mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-21 04:42:53 +08:00
42a4f53d2b
This commit applies all changes made after running the gdb/copyright.py script. Note that one file was flagged by the script, due to an invalid copyright header (gdb/unittests/basic_string_view/element_access/char/empty.cc). As the file was copied from GCC's libstdc++-v3 testsuite, this commit leaves this file untouched for the time being; a patch to fix the header was sent to gcc-patches first. gdb/ChangeLog: Update copyright year range in all GDB files.
418 lines
12 KiB
C
418 lines
12 KiB
C
/* Cell SPU GNU/Linux multi-architecture debugging support.
|
|
Copyright (C) 2009-2019 Free Software Foundation, Inc.
|
|
|
|
Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#include "defs.h"
|
|
#include "gdbcore.h"
|
|
#include "gdbcmd.h"
|
|
#include "arch-utils.h"
|
|
#include "observable.h"
|
|
#include "inferior.h"
|
|
#include "regcache.h"
|
|
#include "symfile.h"
|
|
#include "objfiles.h"
|
|
#include "solib.h"
|
|
#include "solist.h"
|
|
|
|
#include "ppc-tdep.h"
|
|
#include "ppc-linux-tdep.h"
|
|
#include "spu-tdep.h"
|
|
|
|
/* The SPU multi-architecture support target. */
|
|
|
|
static const target_info spu_multiarch_target_info = {
|
|
"spu",
|
|
N_("SPU multi-architecture support."),
|
|
N_("SPU multi-architecture support.")
|
|
};
|
|
|
|
struct spu_multiarch_target final : public target_ops
|
|
{
|
|
const target_info &info () const override
|
|
{ return spu_multiarch_target_info; }
|
|
|
|
strata stratum () const override { return arch_stratum; }
|
|
|
|
void mourn_inferior () override;
|
|
|
|
void fetch_registers (struct regcache *, int) override;
|
|
void store_registers (struct regcache *, int) override;
|
|
|
|
enum target_xfer_status xfer_partial (enum target_object object,
|
|
const char *annex,
|
|
gdb_byte *readbuf,
|
|
const gdb_byte *writebuf,
|
|
ULONGEST offset, ULONGEST len,
|
|
ULONGEST *xfered_len) override;
|
|
|
|
int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
|
|
const gdb_byte *pattern, ULONGEST pattern_len,
|
|
CORE_ADDR *found_addrp) override;
|
|
|
|
int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
|
|
|
|
struct gdbarch *thread_architecture (ptid_t) override;
|
|
};
|
|
|
|
static spu_multiarch_target spu_ops;
|
|
|
|
/* Number of SPE objects loaded into the current inferior. */
|
|
static int spu_nr_solib;
|
|
|
|
/* Stand-alone SPE executable? */
|
|
#define spu_standalone_p() \
|
|
(symfile_objfile && symfile_objfile->obfd \
|
|
&& bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu)
|
|
|
|
/* PPU side system calls. */
|
|
#define INSTR_SC 0x44000002
|
|
#define NR_spu_run 0x0116
|
|
|
|
/* If the PPU thread is currently stopped on a spu_run system call,
|
|
return to FD and ADDR the file handle and NPC parameter address
|
|
used with the system call. Return non-zero if successful. */
|
|
static int
|
|
parse_spufs_run (ptid_t ptid, int *fd, CORE_ADDR *addr)
|
|
{
|
|
enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
|
|
struct gdbarch_tdep *tdep;
|
|
struct regcache *regcache;
|
|
gdb_byte buf[4];
|
|
ULONGEST regval;
|
|
|
|
/* If we're not on PPU, there's nothing to detect. */
|
|
