binutils-gdb/bfd/elf64-ppc.c

6343 lines
189 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* PowerPC64-specific support for 64-bit ELF.
Copyright 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
Written by Linus Nordberg, Swox AB <info@swox.com>,
based on elf32-ppc.c by Ian Lance Taylor.
This file is part of BFD, the Binary File Descriptor library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
/* This file is based on the 64-bit PowerPC ELF ABI. It is also based
on the file elf32-ppc.c. */
#include "bfd.h"
#include "sysdep.h"
#include "bfdlink.h"
#include "libbfd.h"
#include "elf-bfd.h"
#include "elf/ppc.h"
#include "elf64-ppc.h"
static void ppc_howto_init
PARAMS ((void));
static reloc_howto_type *ppc64_elf_reloc_type_lookup
PARAMS ((bfd *abfd, bfd_reloc_code_real_type code));
static void ppc64_elf_info_to_howto
PARAMS ((bfd *abfd, arelent *cache_ptr, Elf_Internal_Rela *dst));
static bfd_reloc_status_type ppc64_elf_ha_reloc
PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
static bfd_reloc_status_type ppc64_elf_brtaken_reloc
PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
static bfd_reloc_status_type ppc64_elf_sectoff_reloc
PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
static bfd_reloc_status_type ppc64_elf_sectoff_ha_reloc
PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
static bfd_reloc_status_type ppc64_elf_toc_reloc
PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
static bfd_reloc_status_type ppc64_elf_toc_ha_reloc
PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
static bfd_reloc_status_type ppc64_elf_toc64_reloc
PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
static bfd_reloc_status_type ppc64_elf_unhandled_reloc
PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
static bfd_boolean ppc64_elf_object_p
PARAMS ((bfd *));
static bfd_boolean ppc64_elf_merge_private_bfd_data
PARAMS ((bfd *, bfd *));
/* The name of the dynamic interpreter. This is put in the .interp
section. */
#define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
/* The size in bytes of an entry in the procedure linkage table. */
#define PLT_ENTRY_SIZE 24
/* The initial size of the plt reserved for the dynamic linker. */
#define PLT_INITIAL_ENTRY_SIZE PLT_ENTRY_SIZE
/* TOC base pointers offset from start of TOC. */
#define TOC_BASE_OFF (0x8000)
/* .plt call stub instructions. */
#define ADDIS_R12_R2 0x3d820000 /* addis %r12,%r2,xxx@ha */
#define STD_R2_40R1 0xf8410028 /* std %r2,40(%r1) */
#define LD_R11_0R12 0xe96c0000 /* ld %r11,xxx+0@l(%r12) */
#define LD_R2_0R12 0xe84c0000 /* ld %r2,xxx+8@l(%r12) */
#define MTCTR_R11 0x7d6903a6 /* mtctr %r11 */
/* ld %r11,xxx+16@l(%r12) */
#define BCTR 0x4e800420 /* bctr */
/* The normal stub is this size. */
#define PLT_CALL_STUB_SIZE (7*4)
/* But sometimes the .plt entry crosses a 64k boundary, and we need
to adjust the high word with this insn. */
#define ADDIS_R12_R12_1 0x3d8c0001 /* addis %r12,%r12,1 */
/* The .glink fixup call stub is the same as the .plt call stub, but
the first instruction restores r2, and the std is omitted. */
#define LD_R2_40R1 0xe8410028 /* ld %r2,40(%r1) */
/* Always allow this much space. */
#define GLINK_CALL_STUB_SIZE (8*4)
/* Pad with this. */
#define NOP 0x60000000
/* Some other nops. */
#define CROR_151515 0x4def7b82
#define CROR_313131 0x4ffffb82
/* .glink entries for the first 32k functions are two instructions. */
#define LI_R0_0 0x38000000 /* li %r0,0 */
#define B_DOT 0x48000000 /* b . */
/* After that, we need two instructions to load the index, followed by
a branch. */
#define LIS_R0_0 0x3c000000 /* lis %r0,0 */
#define ORI_R0_R0_0 0x60000000 /* ori %r0,%r0,0 */
/* Instructions to save and restore floating point regs. */
#define STFD_FR0_0R1 0xd8010000 /* stfd %fr0,0(%r1) */
#define LFD_FR0_0R1 0xc8010000 /* lfd %fr0,0(%r1) */
#define BLR 0x4e800020 /* blr */
/* Since .opd is an array of descriptors and each entry will end up
with identical R_PPC64_RELATIVE relocs, there is really no need to
propagate .opd relocs; The dynamic linker should be taught to
relocate .opd without reloc entries. */
#ifndef NO_OPD_RELOCS
#define NO_OPD_RELOCS 0
#endif
#define ONES(n) (((bfd_vma) 1 << ((n) - 1) << 1) - 1)
/* Relocation HOWTO's. */
static reloc_howto_type *ppc64_elf_howto_table[(int) R_PPC_max];
static reloc_howto_type ppc64_elf_howto_raw[] = {
/* This reloc does nothing. */
HOWTO (R_PPC64_NONE, /* type */
0, /* rightshift */
0, /* size (0 = byte, 1 = short, 2 = long) */
8, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_PPC64_NONE", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0, /* dst_mask */
FALSE), /* pcrel_offset */
/* A standard 32 bit relocation. */
HOWTO (R_PPC64_ADDR32, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
32, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_PPC64_ADDR32", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0xffffffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* An absolute 26 bit branch; the lower two bits must be zero.
FIXME: we don't check that, we just clear them. */
HOWTO (R_PPC64_ADDR24, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
26, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_PPC64_ADDR24", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0x03fffffc, /* dst_mask */
FALSE), /* pcrel_offset */
/* A standard 16 bit relocation. */
HOWTO (R_PPC64_ADDR16, /* type */
0, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_PPC64_ADDR16", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* A 16 bit relocation without overflow. */
HOWTO (R_PPC64_ADDR16_LO, /* type */
0, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont,/* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_PPC64_ADDR16_LO", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* Bits 16-31 of an address. */
HOWTO (R_PPC64_ADDR16_HI, /* type */
16, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_PPC64_ADDR16_HI", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* Bits 16-31 of an address, plus 1 if the contents of the low 16
bits, treated as a signed number, is negative. */
HOWTO (R_PPC64_ADDR16_HA, /* type */
16, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
ppc64_elf_ha_reloc, /* special_function */
"R_PPC64_ADDR16_HA", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* An absolute 16 bit branch; the lower two bits must be zero.
FIXME: we don't check that, we just clear them. */
HOWTO (R_PPC64_ADDR14, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_PPC64_ADDR14", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0x0000fffc, /* dst_mask */
FALSE), /* pcrel_offset */
/* An absolute 16 bit branch, for which bit 10 should be set to
indicate that the branch is expected to be taken. The lower two
bits must be zero. */
HOWTO (R_PPC64_ADDR14_BRTAKEN, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
ppc64_elf_brtaken_reloc, /* special_function */
"R_PPC64_ADDR14_BRTAKEN",/* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0x0000fffc, /* dst_mask */
FALSE), /* pcrel_offset */
/* An absolute 16 bit branch, for which bit 10 should be set to
indicate that the branch is not expected to be taken. The lower
two bits must be zero. */
HOWTO (R_PPC64_ADDR14_BRNTAKEN, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
ppc64_elf_brtaken_reloc, /* special_function */
"R_PPC64_ADDR14_BRNTAKEN",/* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0x0000fffc, /* dst_mask */
FALSE), /* pcrel_offset */
/* A relative 26 bit branch; the lower two bits must be zero. */
HOWTO (R_PPC64_REL24, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
26, /* bitsize */
TRUE, /* pc_relative */
0, /* bitpos */
complain_overflow_signed, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_PPC64_REL24", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0x03fffffc, /* dst_mask */
TRUE), /* pcrel_offset */
/* A relative 16 bit branch; the lower two bits must be zero. */
HOWTO (R_PPC64_REL14, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
TRUE, /* pc_relative */
0, /* bitpos */
complain_overflow_signed, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_PPC64_REL14", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0x0000fffc, /* dst_mask */
TRUE), /* pcrel_offset */
/* A relative 16 bit branch. Bit 10 should be set to indicate that
the branch is expected to be taken. The lower two bits must be
zero. */
HOWTO (R_PPC64_REL14_BRTAKEN, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
TRUE, /* pc_relative */
0, /* bitpos */
complain_overflow_signed, /* complain_on_overflow */
ppc64_elf_brtaken_reloc, /* special_function */
"R_PPC64_REL14_BRTAKEN", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0x0000fffc, /* dst_mask */
TRUE), /* pcrel_offset */
/* A relative 16 bit branch. Bit 10 should be set to indicate that
the branch is not expected to be taken. The lower two bits must
be zero. */
HOWTO (R_PPC64_REL14_BRNTAKEN, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
TRUE, /* pc_relative */
0, /* bitpos */
complain_overflow_signed, /* complain_on_overflow */
ppc64_elf_brtaken_reloc, /* special_function */
"R_PPC64_REL14_BRNTAKEN",/* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0x0000fffc, /* dst_mask */
TRUE), /* pcrel_offset */
/* Like R_PPC64_ADDR16, but referring to the GOT table entry for the
symbol. */
HOWTO (R_PPC64_GOT16, /* type */
0, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_signed, /* complain_on_overflow */
ppc64_elf_unhandled_reloc, /* special_function */
"R_PPC64_GOT16", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* Like R_PPC64_ADDR16_LO, but referring to the GOT table entry for
the symbol. */
HOWTO (R_PPC64_GOT16_LO, /* type */
0, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
ppc64_elf_unhandled_reloc, /* special_function */
"R_PPC64_GOT16_LO", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* Like R_PPC64_ADDR16_HI, but referring to the GOT table entry for
the symbol. */
HOWTO (R_PPC64_GOT16_HI, /* type */
16, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont,/* complain_on_overflow */
ppc64_elf_unhandled_reloc, /* special_function */
"R_PPC64_GOT16_HI", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* Like R_PPC64_ADDR16_HA, but referring to the GOT table entry for
the symbol. */
HOWTO (R_PPC64_GOT16_HA, /* type */
16, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont,/* complain_on_overflow */
ppc64_elf_unhandled_reloc, /* special_function */
"R_PPC64_GOT16_HA", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* This is used only by the dynamic linker. The symbol should exist
both in the object being run and in some shared library. The
dynamic linker copies the data addressed by the symbol from the
shared library into the object, because the object being
run has to have the data at some particular address. */
HOWTO (R_PPC64_COPY, /* type */
0, /* rightshift */
0, /* this one is variable size */
0, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
ppc64_elf_unhandled_reloc, /* special_function */
"R_PPC64_COPY", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0, /* dst_mask */
FALSE), /* pcrel_offset */
/* Like R_PPC64_ADDR64, but used when setting global offset table
entries. */
HOWTO (R_PPC64_GLOB_DAT, /* type */
0, /* rightshift */
4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
64, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
ppc64_elf_unhandled_reloc, /* special_function */
"R_PPC64_GLOB_DAT", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
ONES (64), /* dst_mask */
FALSE), /* pcrel_offset */
/* Created by the link editor. Marks a procedure linkage table
entry for a symbol. */
HOWTO (R_PPC64_JMP_SLOT, /* type */
0, /* rightshift */
0, /* size (0 = byte, 1 = short, 2 = long) */
0, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
ppc64_elf_unhandled_reloc, /* special_function */
"R_PPC64_JMP_SLOT", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0, /* dst_mask */
FALSE), /* pcrel_offset */
/* Used only by the dynamic linker. When the object is run, this
doubleword64 is set to the load address of the object, plus the
addend. */
HOWTO (R_PPC64_RELATIVE, /* type */
0, /* rightshift */
4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
64, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_PPC64_RELATIVE", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
ONES (64), /* dst_mask */
FALSE), /* pcrel_offset */
/* Like R_PPC64_ADDR32, but may be unaligned. */
HOWTO (R_PPC64_UADDR32, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
32, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_PPC64_UADDR32", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0xffffffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* Like R_PPC64_ADDR16, but may be unaligned. */
HOWTO (R_PPC64_UADDR16, /* type */
0, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_PPC64_UADDR16", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* 32-bit PC relative. */
HOWTO (R_PPC64_REL32, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
32, /* bitsize */
TRUE, /* pc_relative */
0, /* bitpos */
/* FIXME: Verify. Was complain_overflow_bitfield. */
complain_overflow_signed, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_PPC64_REL32", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0xffffffff, /* dst_mask */
TRUE), /* pcrel_offset */
/* 32-bit relocation to the symbol's procedure linkage table. */
HOWTO (R_PPC64_PLT32, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
32, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
ppc64_elf_unhandled_reloc, /* special_function */
"R_PPC64_PLT32", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0xffffffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* 32-bit PC relative relocation to the symbol's procedure linkage table.
FIXME: R_PPC64_PLTREL32 not supported. */
HOWTO (R_PPC64_PLTREL32, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
32, /* bitsize */
TRUE, /* pc_relative */
0, /* bitpos */
complain_overflow_signed, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_PPC64_PLTREL32", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0xffffffff, /* dst_mask */
TRUE), /* pcrel_offset */
/* Like R_PPC64_ADDR16_LO, but referring to the PLT table entry for
the symbol. */
HOWTO (R_PPC64_PLT16_LO, /* type */
0, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
ppc64_elf_unhandled_reloc, /* special_function */
"R_PPC64_PLT16_LO", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* Like R_PPC64_ADDR16_HI, but referring to the PLT table entry for
the symbol. */
HOWTO (R_PPC64_PLT16_HI, /* type */
16, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
ppc64_elf_unhandled_reloc, /* special_function */
"R_PPC64_PLT16_HI", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* Like R_PPC64_ADDR16_HA, but referring to the PLT table entry for
the symbol. */
HOWTO (R_PPC64_PLT16_HA, /* type */
16, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
ppc64_elf_unhandled_reloc, /* special_function */
"R_PPC64_PLT16_HA", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* 16-bit section relative relocation. */
HOWTO (R_PPC64_SECTOFF, /* type */
0, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
ppc64_elf_sectoff_reloc, /* special_function */
"R_PPC64_SECTOFF", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* Like R_PPC64_SECTOFF, but no overflow warning. */
HOWTO (R_PPC64_SECTOFF_LO, /* type */
0, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
ppc64_elf_sectoff_reloc, /* special_function */
"R_PPC64_SECTOFF_LO", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* 16-bit upper half section relative relocation. */
HOWTO (R_PPC64_SECTOFF_HI, /* type */
16, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
ppc64_elf_sectoff_reloc, /* special_function */
"R_PPC64_SECTOFF_HI", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* 16-bit upper half adjusted section relative relocation. */
HOWTO (R_PPC64_SECTOFF_HA, /* type */
16, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
ppc64_elf_sectoff_ha_reloc, /* special_function */
"R_PPC64_SECTOFF_HA", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* Like R_PPC64_REL24 without touching the two least significant
bits. Should have been named R_PPC64_REL30! */
HOWTO (R_PPC64_ADDR30, /* type */
2, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
30, /* bitsize */
TRUE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_PPC64_ADDR30", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0xfffffffc, /* dst_mask */
TRUE), /* pcrel_offset */
/* Relocs in the 64-bit PowerPC ELF ABI, not in the 32-bit ABI. */
/* A standard 64-bit relocation. */
HOWTO (R_PPC64_ADDR64, /* type */
0, /* rightshift */
4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
64, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_PPC64_ADDR64", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
ONES (64), /* dst_mask */
FALSE), /* pcrel_offset */
/* The bits 32-47 of an address. */
HOWTO (R_PPC64_ADDR16_HIGHER, /* type */
32, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_PPC64_ADDR16_HIGHER", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* The bits 32-47 of an address, plus 1 if the contents of the low
16 bits, treated as a signed number, is negative. */
HOWTO (R_PPC64_ADDR16_HIGHERA, /* type */
32, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
ppc64_elf_ha_reloc, /* special_function */
"R_PPC64_ADDR16_HIGHERA", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* The bits 48-63 of an address. */
HOWTO (R_PPC64_ADDR16_HIGHEST,/* type */
48, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_PPC64_ADDR16_HIGHEST", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* The bits 48-63 of an address, plus 1 if the contents of the low
16 bits, treated as a signed number, is negative. */
HOWTO (R_PPC64_ADDR16_HIGHESTA,/* type */
48, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
ppc64_elf_ha_reloc, /* special_function */
"R_PPC64_ADDR16_HIGHESTA", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* Like ADDR64, but may be unaligned. */
HOWTO (R_PPC64_UADDR64, /* type */
0, /* rightshift */
4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
64, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_PPC64_UADDR64", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
ONES (64), /* dst_mask */
FALSE), /* pcrel_offset */
/* 64-bit relative relocation. */
HOWTO (R_PPC64_REL64, /* type */
0, /* rightshift */
4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
64, /* bitsize */
TRUE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_PPC64_REL64", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
ONES (64), /* dst_mask */
TRUE), /* pcrel_offset */
/* 64-bit relocation to the symbol's procedure linkage table. */
HOWTO (R_PPC64_PLT64, /* type */
0, /* rightshift */
4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
64, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
ppc64_elf_unhandled_reloc, /* special_function */
"R_PPC64_PLT64", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
ONES (64), /* dst_mask */
FALSE), /* pcrel_offset */
/* 64-bit PC relative relocation to the symbol's procedure linkage
table. */
/* FIXME: R_PPC64_PLTREL64 not supported. */
HOWTO (R_PPC64_PLTREL64, /* type */
0, /* rightshift */
4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
64, /* bitsize */
TRUE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
ppc64_elf_unhandled_reloc, /* special_function */
"R_PPC64_PLTREL64", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
ONES (64), /* dst_mask */
TRUE), /* pcrel_offset */
/* 16 bit TOC-relative relocation. */
/* R_PPC64_TOC16 47 half16* S + A - .TOC. */
HOWTO (R_PPC64_TOC16, /* type */
0, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_signed, /* complain_on_overflow */
ppc64_elf_toc_reloc, /* special_function */
"R_PPC64_TOC16", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* 16 bit TOC-relative relocation without overflow. */
/* R_PPC64_TOC16_LO 48 half16 #lo (S + A - .TOC.) */
HOWTO (R_PPC64_TOC16_LO, /* type */
0, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
ppc64_elf_toc_reloc, /* special_function */
"R_PPC64_TOC16_LO", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* 16 bit TOC-relative relocation, high 16 bits. */
/* R_PPC64_TOC16_HI 49 half16 #hi (S + A - .TOC.) */
HOWTO (R_PPC64_TOC16_HI, /* type */
16, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
ppc64_elf_toc_reloc, /* special_function */
"R_PPC64_TOC16_HI", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* 16 bit TOC-relative relocation, high 16 bits, plus 1 if the
contents of the low 16 bits, treated as a signed number, is
negative. */
/* R_PPC64_TOC16_HA 50 half16 #ha (S + A - .TOC.) */
HOWTO (R_PPC64_TOC16_HA, /* type */
16, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
ppc64_elf_toc_ha_reloc, /* special_function */
"R_PPC64_TOC16_HA", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* 64-bit relocation; insert value of TOC base (.TOC.). */
/* R_PPC64_TOC 51 doubleword64 .TOC. */
HOWTO (R_PPC64_TOC, /* type */
0, /* rightshift */
4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
64, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
ppc64_elf_toc64_reloc, /* special_function */
"R_PPC64_TOC", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
ONES (64), /* dst_mask */
FALSE), /* pcrel_offset */
/* Like R_PPC64_GOT16, but also informs the link editor that the
value to relocate may (!) refer to a PLT entry which the link
editor (a) may replace with the symbol value. If the link editor
is unable to fully resolve the symbol, it may (b) create a PLT
entry and store the address to the new PLT entry in the GOT.
This permits lazy resolution of function symbols at run time.
