,
|
||
const char *new_name,
|
||
const char *lang,
|
||
bool literal_p)
|
||
{
|
||
struct bfd_elf_version_expr *ret;
|
||
|
||
ret = (struct bfd_elf_version_expr *) xmalloc (sizeof *ret);
|
||
ret->next = orig;
|
||
ret->symver = 0;
|
||
ret->script = 0;
|
||
ret->literal = true;
|
||
ret->pattern = literal_p ? new_name : realsymbol (new_name);
|
||
if (ret->pattern == NULL)
|
||
{
|
||
ret->pattern = new_name;
|
||
ret->literal = false;
|
||
}
|
||
|
||
if (lang == NULL || strcasecmp (lang, "C") == 0)
|
||
ret->mask = BFD_ELF_VERSION_C_TYPE;
|
||
else if (strcasecmp (lang, "C++") == 0)
|
||
ret->mask = BFD_ELF_VERSION_CXX_TYPE;
|
||
else if (strcasecmp (lang, "Java") == 0)
|
||
ret->mask = BFD_ELF_VERSION_JAVA_TYPE;
|
||
else
|
||
{
|
||
einfo (_("%X%P: unknown language `%s' in version information\n"),
|
||
lang);
|
||
ret->mask = BFD_ELF_VERSION_C_TYPE;
|
||
}
|
||
|
||
return ldemul_new_vers_pattern (ret);
|
||
}
|
||
|
||
/* This is called for each set of variable names and match
|
||
expressions. */
|
||
|
||
struct bfd_elf_version_tree *
|
||
lang_new_vers_node (struct bfd_elf_version_expr *globals,
|
||
struct bfd_elf_version_expr *locals)
|
||
{
|
||
struct bfd_elf_version_tree *ret;
|
||
|
||
ret = (struct bfd_elf_version_tree *) xcalloc (1, sizeof *ret);
|
||
ret->globals.list = globals;
|
||
ret->locals.list = locals;
|
||
ret->match = lang_vers_match;
|
||
ret->name_indx = (unsigned int) -1;
|
||
return ret;
|
||
}
|
||
|
||
/* This static variable keeps track of version indices. */
|
||
|
||
static int version_index;
|
||
|
||
static hashval_t
|
||
version_expr_head_hash (const void *p)
|
||
{
|
||
const struct bfd_elf_version_expr *e =
|
||
(const struct bfd_elf_version_expr *) p;
|
||
|
||
return htab_hash_string (e->pattern);
|
||
}
|
||
|
||
static int
|
||
version_expr_head_eq (const void *p1, const void *p2)
|
||
{
|
||
const struct bfd_elf_version_expr *e1 =
|
||
(const struct bfd_elf_version_expr *) p1;
|
||
const struct bfd_elf_version_expr *e2 =
|
||
(const struct bfd_elf_version_expr *) p2;
|
||
|
||
return strcmp (e1->pattern, e2->pattern) == 0;
|
||
}
|
||
|
||
static void
|
||
lang_finalize_version_expr_head (struct bfd_elf_version_expr_head *head)
|
||
{
|
||
size_t count = 0;
|
||
struct bfd_elf_version_expr *e, *next;
|
||
struct bfd_elf_version_expr **list_loc, **remaining_loc;
|
||
|
||
for (e = head->list; e; e = e->next)
|
||
{
|
||
if (e->literal)
|
||
count++;
|
||
head->mask |= e->mask;
|
||
}
|
||
|
||
if (count)
|
||
{
|
||
head->htab = htab_create (count * 2, version_expr_head_hash,
|
||
version_expr_head_eq, NULL);
|
||
list_loc = &head->list;
|
||
remaining_loc = &head->remaining;
|
||
for (e = head->list; e; e = next)
|
||
{
|
||
next = e->next;
|
||
if (!e->literal)
|
||
{
|
||
*remaining_loc = e;
|
||
remaining_loc = &e->next;
|
||
}
|
||
else
|
||
{
|
||
void **loc = htab_find_slot ((htab_t) head->htab, e, INSERT);
|
||
|
||
if (*loc)
|
||
{
|
||
struct bfd_elf_version_expr *e1, *last;
|
||
|
||
e1 = (struct bfd_elf_version_expr *) *loc;
|
||
last = NULL;
|
||
do
|
||
{
|
||
if (e1->mask == e->mask)
|
||
{
|
||
last = NULL;
|
||
break;
|
||
}
|
||
last = e1;
|
||
e1 = e1->next;
|
||
}
|
||
while (e1 && strcmp (e1->pattern, e->pattern) == 0);
|
||
|
||
if (last == NULL)
|
||
{
|
||
/* This is a duplicate. */
|
||
/* FIXME: Memory leak. Sometimes pattern is not
|
||
xmalloced alone, but in larger chunk of memory. */
|
