mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-06 12:09:26 +08:00
1356 lines
38 KiB
C
1356 lines
38 KiB
C
/* Target-dependent code for the x86-64 for GDB, the GNU debugger.
|
||
|
||
Copyright 2001, 2002, 2003 Free Software Foundation, Inc.
|
||
Contributed by Jiri Smid, SuSE Labs.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
#include "defs.h"
|
||
#include "arch-utils.h"
|
||
#include "block.h"
|
||
#include "dummy-frame.h"
|
||
#include "frame.h"
|
||
#include "frame-base.h"
|
||
#include "frame-unwind.h"
|
||
#include "inferior.h"
|
||
#include "gdbcmd.h"
|
||
#include "gdbcore.h"
|
||
#include "objfiles.h"
|
||
#include "regcache.h"
|
||
#include "regset.h"
|
||
#include "symfile.h"
|
||
|
||
#include "gdb_assert.h"
|
||
|
||
#include "x86-64-tdep.h"
|
||
#include "i387-tdep.h"
|
||
|
||
/* Register information. */
|
||
|
||
struct x86_64_register_info
|
||
{
|
||
char *name;
|
||
struct type **type;
|
||
};
|
||
|
||
static struct x86_64_register_info x86_64_register_info[] =
|
||
{
|
||
{ "rax", &builtin_type_int64 },
|
||
{ "rbx", &builtin_type_int64 },
|
||
{ "rcx", &builtin_type_int64 },
|
||
{ "rdx", &builtin_type_int64 },
|
||
{ "rsi", &builtin_type_int64 },
|
||
{ "rdi", &builtin_type_int64 },
|
||
{ "rbp", &builtin_type_void_data_ptr },
|
||
{ "rsp", &builtin_type_void_data_ptr },
|
||
|
||
/* %r8 is indeed register number 8. */
|
||
{ "r8", &builtin_type_int64 },
|
||
{ "r9", &builtin_type_int64 },
|
||
{ "r10", &builtin_type_int64 },
|
||
{ "r11", &builtin_type_int64 },
|
||
{ "r12", &builtin_type_int64 },
|
||
{ "r13", &builtin_type_int64 },
|
||
{ "r14", &builtin_type_int64 },
|
||
{ "r15", &builtin_type_int64 },
|
||
{ "rip", &builtin_type_void_func_ptr },
|
||
{ "eflags", &builtin_type_int32 },
|
||
{ "ds", &builtin_type_int32 },
|
||
{ "es", &builtin_type_int32 },
|
||
{ "fs", &builtin_type_int32 },
|
||
{ "gs", &builtin_type_int32 },
|
||
|
||
/* %st0 is register number 22. */
|
||
{ "st0", &builtin_type_i387_ext },
|
||
{ "st1", &builtin_type_i387_ext },
|
||
{ "st2", &builtin_type_i387_ext },
|
||
{ "st3", &builtin_type_i387_ext },
|
||
{ "st4", &builtin_type_i387_ext },
|
||
{ "st5", &builtin_type_i387_ext },
|
||
{ "st6", &builtin_type_i387_ext },
|
||
{ "st7", &builtin_type_i387_ext },
|
||
{ "fctrl", &builtin_type_int32 },
|
||
{ "fstat", &builtin_type_int32 },
|
||
{ "ftag", &builtin_type_int32 },
|
||
{ "fiseg", &builtin_type_int32 },
|
||
{ "fioff", &builtin_type_int32 },
|
||
{ "foseg", &builtin_type_int32 },
|
||
{ "fooff", &builtin_type_int32 },
|
||
{ "fop", &builtin_type_int32 },
|
||
|
||
/* %xmm0 is register number 38. */
|
||
{ "xmm0", &builtin_type_v4sf },
|
||
{ "xmm1", &builtin_type_v4sf },
|
||
{ "xmm2", &builtin_type_v4sf },
|
||
{ "xmm3", &builtin_type_v4sf },
|
||
{ "xmm4", &builtin_type_v4sf },
|
||
{ "xmm5", &builtin_type_v4sf },
|
||
{ "xmm6", &builtin_type_v4sf },
|
||
{ "xmm7", &builtin_type_v4sf },
|
||
{ "xmm8", &builtin_type_v4sf },
|
||
{ "xmm9", &builtin_type_v4sf },
|
||
{ "xmm10", &builtin_type_v4sf },
|
||
{ "xmm11", &builtin_type_v4sf },
|
||
{ "xmm12", &builtin_type_v4sf },
|
||
{ "xmm13", &builtin_type_v4sf },
|
||
{ "xmm14", &builtin_type_v4sf },
|
||
{ "xmm15", &builtin_type_v4sf },
|
||
{ "mxcsr", &builtin_type_int32 }
|
||
};
|
||
|
||
/* Total number of registers. */
|
||
#define X86_64_NUM_REGS \
|
||
(sizeof (x86_64_register_info) / sizeof (x86_64_register_info[0]))
|
||
|
||
/* Return the name of register REGNUM. */
|
||
|
||
static const char *
|
||
x86_64_register_name (int regnum)
|
||
{
|
||
if (regnum >= 0 && regnum < X86_64_NUM_REGS)
|
||
return x86_64_register_info[regnum].name;
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Return the GDB type object for the "standard" data type of data in
|
||
register REGNUM. */
|
||
|
||
static struct type *
|
||
x86_64_register_type (struct gdbarch *gdbarch, int regnum)
|
||
{
|
||
gdb_assert (regnum >= 0 && regnum < X86_64_NUM_REGS);
|
||
|
||
return *x86_64_register_info[regnum].type;
|
||
}
|
||
|
||
/* DWARF Register Number Mapping as defined in the System V psABI,
|
||
section 3.6. */
|
||
|
||
static int x86_64_dwarf_regmap[] =
|
||
{
|
||
/* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
|
||
X86_64_RAX_REGNUM, X86_64_RDX_REGNUM, 2, 1,
|
||
4, X86_64_RDI_REGNUM,
|
||
|
||
/* Frame Pointer Register RBP. */
|
||
X86_64_RBP_REGNUM,
|
||
|
||
/* Stack Pointer Register RSP. */
|
||
X86_64_RSP_REGNUM,
|
||
|
||
/* Extended Integer Registers 8 - 15. */
|
||
8, 9, 10, 11, 12, 13, 14, 15,
|
||
|
||
/* Return Address RA. Not mapped. */
|
||
-1,
|
||
|
||
/* SSE Registers 0 - 7. */
|
||
X86_64_XMM0_REGNUM + 0, X86_64_XMM1_REGNUM,
|
||
X86_64_XMM0_REGNUM + 2, X86_64_XMM0_REGNUM + 3,
|
||
X86_64_XMM0_REGNUM + 4, X86_64_XMM0_REGNUM + 5,
|
||
X86_64_XMM0_REGNUM + 6, X86_64_XMM0_REGNUM + 7,
|
||
|
||
/* Extended SSE Registers 8 - 15. */
|
||
X86_64_XMM0_REGNUM + 8, X86_64_XMM0_REGNUM + 9,
|
||
X86_64_XMM0_REGNUM + 10, X86_64_XMM0_REGNUM + 11,
|
||
X86_64_XMM0_REGNUM + 12, X86_64_XMM0_REGNUM + 13,
|
||
X86_64_XMM0_REGNUM + 14, X86_64_XMM0_REGNUM + 15,
|
||
|
||
/* Floating Point Registers 0-7. */
|
||
X86_64_ST0_REGNUM + 0, X86_64_ST0_REGNUM + 1,
|
||
X86_64_ST0_REGNUM + 2, X86_64_ST0_REGNUM + 3,
|
||
X86_64_ST0_REGNUM + 4, X86_64_ST0_REGNUM + 5,
|
||
X86_64_ST0_REGNUM + 6, X86_64_ST0_REGNUM + 7
|
||
};
|
||
|
||
static const int x86_64_dwarf_regmap_len =
|
||
(sizeof (x86_64_dwarf_regmap) / sizeof (x86_64_dwarf_regmap[0]));
|
||
|
||
/* Convert DWARF register number REG to the appropriate register
|
||
number used by GDB. */
|
||
|
||
static int
|
||
x86_64_dwarf_reg_to_regnum (int reg)
|
||
{
|
||
int regnum = -1;
|
||
|
||
if (reg >= 0 || reg < x86_64_dwarf_regmap_len)
|
||
regnum = x86_64_dwarf_regmap[reg];
|
||
|
||
if (regnum == -1)
|
||
warning ("Unmapped DWARF Register #%d encountered\n", reg);
|
||
|
||
return regnum;
|
||
}
|
||
|
||
/* Return nonzero if a value of type TYPE stored in register REGNUM
|
||
needs any special handling. */
|
||
|
||
static int
|
||
x86_64_convert_register_p (int regnum, struct type *type)
|
||
{
|
||
return i386_fp_regnum_p (regnum);
|
||
}
|
||
|
||
|
||
/* The returning of values is done according to the special algorithm.