The link editor may also skip all of this and just (c) emit a
R_PPC64_GLOB_DAT to tie the symbol to the GOT entry. */
/* FIXME: R_PPC64_PLTGOT16 not implemented. */
HOWTO (R_PPC64_PLTGOT16, /* type */
0, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_signed, /* complain_on_overflow */
ppc64_elf_unhandled_reloc, /* special_function */
"R_PPC64_PLTGOT16", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* Like R_PPC64_PLTGOT16, but without overflow. */
/* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
HOWTO (R_PPC64_PLTGOT16_LO, /* type */
0, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
ppc64_elf_unhandled_reloc, /* special_function */
"R_PPC64_PLTGOT16_LO", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address. */
/* FIXME: R_PPC64_PLTGOT16_HI not implemented. */
HOWTO (R_PPC64_PLTGOT16_HI, /* type */
16, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
ppc64_elf_unhandled_reloc, /* special_function */
"R_PPC64_PLTGOT16_HI", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address, plus
1 if the contents of the low 16 bits, treated as a signed number,
is negative. */
/* FIXME: R_PPC64_PLTGOT16_HA not implemented. */
HOWTO (R_PPC64_PLTGOT16_HA, /* type */
16, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont,/* complain_on_overflow */
ppc64_elf_unhandled_reloc, /* special_function */
"R_PPC64_PLTGOT16_HA", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* Like R_PPC64_ADDR16, but for instructions with a DS field. */
HOWTO (R_PPC64_ADDR16_DS, /* type */
0, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_PPC64_ADDR16_DS", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0xfffc, /* dst_mask */
FALSE), /* pcrel_offset */
/* Like R_PPC64_ADDR16_LO, but for instructions with a DS field. */
HOWTO (R_PPC64_ADDR16_LO_DS, /* type */
0, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont,/* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_PPC64_ADDR16_LO_DS",/* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0xfffc, /* dst_mask */
FALSE), /* pcrel_offset */
/* Like R_PPC64_GOT16, but for instructions with a DS field. */
HOWTO (R_PPC64_GOT16_DS, /* type */
0, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_signed, /* complain_on_overflow */
ppc64_elf_unhandled_reloc, /* special_function */
"R_PPC64_GOT16_DS", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0xfffc, /* dst_mask */
FALSE), /* pcrel_offset */
/* Like R_PPC64_GOT16_LO, but for instructions with a DS field. */
HOWTO (R_PPC64_GOT16_LO_DS, /* type */
0, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
ppc64_elf_unhandled_reloc, /* special_function */
"R_PPC64_GOT16_LO_DS", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0xfffc, /* dst_mask */
FALSE), /* pcrel_offset */
/* Like R_PPC64_PLT16_LO, but for instructions with a DS field. */
HOWTO (R_PPC64_PLT16_LO_DS, /* type */
0, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
ppc64_elf_unhandled_reloc, /* special_function */
"R_PPC64_PLT16_LO_DS", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0xfffc, /* dst_mask */
FALSE), /* pcrel_offset */
/* Like R_PPC64_SECTOFF, but for instructions with a DS field. */
HOWTO (R_PPC64_SECTOFF_DS, /* type */
0, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
ppc64_elf_sectoff_reloc, /* special_function */
"R_PPC64_SECTOFF_DS", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0xfffc, /* dst_mask */
FALSE), /* pcrel_offset */
/* Like R_PPC64_SECTOFF_LO, but for instructions with a DS field. */
HOWTO (R_PPC64_SECTOFF_LO_DS, /* type */
0, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
ppc64_elf_sectoff_reloc, /* special_function */
"R_PPC64_SECTOFF_LO_DS",/* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0xfffc, /* dst_mask */
FALSE), /* pcrel_offset */
/* Like R_PPC64_TOC16, but for instructions with a DS field. */
HOWTO (R_PPC64_TOC16_DS, /* type */
0, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_signed, /* complain_on_overflow */
ppc64_elf_toc_reloc, /* special_function */
"R_PPC64_TOC16_DS", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0xfffc, /* dst_mask */
FALSE), /* pcrel_offset */
/* Like R_PPC64_TOC16_LO, but for instructions with a DS field. */
HOWTO (R_PPC64_TOC16_LO_DS, /* type */
0, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
ppc64_elf_toc_reloc, /* special_function */
"R_PPC64_TOC16_LO_DS", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0xfffc, /* dst_mask */
FALSE), /* pcrel_offset */
/* Like R_PPC64_PLTGOT16, but for instructions with a DS field. */
/* FIXME: R_PPC64_PLTGOT16_DS not implemented. */
HOWTO (R_PPC64_PLTGOT16_DS, /* type */
0, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_signed, /* complain_on_overflow */
ppc64_elf_unhandled_reloc, /* special_function */
"R_PPC64_PLTGOT16_DS", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0xfffc, /* dst_mask */
FALSE), /* pcrel_offset */
/* Like R_PPC64_PLTGOT16_LO, but for instructions with a DS field. */
/* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
HOWTO (R_PPC64_PLTGOT16_LO_DS,/* type */
0, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
ppc64_elf_unhandled_reloc, /* special_function */
"R_PPC64_PLTGOT16_LO_DS",/* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0xfffc, /* dst_mask */
FALSE), /* pcrel_offset */
/* GNU extension to record C++ vtable hierarchy. */
HOWTO (R_PPC64_GNU_VTINHERIT, /* type */
0, /* rightshift */
0, /* size (0 = byte, 1 = short, 2 = long) */
0, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
NULL, /* special_function */
"R_PPC64_GNU_VTINHERIT", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0, /* dst_mask */
FALSE), /* pcrel_offset */
/* GNU extension to record C++ vtable member usage. */
HOWTO (R_PPC64_GNU_VTENTRY, /* type */
0, /* rightshift */
0, /* size (0 = byte, 1 = short, 2 = long) */
0, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
NULL, /* special_function */
"R_PPC64_GNU_VTENTRY", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0, /* dst_mask */
FALSE), /* pcrel_offset */
};
/* Initialize the ppc64_elf_howto_table, so that linear accesses can
be done. */
static void
ppc_howto_init ()
{
unsigned int i, type;
for (i = 0;
i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
i++)
{
type = ppc64_elf_howto_raw[i].type;
BFD_ASSERT (type < (sizeof (ppc64_elf_howto_table)
/ sizeof (ppc64_elf_howto_table[0])));
ppc64_elf_howto_table[type] = &ppc64_elf_howto_raw[i];
}
}
static reloc_howto_type *
ppc64_elf_reloc_type_lookup (abfd, code)
bfd *abfd ATTRIBUTE_UNUSED;
bfd_reloc_code_real_type code;
{
enum elf_ppc_reloc_type ppc_reloc = R_PPC_NONE;
if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
/* Initialize howto table if needed. */
ppc_howto_init ();
switch ((int) code)
{
default:
return (reloc_howto_type *) NULL;
case BFD_RELOC_NONE: ppc_reloc = R_PPC64_NONE;
break;
case BFD_RELOC_32: ppc_reloc = R_PPC64_ADDR32;
break;
case BFD_RELOC_PPC_BA26: ppc_reloc = R_PPC64_ADDR24;
break;
case BFD_RELOC_16: ppc_reloc = R_PPC64_ADDR16;
break;
case BFD_RELOC_LO16: ppc_reloc = R_PPC64_ADDR16_LO;
break;
case BFD_RELOC_HI16: ppc_reloc = R_PPC64_ADDR16_HI;
break;
case BFD_RELOC_HI16_S: ppc_reloc = R_PPC64_ADDR16_HA;
break;
case BFD_RELOC_PPC_BA16: ppc_reloc = R_PPC64_ADDR14;
break;
case BFD_RELOC_PPC_BA16_BRTAKEN: ppc_reloc = R_PPC64_ADDR14_BRTAKEN;
break;
case BFD_RELOC_PPC_BA16_BRNTAKEN: ppc_reloc = R_PPC64_ADDR14_BRNTAKEN;
break;
case BFD_RELOC_PPC_B26: ppc_reloc = R_PPC64_REL24;
break;
case BFD_RELOC_PPC_B16: ppc_reloc = R_PPC64_REL14;
break;
case BFD_RELOC_PPC_B16_BRTAKEN: ppc_reloc = R_PPC64_REL14_BRTAKEN;
break;
case BFD_RELOC_PPC_B16_BRNTAKEN: ppc_reloc = R_PPC64_REL14_BRNTAKEN;
break;
case BFD_RELOC_16_GOTOFF: ppc_reloc = R_PPC64_GOT16;
break;
case BFD_RELOC_LO16_GOTOFF: ppc_reloc = R_PPC64_GOT16_LO;
break;
case BFD_RELOC_HI16_GOTOFF: ppc_reloc = R_PPC64_GOT16_HI;
break;
case BFD_RELOC_HI16_S_GOTOFF: ppc_reloc = R_PPC64_GOT16_HA;
break;
case BFD_RELOC_PPC_COPY: ppc_reloc = R_PPC64_COPY;
break;
case BFD_RELOC_PPC_GLOB_DAT: ppc_reloc = R_PPC64_GLOB_DAT;
break;
case BFD_RELOC_32_PCREL: ppc_reloc = R_PPC64_REL32;
break;
case BFD_RELOC_32_PLTOFF: ppc_reloc = R_PPC64_PLT32;
break;
case BFD_RELOC_32_PLT_PCREL: ppc_reloc = R_PPC64_PLTREL32;
break;
case BFD_RELOC_LO16_PLTOFF: ppc_reloc = R_PPC64_PLT16_LO;
break;
case BFD_RELOC_HI16_PLTOFF: ppc_reloc = R_PPC64_PLT16_HI;
break;
case BFD_RELOC_HI16_S_PLTOFF: ppc_reloc = R_PPC64_PLT16_HA;
break;
case BFD_RELOC_16_BASEREL: ppc_reloc = R_PPC64_SECTOFF;
break;
case BFD_RELOC_LO16_BASEREL: ppc_reloc = R_PPC64_SECTOFF_LO;
break;
case BFD_RELOC_HI16_BASEREL: ppc_reloc = R_PPC64_SECTOFF_HI;
break;
case BFD_RELOC_HI16_S_BASEREL: ppc_reloc = R_PPC64_SECTOFF_HA;
break;
case BFD_RELOC_CTOR: ppc_reloc = R_PPC64_ADDR64;
break;
case BFD_RELOC_64: ppc_reloc = R_PPC64_ADDR64;
break;
case BFD_RELOC_PPC64_HIGHER: ppc_reloc = R_PPC64_ADDR16_HIGHER;
break;
case BFD_RELOC_PPC64_HIGHER_S: ppc_reloc = R_PPC64_ADDR16_HIGHERA;
break;
case BFD_RELOC_PPC64_HIGHEST: ppc_reloc = R_PPC64_ADDR16_HIGHEST;
break;
case BFD_RELOC_PPC64_HIGHEST_S: ppc_reloc = R_PPC64_ADDR16_HIGHESTA;
break;
case BFD_RELOC_64_PCREL: ppc_reloc = R_PPC64_REL64;
break;
case BFD_RELOC_64_PLTOFF: ppc_reloc = R_PPC64_PLT64;
break;
case BFD_RELOC_64_PLT_PCREL: ppc_reloc = R_PPC64_PLTREL64;
break;
case BFD_RELOC_PPC_TOC16: ppc_reloc = R_PPC64_TOC16;
break;
case BFD_RELOC_PPC64_TOC16_LO: ppc_reloc = R_PPC64_TOC16_LO;
break;
case BFD_RELOC_PPC64_TOC16_HI: ppc_reloc = R_PPC64_TOC16_HI;
break;
case BFD_RELOC_PPC64_TOC16_HA: ppc_reloc = R_PPC64_TOC16_HA;
break;
case BFD_RELOC_PPC64_TOC: ppc_reloc = R_PPC64_TOC;
break;
case BFD_RELOC_PPC64_PLTGOT16: ppc_reloc = R_PPC64_PLTGOT16;
break;
case BFD_RELOC_PPC64_PLTGOT16_LO: ppc_reloc = R_PPC64_PLTGOT16_LO;
break;
case BFD_RELOC_PPC64_PLTGOT16_HI: ppc_reloc = R_PPC64_PLTGOT16_HI;
break;
case BFD_RELOC_PPC64_PLTGOT16_HA: ppc_reloc = R_PPC64_PLTGOT16_HA;
break;
case BFD_RELOC_PPC64_ADDR16_DS: ppc_reloc = R_PPC64_ADDR16_DS;
break;
case BFD_RELOC_PPC64_ADDR16_LO_DS: ppc_reloc = R_PPC64_ADDR16_LO_DS;
break;
case BFD_RELOC_PPC64_GOT16_DS: ppc_reloc = R_PPC64_GOT16_DS;
break;
case BFD_RELOC_PPC64_GOT16_LO_DS: ppc_reloc = R_PPC64_GOT16_LO_DS;
break;
case BFD_RELOC_PPC64_PLT16_LO_DS: ppc_reloc = R_PPC64_PLT16_LO_DS;
break;
case BFD_RELOC_PPC64_SECTOFF_DS: ppc_reloc = R_PPC64_SECTOFF_DS;
break;
case BFD_RELOC_PPC64_SECTOFF_LO_DS: ppc_reloc = R_PPC64_SECTOFF_LO_DS;
break;
case BFD_RELOC_PPC64_TOC16_DS: ppc_reloc = R_PPC64_TOC16_DS;
break;
case BFD_RELOC_PPC64_TOC16_LO_DS: ppc_reloc = R_PPC64_TOC16_LO_DS;
break;
case BFD_RELOC_PPC64_PLTGOT16_DS: ppc_reloc = R_PPC64_PLTGOT16_DS;
break;
case BFD_RELOC_PPC64_PLTGOT16_LO_DS: ppc_reloc = R_PPC64_PLTGOT16_LO_DS;
break;
case BFD_RELOC_VTABLE_INHERIT: ppc_reloc = R_PPC64_GNU_VTINHERIT;
break;
case BFD_RELOC_VTABLE_ENTRY: ppc_reloc = R_PPC64_GNU_VTENTRY;
break;
}
return ppc64_elf_howto_table[(int) ppc_reloc];
};
/* Set the howto pointer for a PowerPC ELF reloc. */
static void
ppc64_elf_info_to_howto (abfd, cache_ptr, dst)
bfd *abfd ATTRIBUTE_UNUSED;
arelent *cache_ptr;
Elf_Internal_Rela *dst;
{
unsigned int type;
/* Initialize howto table if needed. */
if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
ppc_howto_init ();
type = ELF64_R_TYPE (dst->r_info);
BFD_ASSERT (type < (sizeof (ppc64_elf_howto_table)
/ sizeof (ppc64_elf_howto_table[0])));
cache_ptr->howto = ppc64_elf_howto_table[type];
}
/* Handle the R_PPC_ADDR16_HA and similar relocs. */
static bfd_reloc_status_type
ppc64_elf_ha_reloc (abfd, reloc_entry, symbol, data,
input_section, output_bfd, error_message)
bfd *abfd;
arelent *reloc_entry;
asymbol *symbol;
PTR data;
asection *input_section;
bfd *output_bfd;
char **error_message;
{
/* If this is a relocatable link (output_bfd test tells us), just
call the generic function. Any adjustment will be done at final
link time. */
if (output_bfd != NULL)
return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
input_section, output_bfd, error_message);
/* Adjust the addend for sign extension of the low 16 bits.
We won't actually be using the low 16 bits, so trashing them
doesn't matter. */
reloc_entry->addend += 0x8000;
return bfd_reloc_continue;
}
static bfd_reloc_status_type
ppc64_elf_brtaken_reloc (abfd, reloc_entry, symbol, data,
input_section, output_bfd, error_message)
bfd *abfd;
arelent *reloc_entry;
asymbol *symbol;
PTR data;
asection *input_section;
bfd *output_bfd;
char **error_message;
{
long insn;
enum elf_ppc_reloc_type r_type;
bfd_size_type octets;
/* Disabled until we sort out how ld should choose 'y' vs 'at'. */
bfd_boolean is_power4 = FALSE;
/* If this is a relocatable link (output_bfd test tells us), just
call the generic function. Any adjustment will be done at final
link time. */
if (output_bfd != NULL)
return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
input_section, output_bfd, error_message);
octets = reloc_entry->address * bfd_octets_per_byte (abfd);
insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
insn &= ~(0x01 << 21);
r_type = (enum elf_ppc_reloc_type) reloc_entry->howto->type;
if (r_type == R_PPC64_ADDR14_BRTAKEN
|| r_type == R_PPC64_REL14_BRTAKEN)
insn |= 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
if (is_power4)
{
/* Set 'a' bit. This is 0b00010 in BO field for branch
on CR(BI) insns (BO == 001at or 011at), and 0b01000
for branch on CTR insns (BO == 1a00t or 1a01t). */
if ((insn & (0x14 << 21)) == (0x04 << 21))
insn |= 0x02 << 21;
else if ((insn & (0x14 << 21)) == (0x10 << 21))
insn |= 0x08 << 21;
else
return bfd_reloc_continue;
}
else
{
bfd_vma target = 0;
bfd_vma from;
if (!bfd_is_com_section (symbol->section))
target = symbol->value;
target += symbol->section->output_section->vma;
target += symbol->section->output_offset;
target += reloc_entry->addend;
from = (reloc_entry->address
+ input_section->output_offset
+ input_section->output_section->vma);
/* Invert 'y' bit if not the default. */
if ((bfd_signed_vma) (target - from) < 0)
insn ^= 0x01 << 21;
}
bfd_put_32 (abfd, (bfd_vma) insn, (bfd_byte *) data + octets);
return bfd_reloc_continue;
}
static bfd_reloc_status_type
ppc64_elf_sectoff_reloc (abfd, reloc_entry, symbol, data,
input_section, output_bfd, error_message)
bfd *abfd;
arelent *reloc_entry;
asymbol *symbol;
PTR data;
asection *input_section;
bfd *output_bfd;
char **error_message;
{
/* If this is a relocatable link (output_bfd test tells us), just
call the generic function. Any adjustment will be done at final
link time. */
if (output_bfd != NULL)
return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
input_section, output_bfd, error_message);
/* Subtract the symbol section base address. */
reloc_entry->addend -= symbol->section->output_section->vma;
return bfd_reloc_continue;
}
static bfd_reloc_status_type
ppc64_elf_sectoff_ha_reloc (abfd, reloc_entry, symbol, data,
input_section, output_bfd, error_message)
bfd *abfd;
arelent *reloc_entry;
asymbol *symbol;
PTR data;
asection *input_section;
bfd *output_bfd;
char **error_message;
{
/* If this is a relocatable link (output_bfd test tells us), just
call the generic function. Any adjustment will be done at final
link time. */
if (output_bfd != NULL)
return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
input_section, output_bfd, error_message);
/* Subtract the symbol section base address. */
reloc_entry->addend -= symbol->section->output_section->vma;
/* Adjust the addend for sign extension of the low 16 bits. */
reloc_entry->addend += 0x8000;
return bfd_reloc_continue;
}
static bfd_reloc_status_type
ppc64_elf_toc_reloc (abfd, reloc_entry, symbol, data,
input_section, output_bfd, error_message)
bfd *abfd;
arelent *reloc_entry;
asymbol *symbol;
PTR data;
asection *input_section;
bfd *output_bfd;
char **error_message;
{
bfd_vma TOCstart;
/* If this is a relocatable link (output_bfd test tells us), just
call the generic function. Any adjustment will be done at final
link time. */
if (output_bfd != NULL)
return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
input_section, output_bfd, error_message);
TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
if (TOCstart == 0)
TOCstart = ppc64_elf_toc (input_section->output_section->owner);
/* Subtract the TOC base address. */
reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
return bfd_reloc_continue;
}
static bfd_reloc_status_type
ppc64_elf_toc_ha_reloc (abfd, reloc_entry, symbol, data,
input_section, output_bfd, error_message)
bfd *abfd;
arelent *reloc_entry;
asymbol *symbol;
PTR data;
asection *input_section;
bfd *output_bfd;
char **error_message;
{
bfd_vma TOCstart;
/* If this is a relocatable link (output_bfd test tells us), just
call the generic function. Any adjustment will be done at final
link time. */
if (output_bfd != NULL)
return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
input_section, output_bfd, error_message);
TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
if (TOCstart == 0)
TOCstart = ppc64_elf_toc (input_section->output_section->owner);
/* Subtract the TOC base address. */
reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
/* Adjust the addend for sign extension of the low 16 bits. */
reloc_entry->addend += 0x8000;
return bfd_reloc_continue;
}
static bfd_reloc_status_type
ppc64_elf_toc64_reloc (abfd, reloc_entry, symbol, data,
input_section, output_bfd, error_message)
bfd *abfd;
arelent *reloc_entry;
asymbol *symbol;
PTR data;
asection *input_section;
bfd *output_bfd;
char **error_message;
{
bfd_vma TOCstart;
bfd_size_type octets;
/* If this is a relocatable link (output_bfd test tells us), just
call the generic function. Any adjustment will be done at final
link time. */
if (output_bfd != NULL)
return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
input_section, output_bfd, error_message);
TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
if (TOCstart == 0)
TOCstart = ppc64_elf_toc (input_section->output_section->owner);
octets = reloc_entry->address * bfd_octets_per_byte (abfd);
bfd_put_64 (abfd, TOCstart + TOC_BASE_OFF, (bfd_byte *) data + octets);
return bfd_reloc_ok;
}
static bfd_reloc_status_type
ppc64_elf_unhandled_reloc (abfd, reloc_entry, symbol, data,
input_section, output_bfd, error_message)
bfd *abfd;
arelent *reloc_entry;
asymbol *symbol;
PTR data;
asection *input_section;
bfd *output_bfd;
char **error_message;
{
/* If this is a relocatable link (output_bfd test tells us), just
call the generic function. Any adjustment will be done at final
link time. */
if (output_bfd != NULL)
return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
input_section, output_bfd, error_message);
if (error_message != NULL)
{
static char buf[60];
sprintf (buf, "generic linker can't handle %s",
reloc_entry->howto->name);
*error_message = buf;
}
return bfd_reloc_dangerous;
}
/* Fix bad default arch selected for a 64 bit input bfd when the
default is 32 bit. */
static bfd_boolean
ppc64_elf_object_p (abfd)
bfd *abfd;
{
if (abfd->arch_info->the_default && abfd->arch_info->bits_per_word == 32)
{
Elf_Internal_Ehdr *i_ehdr = elf_elfheader (abfd);
if (i_ehdr->e_ident[EI_CLASS] == ELFCLASS64)
{
/* Relies on arch after 32 bit default being 64 bit default. */
abfd->arch_info = abfd->arch_info->next;
BFD_ASSERT (abfd->arch_info->bits_per_word == 64);
}
}
return TRUE;
}
/* Merge backend specific data from an object file to the output
object file when linking. */
static bfd_boolean
ppc64_elf_merge_private_bfd_data (ibfd, obfd)
bfd *ibfd;
bfd *obfd;
{
/* Check if we have the same endianess. */
if (ibfd->xvec->byteorder != obfd->xvec->byteorder
&& ibfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN
&& obfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN)
{
const char *msg;
if (bfd_big_endian (ibfd))
msg = _("%s: compiled for a big endian system and target is little endian");
else
msg = _("%s: compiled for a little endian system and target is big endian");
(*_bfd_error_handler) (msg, bfd_archive_filename (ibfd));
bfd_set_error (bfd_error_wrong_format);
return FALSE;
}
return TRUE;
}
/* The following functions are specific to the ELF linker, while
functions above are used generally. Those named ppc64_elf_* are
called by the main ELF linker code. They appear in this file more
or less in the order in which they are called. eg.
ppc64_elf_check_relocs is called early in the link process,
ppc64_elf_finish_dynamic_sections is one of the last functions
called.
PowerPC64-ELF uses a similar scheme to PowerPC64-XCOFF in that
functions have both a function code symbol and a function descriptor
symbol. A call to foo in a relocatable object file looks like:
. .text
. x:
. bl .foo
. nop
The function definition in another object file might be:
. .section .opd
. foo: .quad .foo
. .quad .TOC.@tocbase
. .quad 0
.
. .text
. .foo: blr
When the linker resolves the call during a static link, the branch
unsurprisingly just goes to .foo and the .opd information is unused.
If the function definition is in a shared library, things are a little
different: The call goes via a plt call stub, the opd information gets
copied to the plt, and the linker patches the nop.
. x:
. bl .foo_stub
. ld 2,40(1)
.
.
. .foo_stub:
. addis 12,2,Lfoo@toc@ha # in practice, the call stub
. addi 12,12,Lfoo@toc@l # is slightly optimised, but
. std 2,40(1) # this is the general idea
. ld 11,0(12)
. ld 2,8(12)
. mtctr 11
. ld 11,16(12)
. bctr
.
. .section .plt
. Lfoo: reloc (R_PPC64_JMP_SLOT, foo)
The "reloc ()" notation is supposed to indicate that the linker emits
an R_PPC64_JMP_SLOT reloc against foo. The dynamic linker does the opd
copying.
What are the difficulties here? Well, firstly, the relocations
examined by the linker in check_relocs are against the function code
sym .foo, while the dynamic relocation in the plt is emitted against
the function descriptor symbol, foo. Somewhere along the line, we need
to carefully copy dynamic link information from one symbol to the other.