||
/* free (e->pattern); */
|
||
free (e);
|
||
}
|
||
else
|
||
{
|
||
e->next = last->next;
|
||
last->next = e;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
*loc = e;
|
||
*list_loc = e;
|
||
list_loc = &e->next;
|
||
}
|
||
}
|
||
}
|
||
*remaining_loc = NULL;
|
||
*list_loc = head->remaining;
|
||
}
|
||
else
|
||
head->remaining = head->list;
|
||
}
|
||
|
||
/* This is called when we know the name and dependencies of the
|
||
version. */
|
||
|
||
void
|
||
lang_register_vers_node (const char *name,
|
||
struct bfd_elf_version_tree *version,
|
||
struct bfd_elf_version_deps *deps)
|
||
{
|
||
struct bfd_elf_version_tree *t, **pp;
|
||
struct bfd_elf_version_expr *e1;
|
||
|
||
if (name == NULL)
|
||
name = "";
|
||
|
||
if (link_info.version_info != NULL
|
||
&& (name[0] == '\0' || link_info.version_info->name[0] == '\0'))
|
||
{
|
||
einfo (_("%X%P: anonymous version tag cannot be combined"
|
||
" with other version tags\n"));
|
||
free (version);
|
||
return;
|
||
}
|
||
|
||
/* Make sure this node has a unique name. */
|
||
for (t = link_info.version_info; t != NULL; t = t->next)
|
||
if (strcmp (t->name, name) == 0)
|
||
einfo (_("%X%P: duplicate version tag `%s'\n"), name);
|
||
|
||
lang_finalize_version_expr_head (&version->globals);
|
||
lang_finalize_version_expr_head (&version->locals);
|
||
|
||
/* Check the global and local match names, and make sure there
|
||
aren't any duplicates. */
|
||
|
||
for (e1 = version->globals.list; e1 != NULL; e1 = e1->next)
|
||
{
|
||
for (t = link_info.version_info; t != NULL; t = t->next)
|
||
{
|
||
struct bfd_elf_version_expr *e2;
|
||
|
||
if (t->locals.htab && e1->literal)
|
||
{
|
||
e2 = (struct bfd_elf_version_expr *)
|
||
htab_find ((htab_t) t->locals.htab, e1);
|
||
while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
|
||
{
|
||
if (e1->mask == e2->mask)
|
||
einfo (_("%X%P: duplicate expression `%s'"
|
||
" in version information\n"), e1->pattern);
|
||
e2 = e2->next;
|
||
}
|
||
}
|
||
else if (!e1->literal)
|
||
for (e2 = t->locals.remaining; e2 != NULL; e2 = e2->next)
|
||
if (strcmp (e1->pattern, e2->pattern) == 0
|
||
&& e1->mask == e2->mask)
|
||
einfo (_("%X%P: duplicate expression `%s'"
|
||
" in version information\n"), e1->pattern);
|
||
}
|
||
}
|
||
|
||
for (e1 = version->locals.list; e1 != NULL; e1 = e1->next)
|
||
{
|
||
for (t = link_info.version_info; t != NULL; t = t->next)
|
||
{
|
||
struct bfd_elf_version_expr *e2;
|
||
|
||
if (t->globals.htab && e1->literal)
|
||
{
|
||
e2 = (struct bfd_elf_version_expr *)
|
||
htab_find ((htab_t) t->globals.htab, e1);
|
||
while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
|
||
{
|
||
if (e1->mask == e2->mask)
|
||
einfo (_("%X%P: duplicate expression `%s'"
|
||
" in version information\n"),
|
||
e1->pattern);
|
||
e2 = e2->next;
|
||
}
|
||
}
|
||
else if (!e1->literal)
|
||
for (e2 = t->globals.remaining; e2 != NULL; e2 = e2->next)
|
||
if (strcmp (e1->pattern, e2->pattern) == 0
|
||
&& e1->mask == e2->mask)
|
||
einfo (_("%X%P: duplicate expression `%s'"
|
||
" in version information\n"), e1->pattern);
|
||
}
|
||
}
|
||
|
||
version->deps = deps;
|
||
version->name = name;
|
||
if (name[0] != '\0')
|
||
{
|
||
++version_index;
|
||
version->vernum = version_index;
|
||
}
|
||
else
|
||
version->vernum = 0;
|
||
|
||
for (pp = &link_info.version_info; *pp != NULL; pp = &(*pp)->next)
|
||
;
|
||
*pp = version;
|
||
}
|
||