|
||
Some types are returned in registers an some (big structures) in
|
||
memory. See the System V psABI for details. */
|
||
|
||
#define MAX_CLASSES 4
|
||
|
||
enum x86_64_reg_class
|
||
{
|
||
X86_64_NO_CLASS,
|
||
X86_64_INTEGER_CLASS,
|
||
X86_64_INTEGERSI_CLASS,
|
||
X86_64_SSE_CLASS,
|
||
X86_64_SSESF_CLASS,
|
||
X86_64_SSEDF_CLASS,
|
||
X86_64_SSEUP_CLASS,
|
||
X86_64_X87_CLASS,
|
||
X86_64_X87UP_CLASS,
|
||
X86_64_MEMORY_CLASS
|
||
};
|
||
|
||
/* Return the union class of CLASS1 and CLASS2.
|
||
See the System V psABI for details. */
|
||
|
||
static enum x86_64_reg_class
|
||
merge_classes (enum x86_64_reg_class class1, enum x86_64_reg_class class2)
|
||
{
|
||
/* Rule (a): If both classes are equal, this is the resulting class. */
|
||
if (class1 == class2)
|
||
return class1;
|
||
|
||
/* Rule (b): If one of the classes is NO_CLASS, the resulting class
|
||
is the other class. */
|
||
if (class1 == X86_64_NO_CLASS)
|
||
return class2;
|
||
if (class2 == X86_64_NO_CLASS)
|
||
return class1;
|
||
|
||
/* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
|
||
if (class1 == X86_64_MEMORY_CLASS || class2 == X86_64_MEMORY_CLASS)
|
||
return X86_64_MEMORY_CLASS;
|
||
|
||
/* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
|
||
if ((class1 == X86_64_INTEGERSI_CLASS && class2 == X86_64_SSESF_CLASS)
|
||
|| (class2 == X86_64_INTEGERSI_CLASS && class1 == X86_64_SSESF_CLASS))
|
||
return X86_64_INTEGERSI_CLASS;
|
||
if (class1 == X86_64_INTEGER_CLASS || class1 == X86_64_INTEGERSI_CLASS
|
||
|| class2 == X86_64_INTEGER_CLASS || class2 == X86_64_INTEGERSI_CLASS)
|
||
return X86_64_INTEGER_CLASS;
|
||
|
||
/* Rule (e): If one of the classes is X87 or X87UP class, MEMORY is
|
||
used as class. */
|
||
if (class1 == X86_64_X87_CLASS || class1 == X86_64_X87UP_CLASS
|
||
|| class2 == X86_64_X87_CLASS || class2 == X86_64_X87UP_CLASS)
|
||
return X86_64_MEMORY_CLASS;
|
||
|
||
/* Rule (f): Otherwise class SSE is used. */
|
||
return X86_64_SSE_CLASS;
|
||
}
|
||
|
||
/* Classify the argument type. CLASSES will be filled by the register
|
||
class used to pass each word of the operand. The number of words
|
||
is returned. In case the parameter should be passed in memory, 0
|
||
is returned. As a special case for zero sized containers,
|
||
classes[0] will be NO_CLASS and 1 is returned.
|
||
|
||
See the System V psABI for details. */
|
||
|
||
static int
|
||
classify_argument (struct type *type,
|
||
enum x86_64_reg_class classes[MAX_CLASSES], int bit_offset)
|
||
{
|
||
int bytes = TYPE_LENGTH (type);
|
||
int words = (bytes + 8 - 1) / 8;
|
||
|
||
switch (TYPE_CODE (type))
|
||
{
|
||
case TYPE_CODE_ARRAY:
|
||
case TYPE_CODE_STRUCT:
|
||
case TYPE_CODE_UNION:
|
||
{
|
||
int i;
|
||
enum x86_64_reg_class subclasses[MAX_CLASSES];
|
||
|
||
/* On x86-64 we pass structures larger than 16 bytes on the stack. */
|
||
if (bytes > 16)
|
||
return 0;
|
||
|
||
for (i = 0; i < words; i++)
|
||
classes[i] = X86_64_NO_CLASS;
|
||
|
||
/* Zero sized arrays or structures are NO_CLASS. We return 0
|
||
to signalize memory class, so handle it as special case. */
|
||
if (!words)
|
||
{
|
||
classes[0] = X86_64_NO_CLASS;
|
||
return 1;
|
||
}
|
||
switch (TYPE_CODE (type))
|
||
{
|
||
case TYPE_CODE_STRUCT:
|
||
{
|
||
int j;
|
||
for (j = 0; j < TYPE_NFIELDS (type); ++j)
|
||
{
|
||
int num = classify_argument (TYPE_FIELDS (type)[j].type,
|
||
subclasses,
|
||
(TYPE_FIELDS (type)[j].loc.