Secondly, the generic part of the elf linker will make .foo a dynamic
symbol as is normal for most other backends. We need foo dynamic
instead, at least for an application final link. However, when
creating a shared library containing foo, we need to have both symbols
dynamic so that references to .foo are satisfied during the early
stages of linking. Otherwise the linker might decide to pull in a
definition from some other object, eg. a static library. */
/* The linker needs to keep track of the number of relocs that it
decides to copy as dynamic relocs in check_relocs for each symbol.
This is so that it can later discard them if they are found to be
unnecessary. We store the information in a field extending the
regular ELF linker hash table. */
struct ppc_dyn_relocs
{
struct ppc_dyn_relocs *next;
/* The input section of the reloc. */
asection *sec;
/* Total number of relocs copied for the input section. */
bfd_size_type count;
/* Number of pc-relative relocs copied for the input section. */
bfd_size_type pc_count;
};
/* Of those relocs that might be copied as dynamic relocs, this macro
selects between relative and absolute types. */
#define IS_ABSOLUTE_RELOC(RTYPE) \
((RTYPE) != R_PPC64_REL32 \
&& (RTYPE) != R_PPC64_REL64 \
&& (RTYPE) != R_PPC64_ADDR30)
/* Section name for stubs is the associated section name plus this
string. */
#define STUB_SUFFIX ".stub"
/* Linker stubs.
ppc_stub_long_branch:
Used when a 14 bit branch (or even a 24 bit branch) can't reach its
destination, but a 24 bit branch in a stub section will reach.
. b dest
ppc_stub_plt_branch:
Similar to the above, but a 24 bit branch in the stub section won't
reach its destination.
. addis %r12,%r2,xxx@toc@ha
. ld %r11,xxx@toc@l(%r12)
. mtctr %r11
. bctr
ppc_stub_plt_call:
Used to call a function in a shared library.
. addis %r12,%r2,xxx@toc@ha
. std %r2,40(%r1)
. ld %r11,xxx+0@toc@l(%r12)
. ld %r2,xxx+8@toc@l(%r12)
. mtctr %r11
. ld %r11,xxx+16@toc@l(%r12)
. bctr
*/
enum ppc_stub_type {
ppc_stub_none,
ppc_stub_long_branch,
ppc_stub_plt_branch,
ppc_stub_plt_call
};
struct ppc_stub_hash_entry {
/* Base hash table entry structure. */
struct bfd_hash_entry root;
/* The stub section. */
asection *stub_sec;
/* Offset within stub_sec of the beginning of this stub. */
bfd_vma stub_offset;
/* Given the symbol's value and its section we can determine its final
value when building the stubs (so the stub knows where to jump. */
bfd_vma target_value;
asection *target_section;
enum ppc_stub_type stub_type;
/* The symbol table entry, if any, that this was derived from. */
struct ppc_link_hash_entry *h;
/* Where this stub is being called from, or, in the case of combined
stub sections, the first input section in the group. */
asection *id_sec;
};
struct ppc_branch_hash_entry {
/* Base hash table entry structure. */
struct bfd_hash_entry root;
/* Offset within .branch_lt. */
unsigned int offset;
/* Generation marker. */
unsigned int iter;
};
struct ppc_link_hash_entry
{
struct elf_link_hash_entry elf;
/* A pointer to the most recently used stub hash entry against this
symbol. */
struct ppc_stub_hash_entry *stub_cache;
/* Track dynamic relocs copied for this symbol. */
struct ppc_dyn_relocs *dyn_relocs;
/* Link between function code and descriptor symbols. */
struct elf_link_hash_entry *oh;
/* Flag function code and descriptor symbols. */
unsigned int is_func:1;
unsigned int is_func_descriptor:1;
unsigned int is_entry:1;
};
/* ppc64 ELF linker hash table. */
struct ppc_link_hash_table
{
struct elf_link_hash_table elf;
/* The stub hash table. */
struct bfd_hash_table stub_hash_table;
/* Another hash table for plt_branch stubs. */
struct bfd_hash_table branch_hash_table;
/* Linker stub bfd. */
bfd *stub_bfd;
/* Linker call-backs. */
asection * (*add_stub_section) PARAMS ((const char *, asection *));
void (*layout_sections_again) PARAMS ((void));
/* Array to keep track of which stub sections have been created, and
information on stub grouping. */
struct map_stub {
/* This is the section to which stubs in the group will be attached. */
asection *link_sec;
/* The stub section. */
asection *stub_sec;
} *stub_group;
/* Assorted information used by ppc64_elf_size_stubs. */
int top_index;
asection **input_list;
/* Short-cuts to get to dynamic linker sections. */
asection *sgot;
asection *srelgot;
asection *splt;
asection *srelplt;
asection *sdynbss;
asection *srelbss;
asection *sglink;
asection *sfpr;
asection *sbrlt;
asection *srelbrlt;
/* Set on error. */
unsigned int stub_error;
/* Flag set when small branches are detected. Used to
select suitable defaults for the stub group size. */
unsigned int has_14bit_branch;
/* Set if we detect a reference undefined weak symbol. */
unsigned int have_undefweak;
/* Incremented every time we size stubs. */
unsigned int stub_iteration;
/* Small local sym to section mapping cache. */
struct sym_sec_cache sym_sec;
};
static struct bfd_hash_entry *stub_hash_newfunc
PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
static struct bfd_hash_entry *branch_hash_newfunc
PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
static struct bfd_hash_entry *link_hash_newfunc
PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
static struct bfd_link_hash_table *ppc64_elf_link_hash_table_create
PARAMS ((bfd *));
static void ppc64_elf_link_hash_table_free
PARAMS ((struct bfd_link_hash_table *));
static char *ppc_stub_name
PARAMS ((const asection *, const asection *,
const struct ppc_link_hash_entry *, const Elf_Internal_Rela *));
static struct ppc_stub_hash_entry *ppc_get_stub_entry
PARAMS ((const asection *, const asection *, struct elf_link_hash_entry *,
const Elf_Internal_Rela *, struct ppc_link_hash_table *));
static struct ppc_stub_hash_entry *ppc_add_stub
PARAMS ((const char *, asection *, struct ppc_link_hash_table *));
static bfd_boolean create_linkage_sections
PARAMS ((bfd *, struct bfd_link_info *));
static bfd_boolean create_got_section
PARAMS ((bfd *, struct bfd_link_info *));
static bfd_boolean ppc64_elf_create_dynamic_sections
PARAMS ((bfd *, struct bfd_link_info *));
static void ppc64_elf_copy_indirect_symbol
PARAMS ((struct elf_backend_data *, struct elf_link_hash_entry *,
struct elf_link_hash_entry *));
static bfd_boolean ppc64_elf_check_relocs
PARAMS ((bfd *, struct bfd_link_info *, asection *,
const Elf_Internal_Rela *));
static asection * ppc64_elf_gc_mark_hook
PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
struct elf_link_hash_entry *, Elf_Internal_Sym *));
static bfd_boolean ppc64_elf_gc_sweep_hook
PARAMS ((bfd *, struct bfd_link_info *, asection *,
const Elf_Internal_Rela *));
static bfd_boolean func_desc_adjust
PARAMS ((struct elf_link_hash_entry *, PTR));
static bfd_boolean ppc64_elf_func_desc_adjust
PARAMS ((bfd *, struct bfd_link_info *));
static bfd_boolean ppc64_elf_adjust_dynamic_symbol
PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
static void ppc64_elf_hide_symbol
PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *, bfd_boolean));
static bfd_boolean allocate_dynrelocs
PARAMS ((struct elf_link_hash_entry *, PTR));
static bfd_boolean readonly_dynrelocs
PARAMS ((struct elf_link_hash_entry *, PTR));
static enum elf_reloc_type_class ppc64_elf_reloc_type_class
PARAMS ((const Elf_Internal_Rela *));
static bfd_boolean ppc64_elf_size_dynamic_sections
PARAMS ((bfd *, struct bfd_link_info *));
static INLINE enum ppc_stub_type ppc_type_of_stub
PARAMS ((asection *, const Elf_Internal_Rela *,
struct ppc_link_hash_entry **, bfd_vma));
static bfd_byte *build_plt_stub
PARAMS ((bfd *, bfd_byte *, int, int));
static bfd_boolean ppc_build_one_stub
PARAMS ((struct bfd_hash_entry *, PTR));
static bfd_boolean ppc_size_one_stub
PARAMS ((struct bfd_hash_entry *, PTR));
static void group_sections
PARAMS ((struct ppc_link_hash_table *, bfd_size_type, bfd_boolean));
static bfd_boolean ppc64_elf_relocate_section
PARAMS ((bfd *, struct bfd_link_info *info, bfd *, asection *, bfd_byte *,
Elf_Internal_Rela *relocs, Elf_Internal_Sym *local_syms,
asection **));
static bfd_boolean ppc64_elf_finish_dynamic_symbol
PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
Elf_Internal_Sym *));
static bfd_boolean ppc64_elf_finish_dynamic_sections
PARAMS ((bfd *, struct bfd_link_info *));
/* Get the ppc64 ELF linker hash table from a link_info structure. */
#define ppc_hash_table(p) \
((struct ppc_link_hash_table *) ((p)->hash))
#define ppc_stub_hash_lookup(table, string, create, copy) \
((struct ppc_stub_hash_entry *) \
bfd_hash_lookup ((table), (string), (create), (copy)))
#define ppc_branch_hash_lookup(table, string, create, copy) \
((struct ppc_branch_hash_entry *) \
bfd_hash_lookup ((table), (string), (create), (copy)))
/* Create an entry in the stub hash table. */
static struct bfd_hash_entry *
stub_hash_newfunc (entry, table, string)
struct bfd_hash_entry *entry;
struct bfd_hash_table *table;
const char *string;
{
/* Allocate the structure if it has not already been allocated by a
subclass. */
if (entry == NULL)
{
entry = bfd_hash_allocate (table, sizeof (struct ppc_stub_hash_entry));
if (entry == NULL)
return entry;
}
/* Call the allocation method of the superclass. */
entry = bfd_hash_newfunc (entry, table, string);
if (entry != NULL)
{
struct ppc_stub_hash_entry *eh;
/* Initialize the local fields. */
eh = (struct ppc_stub_hash_entry *) entry;
eh->stub_sec = NULL;
eh->stub_offset = 0;
eh->target_value = 0;
eh->target_section = NULL;
eh->stub_type = ppc_stub_none;
eh->h = NULL;
eh->id_sec = NULL;
}
return entry;
}
/* Create an entry in the branch hash table. */
static struct bfd_hash_entry *
branch_hash_newfunc (entry, table, string)
struct bfd_hash_entry *entry;
struct bfd_hash_table *table;
const char *string;
{
/* Allocate the structure if it has not already been allocated by a
subclass. */
if (entry == NULL)
{
entry = bfd_hash_allocate (table, sizeof (struct ppc_branch_hash_entry));
if (entry == NULL)
return entry;
}
/* Call the allocation method of the superclass. */
entry = bfd_hash_newfunc (entry, table, string);
if (entry != NULL)
{
struct ppc_branch_hash_entry *eh;
/* Initialize the local fields. */
eh = (struct ppc_branch_hash_entry *) entry;
eh->offset = 0;
eh->iter = 0;
}
return entry;
}
/* Create an entry in a ppc64 ELF linker hash table. */
static struct bfd_hash_entry *
link_hash_newfunc (entry, table, string)
struct bfd_hash_entry *entry;
struct bfd_hash_table *table;
const char *string;
{
/* Allocate the structure if it has not already been allocated by a
subclass. */
if (entry == NULL)
{
entry = bfd_hash_allocate (table, sizeof (struct ppc_link_hash_entry));
if (entry == NULL)
return entry;
}
/* Call the allocation method of the superclass. */
entry = _bfd_elf_link_hash_newfunc (entry, table, string);
if (entry != NULL)
{
struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) entry;
eh->stub_cache = NULL;
eh->dyn_relocs = NULL;
eh->oh = NULL;
eh->is_func = 0;
eh->is_func_descriptor = 0;
eh->is_entry = 0;
}
return entry;
}
/* Create a ppc64 ELF linker hash table. */
static struct bfd_link_hash_table *
ppc64_elf_link_hash_table_create (abfd)
bfd *abfd;
{
struct ppc_link_hash_table *htab;
bfd_size_type amt = sizeof (struct ppc_link_hash_table);
htab = (struct ppc_link_hash_table *) bfd_malloc (amt);
if (htab == NULL)
return NULL;
if (! _bfd_elf_link_hash_table_init (&htab->elf, abfd, link_hash_newfunc))
{
free (htab);
return NULL;
}
/* Init the stub hash table too. */
if (!bfd_hash_table_init (&htab->stub_hash_table, stub_hash_newfunc))
return NULL;
/* And the branch hash table. */
if (!bfd_hash_table_init (&htab->branch_hash_table, branch_hash_newfunc))
return NULL;
htab->stub_bfd = NULL;
htab->add_stub_section = NULL;
htab->layout_sections_again = NULL;
htab->stub_group = NULL;
htab->sgot = NULL;
htab->srelgot = NULL;
htab->splt = NULL;
htab->srelplt = NULL;
htab->sdynbss = NULL;
htab->srelbss = NULL;
htab->sglink = NULL;
htab->sfpr = NULL;
htab->sbrlt = NULL;
htab->srelbrlt = NULL;
htab->stub_error = 0;
htab->has_14bit_branch = 0;
htab->have_undefweak = 0;
htab->stub_iteration = 0;
htab->sym_sec.abfd = NULL;
return &htab->elf.root;
}
/* Free the derived linker hash table. */
static void
ppc64_elf_link_hash_table_free (hash)
struct bfd_link_hash_table *hash;
{
struct ppc_link_hash_table *ret = (struct ppc_link_hash_table *) hash;
bfd_hash_table_free (&ret->stub_hash_table);
bfd_hash_table_free (&ret->branch_hash_table);
_bfd_generic_link_hash_table_free (hash);
}
/* Build a name for an entry in the stub hash table. */
static char *
ppc_stub_name (input_section, sym_sec, h, rel)
const asection *input_section;
const asection *sym_sec;
const struct ppc_link_hash_entry *h;
const Elf_Internal_Rela *rel;
{
char *stub_name;
bfd_size_type len;
/* rel->r_addend is actually 64 bit, but who uses more than +/- 2^31
offsets from a sym as a branch target? In fact, we could
probably assume the addend is always zero. */
BFD_ASSERT (((int) rel->r_addend & 0xffffffff) == rel->r_addend);
if (h)
{
len = 8 + 1 + strlen (h->elf.root.root.string) + 1 + 8 + 1;
stub_name = bfd_malloc (len);
if (stub_name != NULL)
{
sprintf (stub_name, "%08x_%s+%x",
input_section->id & 0xffffffff,
h->elf.root.root.string,
(int) rel->r_addend & 0xffffffff);
}
}
else
{
len = 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1;
stub_name = bfd_malloc (len);
if (stub_name != NULL)
{
sprintf (stub_name, "%08x_%x:%x+%x",
input_section->id & 0xffffffff,
sym_sec->id & 0xffffffff,
(int) ELF64_R_SYM (rel->r_info) & 0xffffffff,
(int) rel->r_addend & 0xffffffff);
}
}
return stub_name;
}
/* Look up an entry in the stub hash. Stub entries are cached because
creating the stub name takes a bit of time. */
static struct ppc_stub_hash_entry *
ppc_get_stub_entry (input_section, sym_sec, hash, rel, htab)
const asection *input_section;
const asection *sym_sec;
struct elf_link_hash_entry *hash;
const Elf_Internal_Rela *rel;
struct ppc_link_hash_table *htab;
{
struct ppc_stub_hash_entry *stub_entry;
struct ppc_link_hash_entry *h = (struct ppc_link_hash_entry *) hash;
const asection *id_sec;
/* If this input section is part of a group of sections sharing one
stub section, then use the id of the first section in the group.
Stub names need to include a section id, as there may well be
more than one stub used to reach say, printf, and we need to
distinguish between them. */
id_sec = htab->stub_group[input_section->id].link_sec;
if (h != NULL && h->stub_cache != NULL
&& h->stub_cache->h == h
&& h->stub_cache->id_sec == id_sec)
{
stub_entry = h->stub_cache;
}
else
{
char *stub_name;
stub_name = ppc_stub_name (id_sec, sym_sec, h, rel);
if (stub_name == NULL)
return NULL;
stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
stub_name, FALSE, FALSE);
if (h != NULL)
h->stub_cache = stub_entry;
free (stub_name);
}
return stub_entry;
}
/* Add a new stub entry to the stub hash. Not all fields of the new
stub entry are initialised. */
static struct ppc_stub_hash_entry *
ppc_add_stub (stub_name, section, htab)
const char *stub_name;
asection *section;
struct ppc_link_hash_table *htab;
{
asection *link_sec;
asection *stub_sec;
struct ppc_stub_hash_entry *stub_entry;
link_sec = htab->stub_group[section->id].link_sec;
stub_sec = htab->stub_group[section->id].stub_sec;
if (stub_sec == NULL)
{
stub_sec = htab->stub_group[link_sec->id].stub_sec;
if (stub_sec == NULL)
{
size_t namelen;
bfd_size_type len;
char *s_name;
namelen = strlen (link_sec->name);
len = namelen + sizeof (STUB_SUFFIX);
s_name = bfd_alloc (htab->stub_bfd, len);
if (s_name == NULL)
return NULL;
memcpy (s_name, link_sec->name, namelen);
memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
stub_sec = (*htab->add_stub_section) (s_name, link_sec);
if (stub_sec == NULL)
return NULL;
htab->stub_group[link_sec->id].stub_sec = stub_sec;
}
htab->stub_group[section->id].stub_sec = stub_sec;
}
/* Enter this entry into the linker stub hash table. */
stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table, stub_name,
TRUE, FALSE);
if (stub_entry == NULL)
{
(*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
bfd_archive_filename (section->owner),
stub_name);
return NULL;
}
stub_entry->stub_sec = stub_sec;
stub_entry->stub_offset = 0;
stub_entry->id_sec = link_sec;
return stub_entry;
}
/* Create sections for linker generated code. */
static bfd_boolean
create_linkage_sections (dynobj, info)
bfd *dynobj;
struct bfd_link_info *info;
{
struct ppc_link_hash_table *htab;
flagword flags;
htab = ppc_hash_table (info);
/* Create .sfpr for code to save and restore fp regs. */
flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
| SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
htab->sfpr = bfd_make_section_anyway (dynobj, ".sfpr");
if (htab->sfpr == NULL
|| ! bfd_set_section_flags (dynobj, htab->sfpr, flags)
|| ! bfd_set_section_alignment (dynobj, htab->sfpr, 2))
return FALSE;
/* Create .glink for lazy dynamic linking support. */
htab->sglink = bfd_make_section_anyway (dynobj, ".glink");
if (htab->sglink == NULL
|| ! bfd_set_section_flags (dynobj, htab->sglink, flags)
|| ! bfd_set_section_alignment (dynobj, htab->sglink, 2))
return FALSE;
/* Create .branch_lt for plt_branch stubs. */
flags = (SEC_ALLOC | SEC_LOAD
| SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
htab->sbrlt = bfd_make_section_anyway (dynobj, ".branch_lt");
if (htab->sbrlt == NULL
|| ! bfd_set_section_flags (dynobj, htab->sbrlt, flags)
|| ! bfd_set_section_alignment (dynobj, htab->sbrlt, 3))
return FALSE;
if (info->shared)
{
flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
| SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
htab->srelbrlt = bfd_make_section_anyway (dynobj, ".rela.branch_lt");
if (!htab->srelbrlt
|| ! bfd_set_section_flags (dynobj, htab->srelbrlt, flags)
|| ! bfd_set_section_alignment (dynobj, htab->srelbrlt, 3))
return FALSE;
}
return TRUE;
}
/* Create .got and .rela.got sections in DYNOBJ, and set up
shortcuts to them in our hash table. */
static bfd_boolean
create_got_section (dynobj, info)
bfd *dynobj;
struct bfd_link_info *info;
{
struct ppc_link_hash_table *htab;
if (! _bfd_elf_create_got_section (dynobj, info))
return FALSE;
htab = ppc_hash_table (info);
htab->sgot = bfd_get_section_by_name (dynobj, ".got");
if (!htab->sgot)
abort ();
htab->srelgot = bfd_make_section (dynobj, ".rela.got");
if (!htab->srelgot
|| ! bfd_set_section_flags (dynobj, htab->srelgot,
(SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
| SEC_IN_MEMORY | SEC_LINKER_CREATED
| SEC_READONLY))
|| ! bfd_set_section_alignment (dynobj, htab->srelgot, 3))
return FALSE;
return TRUE;
}
/* Create the dynamic sections, and set up shortcuts. */
static bfd_boolean
ppc64_elf_create_dynamic_sections (dynobj, info)
bfd *dynobj;
struct bfd_link_info *info;
{
struct ppc_link_hash_table *htab;
htab = ppc_hash_table (info);
if (!htab->sgot && !create_got_section (dynobj, info))
return FALSE;
if (!_bfd_elf_create_dynamic_sections (dynobj, info))
return FALSE;
htab->splt = bfd_get_section_by_name (dynobj, ".plt");
htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
if (!info->shared)
htab->srelbss = bfd_get_section_by_name (dynobj, ".rela.bss");
if (!htab->splt || !htab->srelplt || !htab->sdynbss
|| (!info->shared && !htab->srelbss))
abort ();
return TRUE;
}
/* Copy the extra info we tack onto an elf_link_hash_entry. */
static void
ppc64_elf_copy_indirect_symbol (bed, dir, ind)
struct elf_backend_data *bed;
struct elf_link_hash_entry *dir, *ind;
{
struct ppc_link_hash_entry *edir, *eind;
edir = (struct ppc_link_hash_entry *) dir;
eind = (struct ppc_link_hash_entry *) ind;
if (eind->dyn_relocs != NULL)
{
if (edir->dyn_relocs != NULL)
{
struct ppc_dyn_relocs **pp;
struct ppc_dyn_relocs *p;
if (ind->root.type == bfd_link_hash_indirect)
abort ();
/* Add reloc counts against the weak sym to the strong sym
list. Merge any entries against the same section. */
for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
{
struct ppc_dyn_relocs *q;
for (q = edir->dyn_relocs; q != NULL; q = q->next)
if (q->sec == p->sec)
{
q->pc_count += p->pc_count;
q->count += p->count;
*pp = p->next;
break;
}
if (q == NULL)
pp = &p->next;
}
*pp = edir->dyn_relocs;
}
edir->dyn_relocs = eind->dyn_relocs;
eind->dyn_relocs = NULL;
}
edir->is_func |= eind->is_func;
edir->is_func_descriptor |= eind->is_func_descriptor;
edir->is_entry |= eind->is_entry;
_bfd_elf_link_hash_copy_indirect (bed, dir, ind);
}
/* Set a flag, used by ppc64_elf_gc_mark_hook, on the entry symbol and
symbols undefined on the command-line. */
bfd_boolean
ppc64_elf_mark_entry_syms (info)
struct bfd_link_info *info;
{
struct ppc_link_hash_table *htab;
struct bfd_sym_chain *sym;
htab = ppc_hash_table (info);
for (sym = info->gc_sym_list; sym; sym = sym->next)
{
struct elf_link_hash_entry *h;
h = elf_link_hash_lookup (&htab->elf, sym->name, FALSE, FALSE, FALSE);
if (h != NULL)
((struct ppc_link_hash_entry *) h)->is_entry = 1;
}
return TRUE;
}
/* Look through the relocs for a section during the first phase, and
calculate needed space in the global offset table, procedure
linkage table, and dynamic reloc sections. */
static bfd_boolean
ppc64_elf_check_relocs (abfd, info, sec, relocs)
bfd *abfd;
struct bfd_link_info *info;
asection *sec;
const Elf_Internal_Rela *relocs;
{
struct ppc_link_hash_table *htab;
Elf_Internal_Shdr *symtab_hdr;
struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
const Elf_Internal_Rela *rel;
const Elf_Internal_Rela *rel_end;
asection *sreloc;
asection **opd_sym_map;
if (info->relocateable)
return TRUE;
htab = ppc_hash_table (info);
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
sym_hashes = elf_sym_hashes (abfd);
sym_hashes_end = (sym_hashes
+ symtab_hdr->sh_size / sizeof (Elf64_External_Sym)
- symtab_hdr->sh_info);
sreloc = NULL;
opd_sym_map = NULL;
if (strcmp (bfd_get_section_name (abfd, sec), ".opd") == 0)
{
/* Garbage collection needs some extra help with .opd sections.