if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_powerpc)
|
|
return 0;
|
|
|
|
/* If we're called too early (e.g. after fork), we cannot
|
|
access the inferior yet. */
|
|
if (find_inferior_ptid (ptid) == NULL)
|
|
return 0;
|
|
|
|
/* Get PPU-side registers. */
|
|
regcache = get_thread_arch_regcache (ptid, target_gdbarch ());
|
|
tdep = gdbarch_tdep (target_gdbarch ());
|
|
|
|
/* Fetch instruction preceding current NIP. */
|
|
{
|
|
scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
|
|
inferior_ptid = ptid;
|
|
regval = target_read_memory (regcache_read_pc (regcache) - 4, buf, 4);
|
|
}
|
|
if (regval != 0)
|
|
return 0;
|
|
/* It should be a "sc" instruction. */
|
|
if (extract_unsigned_integer (buf, 4, byte_order) != INSTR_SC)
|
|
return 0;
|
|
/* System call number should be NR_spu_run. */
|
|
regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum, ®val);
|
|
if (regval != NR_spu_run)
|
|
return 0;
|
|
|
|
/* Register 3 contains fd, register 4 the NPC param pointer. */
|
|
regcache_cooked_read_unsigned (regcache, PPC_ORIG_R3_REGNUM, ®val);
|
|
*fd = (int) regval;
|
|
regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 4, ®val);
|
|
*addr = (CORE_ADDR) regval;
|
|
return 1;
|
|
}
|
|
|
|
/* Find gdbarch for SPU context SPUFS_FD. */
|
|
static struct gdbarch *
|
|
spu_gdbarch (int spufs_fd)
|
|
{
|
|
struct gdbarch_info info;
|
|
gdbarch_info_init (&info);
|
|
info.bfd_arch_info = bfd_lookup_arch (bfd_arch_spu, bfd_mach_spu);
|
|
info.byte_order = BFD_ENDIAN_BIG;
|
|
info.osabi = GDB_OSABI_LINUX;
|
|
info.id = &spufs_fd;
|
|
return gdbarch_find_by_info (info);
|
|
}
|
|
|
|
/* Override the to_thread_architecture routine. */
|
|
struct gdbarch *
|
|
spu_multiarch_target::thread_architecture (ptid_t ptid)
|
|
{
|
|
int spufs_fd;
|
|
CORE_ADDR spufs_addr;
|
|
|
|
if (parse_spufs_run (ptid, &spufs_fd, &spufs_addr))
|
|
return spu_gdbarch (spufs_fd);
|
|
|
|
return beneath ()->thread_architecture (ptid);
|
|
}
|
|
|
|
/* Override the to_region_ok_for_hw_watchpoint routine. */
|
|
|
|
int
|
|
spu_multiarch_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
|
|
{
|
|
/* We cannot watch SPU local store. */
|
|
if (SPUADDR_SPU (addr) != -1)
|
|
return 0;
|
|
|
|
return beneath ()->region_ok_for_hw_watchpoint (addr, len);
|
|
}
|
|
|
|
/* Override the to_fetch_registers routine. */
|
|
|
|
void
|
|
spu_multiarch_target::fetch_registers (struct regcache *regcache, int regno)
|
|
{
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
int spufs_fd;
|
|
CORE_ADDR spufs_addr;
|
|
|
|
/* Since we use functions that rely on inferior_ptid, we need to set and
|
|
restore it. */
|
|
scoped_restore save_ptid
|
|
= make_scoped_restore (&inferior_ptid, regcache->ptid ());
|
|
|
|
/* This version applies only if we're currently in spu_run. */
|
|
if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
|
|
{
|
|
beneath ()->fetch_registers (regcache, regno);
|
|
return;
|
|
}
|
|
|
|
/* We must be stopped on a spu_run system call. */
|
|
if (!parse_spufs_run (inferior_ptid, &spufs_fd, &spufs_addr))
|
|
return;
|
|
|
|
/* The ID register holds the spufs file handle. */
|
|
if (regno == -1 || regno == SPU_ID_REGNUM)
|
|
{
|
|
gdb_byte buf[4];