|
||
bitpos + bit_offset) % 256);
|
||
if (!num)
|
||
return 0;
|
||
for (i = 0; i < num; i++)
|
||
{
|
||
int pos =
|
||
(TYPE_FIELDS (type)[j].loc.bitpos +
|
||
bit_offset) / 8 / 8;
|
||
classes[i + pos] =
|
||
merge_classes (subclasses[i], classes[i + pos]);
|
||
}
|
||
}
|
||
}
|
||
break;
|
||
case TYPE_CODE_ARRAY:
|
||
{
|
||
int num;
|
||
|
||
num = classify_argument (TYPE_TARGET_TYPE (type),
|
||
subclasses, bit_offset);
|
||
if (!num)
|
||
return 0;
|
||
|
||
/* The partial classes are now full classes. */
|
||
if (subclasses[0] == X86_64_SSESF_CLASS && bytes != 4)
|
||
subclasses[0] = X86_64_SSE_CLASS;
|
||
if (subclasses[0] == X86_64_INTEGERSI_CLASS && bytes != 4)
|
||
subclasses[0] = X86_64_INTEGER_CLASS;
|
||
|
||
for (i = 0; i < words; i++)
|
||
classes[i] = subclasses[i % num];
|
||
}
|
||
break;
|
||
case TYPE_CODE_UNION:
|
||
{
|
||
int j;
|
||
{
|
||
for (j = 0; j < TYPE_NFIELDS (type); ++j)
|
||
{
|
||
int num;
|
||
num = classify_argument (TYPE_FIELDS (type)[j].type,
|
||
subclasses, bit_offset);
|
||
if (!num)
|
||
return 0;
|
||
for (i = 0; i < num; i++)
|
||
classes[i] = merge_classes (subclasses[i], classes[i]);
|
||
}
|
||
}
|
||
}
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
/* Final merger cleanup. */
|
||
for (i = 0; i < words; i++)
|
||
{
|
||
/* If one class is MEMORY, everything should be passed in
|
||
memory. */
|
||
if (classes[i] == X86_64_MEMORY_CLASS)
|
||
return 0;
|
||
|
||
/* The X86_64_SSEUP_CLASS should be always preceeded by
|
||
X86_64_SSE_CLASS. */
|
||
if (classes[i] == X86_64_SSEUP_CLASS
|
||
&& (i == 0 || classes[i - 1] != X86_64_SSE_CLASS))
|
||
classes[i] = X86_64_SSE_CLASS;
|
||
|
||
/* X86_64_X87UP_CLASS should be preceeded by X86_64_X87_CLASS. */
|
||
if (classes[i] == X86_64_X87UP_CLASS
|
||
&& (i == 0 || classes[i - 1] != X86_64_X87_CLASS))
|
||
classes[i] = X86_64_SSE_CLASS;
|
||
}
|
||
return words;
|
||
}
|
||
break;
|
||
case TYPE_CODE_FLT:
|
||
switch (bytes)
|
||
{
|
||
case 4:
|
||
if (!(bit_offset % 64))
|
||
classes[0] = X86_64_SSESF_CLASS;
|
||
else
|
||
classes[0] = X86_64_SSE_CLASS;
|
||
return 1;
|
||
case 8:
|
||
classes[0] = X86_64_SSEDF_CLASS;
|
||
return 1;
|
||
case 16:
|
||
classes[0] = X86_64_X87_CLASS;
|
||
classes[1] = X86_64_X87UP_CLASS;
|
||
return 2;
|
||
}
|
||
break;
|
||
case TYPE_CODE_ENUM:
|
||
case TYPE_CODE_REF:
|
||
case TYPE_CODE_INT:
|
||
case TYPE_CODE_PTR:
|
||
switch (bytes)
|
||
{
|
||
case 1:
|
||
case 2:
|
||
case 4:
|
||
case 8:
|
||
if (bytes * 8 + bit_offset <= 32)
|
||
classes[0] = X86_64_INTEGERSI_CLASS;
|
||
else
|
||
classes[0] = X86_64_INTEGER_CLASS;
|
||
return 1;
|
||
case 16:
|
||
classes[0] = classes[1] = X86_64_INTEGER_CLASS;
|
||
return 2;
|
||
default:
|
||
break;
|
||
}
|
||
case TYPE_CODE_VOID:
|
||
return 0;
|
||
default: /* Avoid warning. */
|
||
break;
|
||
}
|
||
internal_error (__FILE__, __LINE__,
|
||
"classify_argument: unknown argument type");
|
||
}
|
||
|
||
/* Examine the argument and set *INT_NREGS and *SSE_NREGS to the
|
||
number of registers required based on the information passed in
|
||
CLASSES. Return 0 if parameter should be passed in memory. */
|
||
|
||
static int
|
||
examine_argument (enum x86_64_reg_class classes[MAX_CLASSES],
|
||
int n, int *int_nregs, int *sse_nregs)
|
||
{
|
||
*int_nregs = 0;
|
||
*sse_nregs = 0;
|
||
if (!n)
|
||
return 0;
|
||
for (n--; n >= 0; n--)
|
||
switch (classes[n])
|
||
{
|
||
case X86_64_INTEGER_CLASS:
|
||
case X86_64_INTEGERSI_CLASS:
|
||
(*int_nregs)++;
|
||
break;
|
||
case X86_64_SSE_CLASS:
|
||
case X86_64_SSESF_CLASS:
|
||
case X86_64_SSEDF_CLASS:
|
||
(*sse_nregs)++;
|
||
break;
|
||
case X86_64_NO_CLASS:
|
||
case X86_64_SSEUP_CLASS:
|
||
case X86_64_X87_CLASS:
|
||
case X86_64_X87UP_CLASS:
|
||
break;
|
||
case X86_64_MEMORY_CLASS:
|
||
internal_error (__FILE__, __LINE__,
|
||
"examine_argument: unexpected memory class");
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
#define RET_INT_REGS 2
|
||
#define RET_SSE_REGS 2
|
||
|
||
/* Check if the structure in value_type is returned in registers or in
|
||
memory. If this function returns 1, GDB will call
|
||
STORE_STRUCT_RETURN and EXTRACT_STRUCT_VALUE_ADDRESS else
|
||
STORE_RETURN_VALUE and EXTRACT_RETURN_VALUE will be used. */
|
||
|
||
static int
|
||
x86_64_use_struct_convention (int gcc_p, struct type *value_type)
|
||
{
|
||
enum x86_64_reg_class class[MAX_CLASSES];
|
||
int n = classify_argument (value_type, class, 0);
|
||
int needed_intregs;
|
||
int needed_sseregs;
|
||
|
||
return (!n ||
|
||
!examine_argument (class, n, &needed_intregs, &needed_sseregs) ||
|
||
needed_intregs > RET_INT_REGS || needed_sseregs > RET_SSE_REGS);
|
||
}
|
||
|
||
/* Extract from an array REGBUF containing the (raw) register state, a
|
||
function return value of TYPE, and copy that, in virtual format,
|
||
into VALBUF. */
|
||
|
||
static void
|
||
x86_64_extract_return_value (struct type *type, struct regcache *regcache,
|
||
void *valbuf)
|
||
{
|
||
enum x86_64_reg_class class[MAX_CLASSES];
|
||
int n = classify_argument (type, class, 0);
|
||
int needed_intregs;
|
||
int needed_sseregs;
|
||
int intreg = 0;
|
||
int ssereg = 0;
|
||
int offset = 0;
|
||
int ret_int_r[RET_INT_REGS] = { X86_64_RAX_REGNUM, X86_64_RDX_REGNUM };
|
||
int ret_sse_r[RET_SSE_REGS] = { X86_64_XMM0_REGNUM, X86_64_XMM1_REGNUM };
|
||
|
||
if (!n ||
|
||
!examine_argument (class, n, &needed_intregs, &needed_sseregs) ||
|
||
needed_intregs > RET_INT_REGS || needed_sseregs > RET_SSE_REGS)
|
||
{ /* memory class */
|
||
CORE_ADDR addr;
|
||