We don't want to necessarily keep everything referenced by
relocs in .opd, as that would keep all functions. Instead,
if we reference an .opd symbol (a function descriptor), we
want to keep the function code symbol's section. This is
easy for global symbols, but for local syms we need to keep
information about the associated function section. Later, if
edit_opd deletes entries, we'll use this array to adjust
local syms in .opd. */
union opd_info {
asection *func_section;
long entry_adjust;
};
bfd_size_type amt;
amt = sec->_raw_size * sizeof (union opd_info) / 24;
opd_sym_map = (asection **) bfd_zalloc (abfd, amt);
if (opd_sym_map == NULL)
return FALSE;
elf_section_data (sec)->tdata = opd_sym_map;
}
if (htab->elf.dynobj == NULL)
htab->elf.dynobj = abfd;
if (htab->sfpr == NULL
&& !create_linkage_sections (htab->elf.dynobj, info))
return FALSE;
rel_end = relocs + sec->reloc_count;
for (rel = relocs; rel < rel_end; rel++)
{
unsigned long r_symndx;
struct elf_link_hash_entry *h;
enum elf_ppc_reloc_type r_type;
r_symndx = ELF64_R_SYM (rel->r_info);
if (r_symndx < symtab_hdr->sh_info)
h = NULL;
else
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
r_type = (enum elf_ppc_reloc_type) ELF64_R_TYPE (rel->r_info);
switch (r_type)
{
/* GOT16 relocations */
case R_PPC64_GOT16:
case R_PPC64_GOT16_DS:
case R_PPC64_GOT16_HA:
case R_PPC64_GOT16_HI:
case R_PPC64_GOT16_LO:
case R_PPC64_GOT16_LO_DS:
/* This symbol requires a global offset table entry. */
if (htab->sgot == NULL
&& !create_got_section (htab->elf.dynobj, info))
return FALSE;
if (h != NULL)
{
h->got.refcount += 1;
}
else
{
bfd_signed_vma *local_got_refcounts;
/* This is a global offset table entry for a local symbol. */
local_got_refcounts = elf_local_got_refcounts (abfd);
if (local_got_refcounts == NULL)
{
bfd_size_type size;
size = symtab_hdr->sh_info;
size *= sizeof (bfd_signed_vma);
local_got_refcounts = ((bfd_signed_vma *)
bfd_zalloc (abfd, size));
if (local_got_refcounts == NULL)
return FALSE;
elf_local_got_refcounts (abfd) = local_got_refcounts;
}
local_got_refcounts[r_symndx] += 1;
}
break;
case R_PPC64_PLT16_HA:
case R_PPC64_PLT16_HI:
case R_PPC64_PLT16_LO:
case R_PPC64_PLT32:
case R_PPC64_PLT64:
/* This symbol requires a procedure linkage table entry. We
actually build the entry in adjust_dynamic_symbol,
because this might be a case of linking PIC code without
linking in any dynamic objects, in which case we don't
need to generate a procedure linkage table after all. */
if (h == NULL)
{
/* It does not make sense to have a procedure linkage
table entry for a local symbol. */
bfd_set_error (bfd_error_bad_value);
return FALSE;
}
h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
h->plt.refcount += 1;
((struct ppc_link_hash_entry *) h)->is_func = 1;
break;
/* The following relocations don't need to propagate the
relocation if linking a shared object since they are
section relative. */
case R_PPC64_SECTOFF:
case R_PPC64_SECTOFF_LO:
case R_PPC64_SECTOFF_HI:
case R_PPC64_SECTOFF_HA:
case R_PPC64_SECTOFF_DS:
case R_PPC64_SECTOFF_LO_DS:
case R_PPC64_TOC16:
case R_PPC64_TOC16_LO:
case R_PPC64_TOC16_HI:
case R_PPC64_TOC16_HA:
case R_PPC64_TOC16_DS:
case R_PPC64_TOC16_LO_DS:
break;
/* This relocation describes the C++ object vtable hierarchy.
Reconstruct it for later use during GC. */
case R_PPC64_GNU_VTINHERIT:
if (!_bfd_elf64_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
return FALSE;
break;
/* This relocation describes which C++ vtable entries are actually
used. Record for later use during GC. */
case R_PPC64_GNU_VTENTRY:
if (!_bfd_elf64_gc_record_vtentry (abfd, sec, h, rel->r_addend))
return FALSE;
break;
case R_PPC64_REL14:
case R_PPC64_REL14_BRTAKEN:
case R_PPC64_REL14_BRNTAKEN:
htab->has_14bit_branch = 1;
/* Fall through. */
case R_PPC64_REL24:
if (h != NULL
&& h->root.root.string[0] == '.'
&& h->root.root.string[1] != 0)
{
/* We may need a .plt entry if the function this reloc
refers to is in a shared lib. */
h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
h->plt.refcount += 1;
((struct ppc_link_hash_entry *) h)->is_func = 1;
}
break;
case R_PPC64_ADDR64:
if (opd_sym_map != NULL
&& h != NULL
&& h->root.root.string[0] == '.'
&& h->root.root.string[1] != 0)
{
struct elf_link_hash_entry *fdh;
fdh = elf_link_hash_lookup (&htab->elf, h->root.root.string + 1,
FALSE, FALSE, FALSE);
if (fdh != NULL)
{
((struct ppc_link_hash_entry *) fdh)->is_func_descriptor = 1;
((struct ppc_link_hash_entry *) fdh)->oh = h;
((struct ppc_link_hash_entry *) h)->is_func = 1;
((struct ppc_link_hash_entry *) h)->oh = fdh;
}
}
if (opd_sym_map != NULL
&& h == NULL
&& rel + 1 < rel_end
&& ((enum elf_ppc_reloc_type) ELF64_R_TYPE ((rel + 1)->r_info)
== R_PPC64_TOC))
{
asection *s;
s = bfd_section_from_r_symndx (abfd, &htab->sym_sec, sec,
r_symndx);
if (s == NULL)
return FALSE;
else if (s != sec)
opd_sym_map[rel->r_offset / 24] = s;
}
/* Fall through. */
case R_PPC64_REL64:
case R_PPC64_REL32:
case R_PPC64_ADDR14:
case R_PPC64_ADDR14_BRNTAKEN:
case R_PPC64_ADDR14_BRTAKEN:
case R_PPC64_ADDR16:
case R_PPC64_ADDR16_DS:
case R_PPC64_ADDR16_HA:
case R_PPC64_ADDR16_HI:
case R_PPC64_ADDR16_HIGHER:
case R_PPC64_ADDR16_HIGHERA:
case R_PPC64_ADDR16_HIGHEST:
case R_PPC64_ADDR16_HIGHESTA:
case R_PPC64_ADDR16_LO:
case R_PPC64_ADDR16_LO_DS:
case R_PPC64_ADDR24:
case R_PPC64_ADDR30:
case R_PPC64_ADDR32:
case R_PPC64_UADDR16:
case R_PPC64_UADDR32:
case R_PPC64_UADDR64:
case R_PPC64_TOC:
/* Don't propagate .opd relocs. */
if (NO_OPD_RELOCS && opd_sym_map != NULL)
break;
/* If we are creating a shared library, and this is a reloc
against a global symbol, or a non PC relative reloc
against a local symbol, then we need to copy the reloc
into the shared library. However, if we are linking with
-Bsymbolic, we do not need to copy a reloc against a
global symbol which is defined in an object we are
including in the link (i.e., DEF_REGULAR is set). At
this point we have not seen all the input files, so it is
possible that DEF_REGULAR is not set now but will be set
later (it is never cleared). In case of a weak definition,
DEF_REGULAR may be cleared later by a strong definition in
a shared library. We account for that possibility below by
storing information in the relocs_copied field of the hash
table entry. A similar situation occurs when creating
shared libraries and symbol visibility changes render the
symbol local.
If on the other hand, we are creating an executable, we
may need to keep relocations for symbols satisfied by a
dynamic library if we manage to avoid copy relocs for the
symbol. */
if ((info->shared
&& (sec->flags & SEC_ALLOC) != 0
&& (IS_ABSOLUTE_RELOC (r_type)
|| (h != NULL
&& (! info->symbolic
|| h->root.type == bfd_link_hash_defweak
|| (h->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR) == 0))))
|| (!info->shared
&& (sec->flags & SEC_ALLOC) != 0
&& h != NULL
&& (h->root.type == bfd_link_hash_defweak
|| (h->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR) == 0)))
{
struct ppc_dyn_relocs *p;
struct ppc_dyn_relocs **head;
/* We must copy these reloc types into the output file.
Create a reloc section in dynobj and make room for
this reloc. */
if (sreloc == NULL)
{
const char *name;
bfd *dynobj;
name = (bfd_elf_string_from_elf_section
(abfd,
elf_elfheader (abfd)->e_shstrndx,
elf_section_data (sec)->rel_hdr.sh_name));
if (name == NULL)
return FALSE;
if (strncmp (name, ".rela", 5) != 0
|| strcmp (bfd_get_section_name (abfd, sec),
name + 5) != 0)
{
(*_bfd_error_handler)
(_("%s: bad relocation section name `%s\'"),
bfd_archive_filename (abfd), name);
bfd_set_error (bfd_error_bad_value);
}
dynobj = htab->elf.dynobj;
sreloc = bfd_get_section_by_name (dynobj, name);
if (sreloc == NULL)
{
flagword flags;
sreloc = bfd_make_section (dynobj, name);
flags = (SEC_HAS_CONTENTS | SEC_READONLY
| SEC_IN_MEMORY | SEC_LINKER_CREATED);
if ((sec->flags & SEC_ALLOC) != 0)
flags |= SEC_ALLOC | SEC_LOAD;
if (sreloc == NULL
|| ! bfd_set_section_flags (dynobj, sreloc, flags)
|| ! bfd_set_section_alignment (dynobj, sreloc, 3))
return FALSE;
}
elf_section_data (sec)->sreloc = sreloc;
}
/* If this is a global symbol, we count the number of
relocations we need for this symbol. */
if (h != NULL)
{
head = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
}
else
{
/* Track dynamic relocs needed for local syms too.
We really need local syms available to do this
easily. Oh well. */
asection *s;
s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
sec, r_symndx);
if (s == NULL)
return FALSE;
head = ((struct ppc_dyn_relocs **)
&elf_section_data (s)->local_dynrel);
}
p = *head;
if (p == NULL || p->sec != sec)
{
p = ((struct ppc_dyn_relocs *)
bfd_alloc (htab->elf.dynobj,
(bfd_size_type) sizeof *p));
if (p == NULL)
return FALSE;
p->next = *head;
*head = p;
p->sec = sec;
p->count = 0;
p->pc_count = 0;
}
p->count += 1;
if (!IS_ABSOLUTE_RELOC (r_type))
p->pc_count += 1;
}
break;
default:
break;
}
}
return TRUE;
}
/* Return the section that should be marked against GC for a given
relocation. */
static asection *
ppc64_elf_gc_mark_hook (sec, info, rel, h, sym)
asection *sec;
struct bfd_link_info *info ATTRIBUTE_UNUSED;
Elf_Internal_Rela *rel;
struct elf_link_hash_entry *h;
Elf_Internal_Sym *sym;
{
asection *rsec = NULL;
if (h != NULL)
{
enum elf_ppc_reloc_type r_type;
struct ppc_link_hash_entry *fdh;
r_type = (enum elf_ppc_reloc_type) ELF64_R_TYPE (rel->r_info);
switch (r_type)
{
case R_PPC64_GNU_VTINHERIT:
case R_PPC64_GNU_VTENTRY:
break;
default:
switch (h->root.type)
{
case bfd_link_hash_defined:
case bfd_link_hash_defweak:
fdh = (struct ppc_link_hash_entry *) h;
/* Function descriptor syms cause the associated
function code sym section to be marked. */
if (fdh->is_func_descriptor)
rsec = fdh->oh->root.u.def.section;
/* Function entry syms return NULL if they are in .opd
and are not ._start (or others undefined on the ld
command line). Thus we avoid marking all function
sections, as all functions are referenced in .opd. */
else if ((fdh->oh != NULL
&& ((struct ppc_link_hash_entry *) fdh->oh)->is_entry)
|| elf_section_data (sec)->tdata == NULL)
rsec = h->root.u.def.section;
break;
case bfd_link_hash_common:
rsec = h->root.u.c.p->section;
break;
default:
break;
}
}
}
else
{
asection **opd_sym_section;
rsec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
opd_sym_section = (asection **) elf_section_data (rsec)->tdata;
if (opd_sym_section != NULL)
rsec = opd_sym_section[sym->st_value / 24];
else if (elf_section_data (sec)->tdata != NULL)
rsec = NULL;
}
return rsec;
}
/* Update the .got, .plt. and dynamic reloc reference counts for the
section being removed. */
static bfd_boolean
ppc64_elf_gc_sweep_hook (abfd, info, sec, relocs)
bfd *abfd;
struct bfd_link_info *info ATTRIBUTE_UNUSED;
asection *sec;
const Elf_Internal_Rela *relocs;
{
Elf_Internal_Shdr *symtab_hdr;
struct elf_link_hash_entry **sym_hashes;
bfd_signed_vma *local_got_refcounts;
const Elf_Internal_Rela *rel, *relend;
elf_section_data (sec)->local_dynrel = NULL;
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
sym_hashes = elf_sym_hashes (abfd);
local_got_refcounts = elf_local_got_refcounts (abfd);
relend = relocs + sec->reloc_count;
for (rel = relocs; rel < relend; rel++)
{
unsigned long r_symndx;
enum elf_ppc_reloc_type r_type;
struct elf_link_hash_entry *h;
r_symndx = ELF64_R_SYM (rel->r_info);
r_type = (enum elf_ppc_reloc_type) ELF64_R_TYPE (rel->r_info);
switch (r_type)
{
case R_PPC64_GOT16:
case R_PPC64_GOT16_DS:
case R_PPC64_GOT16_HA:
case R_PPC64_GOT16_HI:
case R_PPC64_GOT16_LO:
case R_PPC64_GOT16_LO_DS:
if (r_symndx >= symtab_hdr->sh_info)
{
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
if (h->got.refcount > 0)
h->got.refcount--;
}
else
{
if (local_got_refcounts[r_symndx] > 0)
local_got_refcounts[r_symndx]--;
}
break;
case R_PPC64_PLT16_HA:
case R_PPC64_PLT16_HI:
case R_PPC64_PLT16_LO:
case R_PPC64_PLT32:
case R_PPC64_PLT64:
if (r_symndx >= symtab_hdr->sh_info)
{
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
if (h->plt.refcount > 0)
h->plt.refcount--;
}
break;
case R_PPC64_REL14:
case R_PPC64_REL14_BRNTAKEN:
case R_PPC64_REL14_BRTAKEN:
case R_PPC64_REL24:
if (r_symndx >= symtab_hdr->sh_info)
{
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
if (h->plt.refcount > 0)
h->plt.refcount--;
}
break;
case R_PPC64_REL32:
case R_PPC64_REL64:
if (r_symndx >= symtab_hdr->sh_info)
{
struct ppc_link_hash_entry *eh;
struct ppc_dyn_relocs **pp;
struct ppc_dyn_relocs *p;
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
eh = (struct ppc_link_hash_entry *) h;
for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
if (p->sec == sec)
{
p->pc_count -= 1;
p->count -= 1;
if (p->count == 0)
*pp = p->next;
break;
}
}
break;
case R_PPC64_ADDR14:
case R_PPC64_ADDR14_BRNTAKEN:
case R_PPC64_ADDR14_BRTAKEN:
case R_PPC64_ADDR16:
case R_PPC64_ADDR16_DS:
case R_PPC64_ADDR16_HA:
case R_PPC64_ADDR16_HI:
case R_PPC64_ADDR16_HIGHER:
case R_PPC64_ADDR16_HIGHERA:
case R_PPC64_ADDR16_HIGHEST:
case R_PPC64_ADDR16_HIGHESTA:
case R_PPC64_ADDR16_LO:
case R_PPC64_ADDR16_LO_DS:
case R_PPC64_ADDR24:
case R_PPC64_ADDR30:
case R_PPC64_ADDR32:
case R_PPC64_ADDR64:
case R_PPC64_UADDR16:
case R_PPC64_UADDR32:
case R_PPC64_UADDR64:
case R_PPC64_TOC:
if (r_symndx >= symtab_hdr->sh_info)
{
struct ppc_link_hash_entry *eh;
struct ppc_dyn_relocs **pp;
struct ppc_dyn_relocs *p;
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
eh = (struct ppc_link_hash_entry *) h;
for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
if (p->sec == sec)
{
p->count -= 1;
if (p->count == 0)
*pp = p->next;
break;
}
}
break;
default:
break;
}
}
return TRUE;
}
/* Called via elf_link_hash_traverse to transfer dynamic linking
information on function code symbol entries to their corresponding
function descriptor symbol entries. */
static bfd_boolean
func_desc_adjust (h, inf)
struct elf_link_hash_entry *h;
PTR inf;
{
struct bfd_link_info *info;
struct ppc_link_hash_table *htab;
if (h->root.type == bfd_link_hash_indirect)
return TRUE;
if (h->root.type == bfd_link_hash_warning)
h = (struct elf_link_hash_entry *) h->root.u.i.link;
info = (struct bfd_link_info *) inf;
htab = ppc_hash_table (info);
/* If this is a function code symbol, transfer dynamic linking
information to the function descriptor symbol. */
if (!((struct ppc_link_hash_entry *) h)->is_func)
return TRUE;
if (h->root.type == bfd_link_hash_undefweak
&& (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR))
htab->have_undefweak = TRUE;
if (h->plt.refcount > 0
&& h->root.root.string[0] == '.'
&& h->root.root.string[1] != '\0')
{
struct elf_link_hash_entry *fdh = ((struct ppc_link_hash_entry *) h)->oh;
bfd_boolean force_local;
/* Find the corresponding function descriptor symbol. Create it
as undefined if necessary. */
if (fdh == NULL)
fdh = elf_link_hash_lookup (&htab->elf, h->root.root.string + 1,
FALSE, FALSE, TRUE);
if (fdh == NULL
&& info->shared
&& (h->root.type == bfd_link_hash_undefined
|| h->root.type == bfd_link_hash_undefweak))
{
bfd *abfd;
asymbol *newsym;
struct bfd_link_hash_entry *bh;
abfd = h->root.u.undef.abfd;
newsym = bfd_make_empty_symbol (abfd);
newsym->name = h->root.root.string + 1;
newsym->section = bfd_und_section_ptr;
newsym->value = 0;
newsym->flags = BSF_OBJECT;
if (h->root.type == bfd_link_hash_undefweak)
newsym->flags |= BSF_WEAK;
bh = &fdh->root;
if ( !(_bfd_generic_link_add_one_symbol
(info, abfd, newsym->name, newsym->flags,
newsym->section, newsym->value, NULL, FALSE, FALSE, &bh)))
{
return FALSE;
}
fdh = (struct elf_link_hash_entry *) bh;
fdh->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
}
if (fdh != NULL
&& (fdh->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
&& (info->shared
|| (fdh->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
|| (fdh->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
{
if (fdh->dynindx == -1)
if (! bfd_elf64_link_record_dynamic_symbol (info, fdh))
return FALSE;
fdh->elf_link_hash_flags |= (h->elf_link_hash_flags
& (ELF_LINK_HASH_REF_REGULAR
| ELF_LINK_HASH_REF_DYNAMIC
| ELF_LINK_HASH_REF_REGULAR_NONWEAK
| ELF_LINK_NON_GOT_REF));
if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
{
fdh->plt.refcount = h->plt.refcount;
fdh->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
}
((struct ppc_link_hash_entry *) fdh)->is_func_descriptor = 1;
((struct ppc_link_hash_entry *) fdh)->oh = h;
((struct ppc_link_hash_entry *) h)->oh = fdh;
}
/* Now that the info is on the function descriptor, clear the
function code sym info. Any function code syms for which we
don't have a definition in a regular file, we force local.