|
|
store_unsigned_integer (buf, 4, byte_order, spufs_fd);
|
|
regcache->raw_supply (SPU_ID_REGNUM, buf);
|
|
}
|
|
|
|
/* The NPC register is found in PPC memory at SPUFS_ADDR. */
|
|
if (regno == -1 || regno == SPU_PC_REGNUM)
|
|
{
|
|
gdb_byte buf[4];
|
|
|
|
if (target_read (beneath (), TARGET_OBJECT_MEMORY, NULL,
|
|
buf, spufs_addr, sizeof buf) == sizeof buf)
|
|
regcache->raw_supply (SPU_PC_REGNUM, buf);
|
|
}
|
|
|
|
/* The GPRs are found in the "regs" spufs file. */
|
|
if (regno == -1 || (regno >= 0 && regno < SPU_NUM_GPRS))
|
|
{
|
|
gdb_byte buf[16 * SPU_NUM_GPRS];
|
|
char annex[32];
|
|
int i;
|
|
|
|
xsnprintf (annex, sizeof annex, "%d/regs", spufs_fd);
|
|
if (target_read (beneath (), TARGET_OBJECT_SPU, annex,
|
|
buf, 0, sizeof buf) == sizeof buf)
|
|
for (i = 0; i < SPU_NUM_GPRS; i++)
|
|
regcache->raw_supply (i, buf + i*16);
|
|
}
|
|
}
|
|
|
|
/* Override the to_store_registers routine. */
|
|
|
|
void
|
|
spu_multiarch_target::store_registers (struct regcache *regcache, int regno)
|
|
{
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
int spufs_fd;
|
|
CORE_ADDR spufs_addr;
|
|
|
|
/* Since we use functions that rely on inferior_ptid, we need to set and
|
|
restore it. */
|
|
scoped_restore save_ptid
|
|
= make_scoped_restore (&inferior_ptid, regcache->ptid ());
|
|
|
|
/* This version applies only if we're currently in spu_run. */
|
|
if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
|
|
{
|
|
beneath ()->store_registers (regcache, regno);
|
|
return;
|
|
}
|
|
|
|
/* We must be stopped on a spu_run system call. */
|
|
if (!parse_spufs_run (inferior_ptid, &spufs_fd, &spufs_addr))
|
|
return;
|
|
|
|
/* The NPC register is found in PPC memory at SPUFS_ADDR. */
|
|
if (regno == -1 || regno == SPU_PC_REGNUM)
|
|
{
|
|
gdb_byte buf[4];
|
|
regcache->raw_collect (SPU_PC_REGNUM, buf);
|
|
|
|
target_write (beneath (), TARGET_OBJECT_MEMORY, NULL,
|
|
buf, spufs_addr, sizeof buf);
|
|
}
|
|
|
|
/* The GPRs are found in the "regs" spufs file. */
|
|
if (regno == -1 || (regno >= 0 && regno < SPU_NUM_GPRS))
|
|
{
|
|
gdb_byte buf[16 * SPU_NUM_GPRS];
|
|
char annex[32];
|
|
int i;
|
|
|
|
for (i = 0; i < SPU_NUM_GPRS; i++)
|
|
regcache->raw_collect (i, buf + i*16);
|
|
|
|
xsnprintf (annex, sizeof annex, "%d/regs", spufs_fd);
|
|
target_write (beneath (), TARGET_OBJECT_SPU, annex,
|
|
buf, 0, sizeof buf);
|
|
}
|
|
}
|
|
|
|
/* Override the to_xfer_partial routine. */
|
|
|
|
enum target_xfer_status
|
|
spu_multiarch_target::xfer_partial (enum target_object object,
|
|
const char *annex, gdb_byte *readbuf,
|
|
const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
|
|
ULONGEST *xfered_len)
|
|
{
|
|
struct target_ops *ops_beneath = this->beneath ();
|
|
|
|
/* Use the "mem" spufs file to access SPU local store. */
|
|
if (object == TARGET_OBJECT_MEMORY)
|
|
{
|
|
int fd = SPUADDR_SPU (offset);
|
|
CORE_ADDR addr = SPUADDR_ADDR (offset);
|
|
char mem_annex[32], lslr_annex[32];
|
|
gdb_byte buf[32];
|
|
ULONGEST lslr;
|
|
enum target_xfer_status ret;
|
|
|
|
if (fd >= 0)
|
|
{
|
|
xsnprintf (mem_annex, sizeof mem_annex, "%d/mem", fd);
|
|
ret = ops_beneath->xfer_partial (TARGET_OBJECT_SPU,
|
|