regcache_cooked_read (regcache, X86_64_RAX_REGNUM, &addr);
|
||
read_memory (addr, valbuf, TYPE_LENGTH (type));
|
||
return;
|
||
}
|
||
else
|
||
{
|
||
int i;
|
||
for (i = 0; i < n; i++)
|
||
{
|
||
switch (class[i])
|
||
{
|
||
case X86_64_NO_CLASS:
|
||
break;
|
||
case X86_64_INTEGER_CLASS:
|
||
regcache_cooked_read (regcache, ret_int_r[(intreg + 1) / 2],
|
||
(char *) valbuf + offset);
|
||
offset += 8;
|
||
intreg += 2;
|
||
break;
|
||
case X86_64_INTEGERSI_CLASS:
|
||
regcache_cooked_read_part (regcache, ret_int_r[intreg / 2],
|
||
0, 4, (char *) valbuf + offset);
|
||
offset += 8;
|
||
intreg++;
|
||
break;
|
||
case X86_64_SSEDF_CLASS:
|
||
case X86_64_SSESF_CLASS:
|
||
case X86_64_SSE_CLASS:
|
||
regcache_cooked_read_part (regcache,
|
||
ret_sse_r[(ssereg + 1) / 2], 0, 8,
|
||
(char *) valbuf + offset);
|
||
offset += 8;
|
||
ssereg += 2;
|
||
break;
|
||
case X86_64_SSEUP_CLASS:
|
||
regcache_cooked_read_part (regcache, ret_sse_r[ssereg / 2],
|
||
0, 8, (char *) valbuf + offset);
|
||
offset += 8;
|
||
ssereg++;
|
||
break;
|
||
case X86_64_X87_CLASS:
|
||
regcache_cooked_read_part (regcache, X86_64_ST0_REGNUM,
|
||
0, 8, (char *) valbuf + offset);
|
||
offset += 8;
|
||
break;
|
||
case X86_64_X87UP_CLASS:
|
||
regcache_cooked_read_part (regcache, X86_64_ST0_REGNUM,
|
||
8, 2, (char *) valbuf + offset);
|
||
offset += 8;
|
||
break;
|
||
case X86_64_MEMORY_CLASS:
|
||
default:
|
||
internal_error (__FILE__, __LINE__,
|
||
"Unexpected argument class");
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
#define INT_REGS 6
|
||
#define SSE_REGS 8
|
||
|
||
static CORE_ADDR
|
||
x86_64_push_arguments (struct regcache *regcache, int nargs,
|
||
struct value **args, CORE_ADDR sp)
|
||
{
|
||
int intreg = 0;
|
||
int ssereg = 0;
|
||
/* For varargs functions we have to pass the total number of SSE
|
||
registers used in %rax. So, let's count this number. */
|
||
int total_sse_args = 0;
|
||
/* Once an SSE/int argument is passed on the stack, all subsequent
|
||
arguments are passed there. */
|
||
int sse_stack = 0;
|
||
int int_stack = 0;
|
||
unsigned total_sp;
|
||
int i;
|
||
char buf[8];
|
||
static int int_parameter_registers[INT_REGS] =
|
||
{
|
||
X86_64_RDI_REGNUM, 4, /* %rdi, %rsi */
|
||
X86_64_RDX_REGNUM, 2, /* %rdx, %rcx */
|
||
8, 9 /* %r8, %r9 */
|
||
};
|
||
/* %xmm0 - %xmm7 */
|
||
static int sse_parameter_registers[SSE_REGS] =
|
||
{
|
||
X86_64_XMM0_REGNUM + 0, X86_64_XMM1_REGNUM,
|
||
X86_64_XMM0_REGNUM + 2, X86_64_XMM0_REGNUM + 3,
|
||
X86_64_XMM0_REGNUM + 4, X86_64_XMM0_REGNUM + 5,
|
||
X86_64_XMM0_REGNUM + 6, X86_64_XMM0_REGNUM + 7,
|
||
};
|
||
int stack_values_count = 0;
|
||
int *stack_values;
|
||
stack_values = alloca (nargs * sizeof (int));
|
||
|
||
for (i = 0; i < nargs; i++)
|
||
{
|
||
enum x86_64_reg_class class[MAX_CLASSES];
|
||
int n = classify_argument (args[i]->type, class, 0);
|
||
int needed_intregs;
|
||
int needed_sseregs;
|
||
|
||
if (!n ||
|
||
!examine_argument (class, n, &needed_intregs, &needed_sseregs))
|
||
{ /* memory class */
|
||
stack_values[stack_values_count++] = i;
|
||
}
|
||
else
|
||
{
|
||
int j;
|
||
int offset = 0;
|
||
|
||
if (intreg / 2 + needed_intregs > INT_REGS)
|
||
int_stack = 1;
|
||
if (ssereg / 2 + needed_sseregs > SSE_REGS)
|
||
sse_stack = 1;
|
||
if (!sse_stack)
|
||
total_sse_args += needed_sseregs;
|
||
|
||
for (j = 0; j < n; j++)
|
||
{
|
||
switch (class[j])
|
||
{
|
||
case X86_64_NO_CLASS:
|
||
break;
|
||
case X86_64_INTEGER_CLASS:
|
||
if (int_stack)
|
||
stack_values[stack_values_count++] = i;
|
||
else
|
||
{
|
||
regcache_cooked_write
|
||
(regcache, int_parameter_registers[(intreg + 1) / 2],
|
||
VALUE_CONTENTS_ALL (args[i]) + offset);
|
||
offset += 8;
|
||
intreg += 2;
|
||
}
|
||
break;
|
||
case X86_64_INTEGERSI_CLASS:
|
||
if (int_stack)
|
||
stack_values[stack_values_count++] = i;
|
||
else
|
||
{
|
||
LONGEST val = extract_signed_integer
|
||
(VALUE_CONTENTS_ALL (args[i]) + offset, 4);
|
||
regcache_cooked_write_signed
|
||
(regcache, int_parameter_registers[intreg / 2], val);
|
||
|
||
offset += 8;
|
||
intreg++;
|
||
}
|
||
break;
|
||
case X86_64_SSEDF_CLASS:
|
||
case X86_64_SSESF_CLASS:
|
||
case X86_64_SSE_CLASS:
|
||
if (sse_stack)
|
||
stack_values[stack_values_count++] = i;
|
||
else
|
||
{
|
||
regcache_cooked_write
|
||
(regcache, sse_parameter_registers[(ssereg + 1) / 2],
|
||
VALUE_CONTENTS_ALL (args[i]) + offset);
|
||
offset += 8;
|
||
ssereg += 2;
|
||
}
|
||
break;
|
||
case X86_64_SSEUP_CLASS:
|
||
if (sse_stack)
|
||
stack_values[stack_values_count++] = i;
|
||
else
|
||
{
|
||
regcache_cooked_write
|
||
(regcache, sse_parameter_registers[ssereg / 2],
|
||
VALUE_CONTENTS_ALL (args[i]) + offset);
|
||
offset += 8;
|
||
ssereg++;
|
||
}
|
||
break;
|
||
case X86_64_X87_CLASS:
|
||
case X86_64_MEMORY_CLASS:
|
||
stack_values[stack_values_count++] = i;
|
||
break;
|
||
case X86_64_X87UP_CLASS:
|
||
break;
|
||
default:
|
||
internal_error (__FILE__, __LINE__,
|
||
"Unexpected argument class");
|
||
}
|
||
intreg += intreg % 2;
|
||
ssereg += ssereg % 2;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* We have to make sure that the stack is 16-byte aligned after the
|
||
setup. Let's calculate size of arguments first, align stack and
|
||
then fill in the arguments. */
|
||
total_sp = 0;
|
||
for (i = 0; i < stack_values_count; i++)
|
||
{
|
||
struct value *arg = args[stack_values[i]];
|
||
int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
|
||
total_sp += (len + 7) & ~7;
|
||
}
|
||
/* total_sp is now a multiple of 8, if it is not a multiple of 16,