This prevents a shared library from exporting syms that have
been imported from another library. Function code syms that
are really in the library we must leave global to prevent the
linker dragging in a definition from a static library. */
force_local = (info->shared
&& ((h->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR) == 0
|| fdh == NULL
|| (fdh->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR) == 0
|| (fdh->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL) != 0));
_bfd_elf_link_hash_hide_symbol (info, h, force_local);
}
return TRUE;
}
#define MIN_SAVE_FPR 14
#define MAX_SAVE_FPR 31
/* Called near the start of bfd_elf_size_dynamic_sections. We use
this hook to a) provide some gcc support functions, and b) transfer
dynamic linking information gathered so far on function code symbol
entries, to their corresponding function descriptor symbol entries. */
static bfd_boolean
ppc64_elf_func_desc_adjust (obfd, info)
bfd *obfd ATTRIBUTE_UNUSED;
struct bfd_link_info *info;
{
struct ppc_link_hash_table *htab;
unsigned int lowest_savef = MAX_SAVE_FPR + 2;
unsigned int lowest_restf = MAX_SAVE_FPR + 2;
unsigned int i;
struct elf_link_hash_entry *h;
bfd_byte *p;
char sym[10];
htab = ppc_hash_table (info);
if (htab->sfpr == NULL)
/* We don't have any relocs. */
return TRUE;
/* First provide any missing ._savef* and ._restf* functions. */
memcpy (sym, "._savef14", 10);
for (i = MIN_SAVE_FPR; i <= MAX_SAVE_FPR; i++)
{
sym[7] = i / 10 + '0';
sym[8] = i % 10 + '0';
h = elf_link_hash_lookup (&htab->elf, sym, FALSE, FALSE, TRUE);
if (h != NULL
&& h->root.type == bfd_link_hash_undefined)
{
if (lowest_savef > i)
lowest_savef = i;
h->root.type = bfd_link_hash_defined;
h->root.u.def.section = htab->sfpr;
h->root.u.def.value = (i - lowest_savef) * 4;
h->type = STT_FUNC;
h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
_bfd_elf_link_hash_hide_symbol (info, h, info->shared);
}
}
memcpy (sym, "._restf14", 10);
for (i = MIN_SAVE_FPR; i <= MAX_SAVE_FPR; i++)
{
sym[7] = i / 10 + '0';
sym[8] = i % 10 + '0';
h = elf_link_hash_lookup (&htab->elf, sym, FALSE, FALSE, TRUE);
if (h != NULL
&& h->root.type == bfd_link_hash_undefined)
{
if (lowest_restf > i)
lowest_restf = i;
h->root.type = bfd_link_hash_defined;
h->root.u.def.section = htab->sfpr;
h->root.u.def.value = ((MAX_SAVE_FPR + 2 - lowest_savef) * 4
+ (i - lowest_restf) * 4);
h->type = STT_FUNC;
h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
_bfd_elf_link_hash_hide_symbol (info, h, info->shared);
}
}
elf_link_hash_traverse (&htab->elf, func_desc_adjust, (PTR) info);
htab->sfpr->_raw_size = ((MAX_SAVE_FPR + 2 - lowest_savef) * 4
+ (MAX_SAVE_FPR + 2 - lowest_restf) * 4);
if (htab->sfpr->_raw_size == 0)
{
if (!htab->have_undefweak)
{
_bfd_strip_section_from_output (info, htab->sfpr);
return TRUE;
}
htab->sfpr->_raw_size = 4;
}
p = (bfd_byte *) bfd_alloc (htab->elf.dynobj, htab->sfpr->_raw_size);
if (p == NULL)
return FALSE;
htab->sfpr->contents = p;
for (i = lowest_savef; i <= MAX_SAVE_FPR; i++)
{
unsigned int fpr = i << 21;
unsigned int stackoff = (1 << 16) - (MAX_SAVE_FPR + 1 - i) * 8;
bfd_put_32 (htab->elf.dynobj, STFD_FR0_0R1 + fpr + stackoff, p);
p += 4;
}
if (lowest_savef <= MAX_SAVE_FPR)
{
bfd_put_32 (htab->elf.dynobj, BLR, p);
p += 4;
}
for (i = lowest_restf; i <= MAX_SAVE_FPR; i++)
{
unsigned int fpr = i << 21;
unsigned int stackoff = (1 << 16) - (MAX_SAVE_FPR + 1 - i) * 8;
bfd_put_32 (htab->elf.dynobj, LFD_FR0_0R1 + fpr + stackoff, p);
p += 4;
}
if (lowest_restf <= MAX_SAVE_FPR
|| htab->sfpr->_raw_size == 4)
{
bfd_put_32 (htab->elf.dynobj, BLR, p);
}
return TRUE;
}
/* Adjust a symbol defined by a dynamic object and referenced by a
regular object. The current definition is in some section of the
dynamic object, but we're not including those sections. We have to
change the definition to something the rest of the link can
understand. */
static bfd_boolean
ppc64_elf_adjust_dynamic_symbol (info, h)
struct bfd_link_info *info;
struct elf_link_hash_entry *h;
{
struct ppc_link_hash_table *htab;
struct ppc_link_hash_entry * eh;
struct ppc_dyn_relocs *p;
asection *s;
unsigned int power_of_two;
htab = ppc_hash_table (info);
/* Deal with function syms. */
if (h->type == STT_FUNC
|| (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
{
/* Clear procedure linkage table information for any symbol that
won't need a .plt entry. */
if (!((struct ppc_link_hash_entry *) h)->is_func_descriptor
|| h->plt.refcount <= 0
|| (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
|| (! info->shared
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
&& (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0))
{
h->plt.offset = (bfd_vma) -1;
h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
}
return TRUE;
}
else
h->plt.offset = (bfd_vma) -1;
/* If this is a weak symbol, and there is a real definition, the
processor independent code will have arranged for us to see the
real definition first, and we can just use the same value. */
if (h->weakdef != NULL)
{
BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
|| h->weakdef->root.type == bfd_link_hash_defweak);
h->root.u.def.section = h->weakdef->root.u.def.section;
h->root.u.def.value = h->weakdef->root.u.def.value;
return TRUE;
}
/* This is a reference to a symbol defined by a dynamic object which
is not a function. */
/* If we are creating a shared library, we must presume that the
only references to the symbol are via the global offset table.
For such cases we need not do anything here; the relocations will
be handled correctly by relocate_section. */
if (info->shared)
return TRUE;
/* If there are no references to this symbol that do not use the
GOT, we don't need to generate a copy reloc. */
if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
return TRUE;
eh = (struct ppc_link_hash_entry *) h;
for (p = eh->dyn_relocs; p != NULL; p = p->next)
{
s = p->sec->output_section;
if (s != NULL && (s->flags & SEC_READONLY) != 0)
break;
}
/* If we didn't find any dynamic relocs in read-only sections, then
we'll be keeping the dynamic relocs and avoiding the copy reloc. */
if (p == NULL)
{
h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
return TRUE;
}
/* We must allocate the symbol in our .dynbss section, which will
become part of the .bss section of the executable. There will be
an entry for this symbol in the .dynsym section. The dynamic
object will contain position independent code, so all references
from the dynamic object to this symbol will go through the global
offset table. The dynamic linker will use the .dynsym entry to
determine the address it must put in the global offset table, so
both the dynamic object and the regular object will refer to the
same memory location for the variable. */
/* We must generate a R_PPC_COPY reloc to tell the dynamic linker to
copy the initial value out of the dynamic object and into the
runtime process image. We need to remember the offset into the
.rela.bss section we are going to use. */
if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
{
htab->srelbss->_raw_size += sizeof (Elf64_External_Rela);
h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
}
/* We need to figure out the alignment required for this symbol. I
have no idea how ELF linkers handle this. */
power_of_two = bfd_log2 (h->size);
if (power_of_two > 4)
power_of_two = 4;
/* Apply the required alignment. */
s = htab->sdynbss;
s->_raw_size = BFD_ALIGN (s->_raw_size, (bfd_size_type) (1 << power_of_two));
if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
{
if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
return FALSE;
}
/* Define the symbol as being at this point in the section. */
h->root.u.def.section = s;
h->root.u.def.value = s->_raw_size;
/* Increment the section size to make room for the symbol. */
s->_raw_size += h->size;
return TRUE;
}
/* If given a function descriptor symbol, hide both the function code
sym and the descriptor. */
static void
ppc64_elf_hide_symbol (info, h, force_local)
struct bfd_link_info *info;
struct elf_link_hash_entry *h;
bfd_boolean force_local;
{
_bfd_elf_link_hash_hide_symbol (info, h, force_local);
if (((struct ppc_link_hash_entry *) h)->is_func_descriptor)
{
struct elf_link_hash_entry *fh = ((struct ppc_link_hash_entry *) h)->oh;
if (fh == NULL)
{
const char *p, *q;
struct ppc_link_hash_table *htab;
char save;
/* We aren't supposed to use alloca in BFD because on
systems which do not have alloca the version in libiberty
calls xmalloc, which might cause the program to crash
when it runs out of memory. This function doesn't have a
return status, so there's no way to gracefully return an
error. So cheat. We know that string[-1] can be safely
dereferenced; It's either a string in an ELF string
table, or allocated in an objalloc structure. */
p = h->root.root.string - 1;
save = *p;
*(char *) p = '.';
htab = ppc_hash_table (info);
fh = elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
*(char *) p = save;
/* Unfortunately, if it so happens that the string we were
looking for was allocated immediately before this string,
then we overwrote the string terminator. That's the only
reason the lookup should fail. */
if (fh == NULL)
{
q = h->root.root.string + strlen (h->root.root.string);
while (q >= h->root.root.string && *q == *p)
--q, --p;
if (q < h->root.root.string && *p == '.')
fh = elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
}
if (fh != NULL)
{
((struct ppc_link_hash_entry *) h)->oh = fh;
((struct ppc_link_hash_entry *) fh)->oh = h;
}
}
if (fh != NULL)
_bfd_elf_link_hash_hide_symbol (info, fh, force_local);
}
}
bfd_boolean
ppc64_elf_edit_opd (obfd, info)
bfd *obfd;
struct bfd_link_info *info;
{
bfd *ibfd;
unsigned int bfd_indx;
for (bfd_indx = 0, ibfd = info->input_bfds;
ibfd != NULL;
ibfd = ibfd->link_next, bfd_indx++)
{
asection *sec;
Elf_Internal_Rela *relstart, *rel, *relend;
Elf_Internal_Shdr *symtab_hdr;
Elf_Internal_Sym *local_syms;
struct elf_link_hash_entry **sym_hashes;
bfd_vma offset;
bfd_size_type amt;
long *adjust;
bfd_boolean need_edit;
sec = bfd_get_section_by_name (ibfd, ".opd");
if (sec == NULL)
continue;
amt = sec->_raw_size * sizeof (long) / 24;
adjust = (long *) elf_section_data (sec)->tdata;
if (adjust == NULL)
{
/* Must be a ld -r link. ie. check_relocs hasn't been
called. */
adjust = (long *) bfd_zalloc (obfd, amt);
elf_section_data (sec)->tdata = adjust;
}
memset (adjust, 0, (size_t) amt);
if (sec->output_section == bfd_abs_section_ptr)
continue;
/* Look through the section relocs. */
if ((sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0)
continue;
local_syms = NULL;
symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
sym_hashes = elf_sym_hashes (ibfd);
/* Read the relocations. */
relstart = _bfd_elf64_link_read_relocs (ibfd, sec, (PTR) NULL,
(Elf_Internal_Rela *) NULL,
info->keep_memory);
if (relstart == NULL)
return FALSE;
/* First run through the relocs to check they are sane, and to
determine whether we need to edit this opd section. */
need_edit = FALSE;
offset = 0;
relend = relstart + sec->reloc_count;
for (rel = relstart; rel < relend; rel++)
{
enum elf_ppc_reloc_type r_type;
unsigned long r_symndx;
asection *sym_sec;
struct elf_link_hash_entry *h;
Elf_Internal_Sym *sym;
/* .opd contains a regular array of 24 byte entries. We're
only interested in the reloc pointing to a function entry
point. */
r_type = (enum elf_ppc_reloc_type) ELF64_R_TYPE (rel->r_info);
if (r_type == R_PPC64_TOC)
continue;
if (r_type != R_PPC64_ADDR64)
{
(*_bfd_error_handler)
(_("%s: unexpected reloc type %u in .opd section"),
bfd_archive_filename (ibfd), r_type);
need_edit = FALSE;
break;
}
if (rel + 1 >= relend)
continue;
r_type = (enum elf_ppc_reloc_type) ELF64_R_TYPE ((rel + 1)->r_info);
if (r_type != R_PPC64_TOC)
continue;
if (rel->r_offset != offset)
{
/* If someone messes with .opd alignment then after a
"ld -r" we might have padding in the middle of .opd.
Also, there's nothing to prevent someone putting
something silly in .opd with the assembler. No .opd
optimization for them! */
(*_bfd_error_handler)
(_("%s: .opd is not a regular array of opd entries"),
bfd_archive_filename (ibfd));
need_edit = FALSE;
break;
}
r_symndx = ELF64_R_SYM (rel->r_info);
sym_sec = NULL;
h = NULL;
sym = NULL;
if (r_symndx >= symtab_hdr->sh_info)
{
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
while (h->root.type == bfd_link_hash_indirect
|| h->root.type == bfd_link_hash_warning)
h = (struct elf_link_hash_entry *) h->root.u.i.link;
if (h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak)
sym_sec = h->root.u.def.section;
}
else
{
if (local_syms == NULL)
{
local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
if (local_syms == NULL)
local_syms = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
symtab_hdr->sh_info, 0,
NULL, NULL, NULL);
if (local_syms == NULL)
goto error_free_rel;
}
sym = local_syms + r_symndx;
if ((sym->st_shndx != SHN_UNDEF
&& sym->st_shndx < SHN_LORESERVE)
|| sym->st_shndx > SHN_HIRESERVE)
sym_sec = bfd_section_from_elf_index (ibfd, sym->st_shndx);
}
if (sym_sec == NULL || sym_sec->owner == NULL)
{
(*_bfd_error_handler)
(_("%s: undefined sym `%s' in .opd section"),
bfd_archive_filename (ibfd),
h != NULL ? h->root.root.string : "<local symbol>");
need_edit = FALSE;
break;
}
/* opd entries are always for functions defined in the
current input bfd. If the symbol isn't defined in the
input bfd, then we won't be using the function in this
bfd; It must be defined in a linkonce section in another
bfd, or is weak. It's also possible that we are
discarding the function due to a linker script /DISCARD/,
which we test for via the output_section. */
if (sym_sec->owner != ibfd
|| sym_sec->output_section == bfd_abs_section_ptr)
need_edit = TRUE;
offset += 24;
}
if (need_edit)
{
Elf_Internal_Rela *write_rel;
bfd_byte *rptr, *wptr;
bfd_boolean skip;
/* This seems a waste of time as input .opd sections are all
zeros as generated by gcc, but I suppose there's no reason
this will always be so. We might start putting something in
the third word of .opd entries. */
if ((sec->flags & SEC_IN_MEMORY) == 0)
{
bfd_byte *loc = bfd_alloc (ibfd, sec->_raw_size);
if (loc == NULL
|| !bfd_get_section_contents (ibfd, sec, loc, (bfd_vma) 0,
sec->_raw_size))
{
if (local_syms != NULL
&& symtab_hdr->contents != (unsigned char *) local_syms)
free (local_syms);
error_free_rel:
if (elf_section_data (sec)->relocs != relstart)
free (relstart);
return FALSE;
}
sec->contents = loc;
sec->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
}
elf_section_data (sec)->relocs = relstart;
wptr = sec->contents;
rptr = sec->contents;
write_rel = relstart;
skip = FALSE;
offset = 0;
for (rel = relstart; rel < relend; rel++)
{
if (rel->r_offset == offset)
{
unsigned long r_symndx;
asection *sym_sec;
struct elf_link_hash_entry *h;
Elf_Internal_Sym *sym;
r_symndx = ELF64_R_SYM (rel->r_info);
sym_sec = NULL;
h = NULL;
sym = NULL;
if (r_symndx >= symtab_hdr->sh_info)
{
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
while (h->root.type == bfd_link_hash_indirect
|| h->root.type == bfd_link_hash_warning)
h = (struct elf_link_hash_entry *) h->root.u.i.link;
if (h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak)
sym_sec = h->root.u.def.section;
}
else
{
sym = local_syms + r_symndx;
if ((sym->st_shndx != SHN_UNDEF
&& sym->st_shndx < SHN_LORESERVE)
|| sym->st_shndx > SHN_HIRESERVE)
sym_sec = bfd_section_from_elf_index (ibfd,
sym->st_shndx);
}
skip = (sym_sec->owner != ibfd
|| sym_sec->output_section == bfd_abs_section_ptr);
if (skip)
{
if (h != NULL && sym_sec->owner == ibfd)
{
/* Arrange for the function descriptor sym
to be dropped. */
struct ppc_link_hash_entry *fdh;
struct ppc_link_hash_entry *fh;
fh = (struct ppc_link_hash_entry *) h;
fdh = (struct ppc_link_hash_entry *) fh->oh;
if (fdh == NULL)
{
const char *fd_name;
struct ppc_link_hash_table *htab;
fd_name = h->root.root.string + 1;
htab = ppc_hash_table (info);
fdh = (struct ppc_link_hash_entry *)
elf_link_hash_lookup (&htab->elf, fd_name,
FALSE, FALSE, FALSE);
fdh->is_func_descriptor = 1;
fdh->oh = &fh->elf;
fh->is_func = 1;
fh->oh = &fdh->elf;
}
fdh->elf.root.u.def.value = 0;
fdh->elf.root.u.def.section = sym_sec;
}
}
else
{
/* We'll be keeping this opd entry. */
if (h != NULL)
{
/* Redefine the function descriptor symbol
to this location in the opd section.
We've checked above that opd relocs are
ordered. */
struct ppc_link_hash_entry *fdh;
struct ppc_link_hash_entry *fh;
fh = (struct ppc_link_hash_entry *) h;
fdh = (struct ppc_link_hash_entry *) fh->oh;
if (fdh == NULL)
{
const char *fd_name;
struct ppc_link_hash_table *htab;
fd_name = h->root.root.string + 1;
htab = ppc_hash_table (info);
fdh = (struct ppc_link_hash_entry *)
elf_link_hash_lookup (&htab->elf, fd_name,
FALSE, FALSE, FALSE);
fdh->is_func_descriptor = 1;
fdh->oh = &fh->elf;
fh->is_func = 1;
fh->oh = &fdh->elf;
}
fdh->elf.root.u.def.value = wptr - sec->contents;
}
else
{
/* Local syms are a bit tricky. We could
tweak them as they can be cached, but
we'd need to look through the local syms
for the function descriptor sym which we
don't have at the moment. So keep an
array of adjustments. */
adjust[rel->r_offset / 24] = wptr - rptr;
}
if (wptr != rptr)
memcpy (wptr, rptr, 24);
wptr += 24;
}
rptr += 24;
offset += 24;
}
/* We need to adjust any reloc offsets to point to the
new opd entries. While we're at it, we may as well
remove redundant relocs. */
if (!skip)
{
rel->r_offset += wptr - rptr;
if (write_rel != rel)
memcpy (write_rel, rel, sizeof (*rel));
++write_rel;
}
}
sec->_cooked_size = wptr - sec->contents;
sec->reloc_count = write_rel - relstart;
/* Fudge the size too, as this is used later in
elf_bfd_final_link if we are emitting relocs. */
elf_section_data (sec)->rel_hdr.sh_size
= sec->reloc_count * elf_section_data (sec)->rel_hdr.sh_entsize;
BFD_ASSERT (elf_section_data (sec)->rel_hdr2 == NULL);
}
else if (elf_section_data (sec)->relocs != relstart)
free (relstart);
if (local_syms != NULL
&& symtab_hdr->contents != (unsigned char *) local_syms)
{
if (!info->keep_memory)
free (local_syms);
else
symtab_hdr->contents = (unsigned char *) local_syms;
}
}
return TRUE;
}
/* This is the condition under which ppc64_elf_finish_dynamic_symbol
will be called from elflink.h. If elflink.h doesn't call our
finish_dynamic_symbol routine, we'll need to do something about
initializing any .plt and .got entries in ppc64_elf_relocate_section. */
#define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
((DYN) \
&& ((INFO)->shared \
|| ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
&& ((H)->dynindx != -1 \
|| ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
/* Allocate space in .plt, .got and associated reloc sections for
dynamic relocs. */
static bfd_boolean
allocate_dynrelocs (h, inf)
struct elf_link_hash_entry *h;
PTR inf;
{
struct bfd_link_info *info;
struct ppc_link_hash_table *htab;
asection *s;
struct ppc_link_hash_entry *eh;
struct ppc_dyn_relocs *p;
if (h->root.type == bfd_link_hash_indirect)
return TRUE;
if (h->root.type == bfd_link_hash_warning)
h = (struct elf_link_hash_entry *) h->root.u.i.link;
info = (struct bfd_link_info *) inf;
htab = ppc_hash_table (info);
if (htab->elf.dynamic_sections_created
&& h->plt.refcount > 0
&& h->dynindx != -1)
{
BFD_ASSERT (((struct ppc_link_hash_entry *) h)->is_func_descriptor);
if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
{
/* If this is the first .plt entry, make room for the special
first entry. */
s = htab->splt;
if (s->_raw_size == 0)
s->_raw_size += PLT_INITIAL_ENTRY_SIZE;
h->plt.offset = s->_raw_size;
/* Make room for this entry. */
s->_raw_size += PLT_ENTRY_SIZE;
/* Make room for the .glink code. */
s = htab->sglink;
if (s->_raw_size == 0)
s->_raw_size += GLINK_CALL_STUB_SIZE;
/* We need bigger stubs past index 32767. */
if (s->_raw_size >= GLINK_CALL_STUB_SIZE + 32768*2*4)
s->_raw_size += 4;
s->_raw_size += 2*4;
/* We also need to make an entry in the .rela.plt section. */
s = htab->srelplt;
s->_raw_size += sizeof (Elf64_External_Rela);
}
else
{
h->plt.offset = (bfd_vma) -1;
h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
}
}
else
{
h->plt.offset = (bfd_vma) -1;
h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
}
if (h->got.refcount > 0)
{
bfd_boolean dyn;
/* Make sure this symbol is output as a dynamic symbol.