|
||
/* This is called when we see a version dependency. */
|
||
|
||
struct bfd_elf_version_deps *
|
||
lang_add_vers_depend (struct bfd_elf_version_deps *list, const char *name)
|
||
{
|
||
struct bfd_elf_version_deps *ret;
|
||
struct bfd_elf_version_tree *t;
|
||
|
||
ret = (struct bfd_elf_version_deps *) xmalloc (sizeof *ret);
|
||
ret->next = list;
|
||
|
||
for (t = link_info.version_info; t != NULL; t = t->next)
|
||
{
|
||
if (strcmp (t->name, name) == 0)
|
||
{
|
||
ret->version_needed = t;
|
||
return ret;
|
||
}
|
||
}
|
||
|
||
einfo (_("%X%P: unable to find version dependency `%s'\n"), name);
|
||
|
||
ret->version_needed = NULL;
|
||
return ret;
|
||
}
|
||
|
||
static void
|
||
lang_do_version_exports_section (void)
|
||
{
|
||
struct bfd_elf_version_expr *greg = NULL, *lreg;
|
||
|
||
LANG_FOR_EACH_INPUT_STATEMENT (is)
|
||
{
|
||
asection *sec = bfd_get_section_by_name (is->the_bfd, ".exports");
|
||
char *contents, *p;
|
||
bfd_size_type len;
|
||
|
||
if (sec == NULL)
|
||
continue;
|
||
|
||
len = sec->size;
|
||
contents = (char *) xmalloc (len);
|
||
if (!bfd_get_section_contents (is->the_bfd, sec, contents, 0, len))
|
||
einfo (_("%X%P: unable to read .exports section contents\n"), sec);
|
||
|
||
p = contents;
|
||
while (p < contents + len)
|
||
{
|
||
greg = lang_new_vers_pattern (greg, p, NULL, false);
|
||
p = strchr (p, '\0') + 1;
|
||
}
|
||
|
||
/* Do not free the contents, as we used them creating the regex. */
|
||
|
||
/* Do not include this section in the link. */
|
||
sec->flags |= SEC_EXCLUDE | SEC_KEEP;
|
||
}
|
||
|
||
lreg = lang_new_vers_pattern (NULL, "*", NULL, false);
|
||
lang_register_vers_node (command_line.version_exports_section,
|
||
lang_new_vers_node (greg, lreg), NULL);
|
||
}
|
||
|
||
/* Evaluate LENGTH and ORIGIN parts of MEMORY spec. This is initially
|
||
called with UPDATE_REGIONS_P set to FALSE, in this case no errors are
|
||
thrown, however, references to symbols in the origin and length fields
|
||
will be pushed into the symbol table, this allows PROVIDE statements to
|
||
then provide these symbols. This function is called a second time with
|
||
UPDATE_REGIONS_P set to TRUE, this time the we update the actual region
|
||
data structures, and throw errors if missing symbols are encountered. */
|
||
|
||
static void
|
||
lang_do_memory_regions (bool update_regions_p)
|
||
{
|
||
lang_memory_region_type *r = lang_memory_region_list;
|
||
|
||
for (; r != NULL; r = r->next)
|
||
{
|
||
if (r->origin_exp)
|
||
{
|
||
exp_fold_tree_no_dot (r->origin_exp);
|
||
if (update_regions_p)
|
||
{
|
||
if (expld.result.valid_p)
|
||
{
|
||
r->origin = expld.result.value;
|
||
r->current = r->origin;
|
||
}
|
||
else
|
||
einfo (_("%P: invalid origin for memory region %s\n"),
|
||
r->name_list.name);
|
||
}
|
||
}
|
||
if (r->length_exp)
|
||
{
|
||
exp_fold_tree_no_dot (r->length_exp);
|
||
if (update_regions_p)
|
||
{
|
||
if (expld.result.valid_p)
|
||
r->length = expld.result.value;
|
||
else
|
||
einfo (_("%P: invalid length for memory region %s\n"),
|
||
r->name_list.name);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
void
|
||
lang_add_unique (const char *name)
|
||
{
|
||
struct unique_sections *ent;
|
||
|
||
for (ent = unique_section_list; ent; ent = ent->next)
|
||
if (strcmp (ent->name, name) == 0)
|
||
return;
|
||
|
||
ent = (struct unique_sections *) xmalloc (sizeof *ent);
|
||