|
||
change the stack pointer so that it will be afterwards correctly
|
||
aligned. */
|
||
if (total_sp & 15)
|
||
sp -= 8;
|
||
|
||
/* Push any remaining arguments onto the stack. */
|
||
while (--stack_values_count >= 0)
|
||
{
|
||
struct value *arg = args[stack_values[stack_values_count]];
|
||
int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
|
||
|
||
/* Make sure the stack is 8-byte-aligned. */
|
||
sp -= (len + 7) & ~7;
|
||
write_memory (sp, VALUE_CONTENTS_ALL (arg), len);
|
||
}
|
||
|
||
/* Write number of SSE type arguments to RAX to take care of varargs
|
||
functions. */
|
||
store_unsigned_integer (buf, 8, total_sse_args);
|
||
regcache_cooked_write (regcache, X86_64_RAX_REGNUM, buf);
|
||
|
||
return sp;
|
||
}
|
||
|
||
/* Write into the appropriate registers a function return value stored
|
||
in VALBUF of type TYPE, given in virtual format. */
|
||
|
||
static void
|
||
x86_64_store_return_value (struct type *type, struct regcache *regcache,
|
||
const void *valbuf)
|
||
{
|
||
int len = TYPE_LENGTH (type);
|
||
|
||
/* First handle long doubles. */
|
||
if (TYPE_CODE_FLT == TYPE_CODE (type) && len == 16)
|
||
{
|
||
ULONGEST fstat;
|
||
char buf[FPU_REG_RAW_SIZE];
|
||
|
||
/* Returning floating-point values is a bit tricky. Apart from
|
||
storing the return value in %st(0), we have to simulate the
|
||
state of the FPU at function return point. */
|
||
|
||
/* Convert the value found in VALBUF to the extended
|
||
floating-point format used by the FPU. This is probably
|
||
not exactly how it would happen on the target itself, but
|
||
it is the best we can do. */
|
||
convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
|
||
regcache_raw_write (regcache, X86_64_ST0_REGNUM, buf);
|
||
|
||
/* Set the top of the floating-point register stack to 7. The
|
||
actual value doesn't really matter, but 7 is what a normal
|
||
function return would end up with if the program started out
|
||
with a freshly initialized FPU. */
|
||
regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
|
||
fstat |= (7 << 11);
|
||
regcache_raw_write_unsigned (regcache, FSTAT_REGNUM, fstat);
|
||
|
||
/* Mark %st(1) through %st(7) as empty. Since we set the top of
|
||
the floating-point register stack to 7, the appropriate value
|
||
for the tag word is 0x3fff. */
|
||
regcache_raw_write_unsigned (regcache, FTAG_REGNUM, 0x3fff);
|
||
}
|
||
else if (TYPE_CODE_FLT == TYPE_CODE (type))
|
||
{
|
||
/* Handle double and float variables. */
|
||
regcache_cooked_write_part (regcache, X86_64_XMM0_REGNUM,
|
||
0, len, valbuf);
|
||
}
|
||
/* XXX: What about complex floating point types? */
|
||
else
|
||
{
|
||
int low_size = DEPRECATED_REGISTER_RAW_SIZE (0);
|
||
int high_size = DEPRECATED_REGISTER_RAW_SIZE (1);
|
||
|
||
if (len <= low_size)
|
||
regcache_cooked_write_part (regcache, 0, 0, len, valbuf);
|
||
else if (len <= (low_size + high_size))
|
||
{
|
||
regcache_cooked_write_part (regcache, 0, 0, low_size, valbuf);
|
||
regcache_cooked_write_part (regcache, 1, 0,
|
||
len - low_size,
|
||
(const char *) valbuf + low_size);
|
||
}
|
||
else
|
||
internal_error (__FILE__, __LINE__,
|
||
"Cannot store return value of %d bytes long.", len);
|
||
}
|
||
}
|
||
|
||
|
||
static CORE_ADDR
|
||
x86_64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
|
||
struct regcache *regcache, CORE_ADDR bp_addr,
|
||
int nargs, struct value **args, CORE_ADDR sp,
|
||
int struct_return, CORE_ADDR struct_addr)
|
||
{
|
||
char buf[8];
|
||
|
||
/* Pass arguments. */
|
||
sp = x86_64_push_arguments (regcache, nargs, args, sp);
|
||
|
||
/* Pass "hidden" argument". */
|
||
if (struct_return)
|
||
{
|
||
store_unsigned_integer (buf, 8, struct_addr);
|
||
regcache_cooked_write (regcache, X86_64_RDI_REGNUM, buf);
|
||
}
|
||
|
||
/* Store return address. */
|
||
sp -= 8;
|
||
store_unsigned_integer (buf, 8, bp_addr);
|
||
write_memory (sp, buf, 8);
|
||
|
||
/* Finally, update the stack pointer... */
|
||
store_unsigned_integer (buf, 8, sp);
|
||
regcache_cooked_write (regcache, X86_64_RSP_REGNUM, buf);
|
||
|
||
/* ...and fake a frame pointer. */
|
||
regcache_cooked_write (regcache, X86_64_RBP_REGNUM, buf);
|
||
|
||
return sp + 16;
|
||
}
|
||
|
||
|
||
/* The maximum number of saved registers. This should include %rip. */
|
||
#define X86_64_NUM_SAVED_REGS X86_64_NUM_GREGS
|
||
|
||
struct x86_64_frame_cache
|
||
{
|
||
/* Base address. */
|
||
CORE_ADDR base;
|
||
CORE_ADDR sp_offset;
|
||
CORE_ADDR pc;
|
||
|
||
/* Saved registers. */
|
||
CORE_ADDR saved_regs[X86_64_NUM_SAVED_REGS];
|
||
CORE_ADDR saved_sp;
|
||
|
||
/* Do we have a frame? */
|
||
int frameless_p;
|
||
};
|
||
|
||
/* Allocate and initialize a frame cache. */
|
||
|
||
static struct x86_64_frame_cache *
|
||
x86_64_alloc_frame_cache (void)
|
||
{
|
||
struct x86_64_frame_cache *cache;
|
||
int i;
|
||
|
||
cache = FRAME_OBSTACK_ZALLOC (struct x86_64_frame_cache);
|
||
|
||
/* Base address. */
|
||
cache->base = 0;
|
||
cache->sp_offset = -8;
|
||
cache->pc = 0;
|
||
|
||
/* Saved registers. We initialize these to -1 since zero is a valid
|
||
offset (that's where %rbp is supposed to be stored). */
|
||
for (i = 0; i < X86_64_NUM_SAVED_REGS; i++)
|
||
cache->saved_regs[i] = -1;
|
||
cache->saved_sp = 0;
|
||
|
||
/* Frameless until proven otherwise. */
|
||
cache->frameless_p = 1;
|
||
|
||
return cache;
|
||
}
|
||
|
||
/* Do a limited analysis of the prologue at PC and update CACHE
|
||
accordingly. Bail out early if CURRENT_PC is reached. Return the
|
||
address where the analysis stopped.