Undefined weak syms won't yet be marked as dynamic. */
if (h->dynindx == -1
&& (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
{
if (! bfd_elf64_link_record_dynamic_symbol (info, h))
return FALSE;
}
s = htab->sgot;
h->got.offset = s->_raw_size;
s->_raw_size += 8;
dyn = htab->elf.dynamic_sections_created;
if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h))
htab->srelgot->_raw_size += sizeof (Elf64_External_Rela);
}
else
h->got.offset = (bfd_vma) -1;
eh = (struct ppc_link_hash_entry *) h;
if (eh->dyn_relocs == NULL)
return TRUE;
/* In the shared -Bsymbolic case, discard space allocated for
dynamic pc-relative relocs against symbols which turn out to be
defined in regular objects. For the normal shared case, discard
space for relocs that have become local due to symbol visibility
changes. */
if (info->shared)
{
if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
&& ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
|| info->symbolic))
{
struct ppc_dyn_relocs **pp;
for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
{
p->count -= p->pc_count;
p->pc_count = 0;
if (p->count == 0)
*pp = p->next;
else
pp = &p->next;
}
}
}
else
{
/* For the non-shared case, discard space for relocs against
symbols which turn out to need copy relocs or are not
dynamic. */
if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
&& (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
|| (htab->elf.dynamic_sections_created
&& (h->root.type == bfd_link_hash_undefweak
|| h->root.type == bfd_link_hash_undefined))))
{
/* Make sure this symbol is output as a dynamic symbol.
Undefined weak syms won't yet be marked as dynamic. */
if (h->dynindx == -1
&& (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
{
if (! bfd_elf64_link_record_dynamic_symbol (info, h))
return FALSE;
}
/* If that succeeded, we know we'll be keeping all the
relocs. */
if (h->dynindx != -1)
goto keep;
}
eh->dyn_relocs = NULL;
keep: ;
}
/* Finally, allocate space. */
for (p = eh->dyn_relocs; p != NULL; p = p->next)
{
asection *sreloc = elf_section_data (p->sec)->sreloc;
sreloc->_raw_size += p->count * sizeof (Elf64_External_Rela);
}
return TRUE;
}
/* Find any dynamic relocs that apply to read-only sections. */
static bfd_boolean
readonly_dynrelocs (h, inf)
struct elf_link_hash_entry *h;
PTR inf;
{
struct ppc_link_hash_entry *eh;
struct ppc_dyn_relocs *p;
if (h->root.type == bfd_link_hash_warning)
h = (struct elf_link_hash_entry *) h->root.u.i.link;
eh = (struct ppc_link_hash_entry *) h;
for (p = eh->dyn_relocs; p != NULL; p = p->next)
{
asection *s = p->sec->output_section;
if (s != NULL && (s->flags & SEC_READONLY) != 0)
{
struct bfd_link_info *info = (struct bfd_link_info *) inf;
info->flags |= DF_TEXTREL;
/* Not an error, just cut short the traversal. */
return FALSE;
}
}
return TRUE;
}
/* Set the sizes of the dynamic sections. */
static bfd_boolean
ppc64_elf_size_dynamic_sections (output_bfd, info)
bfd *output_bfd ATTRIBUTE_UNUSED;
struct bfd_link_info *info;
{
struct ppc_link_hash_table *htab;
bfd *dynobj;
asection *s;
bfd_boolean relocs;
bfd *ibfd;
htab = ppc_hash_table (info);
dynobj = htab->elf.dynobj;
if (dynobj == NULL)
abort ();
if (htab->elf.dynamic_sections_created)
{
/* Set the contents of the .interp section to the interpreter. */
if (! info->shared)
{
s = bfd_get_section_by_name (dynobj, ".interp");
if (s == NULL)
abort ();
s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
}
}
/* Set up .got offsets for local syms, and space for local dynamic
relocs. */
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
{
bfd_signed_vma *local_got;
bfd_signed_vma *end_local_got;
bfd_size_type locsymcount;
Elf_Internal_Shdr *symtab_hdr;
asection *srel;
if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
continue;
for (s = ibfd->sections; s != NULL; s = s->next)
{
struct ppc_dyn_relocs *p;
for (p = *((struct ppc_dyn_relocs **)
&elf_section_data (s)->local_dynrel);
p != NULL;
p = p->next)
{
if (!bfd_is_abs_section (p->sec)
&& bfd_is_abs_section (p->sec->output_section))
{
/* Input section has been discarded, either because
it is a copy of a linkonce section or due to
linker script /DISCARD/, so we'll be discarding
the relocs too. */
}
else if (p->count != 0)
{
srel = elf_section_data (p->sec)->sreloc;
srel->_raw_size += p->count * sizeof (Elf64_External_Rela);
if ((p->sec->output_section->flags & SEC_READONLY) != 0)
info->flags |= DF_TEXTREL;
}
}
}
local_got = elf_local_got_refcounts (ibfd);
if (!local_got)
continue;
symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
locsymcount = symtab_hdr->sh_info;
end_local_got = local_got + locsymcount;
s = htab->sgot;
srel = htab->srelgot;
for (; local_got < end_local_got; ++local_got)
{
if (*local_got > 0)
{
*local_got = s->_raw_size;
s->_raw_size += 8;
if (info->shared)
srel->_raw_size += sizeof (Elf64_External_Rela);
}
else
*local_got = (bfd_vma) -1;
}
}
/* Allocate global sym .plt and .got entries, and space for global
sym dynamic relocs. */
elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info);
/* We now have determined the sizes of the various dynamic sections.
Allocate memory for them. */
relocs = FALSE;
for (s = dynobj->sections; s != NULL; s = s->next)
{
if ((s->flags & SEC_LINKER_CREATED) == 0)
continue;
if (s == htab->sbrlt || s == htab->srelbrlt)
/* These haven't been allocated yet; don't strip. */
continue;
else if (s == htab->splt
|| s == htab->sgot
|| s == htab->sglink)
{
/* Strip this section if we don't need it; see the
comment below. */
}
else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
{
if (s->_raw_size == 0)
{
/* If we don't need this section, strip it from the
output file. This is mostly to handle .rela.bss and
.rela.plt. We must create both sections in
create_dynamic_sections, because they must be created
before the linker maps input sections to output
sections. The linker does that before
adjust_dynamic_symbol is called, and it is that
function which decides whether anything needs to go
into these sections. */
}
else
{
if (s != htab->srelplt)
relocs = TRUE;
/* We use the reloc_count field as a counter if we need
to copy relocs into the output file. */
s->reloc_count = 0;
}
}
else
{
/* It's not one of our sections, so don't allocate space. */
continue;
}
if (s->_raw_size == 0)
{
_bfd_strip_section_from_output (info, s);
continue;
}
/* .plt is in the bss section. We don't initialise it. */
if ((s->flags & SEC_LOAD) == 0)
continue;
/* Allocate memory for the section contents. We use bfd_zalloc
here in case unused entries are not reclaimed before the
section's contents are written out. This should not happen,
but this way if it does, we get a R_PPC64_NONE reloc instead
of garbage. */
s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
if (s->contents == NULL)
return FALSE;
}
if (htab->elf.dynamic_sections_created)
{
/* Add some entries to the .dynamic section. We fill in the
values later, in ppc64_elf_finish_dynamic_sections, but we
must add the entries now so that we get the correct size for
the .dynamic section. The DT_DEBUG entry is filled in by the
dynamic linker and used by the debugger. */
#define add_dynamic_entry(TAG, VAL) \
bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
if (!info->shared)
{
if (!add_dynamic_entry (DT_DEBUG, 0))
return FALSE;
}
if (htab->splt != NULL && htab->splt->_raw_size != 0)
{
if (!add_dynamic_entry (DT_PLTGOT, 0)
|| !add_dynamic_entry (DT_PLTRELSZ, 0)
|| !add_dynamic_entry (DT_PLTREL, DT_RELA)
|| !add_dynamic_entry (DT_JMPREL, 0)
|| !add_dynamic_entry (DT_PPC64_GLINK, 0))
return FALSE;
}
if (NO_OPD_RELOCS)
{
if (!add_dynamic_entry (DT_PPC64_OPD, 0)
|| !add_dynamic_entry (DT_PPC64_OPDSZ, 0))
return FALSE;
}
if (relocs)
{
if (!add_dynamic_entry (DT_RELA, 0)
|| !add_dynamic_entry (DT_RELASZ, 0)
|| !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
return FALSE;
/* If any dynamic relocs apply to a read-only section,
then we need a DT_TEXTREL entry. */
if ((info->flags & DF_TEXTREL) == 0)
elf_link_hash_traverse (&htab->elf, readonly_dynrelocs,
(PTR) info);
if ((info->flags & DF_TEXTREL) != 0)
{
if (!add_dynamic_entry (DT_TEXTREL, 0))
return FALSE;
}
}
}
#undef add_dynamic_entry
return TRUE;
}
/* Determine the type of stub needed, if any, for a call. */
static INLINE enum ppc_stub_type
ppc_type_of_stub (input_sec, rel, hash, destination)
asection *input_sec;
const Elf_Internal_Rela *rel;
struct ppc_link_hash_entry **hash;
bfd_vma destination;
{
struct ppc_link_hash_entry *h = *hash;
bfd_vma location;
bfd_vma branch_offset;
bfd_vma max_branch_offset;
unsigned int r_type;
if (h != NULL)
{
if (h->oh != NULL
&& h->oh->plt.offset != (bfd_vma) -1
&& h->oh->dynindx != -1)
{
*hash = (struct ppc_link_hash_entry *) h->oh;
return ppc_stub_plt_call;
}
if (h->elf.root.type == bfd_link_hash_undefweak
|| h->elf.root.type == bfd_link_hash_undefined)
return ppc_stub_none;
}
/* Determine where the call point is. */
location = (input_sec->output_offset
+ input_sec->output_section->vma
+ rel->r_offset);
branch_offset = destination - location;
r_type = ELF64_R_TYPE (rel->r_info);
/* Determine if a long branch stub is needed. */
max_branch_offset = 1 << 25;
if (r_type != (unsigned int) R_PPC64_REL24)
max_branch_offset = 1 << 15;
if (branch_offset + max_branch_offset >= 2 * max_branch_offset)
/* We need a stub. Figure out whether a long_branch or plt_branch
is needed later. */
return ppc_stub_long_branch;
return ppc_stub_none;
}
/* Build a .plt call stub. */
static bfd_byte *
build_plt_stub (obfd, p, offset, glink)
bfd *obfd;
bfd_byte *p;
int offset;
int glink;
{
#define PPC_LO(v) ((v) & 0xffff)
#define PPC_HI(v) (((v) >> 16) & 0xffff)
#define PPC_HA(v) PPC_HI ((v) + 0x8000)
if (glink)
bfd_put_32 (obfd, LD_R2_40R1, p), p += 4;
bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (offset), p), p += 4;
if (!glink)
bfd_put_32 (obfd, STD_R2_40R1, p), p += 4;
bfd_put_32 (obfd, LD_R11_0R12 | PPC_LO (offset), p), p += 4;
if (PPC_HA (offset + 8) != PPC_HA (offset))
bfd_put_32 (obfd, ADDIS_R12_R12_1, p), p += 4;
offset += 8;
bfd_put_32 (obfd, LD_R2_0R12 | PPC_LO (offset), p), p += 4;
if (PPC_HA (offset + 8) != PPC_HA (offset))
bfd_put_32 (obfd, ADDIS_R12_R12_1, p), p += 4;
offset += 8;
bfd_put_32 (obfd, MTCTR_R11, p), p += 4;
bfd_put_32 (obfd, LD_R11_0R12 | PPC_LO (offset), p), p += 4;
bfd_put_32 (obfd, BCTR, p), p += 4;
return p;
}
static bfd_boolean
ppc_build_one_stub (gen_entry, in_arg)
struct bfd_hash_entry *gen_entry;
PTR in_arg;
{
struct ppc_stub_hash_entry *stub_entry;
struct ppc_branch_hash_entry *br_entry;
struct bfd_link_info *info;
struct ppc_link_hash_table *htab;
asection *stub_sec;
bfd *stub_bfd;
bfd_byte *loc;
bfd_byte *p;
unsigned int indx;
bfd_vma off;
int size;
/* Massage our args to the form they really have. */
stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
info = (struct bfd_link_info *) in_arg;
htab = ppc_hash_table (info);
stub_sec = stub_entry->stub_sec;
/* Make a note of the offset within the stubs for this entry. */
stub_entry->stub_offset = stub_sec->_cooked_size;
loc = stub_sec->contents + stub_entry->stub_offset;
stub_bfd = stub_sec->owner;
switch (stub_entry->stub_type)
{
case ppc_stub_long_branch:
/* Branches are relative. This is where we are going to. */
off = (stub_entry->target_value
+ stub_entry->target_section->output_offset
+ stub_entry->target_section->output_section->vma);
/* And this is where we are coming from. */
off -= (stub_entry->stub_offset
+ stub_sec->output_offset
+ stub_sec->output_section->vma);
BFD_ASSERT (off + (1 << 25) < (bfd_vma) (1 << 26));
bfd_put_32 (stub_bfd, (bfd_vma) B_DOT | (off & 0x3fffffc), loc);
size = 4;
break;
case ppc_stub_plt_branch:
br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
stub_entry->root.string + 9,
FALSE, FALSE);
if (br_entry == NULL)
{
(*_bfd_error_handler) (_("can't find branch stub `%s'"),
stub_entry->root.string + 9);
htab->stub_error = TRUE;
return FALSE;
}
off = (stub_entry->target_value
+ stub_entry->target_section->output_offset
+ stub_entry->target_section->output_section->vma);
bfd_put_64 (htab->sbrlt->owner, off,
htab->sbrlt->contents + br_entry->offset);
if (info->shared)
{
/* Create a reloc for the branch lookup table entry. */
Elf_Internal_Rela rela;
bfd_byte *loc;
rela.r_offset = (br_entry->offset
+ htab->sbrlt->output_offset
+ htab->sbrlt->output_section->vma);
rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
rela.r_addend = off;
loc = htab->srelbrlt->contents;
loc += htab->srelbrlt->reloc_count++ * sizeof (Elf64_External_Rela);
bfd_elf64_swap_reloca_out (htab->srelbrlt->owner, &rela, loc);
}
off = (br_entry->offset
+ htab->sbrlt->output_offset
+ htab->sbrlt->output_section->vma
- elf_gp (htab->sbrlt->output_section->owner)
- TOC_BASE_OFF);
if (off + 0x80000000 > 0xffffffff || (off & 7) != 0)
{
(*_bfd_error_handler)
(_("linkage table error against `%s'"),
stub_entry->root.string);
bfd_set_error (bfd_error_bad_value);
htab->stub_error = TRUE;
return FALSE;
}
indx = off;
bfd_put_32 (stub_bfd, (bfd_vma) ADDIS_R12_R2 | PPC_HA (indx), loc);
bfd_put_32 (stub_bfd, (bfd_vma) LD_R11_0R12 | PPC_LO (indx), loc + 4);
bfd_put_32 (stub_bfd, (bfd_vma) MTCTR_R11, loc + 8);
bfd_put_32 (stub_bfd, (bfd_vma) BCTR, loc + 12);
size = 16;
break;
case ppc_stub_plt_call:
/* Do the best we can for shared libraries built without
exporting ".foo" for each "foo". This can happen when symbol
versioning scripts strip all bar a subset of symbols. */
if (stub_entry->h->oh->root.type != bfd_link_hash_defined
&& stub_entry->h->oh->root.type != bfd_link_hash_defweak)
{
/* Point the symbol at the stub. There may be multiple stubs,
we don't really care; The main thing is to make this sym
defined somewhere. */
stub_entry->h->oh->root.type = bfd_link_hash_defined;
stub_entry->h->oh->root.u.def.section = stub_entry->stub_sec;
stub_entry->h->oh->root.u.def.value = stub_entry->stub_offset;
}
/* Now build the stub. */
off = stub_entry->h->elf.plt.offset;
if (off >= (bfd_vma) -2)
abort ();
off &= ~ (bfd_vma) 1;
off += (htab->splt->output_offset
+ htab->splt->output_section->vma
- elf_gp (htab->splt->output_section->owner)
- TOC_BASE_OFF);
if (off + 0x80000000 > 0xffffffff || (off & 7) != 0)
{
(*_bfd_error_handler)
(_("linkage table error against `%s'"),
stub_entry->h->elf.root.root.string);
bfd_set_error (bfd_error_bad_value);
htab->stub_error = TRUE;
return FALSE;
}
p = build_plt_stub (stub_bfd, loc, (int) off, 0);
size = p - loc;
break;
default:
BFD_FAIL ();
return FALSE;
}
stub_sec->_cooked_size += size;
return TRUE;
}
/* As above, but don't actually build the stub. Just bump offset so
we know stub section sizes, and select plt_branch stubs where
long_branch stubs won't do. */
static bfd_boolean
ppc_size_one_stub (gen_entry, in_arg)
struct bfd_hash_entry *gen_entry;
PTR in_arg;
{
struct ppc_stub_hash_entry *stub_entry;
struct ppc_link_hash_table *htab;
bfd_vma off;
int size;
/* Massage our args to the form they really have. */
stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
htab = (struct ppc_link_hash_table *) in_arg;
if (stub_entry->stub_type == ppc_stub_plt_call)
{
off = stub_entry->h->elf.plt.offset & ~(bfd_vma) 1;
off += (htab->splt->output_offset
+ htab->splt->output_section->vma
- elf_gp (htab->splt->output_section->owner)
- TOC_BASE_OFF);
size = 28;
if (PPC_HA ((int) off + 16) != PPC_HA ((int) off))
size += 4;
}
else
{
/* ppc_stub_long_branch or ppc_stub_plt_branch. */
stub_entry->stub_type = ppc_stub_long_branch;
size = 4;
off = (stub_entry->target_value
+ stub_entry->target_section->output_offset
+ stub_entry->target_section->output_section->vma);
off -= (stub_entry->stub_sec->_raw_size
+ stub_entry->stub_sec->output_offset
+ stub_entry->stub_sec->output_section->vma);
if (off + (1 << 25) >= (bfd_vma) (1 << 26))
{
struct ppc_branch_hash_entry *br_entry;
br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
stub_entry->root.string + 9,
TRUE, FALSE);
if (br_entry == NULL)
{
(*_bfd_error_handler) (_("can't build branch stub `%s'"),
stub_entry->root.string + 9);
htab->stub_error = TRUE;
return FALSE;
}
if (br_entry->iter != htab->stub_iteration)
{
br_entry->iter = htab->stub_iteration;
br_entry->offset = htab->sbrlt->_raw_size;
htab->sbrlt->_raw_size += 8;
}
stub_entry->stub_type = ppc_stub_plt_branch;
size = 16;
}
}
stub_entry->stub_sec->_raw_size += size;
return TRUE;
}
/* Set up various things so that we can make a list of input sections
for each output section included in the link. Returns -1 on error,
0 when no stubs will be needed, and 1 on success. */
int
ppc64_elf_setup_section_lists (output_bfd, info)
bfd *output_bfd;
struct bfd_link_info *info;
{
bfd *input_bfd;
int top_id, top_index;
asection *section;
asection **input_list, **list;
bfd_size_type amt;
struct ppc_link_hash_table *htab = ppc_hash_table (info);
if (htab->elf.root.creator->flavour != bfd_target_elf_flavour
|| htab->sbrlt == NULL)
return 0;
/* Find the top input section id. */
for (input_bfd = info->input_bfds, top_id = 0;
input_bfd != NULL;
input_bfd = input_bfd->link_next)
{
for (section = input_bfd->sections;
section != NULL;
section = section->next)
{
if (top_id < section->id)
top_id = section->id;
}
}
amt = sizeof (struct map_stub) * (top_id + 1);
htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
if (htab->stub_group == NULL)
return -1;
/* We can't use output_bfd->section_count here to find the top output
section index as some sections may have been removed, and
_bfd_strip_section_from_output doesn't renumber the indices. */
for (section = output_bfd->sections, top_index = 0;
section != NULL;
section = section->next)
{
if (top_index < section->index)
top_index = section->index;
}
htab->top_index = top_index;
amt = sizeof (asection *) * (top_index + 1);
input_list = (asection **) bfd_malloc (amt);
htab->input_list = input_list;
if (input_list == NULL)
return -1;
/* For sections we aren't interested in, mark their entries with a
value we can check later. */
list = input_list + top_index;
do
*list = bfd_abs_section_ptr;
while (list-- != input_list);
for (section = output_bfd->sections;
section != NULL;
section = section->next)
{
if ((section->flags & SEC_CODE) != 0)
input_list[section->index] = NULL;
}
return 1;
}
/* The linker repeatedly calls this function for each input section,
in the order that input sections are linked into output sections.
Build lists of input sections to determine groupings between which
we may insert linker stubs. */
void
ppc64_elf_next_input_section (info, isec)
struct bfd_link_info *info;
asection *isec;
{
struct ppc_link_hash_table *htab = ppc_hash_table (info);
if (isec->output_section->index <= htab->top_index)
{
asection **list = htab->input_list + isec->output_section->index;
if (*list != bfd_abs_section_ptr)
{
/* Steal the link_sec pointer for our list. */
#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
/* This happens to make the list in reverse order,
which is what we want. */
PREV_SEC (isec) = *list;
*list = isec;
}
}
}
/* See whether we can group stub sections together. Grouping stub
sections may result in fewer stubs. More importantly, we need to
put all .init* and .fini* stubs at the beginning of the .init or
.fini output sections respectively, because glibc splits the
_init and _fini functions into multiple parts. Putting a stub in
the middle of a function is not a good idea. */
static void
group_sections (htab, stub_group_size, stubs_always_before_branch)
struct ppc_link_hash_table *htab;
bfd_size_type stub_group_size;
bfd_boolean stubs_always_before_branch;
{
asection **list = htab->input_list + htab->top_index;
do
{
asection *tail = *list;
if (tail == bfd_abs_section_ptr)
continue;
while (tail != NULL)
{
asection *curr;
asection *prev;
bfd_size_type total;
curr = tail;
if (tail->_cooked_size)
total = tail->_cooked_size;
else
total = tail->_raw_size;
while ((prev = PREV_SEC (curr)) != NULL
&& ((total += curr->output_offset - prev->output_offset)
< stub_group_size))
curr = prev;
/* OK, the size from the start of CURR to the end is less
than stub_group_size and thus can be handled by one stub
section. (or the tail section is itself larger than
stub_group_size, in which case we may be toast.) We
should really be keeping track of the total size of stubs
added here, as stubs contribute to the final output
section size. That's a little tricky, and this way will
only break if stubs added make the total size more than
2^25, ie. for the default stub_group_size, if stubs total
more than 2834432 bytes, or over 100000 plt call stubs. */
do
{
prev = PREV_SEC (tail);
/* Set up this stub group. */
htab->stub_group[tail->id].link_sec = curr;
}
while (tail != curr && (tail = prev) != NULL);
/* But wait, there's more! Input sections up to stub_group_size
bytes before the stub section can be handled by it too. */
if (!stubs_always_before_branch)
{
total = 0;
while (prev != NULL
&& ((total += tail->output_offset - prev->output_offset)
< stub_group_size))
{
tail = prev;
prev = PREV_SEC (tail);
htab->stub_group[tail->id].link_sec = curr;
}
}
tail = prev;
}
}
while (list-- != htab->input_list);
free (htab->input_list);
#undef PREV_SEC
}
/* Determine and set the size of the stub section for a final link.