mem_annex, readbuf, writebuf,
|
|
addr, len, xfered_len);
|
|
if (ret == TARGET_XFER_OK)
|
|
return ret;
|
|
|
|
/* SPU local store access wraps the address around at the
|
|
local store limit. We emulate this here. To avoid needing
|
|
an extra access to retrieve the LSLR, we only do that after
|
|
trying the original address first, and getting end-of-file. */
|
|
xsnprintf (lslr_annex, sizeof lslr_annex, "%d/lslr", fd);
|
|
memset (buf, 0, sizeof buf);
|
|
if (ops_beneath->xfer_partial (TARGET_OBJECT_SPU,
|
|
lslr_annex, buf, NULL,
|
|
0, sizeof buf, xfered_len)
|
|
!= TARGET_XFER_OK)
|
|
return ret;
|
|
|
|
lslr = strtoulst ((char *) buf, NULL, 16);
|
|
return ops_beneath->xfer_partial (TARGET_OBJECT_SPU,
|
|
mem_annex, readbuf, writebuf,
|
|
addr & lslr, len, xfered_len);
|
|
}
|
|
}
|
|
|
|
return ops_beneath->xfer_partial (object, annex,
|
|
readbuf, writebuf, offset, len, xfered_len);
|
|
}
|
|
|
|
/* Override the to_search_memory routine. */
|
|
int
|
|
spu_multiarch_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
|
|
const gdb_byte *pattern, ULONGEST pattern_len,
|
|
CORE_ADDR *found_addrp)
|
|
{
|
|
/* For SPU local store, always fall back to the simple method. */
|
|
if (SPUADDR_SPU (start_addr) >= 0)
|
|
return simple_search_memory (this, start_addr, search_space_len,
|
|
pattern, pattern_len, found_addrp);
|
|
|
|
return beneath ()->search_memory (start_addr, search_space_len,
|
|
pattern, pattern_len, found_addrp);
|
|
}
|
|
|
|
|
|
/* Push and pop the SPU multi-architecture support target. */
|
|
|
|
static void
|
|
spu_multiarch_activate (void)
|
|
{
|
|
/* If GDB was configured without SPU architecture support,
|
|
we cannot install SPU multi-architecture support either. */
|
|
if (spu_gdbarch (-1) == NULL)
|
|
return;
|
|
|
|
push_target (&spu_ops);
|
|
|
|
/* Make sure the thread architecture is re-evaluated. */
|
|
registers_changed ();
|
|
}
|
|
|
|
static void
|
|
spu_multiarch_deactivate (void)
|
|
{
|
|
unpush_target (&spu_ops);
|
|
|
|
/* Make sure the thread architecture is re-evaluated. */
|
|
registers_changed ();
|
|
}
|
|
|
|
static void
|
|
spu_multiarch_inferior_created (struct target_ops *ops, int from_tty)
|
|
{
|
|
if (spu_standalone_p ())
|
|
spu_multiarch_activate ();
|
|
}
|
|
|
|
static void
|
|
spu_multiarch_solib_loaded (struct so_list *so)
|
|
{
|
|
if (!spu_standalone_p ())
|
|
if (so->abfd && bfd_get_arch (so->abfd) == bfd_arch_spu)
|
|
if (spu_nr_solib++ == 0)
|
|
spu_multiarch_activate ();
|
|
}
|
|
|
|
static void
|
|
spu_multiarch_solib_unloaded (struct so_list *so)
|
|
{
|
|
if (!spu_standalone_p ())
|
|
if (so->abfd && bfd_get_arch (so->abfd) == bfd_arch_spu)
|
|
if (--spu_nr_solib == 0)
|
|
spu_multiarch_deactivate ();
|
|
}
|
|
|
|
void
|
|
spu_multiarch_target::mourn_inferior ()
|
|
{
|
|
beneath ()->mourn_inferior ();
|
|
spu_multiarch_deactivate ();
|
|
}
|
|
|
|
void
|
|
_initialize_spu_multiarch (void)
|
|
{
|
|
/* Install observers to watch for SPU objects. */
|
|
gdb::observers::inferior_created.attach (spu_multiarch_inferior_created);
|
|
gdb::observers::solib_loaded.attach (spu_multiarch_solib_loaded);
|
|
gdb::observers::solib_unloaded.attach (spu_multiarch_solib_unloaded);
|
|
}
|
|
|