|
||
|
||
We will handle only functions beginning with:
|
||
|
||
pushq %rbp 0x55
|
||
movq %rsp, %rbp 0x48 0x89 0xe5
|
||
|
||
Any function that doesn't start with this sequence will be assumed
|
||
to have no prologue and thus no valid frame pointer in %rbp. */
|
||
|
||
static CORE_ADDR
|
||
x86_64_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
|
||
struct x86_64_frame_cache *cache)
|
||
{
|
||
static unsigned char proto[3] = { 0x48, 0x89, 0xe5 };
|
||
unsigned char buf[3];
|
||
unsigned char op;
|
||
|
||
if (current_pc <= pc)
|
||
return current_pc;
|
||
|
||
op = read_memory_unsigned_integer (pc, 1);
|
||
|
||
if (op == 0x55) /* pushq %rbp */
|
||
{
|
||
/* Take into account that we've executed the `pushq %rbp' that
|
||
starts this instruction sequence. */
|
||
cache->saved_regs[X86_64_RBP_REGNUM] = 0;
|
||
cache->sp_offset += 8;
|
||
|
||
/* If that's all, return now. */
|
||
if (current_pc <= pc + 1)
|
||
return current_pc;
|
||
|
||
/* Check for `movq %rsp, %rbp'. */
|
||
read_memory (pc + 1, buf, 3);
|
||
if (memcmp (buf, proto, 3) != 0)
|
||
return pc + 1;
|
||
|
||
/* OK, we actually have a frame. */
|
||
cache->frameless_p = 0;
|
||
return pc + 4;
|
||
}
|
||
|
||
return pc;
|
||
}
|
||
|
||
/* Return PC of first real instruction. */
|
||
|
||
static CORE_ADDR
|
||
x86_64_skip_prologue (CORE_ADDR start_pc)
|
||
{
|
||
struct x86_64_frame_cache cache;
|
||
CORE_ADDR pc;
|
||
|
||
pc = x86_64_analyze_prologue (start_pc, 0xffffffffffffffff, &cache);
|
||
if (cache.frameless_p)
|
||
return start_pc;
|
||
|
||
return pc;
|
||
}
|
||
|
||
|
||
/* Normal frames. */
|
||
|
||
static struct x86_64_frame_cache *
|
||
x86_64_frame_cache (struct frame_info *next_frame, void **this_cache)
|
||
{
|
||
struct x86_64_frame_cache *cache;
|
||
char buf[8];
|
||
int i;
|
||
|
||
if (*this_cache)
|
||
return *this_cache;
|
||
|
||
cache = x86_64_alloc_frame_cache ();
|
||
*this_cache = cache;
|
||
|
||
frame_unwind_register (next_frame, X86_64_RBP_REGNUM, buf);
|
||
cache->base = extract_unsigned_integer (buf, 8);
|
||
if (cache->base == 0)
|
||
return cache;
|
||
|
||
/* For normal frames, %rip is stored at 8(%rbp). */
|
||
cache->saved_regs[X86_64_RIP_REGNUM] = 8;
|
||
|
||
cache->pc = frame_func_unwind (next_frame);
|
||
if (cache->pc != 0)
|
||
x86_64_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
|
||
|
||
if (cache->frameless_p)
|
||
{
|
||
/* We didn't find a valid frame, which means that CACHE->base
|
||
currently holds the frame pointer for our calling frame. If
|
||
we're at the start of a function, or somewhere half-way its
|
||
prologue, the function's frame probably hasn't been fully
|
||
setup yet. Try to reconstruct the base address for the stack
|
||
frame by looking at the stack pointer. For truly "frameless"
|
||
functions this might work too. */
|
||
|
||
frame_unwind_register (next_frame, X86_64_RSP_REGNUM, buf);
|
||
cache->base = extract_unsigned_integer (buf, 8) + cache->sp_offset;
|
||
}
|
||
|
||
/* Now that we have the base address for the stack frame we can
|
||
calculate the value of %rsp in the calling frame. */
|
||
cache->saved_sp = cache->base + 16;
|
||
|
||
/* Adjust all the saved registers such that they contain addresses
|
||
instead of offsets. */
|
||
for (i = 0; i < X86_64_NUM_SAVED_REGS; i++)
|
||
if (cache->saved_regs[i] != -1)
|
||
cache->saved_regs[i] += cache->base;
|
||
|
||
return cache;
|
||
}
|
||
|
||
static void
|
||
x86_64_frame_this_id (struct frame_info *next_frame, void **this_cache,
|
||
struct frame_id *this_id)
|
||
{
|
||
struct x86_64_frame_cache *cache =
|
||
x86_64_frame_cache (next_frame, this_cache);
|
||
|
||
/* This marks the outermost frame. */
|
||
if (cache->base == 0)
|
||
return;
|
||
|
||
(*this_id) = frame_id_build (cache->base + 16, cache->pc);
|
||
}
|
||
|
||
static void
|
||
x86_64_frame_prev_register (struct frame_info *next_frame, void **this_cache,
|
||
int regnum, int *optimizedp,
|
||
enum lval_type *lvalp, CORE_ADDR *addrp,
|
||
int *realnump, void *valuep)
|
||
{
|
||
struct x86_64_frame_cache *cache =
|
||
x86_64_frame_cache (next_frame, this_cache);
|
||
|
||
gdb_assert (regnum >= 0);
|
||
|
||
if (regnum == SP_REGNUM && cache->saved_sp)
|
||
{
|
||
*optimizedp = 0;
|
||
*lvalp = not_lval;
|
||
*addrp = 0;
|
||
*realnump = -1;
|
||
if (valuep)
|
||
{
|
||
/* Store the value. */
|
||
store_unsigned_integer (valuep, 8, cache->saved_sp);
|
||
}
|
||
return;
|
||
}
|
||
|
||
if (regnum < X86_64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
|
||
{
|
||
*optimizedp = 0;
|
||
*lvalp = lval_memory;
|
||
*addrp = cache->saved_regs[regnum];
|
||
*realnump = -1;
|
||
if (valuep)
|
||
{
|
||
/* Read the value in from memory. */
|
||
read_memory (*addrp, valuep,
|
||
register_size (current_gdbarch, regnum));
|
||
}
|
||
return;
|
||
}
|
||
|
||
frame_register_unwind (next_frame, regnum,
|
||
optimizedp, lvalp, addrp, realnump, valuep);
|
||
}
|
||
|
||
static const struct frame_unwind x86_64_frame_unwind =
|
||
{
|
||
NORMAL_FRAME,
|
||
x86_64_frame_this_id,
|
||
x86_64_frame_prev_register
|
||
};
|
||
|
||
static const struct frame_unwind *
|
||
x86_64_frame_sniffer (struct frame_info *next_frame)
|
||
{
|
||
return &x86_64_frame_unwind;
|
||
}
|
||
|
||
|
||
/* Signal trampolines. */
|
||
|
||
/* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
|
||
64-bit variants. This would require using identical frame caches
|
||
on both platforms. */
|
||
|
||