The basic idea here is to examine all the relocations looking for
PC-relative calls to a target that is unreachable with a "bl"
instruction. */
bfd_boolean
ppc64_elf_size_stubs (output_bfd, stub_bfd, info, group_size,
add_stub_section, layout_sections_again)
bfd *output_bfd;
bfd *stub_bfd;
struct bfd_link_info *info;
bfd_signed_vma group_size;
asection * (*add_stub_section) PARAMS ((const char *, asection *));
void (*layout_sections_again) PARAMS ((void));
{
bfd_size_type stub_group_size;
bfd_boolean stubs_always_before_branch;
struct ppc_link_hash_table *htab = ppc_hash_table (info);
/* Stash our params away. */
htab->stub_bfd = stub_bfd;
htab->add_stub_section = add_stub_section;
htab->layout_sections_again = layout_sections_again;
stubs_always_before_branch = group_size < 0;
if (group_size < 0)
stub_group_size = -group_size;
else
stub_group_size = group_size;
if (stub_group_size == 1)
{
/* Default values. */
stub_group_size = 30720000;
if (htab->has_14bit_branch)
stub_group_size = 30000;
}
group_sections (htab, stub_group_size, stubs_always_before_branch);
while (1)
{
bfd *input_bfd;
unsigned int bfd_indx;
asection *stub_sec;
bfd_boolean stub_changed;
htab->stub_iteration += 1;
stub_changed = FALSE;
for (input_bfd = info->input_bfds, bfd_indx = 0;
input_bfd != NULL;
input_bfd = input_bfd->link_next, bfd_indx++)
{
Elf_Internal_Shdr *symtab_hdr;
asection *section;
Elf_Internal_Sym *local_syms = NULL;
/* We'll need the symbol table in a second. */
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
if (symtab_hdr->sh_info == 0)
continue;
/* Walk over each section attached to the input bfd. */
for (section = input_bfd->sections;
section != NULL;
section = section->next)
{
Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
/* If there aren't any relocs, then there's nothing more
to do. */
if ((section->flags & SEC_RELOC) == 0
|| section->reloc_count == 0)
continue;
/* If this section is a link-once section that will be
discarded, then don't create any stubs. */
if (section->output_section == NULL
|| section->output_section->owner != output_bfd)
continue;
/* Get the relocs. */
internal_relocs
= _bfd_elf64_link_read_relocs (input_bfd, section, NULL,
(Elf_Internal_Rela *) NULL,
info->keep_memory);
if (internal_relocs == NULL)
goto error_ret_free_local;
/* Now examine each relocation. */
irela = internal_relocs;
irelaend = irela + section->reloc_count;
for (; irela < irelaend; irela++)
{
unsigned int r_type, r_indx;
enum ppc_stub_type stub_type;
struct ppc_stub_hash_entry *stub_entry;
asection *sym_sec;
bfd_vma sym_value;
bfd_vma destination;
struct ppc_link_hash_entry *hash;
char *stub_name;
const asection *id_sec;
r_type = ELF64_R_TYPE (irela->r_info);
r_indx = ELF64_R_SYM (irela->r_info);
if (r_type >= (unsigned int) R_PPC_max)
{
bfd_set_error (bfd_error_bad_value);
goto error_ret_free_internal;
}
/* Only look for stubs on branch instructions. */
if (r_type != (unsigned int) R_PPC64_REL24
&& r_type != (unsigned int) R_PPC64_REL14
&& r_type != (unsigned int) R_PPC64_REL14_BRTAKEN
&& r_type != (unsigned int) R_PPC64_REL14_BRNTAKEN)
continue;
/* Now determine the call target, its name, value,
section. */
sym_sec = NULL;
sym_value = 0;
destination = 0;
hash = NULL;
if (r_indx < symtab_hdr->sh_info)
{
/* It's a local symbol. */
Elf_Internal_Sym *sym;
Elf_Internal_Shdr *hdr;
if (local_syms == NULL)
{
local_syms
= (Elf_Internal_Sym *) symtab_hdr->contents;
if (local_syms == NULL)
local_syms
= bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
symtab_hdr->sh_info, 0,
NULL, NULL, NULL);
if (local_syms == NULL)
goto error_ret_free_internal;
}
sym = local_syms + r_indx;
hdr = elf_elfsections (input_bfd)[sym->st_shndx];
sym_sec = hdr->bfd_section;
if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
sym_value = sym->st_value;
destination = (sym_value + irela->r_addend
+ sym_sec->output_offset
+ sym_sec->output_section->vma);
}
else
{
/* It's an external symbol. */
int e_indx;
e_indx = r_indx - symtab_hdr->sh_info;
hash = ((struct ppc_link_hash_entry *)
elf_sym_hashes (input_bfd)[e_indx]);
while (hash->elf.root.type == bfd_link_hash_indirect
|| hash->elf.root.type == bfd_link_hash_warning)
hash = ((struct ppc_link_hash_entry *)
hash->elf.root.u.i.link);
if (hash->elf.root.type == bfd_link_hash_defined
|| hash->elf.root.type == bfd_link_hash_defweak)
{
sym_sec = hash->elf.root.u.def.section;
sym_value = hash->elf.root.u.def.value;
if (sym_sec->output_section != NULL)
destination = (sym_value + irela->r_addend
+ sym_sec->output_offset
+ sym_sec->output_section->vma);
}
else if (hash->elf.root.type == bfd_link_hash_undefweak)
;
else if (hash->elf.root.type == bfd_link_hash_undefined)
;
else
{
bfd_set_error (bfd_error_bad_value);
goto error_ret_free_internal;
}
}
/* Determine what (if any) linker stub is needed. */
stub_type = ppc_type_of_stub (section, irela, &hash,
destination);
if (stub_type == ppc_stub_none)
continue;
/* Support for grouping stub sections. */
id_sec = htab->stub_group[section->id].link_sec;
/* Get the name of this stub. */
stub_name = ppc_stub_name (id_sec, sym_sec, hash, irela);
if (!stub_name)
goto error_ret_free_internal;
stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
stub_name, FALSE, FALSE);
if (stub_entry != NULL)
{
/* The proper stub has already been created. */
free (stub_name);
continue;
}
stub_entry = ppc_add_stub (stub_name, section, htab);
if (stub_entry == NULL)
{
free (stub_name);
error_ret_free_internal:
if (elf_section_data (section)->relocs == NULL)
free (internal_relocs);
error_ret_free_local:
if (local_syms != NULL
&& (symtab_hdr->contents
!= (unsigned char *) local_syms))
free (local_syms);
return FALSE;
}
stub_entry->target_value = sym_value;
stub_entry->target_section = sym_sec;
stub_entry->stub_type = stub_type;
stub_entry->h = hash;
stub_changed = TRUE;
}
/* We're done with the internal relocs, free them. */
if (elf_section_data (section)->relocs != internal_relocs)
free (internal_relocs);
}
if (local_syms != NULL
&& symtab_hdr->contents != (unsigned char *) local_syms)
{
if (!info->keep_memory)
free (local_syms);
else
symtab_hdr->contents = (unsigned char *) local_syms;
}
}
if (!stub_changed)
break;
/* OK, we've added some stubs. Find out the new size of the
stub sections. */
for (stub_sec = htab->stub_bfd->sections;
stub_sec != NULL;
stub_sec = stub_sec->next)
{
stub_sec->_raw_size = 0;
stub_sec->_cooked_size = 0;
}
htab->sbrlt->_raw_size = 0;
htab->sbrlt->_cooked_size = 0;
bfd_hash_traverse (&htab->stub_hash_table, ppc_size_one_stub, htab);
/* Ask the linker to do its stuff. */
(*htab->layout_sections_again) ();
}
/* It would be nice to strip .branch_lt from the output if the
section is empty, but it's too late. If we strip sections here,
the dynamic symbol table is corrupted since the section symbol
for the stripped section isn't written. */
return TRUE;
}
/* Called after we have determined section placement. If sections
move, we'll be called again. Provide a value for TOCstart. */
bfd_vma
ppc64_elf_toc (obfd)
bfd *obfd;
{
asection *s;
bfd_vma TOCstart;
/* The TOC consists of sections .got, .toc, .tocbss, .plt in that
order. The TOC starts where the first of these sections starts. */
s = bfd_get_section_by_name (obfd, ".got");
if (s == NULL)
s = bfd_get_section_by_name (obfd, ".toc");
if (s == NULL)
s = bfd_get_section_by_name (obfd, ".tocbss");
if (s == NULL)
s = bfd_get_section_by_name (obfd, ".plt");
if (s == NULL)
{
/* This may happen for
o references to TOC base (SYM@toc / TOC[tc0]) without a
.toc directive
o bad linker script
o --gc-sections and empty TOC sections
FIXME: Warn user? */
/* Look for a likely section. We probably won't even be
using TOCstart. */
for (s = obfd->sections; s != NULL; s = s->next)
if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_READONLY))
== (SEC_ALLOC | SEC_SMALL_DATA))
break;
if (s == NULL)
for (s = obfd->sections; s != NULL; s = s->next)
if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA))
== (SEC_ALLOC | SEC_SMALL_DATA))
break;
if (s == NULL)
for (s = obfd->sections; s != NULL; s = s->next)
if ((s->flags & (SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
break;
if (s == NULL)
for (s = obfd->sections; s != NULL; s = s->next)
if ((s->flags & SEC_ALLOC) == SEC_ALLOC)
break;
}
TOCstart = 0;
if (s != NULL)
TOCstart = s->output_section->vma + s->output_offset;
return TOCstart;
}
/* Build all the stubs associated with the current output file.
The stubs are kept in a hash table attached to the main linker
hash table. This function is called via gldelf64ppc_finish. */
bfd_boolean
ppc64_elf_build_stubs (info)
struct bfd_link_info *info;
{
struct ppc_link_hash_table *htab = ppc_hash_table (info);
asection *stub_sec;
bfd_vma plt_r2;
bfd_byte *p;
for (stub_sec = htab->stub_bfd->sections;
stub_sec != NULL;
stub_sec = stub_sec->next)
{
bfd_size_type size;
/* Allocate memory to hold the linker stubs. */
size = stub_sec->_raw_size;
if (size != 0)
{
stub_sec->contents = (bfd_byte *) bfd_zalloc (htab->stub_bfd, size);
if (stub_sec->contents == NULL)
return FALSE;
}
stub_sec->_cooked_size = 0;
}
if (htab->splt != NULL)
{
unsigned int indx;
/* Build the .glink plt call stub. */
plt_r2 = (htab->splt->output_offset
+ htab->splt->output_section->vma
- elf_gp (htab->splt->output_section->owner)
- TOC_BASE_OFF);
p = htab->sglink->contents;
p = build_plt_stub (htab->sglink->owner, p, (int) plt_r2, 1);
while (p < htab->sglink->contents + GLINK_CALL_STUB_SIZE)
{
bfd_put_32 (htab->sglink->owner, NOP, p);
p += 4;
}
/* Build the .glink lazy link call stubs. */
indx = 0;
while (p < htab->sglink->contents + htab->sglink->_raw_size)
{
if (indx < 0x8000)
{
bfd_put_32 (htab->sglink->owner, LI_R0_0 | indx, p);
p += 4;
}
else
{
bfd_put_32 (htab->sglink->owner, LIS_R0_0 | PPC_HI (indx), p);
p += 4;
bfd_put_32 (htab->sglink->owner, ORI_R0_R0_0 | PPC_LO (indx), p);
p += 4;
}
bfd_put_32 (htab->sglink->owner,
B_DOT | ((htab->sglink->contents - p) & 0x3fffffc), p);
indx++;
p += 4;
}
htab->sglink->_cooked_size = p - htab->sglink->contents;
}
if (htab->sbrlt->_raw_size != 0)
{
htab->sbrlt->contents = (bfd_byte *) bfd_zalloc (htab->sbrlt->owner,
htab->sbrlt->_raw_size);
if (htab->sbrlt->contents == NULL)
return FALSE;
}
/* Build the stubs as directed by the stub hash table. */
bfd_hash_traverse (&htab->stub_hash_table, ppc_build_one_stub, info);
for (stub_sec = htab->stub_bfd->sections;
stub_sec != NULL;
stub_sec = stub_sec->next)
{
if (stub_sec->_raw_size != stub_sec->_cooked_size)
break;
}
if (stub_sec != NULL
|| htab->sglink->_raw_size != htab->sglink->_cooked_size)
{
htab->stub_error = TRUE;
(*_bfd_error_handler) (_("stubs don't match calculated size"));
}
return !htab->stub_error;
}
/* The RELOCATE_SECTION function is called by the ELF backend linker
to handle the relocations for a section.
The relocs are always passed as Rela structures; if the section
actually uses Rel structures, the r_addend field will always be
zero.
This function is responsible for adjust the section contents as
necessary, and (if using Rela relocs and generating a
relocateable output file) adjusting the reloc addend as
necessary.
This function does not have to worry about setting the reloc
address or the reloc symbol index.
LOCAL_SYMS is a pointer to the swapped in local symbols.
LOCAL_SECTIONS is an array giving the section in the input file
corresponding to the st_shndx field of each local symbol.
The global hash table entry for the global symbols can be found
via elf_sym_hashes (input_bfd).
When generating relocateable output, this function must handle
STB_LOCAL/STT_SECTION symbols specially. The output symbol is
going to be the section symbol corresponding to the output
section, which means that the addend must be adjusted
accordingly. */
static bfd_boolean
ppc64_elf_relocate_section (output_bfd, info, input_bfd, input_section,
contents, relocs, local_syms, local_sections)
bfd *output_bfd;
struct bfd_link_info *info;
bfd *input_bfd;
asection *input_section;
bfd_byte *contents;
Elf_Internal_Rela *relocs;
Elf_Internal_Sym *local_syms;
asection **local_sections;
{
struct ppc_link_hash_table *htab;
Elf_Internal_Shdr *symtab_hdr;
struct elf_link_hash_entry **sym_hashes;
Elf_Internal_Rela *rel;
Elf_Internal_Rela *relend;
bfd_vma *local_got_offsets;
bfd_vma TOCstart;
bfd_boolean ret = TRUE;
bfd_boolean is_opd;
/* Disabled until we sort out how ld should choose 'y' vs 'at'. */
bfd_boolean is_power4 = FALSE;
if (info->relocateable)
return TRUE;
/* Initialize howto table if needed. */
if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
ppc_howto_init ();
htab = ppc_hash_table (info);
local_got_offsets = elf_local_got_offsets (input_bfd);
TOCstart = elf_gp (output_bfd);
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
sym_hashes = elf_sym_hashes (input_bfd);
is_opd = elf_section_data (input_section)->tdata != NULL;
rel = relocs;
relend = relocs + input_section->reloc_count;
for (; rel < relend; rel++)
{
enum elf_ppc_reloc_type r_type;
bfd_vma offset;
bfd_vma addend;
bfd_reloc_status_type r;
Elf_Internal_Sym *sym;
asection *sec;
struct elf_link_hash_entry *h;
struct elf_link_hash_entry *fdh;
const char *sym_name;
unsigned long r_symndx;
bfd_vma relocation;
bfd_boolean unresolved_reloc;
bfd_boolean warned;
long insn;
struct ppc_stub_hash_entry *stub_entry;
bfd_vma max_br_offset;
bfd_vma from;
r_type = (enum elf_ppc_reloc_type) ELF64_R_TYPE (rel->r_info);
r_symndx = ELF64_R_SYM (rel->r_info);
offset = rel->r_offset;
addend = rel->r_addend;
r = bfd_reloc_other;
sym = (Elf_Internal_Sym *) 0;
sec = (asection *) 0;
h = (struct elf_link_hash_entry *) 0;
sym_name = (const char *) 0;
unresolved_reloc = FALSE;
warned = FALSE;
if (r_type == R_PPC64_TOC)
{
/* Relocation value is TOC base. Symbol is ignored. */
relocation = TOCstart + TOC_BASE_OFF;
}
else if (r_symndx < symtab_hdr->sh_info)
{
/* It's a local symbol. */
sym = local_syms + r_symndx;
sec = local_sections[r_symndx];
sym_name = "<local symbol>";
relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sec, rel);
/* rel may have changed, update our copy of addend. */
addend = rel->r_addend;
if (elf_section_data (sec) != NULL)
{
long *opd_sym_adjust;
opd_sym_adjust = (long *) elf_section_data (sec)->tdata;
if (opd_sym_adjust != NULL && sym->st_value % 24 == 0)
relocation += opd_sym_adjust[sym->st_value / 24];
}
}
else
{
/* It's a global symbol. */
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
while (h->root.type == bfd_link_hash_indirect
|| h->root.type == bfd_link_hash_warning)
h = (struct elf_link_hash_entry *) h->root.u.i.link;
sym_name = h->root.root.string;
relocation = 0;
if (h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak)
{
sec = h->root.u.def.section;
if (sec->output_section == NULL)
/* Set a flag that will be cleared later if we find a
relocation value for this symbol. output_section
is typically NULL for symbols satisfied by a shared
library. */
unresolved_reloc = TRUE;
else
relocation = (h->root.u.def.value
+ sec->output_section->vma
+ sec->output_offset);
}
else if (h->root.type == bfd_link_hash_undefweak)
;
else if (info->shared
&& (!info->symbolic || info->allow_shlib_undefined)
&& !info->no_undefined
&& ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
;
else
{
if (! ((*info->callbacks->undefined_symbol)
(info, h->root.root.string, input_bfd, input_section,
offset, (!info->shared
|| info->no_undefined
|| ELF_ST_VISIBILITY (h->other)))))
return FALSE;
warned = TRUE;
}
}
/* First handle relocations that tweak non-addend part of insn. */
insn = 0;
switch (r_type)
{
default:
break;
/* Branch taken prediction relocations. */
case R_PPC64_ADDR14_BRTAKEN:
case R_PPC64_REL14_BRTAKEN:
insn = 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
/* Fall thru. */
/* Branch not taken prediction relocations. */
case R_PPC64_ADDR14_BRNTAKEN:
case R_PPC64_REL14_BRNTAKEN:
insn |= bfd_get_32 (output_bfd, contents + offset) & ~(0x01 << 21);
if (is_power4)
{
/* Set 'a' bit. This is 0b00010 in BO field for branch
on CR(BI) insns (BO == 001at or 011at), and 0b01000
for branch on CTR insns (BO == 1a00t or 1a01t). */
if ((insn & (0x14 << 21)) == (0x04 << 21))
insn |= 0x02 << 21;
else if ((insn & (0x14 << 21)) == (0x10 << 21))
insn |= 0x08 << 21;
else
break;
}
else
{
from = (offset
+ input_section->output_offset
+ input_section->output_section->vma);
/* Invert 'y' bit if not the default. */
if ((bfd_signed_vma) (relocation + addend - from) < 0)
insn ^= 0x01 << 21;
}
bfd_put_32 (output_bfd, (bfd_vma) insn, contents + offset);
break;
case R_PPC64_REL24:
/* A REL24 branching to a linkage function is followed by a
nop. We replace the nop with a ld in order to restore
the TOC base pointer. Only calls to shared objects need
to alter the TOC base. These are recognized by their
need for a PLT entry. */
if (h != NULL
&& (fdh = ((struct ppc_link_hash_entry *) h)->oh) != NULL
&& fdh->plt.offset != (bfd_vma) -1
&& (stub_entry = ppc_get_stub_entry (input_section, sec, fdh,
rel, htab)) != NULL)
{
bfd_boolean can_plt_call = 0;
if (offset + 8 <= input_section->_cooked_size)
{
insn = bfd_get_32 (input_bfd, contents + offset + 4);
if (insn == NOP
|| insn == CROR_151515 || insn == CROR_313131)
{
bfd_put_32 (input_bfd, (bfd_vma) LD_R2_40R1,
contents + offset + 4);
can_plt_call = 1;
}
}
if (!can_plt_call)
{
/* If this is a plain branch rather than a branch
and link, don't require a nop. */
insn = bfd_get_32 (input_bfd, contents + offset);
if ((insn & 1) == 0)
can_plt_call = 1;
}
if (can_plt_call)
{
relocation = (stub_entry->stub_offset
+ stub_entry->stub_sec->output_offset
+ stub_entry->stub_sec->output_section->vma);
addend = 0;
unresolved_reloc = FALSE;
}
}
if (h != NULL
&& h->root.type == bfd_link_hash_undefweak
&& relocation == 0
&& addend == 0)
{
/* Tweak calls to undefined weak functions to point at a
blr. We can thus call a weak function without first
checking whether the function is defined. We have a
blr at the end of .sfpr. */
BFD_ASSERT (htab->sfpr->_raw_size != 0);
relocation = (htab->sfpr->_raw_size - 4
+ htab->sfpr->output_offset
+ htab->sfpr->output_section->vma);
from = (offset
+ input_section->output_offset
+ input_section->output_section->vma);
/* But let's not be silly about it. If the blr isn't in
reach, just go to the next instruction. */
if (relocation - from + (1 << 25) >= (1 << 26)
|| htab->sfpr->_raw_size == 0)
relocation = from + 4;
}
break;
}
/* Set `addend'. */
switch (r_type)
{
default:
(*_bfd_error_handler)
(_("%s: unknown relocation type %d for symbol %s"),
bfd_archive_filename (input_bfd), (int) r_type, sym_name);
bfd_set_error (bfd_error_bad_value);
ret = FALSE;
continue;
case R_PPC64_NONE:
case R_PPC_GNU_VTINHERIT:
case R_PPC_GNU_VTENTRY:
continue;
/* GOT16 relocations. Like an ADDR16 using the symbol's
address in the GOT as relocation value instead of the
symbols value itself. Also, create a GOT entry for the
symbol and put the symbol value there. */
case R_PPC64_GOT16:
case R_PPC64_GOT16_LO:
case R_PPC64_GOT16_HI:
case R_PPC64_GOT16_HA:
case R_PPC64_GOT16_DS:
case R_PPC64_GOT16_LO_DS:
{
/* Relocation is to the entry for this symbol in the global
offset table. */
bfd_vma off;
if (htab->sgot == NULL)
abort ();
if (h != NULL)
{
bfd_boolean dyn;
off = h->got.offset;
dyn = htab->elf.dynamic_sections_created;
if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h)
|| (info->shared
&& (info->symbolic
|| h->dynindx == -1
|| (h->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL))
&& (h->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR)))
{
/* This is actually a static link, or it is a
-Bsymbolic link and the symbol is defined
locally, or the symbol was forced to be local
because of a version file. We must initialize
this entry in the global offset table. Since the
offset must always be a multiple of 8, we use the
least significant bit to record whether we have
initialized it already.