ent->name = xstrdup (name);
|
||
ent->next = unique_section_list;
|
||
unique_section_list = ent;
|
||
}
|
||
|
||
/* Append the list of dynamic symbols to the existing one. */
|
||
|
||
void
|
||
lang_append_dynamic_list (struct bfd_elf_dynamic_list **list_p,
|
||
struct bfd_elf_version_expr *dynamic)
|
||
{
|
||
if (*list_p)
|
||
{
|
||
struct bfd_elf_version_expr *tail;
|
||
for (tail = dynamic; tail->next != NULL; tail = tail->next)
|
||
;
|
||
tail->next = (*list_p)->head.list;
|
||
(*list_p)->head.list = dynamic;
|
||
}
|
||
else
|
||
{
|
||
struct bfd_elf_dynamic_list *d;
|
||
|
||
d = (struct bfd_elf_dynamic_list *) xcalloc (1, sizeof *d);
|
||
d->head.list = dynamic;
|
||
d->match = lang_vers_match;
|
||
*list_p = d;
|
||
}
|
||
}
|
||
|
||
/* Append the list of C++ typeinfo dynamic symbols to the existing
|
||
one. */
|
||
|
||
void
|
||
lang_append_dynamic_list_cpp_typeinfo (void)
|
||
{
|
||
const char *symbols[] =
|
||
{
|
||
"typeinfo name for*",
|
||
"typeinfo for*"
|
||
};
|
||
struct bfd_elf_version_expr *dynamic = NULL;
|
||
unsigned int i;
|
||
|
||
for (i = 0; i < ARRAY_SIZE (symbols); i++)
|
||
dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
|
||
false);
|
||
|
||
lang_append_dynamic_list (&link_info.dynamic_list, dynamic);
|
||
}
|
||
|
||
/* Append the list of C++ operator new and delete dynamic symbols to the
|
||
existing one. */
|
||
|
||
void
|
||
lang_append_dynamic_list_cpp_new (void)
|
||
{
|
||
const char *symbols[] =
|
||
{
|
||
"operator new*",
|
||
"operator delete*"
|
||
};
|
||
struct bfd_elf_version_expr *dynamic = NULL;
|
||
unsigned int i;
|
||
|
||
for (i = 0; i < ARRAY_SIZE (symbols); i++)
|
||
dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
|
||
false);
|
||
|
||
lang_append_dynamic_list (&link_info.dynamic_list, dynamic);
|
||
}
|
||
|
||
/* Scan a space and/or comma separated string of features. */
|
||
|
||
void
|
||
lang_ld_feature (char *str)
|
||
{
|
||
char *p, *q;
|
||
|
||
p = str;
|
||
while (*p)
|
||
{
|
||
char sep;
|
||
while (*p == ',' || ISSPACE (*p))
|
||
++p;
|
||
if (!*p)
|
||
break;
|
||
q = p + 1;
|
||
while (*q && *q != ',' && !ISSPACE (*q))
|
||
++q;
|
||
sep = *q;
|
||
*q = 0;
|
||
if (strcasecmp (p, "SANE_EXPR") == 0)
|
||
config.sane_expr = true;
|
||
else
|
||
einfo (_("%X%P: unknown feature `%s'\n"), p);
|
||
*q = sep;
|
||
p = q;
|
||
}
|
||
}
|
||
|
||
/* Pretty print memory amount. */
|
||
|
||
static void
|
||
lang_print_memory_size (uint64_t sz)
|
||
{
|
||
if ((sz & 0x3fffffff) == 0)
|
||
printf ("%10" PRIu64 " GB", sz >> 30);
|
||
else if ((sz & 0xfffff) == 0)
|
||
printf ("%10" PRIu64 " MB", sz >> 20);
|
||
else if ((sz & 0x3ff) == 0)
|
||
printf ("%10" PRIu64 " KB", sz >> 10);
|
||
else
|
||
printf (" %10" PRIu64 " B", sz);
|
||
}
|
||
|
||
/* Implement --print-memory-usage: disply per region memory usage. */
|
||
|
||
void
|
||
lang_print_memory_usage (void)
|
||
{
|
||
lang_memory_region_type *r;
|
||
|
||
printf ("Memory region Used Size Region Size %%age Used\n");
|
||
for (r = lang_memory_region_list; r->next != NULL; r = r->next)
|
||
{
|
||
bfd_vma used_length = r->current - r->origin;
|
||
|
||
printf ("%16s: ",r->name_list.name);
|
||
lang_print_memory_size (used_length);
|
||
lang_print_memory_size (r->length);
|
||
|
||
if (r->length != 0)
|
||
{
|
||
double percent = used_length * 100.0 / r->length;
|
||
printf (" %6.2f%%", percent);
|
||
}
|
||
printf ("\n");
|
||
}
|
||
}
|