static struct x86_64_frame_cache *
|
||
x86_64_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
|
||
{
|
||
struct x86_64_frame_cache *cache;
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
CORE_ADDR addr;
|
||
char buf[8];
|
||
int i;
|
||
|
||
if (*this_cache)
|
||
return *this_cache;
|
||
|
||
cache = x86_64_alloc_frame_cache ();
|
||
|
||
frame_unwind_register (next_frame, X86_64_RSP_REGNUM, buf);
|
||
cache->base = extract_unsigned_integer (buf, 8) - 8;
|
||
|
||
addr = tdep->sigcontext_addr (next_frame);
|
||
gdb_assert (tdep->sc_reg_offset);
|
||
gdb_assert (tdep->sc_num_regs <= X86_64_NUM_SAVED_REGS);
|
||
for (i = 0; i < tdep->sc_num_regs; i++)
|
||
if (tdep->sc_reg_offset[i] != -1)
|
||
cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
|
||
|
||
*this_cache = cache;
|
||
return cache;
|
||
}
|
||
|
||
static void
|
||
x86_64_sigtramp_frame_this_id (struct frame_info *next_frame,
|
||
void **this_cache, struct frame_id *this_id)
|
||
{
|
||
struct x86_64_frame_cache *cache =
|
||
x86_64_sigtramp_frame_cache (next_frame, this_cache);
|
||
|
||
(*this_id) = frame_id_build (cache->base + 16, frame_pc_unwind (next_frame));
|
||
}
|
||
|
||
static void
|
||
x86_64_sigtramp_frame_prev_register (struct frame_info *next_frame,
|
||
void **this_cache,
|
||
int regnum, int *optimizedp,
|
||
enum lval_type *lvalp, CORE_ADDR *addrp,
|
||
int *realnump, void *valuep)
|
||
{
|
||
/* Make sure we've initialized the cache. */
|
||
x86_64_sigtramp_frame_cache (next_frame, this_cache);
|
||
|
||
x86_64_frame_prev_register (next_frame, this_cache, regnum,
|
||
optimizedp, lvalp, addrp, realnump, valuep);
|
||
}
|
||
|
||
static const struct frame_unwind x86_64_sigtramp_frame_unwind =
|
||
{
|
||
SIGTRAMP_FRAME,
|
||
x86_64_sigtramp_frame_this_id,
|
||
x86_64_sigtramp_frame_prev_register
|
||
};
|
||
|
||
static const struct frame_unwind *
|
||
x86_64_sigtramp_frame_sniffer (struct frame_info *next_frame)
|
||
{
|
||
CORE_ADDR pc = frame_pc_unwind (next_frame);
|
||
char *name;
|
||
|
||
find_pc_partial_function (pc, &name, NULL, NULL);
|
||
if (PC_IN_SIGTRAMP (pc, name))
|
||
{
|
||
gdb_assert (gdbarch_tdep (current_gdbarch)->sigcontext_addr);
|
||
|
||
return &x86_64_sigtramp_frame_unwind;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
|
||
static CORE_ADDR
|
||
x86_64_frame_base_address (struct frame_info *next_frame, void **this_cache)
|
||
{
|
||
struct x86_64_frame_cache *cache =
|
||
x86_64_frame_cache (next_frame, this_cache);
|
||
|
||
return cache->base;
|
||
}
|
||
|
||
static const struct frame_base x86_64_frame_base =
|
||
{
|
||
&x86_64_frame_unwind,
|
||
x86_64_frame_base_address,
|
||
x86_64_frame_base_address,
|
||
x86_64_frame_base_address
|
||
};
|
||
|
||
static struct frame_id
|
||
x86_64_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
||
{
|
||
char buf[8];
|
||
CORE_ADDR fp;
|
||
|
||
frame_unwind_register (next_frame, X86_64_RBP_REGNUM, buf);
|
||
fp = extract_unsigned_integer (buf, 8);
|
||
|
||
return frame_id_build (fp + 16, frame_pc_unwind (next_frame));
|
||
}
|
||
|
||
/* 16 byte align the SP per frame requirements. */
|
||
|
||
static CORE_ADDR
|
||
x86_64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
|
||
{
|
||
return sp & -(CORE_ADDR)16;
|
||
}
|
||
|
||
|
||
/* Supply register REGNUM from the floating-point register set REGSET
|
||
to register cache REGCACHE. If REGNUM is -1, do this for all
|
||
registers in REGSET. */
|
||
|
||
static void
|
||
x86_64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
|
||
int regnum, const void *fpregs, size_t len)
|
||
{
|
||
const struct gdbarch_tdep *tdep = regset->descr;
|
||
|
||
gdb_assert (len == tdep->sizeof_fpregset);
|
||
x86_64_supply_fxsave (regcache, regnum, fpregs);
|
||
}
|
||
|
||
void
|
||
x86_64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
/* AMD64 generally uses `fxsave' instead of `fsave' for saving its
|
||
floating-point registers. */
|
||
tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
|
||
|
||
/* AMD64 has an FPU and 16 SSE registers. */
|
||
tdep->st0_regnum = X86_64_ST0_REGNUM;
|
||
tdep->num_xmm_regs = 16;
|
||
|
||
/* This is what all the fuss is about. */
|
||
set_gdbarch_long_bit (gdbarch, 64);
|
||
set_gdbarch_long_long_bit (gdbarch, 64);
|
||
set_gdbarch_ptr_bit (gdbarch, 64);
|
||
|
||
/* In contrast to the i386, on the x86-64 a `long double' actually
|
||
takes up 128 bits, even though it's still based on the i387
|
||
extended floating-point format which has only 80 significant bits. */
|
||
set_gdbarch_long_double_bit (gdbarch, 128);
|
||
|
||
set_gdbarch_num_regs (gdbarch, X86_64_NUM_REGS);
|
||
set_gdbarch_register_name (gdbarch, x86_64_register_name);
|
||
set_gdbarch_register_type (gdbarch, x86_64_register_type);
|
||
|
||
/* Register numbers of various important registers. */
|
||
set_gdbarch_sp_regnum (gdbarch, X86_64_RSP_REGNUM); /* %rsp */
|
||
set_gdbarch_pc_regnum (gdbarch, X86_64_RIP_REGNUM); /* %rip */
|
||
set_gdbarch_ps_regnum (gdbarch, X86_64_EFLAGS_REGNUM); /* %eflags */
|
||
set_gdbarch_fp0_regnum (gdbarch, X86_64_ST0_REGNUM); /* %st(0) */
|
||
|
||
/* The "default" register numbering scheme for the x86-64 is
|
||
referred to as the "DWARF Register Number Mapping" in the System
|
||
V psABI. The preferred debugging format for all known x86-64
|
||
targets is actually DWARF2, and GCC doesn't seem to support DWARF
|
||
(that is DWARF-1), but we provide the same mapping just in case.