When doing a dynamic link, we create a .rel.got
relocation entry to initialize the value. This
is done in the finish_dynamic_symbol routine. */
if ((off & 1) != 0)
off &= ~1;
else
{
bfd_put_64 (output_bfd, relocation,
htab->sgot->contents + off);
h->got.offset |= 1;
}
}
else
unresolved_reloc = FALSE;
}
else
{
if (local_got_offsets == NULL)
abort ();
off = local_got_offsets[r_symndx];
/* The offset must always be a multiple of 8. We use
the least significant bit to record whether we have
already processed this entry. */
if ((off & 1) != 0)
off &= ~1;
else
{
bfd_put_64 (output_bfd, relocation,
htab->sgot->contents + off);
if (info->shared)
{
Elf_Internal_Rela outrel;
bfd_byte *loc;
/* We need to generate a R_PPC64_RELATIVE reloc
for the dynamic linker. */
outrel.r_offset = (htab->sgot->output_section->vma
+ htab->sgot->output_offset
+ off);
outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
outrel.r_addend = relocation;
loc = htab->srelgot->contents;
loc += (htab->srelgot->reloc_count++
* sizeof (Elf64_External_Rela));
bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
}
local_got_offsets[r_symndx] |= 1;
}
}
if (off >= (bfd_vma) -2)
abort ();
relocation = htab->sgot->output_offset + off;
/* TOC base (r2) is TOC start plus 0x8000. */
addend -= TOC_BASE_OFF;
}
break;
case R_PPC64_PLT16_HA:
case R_PPC64_PLT16_HI:
case R_PPC64_PLT16_LO:
case R_PPC64_PLT32:
case R_PPC64_PLT64:
/* Relocation is to the entry for this symbol in the
procedure linkage table. */
/* Resolve a PLT reloc against a local symbol directly,
without using the procedure linkage table. */
if (h == NULL)
break;
if (h->plt.offset == (bfd_vma) -1
|| htab->splt == NULL)
{
/* We didn't make a PLT entry for this symbol. This
happens when statically linking PIC code, or when
using -Bsymbolic. */
break;
}
relocation = (htab->splt->output_section->vma
+ htab->splt->output_offset
+ h->plt.offset);
unresolved_reloc = FALSE;
break;
/* TOC16 relocs. We want the offset relative to the TOC base,
which is the address of the start of the TOC plus 0x8000.
The TOC consists of sections .got, .toc, .tocbss, and .plt,
in this order. */
case R_PPC64_TOC16:
case R_PPC64_TOC16_LO:
case R_PPC64_TOC16_HI:
case R_PPC64_TOC16_DS:
case R_PPC64_TOC16_LO_DS:
case R_PPC64_TOC16_HA:
addend -= TOCstart + TOC_BASE_OFF;
break;
/* Relocate against the beginning of the section. */
case R_PPC64_SECTOFF:
case R_PPC64_SECTOFF_LO:
case R_PPC64_SECTOFF_HI:
case R_PPC64_SECTOFF_DS:
case R_PPC64_SECTOFF_LO_DS:
case R_PPC64_SECTOFF_HA:
if (sec != (asection *) 0)
addend -= sec->output_section->vma;
break;
case R_PPC64_REL14:
case R_PPC64_REL14_BRNTAKEN:
case R_PPC64_REL14_BRTAKEN:
case R_PPC64_REL24:
break;
/* Relocations that may need to be propagated if this is a
dynamic object. */
case R_PPC64_REL32:
case R_PPC64_REL64:
case R_PPC64_ADDR14:
case R_PPC64_ADDR14_BRNTAKEN:
case R_PPC64_ADDR14_BRTAKEN:
case R_PPC64_ADDR16:
case R_PPC64_ADDR16_DS:
case R_PPC64_ADDR16_HA:
case R_PPC64_ADDR16_HI:
case R_PPC64_ADDR16_HIGHER:
case R_PPC64_ADDR16_HIGHERA:
case R_PPC64_ADDR16_HIGHEST:
case R_PPC64_ADDR16_HIGHESTA:
case R_PPC64_ADDR16_LO:
case R_PPC64_ADDR16_LO_DS:
case R_PPC64_ADDR24:
case R_PPC64_ADDR30:
case R_PPC64_ADDR32:
case R_PPC64_ADDR64:
case R_PPC64_UADDR16:
case R_PPC64_UADDR32:
case R_PPC64_UADDR64:
/* r_symndx will be zero only for relocs against symbols
from removed linkonce sections, or sections discarded by
a linker script. */
if (r_symndx == 0)
break;
/* Fall thru. */
case R_PPC64_TOC:
if ((input_section->flags & SEC_ALLOC) == 0)
break;
if (NO_OPD_RELOCS && is_opd)
break;
if ((info->shared
&& (IS_ABSOLUTE_RELOC (r_type)
|| (h != NULL
&& h->dynindx != -1
&& (! info->symbolic
|| (h->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR) == 0))))
|| (!info->shared
&& h != NULL
&& h->dynindx != -1
&& (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
&& (((h->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC) != 0
&& (h->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR) == 0)
|| h->root.type == bfd_link_hash_undefweak
|| h->root.type == bfd_link_hash_undefined)))
{
Elf_Internal_Rela outrel;
bfd_boolean skip, relocate;
asection *sreloc;
bfd_byte *loc;
/* When generating a dynamic object, these relocations
are copied into the output file to be resolved at run
time. */
skip = FALSE;
relocate = FALSE;
outrel.r_offset =
_bfd_elf_section_offset (output_bfd, info, input_section,
rel->r_offset);
if (outrel.r_offset == (bfd_vma) -1)
skip = TRUE;
else if (outrel.r_offset == (bfd_vma) -2)
skip = TRUE, relocate = TRUE;
outrel.r_offset += (input_section->output_section->vma
+ input_section->output_offset);
outrel.r_addend = addend;
if (skip)
memset (&outrel, 0, sizeof outrel);
else if (h != NULL
&& h->dynindx != -1
&& !is_opd
&& (!IS_ABSOLUTE_RELOC (r_type)
|| !info->shared
|| !info->symbolic
|| (h->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR) == 0))
outrel.r_info = ELF64_R_INFO (h->dynindx, r_type);
else
{
/* This symbol is local, or marked to become local,
or this is an opd section reloc which must point
at a local function. */
outrel.r_addend += relocation;
relocate = TRUE;
if (r_type == R_PPC64_ADDR64 || r_type == R_PPC64_TOC)
{
if (is_opd && h != NULL)
{
/* Lie about opd entries. This case occurs
when building shared libraries and we
reference a function in another shared
lib. The same thing happens for a weak
definition in an application that's
overridden by a strong definition in a
shared lib. (I believe this is a generic
bug in binutils handling of weak syms.)
In these cases we won't use the opd
entry in this lib. */
unresolved_reloc = FALSE;
}
outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
}
else
{
long indx = 0;
if (bfd_is_abs_section (sec))
;
else if (sec == NULL || sec->owner == NULL)
{
bfd_set_error (bfd_error_bad_value);
return FALSE;
}
else
{
asection *osec;
osec = sec->output_section;
indx = elf_section_data (osec)->dynindx;
/* We are turning this relocation into one
against a section symbol, so subtract out
the output section's address but not the
offset of the input section in the output
section. */
outrel.r_addend -= osec->vma;
}
outrel.r_info = ELF64_R_INFO (indx, r_type);
}
}
sreloc = elf_section_data (input_section)->sreloc;
if (sreloc == NULL)
abort ();
loc = sreloc->contents;
loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
/* If this reloc is against an external symbol, it will
be computed at runtime, so there's no need to do
anything now. */
if (! relocate)
continue;
}
break;
case R_PPC64_COPY:
case R_PPC64_GLOB_DAT:
case R_PPC64_JMP_SLOT:
case R_PPC64_RELATIVE:
/* We shouldn't ever see these dynamic relocs in relocatable
files. */
/* Fall thru */
case R_PPC64_PLTGOT16:
case R_PPC64_PLTGOT16_DS:
case R_PPC64_PLTGOT16_HA:
case R_PPC64_PLTGOT16_HI:
case R_PPC64_PLTGOT16_LO:
case R_PPC64_PLTGOT16_LO_DS:
case R_PPC64_PLTREL32:
case R_PPC64_PLTREL64:
/* These ones haven't been implemented yet. */
(*_bfd_error_handler)
(_("%s: Relocation %s is not supported for symbol %s."),
bfd_archive_filename (input_bfd),
ppc64_elf_howto_table[(int) r_type]->name, sym_name);
bfd_set_error (bfd_error_invalid_operation);
ret = FALSE;
continue;
}
/* Do any further special processing. */
switch (r_type)
{
default:
break;
case R_PPC64_ADDR16_HA:
case R_PPC64_ADDR16_HIGHERA:
case R_PPC64_ADDR16_HIGHESTA:
case R_PPC64_PLT16_HA:
case R_PPC64_TOC16_HA:
case R_PPC64_SECTOFF_HA:
/* It's just possible that this symbol is a weak symbol
that's not actually defined anywhere. In that case,
'sec' would be NULL, and we should leave the symbol
alone (it will be set to zero elsewhere in the link). */
if (sec != NULL)
/* Add 0x10000 if sign bit in 0:15 is set. */
addend += ((relocation + addend) & 0x8000) << 1;
break;
case R_PPC64_ADDR16_DS:
case R_PPC64_ADDR16_LO_DS:
case R_PPC64_GOT16_DS:
case R_PPC64_GOT16_LO_DS:
case R_PPC64_PLT16_LO_DS:
case R_PPC64_SECTOFF_DS:
case R_PPC64_SECTOFF_LO_DS:
case R_PPC64_TOC16_DS:
case R_PPC64_TOC16_LO_DS:
case R_PPC64_PLTGOT16_DS:
case R_PPC64_PLTGOT16_LO_DS:
if (((relocation + addend) & 3) != 0)
{
(*_bfd_error_handler)
(_("%s: error: relocation %s not a multiple of 4"),
bfd_archive_filename (input_bfd),
ppc64_elf_howto_table[(int) r_type]->name);
bfd_set_error (bfd_error_bad_value);
ret = FALSE;
continue;
}
break;
case R_PPC64_REL14:
case R_PPC64_REL14_BRNTAKEN:
case R_PPC64_REL14_BRTAKEN:
max_br_offset = 1 << 15;
goto branch_check;
case R_PPC64_REL24:
max_br_offset = 1 << 25;
branch_check:
/* If the branch is out of reach, then redirect the
call to the local stub for this function. */
from = (offset
+ input_section->output_offset
+ input_section->output_section->vma);
if (relocation + addend - from + max_br_offset >= 2 * max_br_offset
&& (stub_entry = ppc_get_stub_entry (input_section, sec, h,
rel, htab)) != NULL)
{
/* Munge up the value and addend so that we call the stub
rather than the procedure directly. */
relocation = (stub_entry->stub_offset
+ stub_entry->stub_sec->output_offset
+ stub_entry->stub_sec->output_section->vma);
addend = 0;
}
break;
}
/* Dynamic relocs are not propagated for SEC_DEBUGGING sections
because such sections are not SEC_ALLOC and thus ld.so will
not process them. */
if (unresolved_reloc
&& !((input_section->flags & SEC_DEBUGGING) != 0
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
{
(*_bfd_error_handler)
(_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
bfd_archive_filename (input_bfd),
bfd_get_section_name (input_bfd, input_section),
(long) rel->r_offset,
h->root.root.string);
ret = FALSE;
}
r = _bfd_final_link_relocate (ppc64_elf_howto_table[(int) r_type],
input_bfd,
input_section,
contents,
offset,
relocation,
addend);
if (r != bfd_reloc_ok)
{
const char *name;
if (h != NULL)
{
if (h->root.type == bfd_link_hash_undefweak
&& ppc64_elf_howto_table[(int) r_type]->pc_relative)
{
/* Assume this is a call protected by other code that
detects the symbol is undefined. If this is the case,
we can safely ignore the overflow. If not, the
program is hosed anyway, and a little warning isn't
going to help. */
continue;
}
name = h->root.root.string;
}
else
{
name = bfd_elf_string_from_elf_section (input_bfd,
symtab_hdr->sh_link,
sym->st_name);
if (name == NULL)
continue;
if (*name == '\0')
name = bfd_section_name (input_bfd, sec);
}
if (r == bfd_reloc_overflow)
{
if (warned)
continue;
if (!((*info->callbacks->reloc_overflow)
(info, name, ppc64_elf_howto_table[(int) r_type]->name,
rel->r_addend, input_bfd, input_section, offset)))
return FALSE;
}
else
{
(*_bfd_error_handler)
(_("%s(%s+0x%lx): reloc against `%s': error %d"),
bfd_archive_filename (input_bfd),
bfd_get_section_name (input_bfd, input_section),
(long) rel->r_offset, name, (int) r);
ret = FALSE;
}
}
}
return ret;
}
/* Finish up dynamic symbol handling. We set the contents of various
dynamic sections here. */
static bfd_boolean
ppc64_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
bfd *output_bfd;
struct bfd_link_info *info;
struct elf_link_hash_entry *h;
Elf_Internal_Sym *sym;
{
struct ppc_link_hash_table *htab;
bfd *dynobj;
htab = ppc_hash_table (info);
dynobj = htab->elf.dynobj;
if (h->plt.offset != (bfd_vma) -1
&& ((struct ppc_link_hash_entry *) h)->is_func_descriptor)
{
Elf_Internal_Rela rela;
bfd_byte *loc;
/* This symbol has an entry in the procedure linkage table. Set
it up. */
if (htab->splt == NULL
|| htab->srelplt == NULL
|| htab->sglink == NULL)
abort ();
/* Create a JMP_SLOT reloc to inform the dynamic linker to
fill in the PLT entry. */
rela.r_offset = (htab->splt->output_section->vma
+ htab->splt->output_offset
+ h->plt.offset);
rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_JMP_SLOT);
rela.r_addend = 0;
loc = htab->srelplt->contents;
loc += ((h->plt.offset - PLT_INITIAL_ENTRY_SIZE) / PLT_ENTRY_SIZE
* sizeof (Elf64_External_Rela));
bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
}
if (h->got.offset != (bfd_vma) -1)
{
Elf_Internal_Rela rela;
bfd_byte *loc;
/* This symbol has an entry in the global offset table. Set it
up. */
if (htab->sgot == NULL || htab->srelgot == NULL)
abort ();
rela.r_offset = (htab->sgot->output_section->vma
+ htab->sgot->output_offset
+ (h->got.offset &~ (bfd_vma) 1));
/* If this is a static link, or it is a -Bsymbolic link and the
symbol is defined locally or was forced to be local because
of a version file, we just want to emit a RELATIVE reloc.
The entry in the global offset table will already have been
initialized in the relocate_section function. */
if (info->shared
&& (info->symbolic
|| h->dynindx == -1
|| (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
{
BFD_ASSERT((h->got.offset & 1) != 0);
rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
rela.r_addend = (h->root.u.def.value
+ h->root.u.def.section->output_section->vma
+ h->root.u.def.section->output_offset);
}
else
{
BFD_ASSERT ((h->got.offset & 1) == 0);
bfd_put_64 (output_bfd, (bfd_vma) 0,
htab->sgot->contents + h->got.offset);
rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_GLOB_DAT);
rela.r_addend = 0;
}
loc = htab->srelgot->contents;
loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
}
if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
{
Elf_Internal_Rela rela;
bfd_byte *loc;
/* This symbol needs a copy reloc. Set it up. */
if (h->dynindx == -1
|| (h->root.type != bfd_link_hash_defined
&& h->root.type != bfd_link_hash_defweak)
|| htab->srelbss == NULL)
abort ();
rela.r_offset = (h->root.u.def.value
+ h->root.u.def.section->output_section->vma
+ h->root.u.def.section->output_offset);
rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_COPY);
rela.r_addend = 0;
loc = htab->srelbss->contents;
loc += htab->srelbss->reloc_count++ * sizeof (Elf64_External_Rela);
bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
}
/* Mark some specially defined symbols as absolute. */
if (strcmp (h->root.root.string, "_DYNAMIC") == 0)
sym->st_shndx = SHN_ABS;
return TRUE;
}
/* Used to decide how to sort relocs in an optimal manner for the
dynamic linker, before writing them out. */
static enum elf_reloc_type_class
ppc64_elf_reloc_type_class (rela)
const Elf_Internal_Rela *rela;
{
enum elf_ppc_reloc_type r_type;
r_type = (enum elf_ppc_reloc_type) ELF64_R_TYPE (rela->r_info);
switch (r_type)
{
case R_PPC64_RELATIVE:
return reloc_class_relative;
case R_PPC64_JMP_SLOT:
return reloc_class_plt;
case R_PPC64_COPY:
return reloc_class_copy;
default:
return reloc_class_normal;
}
}
/* Finish up the dynamic sections. */
static bfd_boolean
ppc64_elf_finish_dynamic_sections (output_bfd, info)
bfd *output_bfd;
struct bfd_link_info *info;
{
struct ppc_link_hash_table *htab;
bfd *dynobj;
asection *sdyn;
htab = ppc_hash_table (info);
dynobj = htab->elf.dynobj;
sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
if (htab->elf.dynamic_sections_created)
{
Elf64_External_Dyn *dyncon, *dynconend;
if (sdyn == NULL || htab->sgot == NULL)
abort ();
dyncon = (Elf64_External_Dyn *) sdyn->contents;
dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
for (; dyncon < dynconend; dyncon++)
{
Elf_Internal_Dyn dyn;
asection *s;
bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
switch (dyn.d_tag)
{
default:
continue;
case DT_PPC64_GLINK:
dyn.d_un.d_ptr = (htab->sglink->output_section->vma
+ htab->sglink->output_offset);
break;
case DT_PPC64_OPD:
s = bfd_get_section_by_name (output_bfd, ".opd");
if (s != NULL)
dyn.d_un.d_ptr = s->vma;
break;
case DT_PPC64_OPDSZ:
s = bfd_get_section_by_name (output_bfd, ".opd");
if (s != NULL)
dyn.d_un.d_val = s->_raw_size;
break;
case DT_PLTGOT:
dyn.d_un.d_ptr = (htab->splt->output_section->vma
+ htab->splt->output_offset);
break;
case DT_JMPREL:
dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
+ htab->srelplt->output_offset);
break;
case DT_PLTRELSZ:
dyn.d_un.d_val = htab->srelplt->_raw_size;
break;
case DT_RELASZ:
/* Don't count procedure linkage table relocs in the
overall reloc count. */
if (htab->srelplt != NULL)
dyn.d_un.d_val -= htab->srelplt->_raw_size;
break;
}
bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
}
}
if (htab->sgot != NULL && htab->sgot->_raw_size != 0)
{
/* Fill in the first entry in the global offset table.
We use it to hold the link-time TOCbase. */
bfd_put_64 (output_bfd,
elf_gp (output_bfd) + TOC_BASE_OFF,
htab->sgot->contents);
/* Set .got entry size. */
elf_section_data (htab->sgot->output_section)->this_hdr.sh_entsize = 8;
}
if (htab->splt != NULL && htab->splt->_raw_size != 0)
{
/* Set .plt entry size. */
elf_section_data (htab->splt->output_section)->this_hdr.sh_entsize
= PLT_ENTRY_SIZE;
}
return TRUE;
}
#define TARGET_LITTLE_SYM bfd_elf64_powerpcle_vec
#define TARGET_LITTLE_NAME "elf64-powerpcle"
#define TARGET_BIG_SYM bfd_elf64_powerpc_vec
#define TARGET_BIG_NAME "elf64-powerpc"
#define ELF_ARCH bfd_arch_powerpc
#define ELF_MACHINE_CODE EM_PPC64
#define ELF_MAXPAGESIZE 0x10000
#define elf_info_to_howto ppc64_elf_info_to_howto
#ifdef EM_CYGNUS_POWERPC
#define ELF_MACHINE_ALT1 EM_CYGNUS_POWERPC
#endif
#ifdef EM_PPC_OLD
#define ELF_MACHINE_ALT2 EM_PPC_OLD
#endif
#define elf_backend_want_got_sym 0
#define elf_backend_want_plt_sym 0
#define elf_backend_plt_alignment 3
#define elf_backend_plt_not_loaded 1
#define elf_backend_got_symbol_offset 0
#define elf_backend_got_header_size 8
#define elf_backend_plt_header_size PLT_INITIAL_ENTRY_SIZE
#define elf_backend_can_gc_sections 1
#define elf_backend_can_refcount 1
#define elf_backend_rela_normal 1
#define bfd_elf64_bfd_reloc_type_lookup ppc64_elf_reloc_type_lookup
#define bfd_elf64_bfd_merge_private_bfd_data ppc64_elf_merge_private_bfd_data
#define bfd_elf64_bfd_link_hash_table_create ppc64_elf_link_hash_table_create
#define bfd_elf64_bfd_link_hash_table_free ppc64_elf_link_hash_table_free
#define elf_backend_object_p ppc64_elf_object_p
#define elf_backend_create_dynamic_sections ppc64_elf_create_dynamic_sections
#define elf_backend_copy_indirect_symbol ppc64_elf_copy_indirect_symbol
#define elf_backend_check_relocs ppc64_elf_check_relocs
#define elf_backend_gc_mark_hook ppc64_elf_gc_mark_hook
#define elf_backend_gc_sweep_hook ppc64_elf_gc_sweep_hook
#define elf_backend_adjust_dynamic_symbol ppc64_elf_adjust_dynamic_symbol
#define elf_backend_hide_symbol ppc64_elf_hide_symbol
#define elf_backend_always_size_sections ppc64_elf_func_desc_adjust
#define elf_backend_size_dynamic_sections ppc64_elf_size_dynamic_sections
#define elf_backend_relocate_section ppc64_elf_relocate_section
#define elf_backend_finish_dynamic_symbol ppc64_elf_finish_dynamic_symbol
#define elf_backend_reloc_type_class ppc64_elf_reloc_type_class
#define elf_backend_finish_dynamic_sections ppc64_elf_finish_dynamic_sections
#include "elf64-target.h"