|
||
This mapping is also used for stabs, which GCC does support. */
|
||
set_gdbarch_stab_reg_to_regnum (gdbarch, x86_64_dwarf_reg_to_regnum);
|
||
set_gdbarch_dwarf_reg_to_regnum (gdbarch, x86_64_dwarf_reg_to_regnum);
|
||
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, x86_64_dwarf_reg_to_regnum);
|
||
|
||
/* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
|
||
be in use on any of the supported x86-64 targets. */
|
||
|
||
/* Call dummy code. */
|
||
set_gdbarch_push_dummy_call (gdbarch, x86_64_push_dummy_call);
|
||
set_gdbarch_frame_align (gdbarch, x86_64_frame_align);
|
||
set_gdbarch_frame_red_zone_size (gdbarch, 128);
|
||
|
||
set_gdbarch_convert_register_p (gdbarch, x86_64_convert_register_p);
|
||
set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
|
||
set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
|
||
|
||
set_gdbarch_extract_return_value (gdbarch, x86_64_extract_return_value);
|
||
set_gdbarch_store_return_value (gdbarch, x86_64_store_return_value);
|
||
/* Override, since this is handled by x86_64_extract_return_value. */
|
||
set_gdbarch_extract_struct_value_address (gdbarch, NULL);
|
||
set_gdbarch_use_struct_convention (gdbarch, x86_64_use_struct_convention);
|
||
|
||
set_gdbarch_skip_prologue (gdbarch, x86_64_skip_prologue);
|
||
|
||
/* Avoid wiring in the MMX registers for now. */
|
||
set_gdbarch_num_pseudo_regs (gdbarch, 0);
|
||
tdep->mm0_regnum = -1;
|
||
|
||
set_gdbarch_unwind_dummy_id (gdbarch, x86_64_unwind_dummy_id);
|
||
|
||
/* FIXME: kettenis/20021026: This is ELF-specific. Fine for now,
|
||
since all supported x86-64 targets are ELF, but that might change
|
||
in the future. */
|
||
set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
|
||
|
||
frame_unwind_append_sniffer (gdbarch, x86_64_sigtramp_frame_sniffer);
|
||
frame_unwind_append_sniffer (gdbarch, x86_64_frame_sniffer);
|
||
frame_base_set_default (gdbarch, &x86_64_frame_base);
|
||
}
|
||
|
||
|
||
#define I387_ST0_REGNUM X86_64_ST0_REGNUM
|
||
|
||
/* The 64-bit FXSAVE format differs from the 32-bit format in the
|
||
sense that the instruction pointer and data pointer are simply
|
||
64-bit offsets into the code segment and the data segment instead
|
||
of a selector offset pair. The functions below store the upper 32
|
||
bits of these pointers (instead of just the 16-bits of the segment
|
||
selector). */
|
||
|
||
/* The 64-bit FXSAVE format differs from the 32-bit format in the
|
||
sense that the instruction pointer and data pointer are simply
|
||
64-bit offsets into the code segment and the data segment instead
|
||
of a selector offset pair. The functions below store the upper 32
|
||
bits of these pointers (instead of just the 16-bits of the segment
|
||
selector). */
|
||
|
||
/* Fill register REGNUM in REGCACHE with the appropriate
|
||
floating-point or SSE register value from *FXSAVE. If REGNUM is
|
||
-1, do this for all registers. This function masks off any of the
|
||
reserved bits in *FXSAVE. */
|
||
|
||
void
|
||
x86_64_supply_fxsave (struct regcache *regcache, int regnum,
|
||
const void *fxsave)
|
||
{
|
||
i387_supply_fxsave (regcache, regnum, fxsave);
|
||
|
||
if (fxsave)
|
||
{
|
||
const char *regs = fxsave;
|
||
|
||
if (regnum == -1 || regnum == I387_FISEG_REGNUM)
|
||
regcache_raw_supply (regcache, I387_FISEG_REGNUM, regs + 12);
|
||
if (regnum == -1 || regnum == I387_FOSEG_REGNUM)
|
||
regcache_raw_supply (regcache, I387_FOSEG_REGNUM, regs + 20);
|
||
}
|
||
}
|
||
|
||
/* Fill register REGNUM (if it is a floating-point or SSE register) in
|
||
*FXSAVE with the value in GDB's register cache. If REGNUM is -1, do
|
||
this for all registers. This function doesn't touch any of the
|
||
reserved bits in *FXSAVE. */
|
||
|
||
void
|
||
x86_64_fill_fxsave (char *fxsave, int regnum)
|
||
{
|
||
i387_fill_fxsave (fxsave, regnum);
|
||
|
||
if (regnum == -1 || regnum == I387_FISEG_REGNUM)
|
||
regcache_collect (I387_FISEG_REGNUM, fxsave + 12);
|
||
if (regnum == -1 || regnum == I387_FOSEG_REGNUM)
|
||
regcache_collect (I387_FOSEG_REGNUM, fxsave + 20);
|
||
}
|