binutils-gdb/gas/config/tc-aarch64-ginsn.c
Indu Bhagat 29085f7243 gas: aarch64: add experimental support for SCFI
For synthesizing CFI (SCFI) for hand-written asm, the SCFI machinery in
GAS works on the generic GAS insns (ginsns).  This patch adds support in
the aarch64 backend to create ginsns for a subset of the supported
machine instructions.  The subset includes the minimal necessary
instructions to ensure SCFI correctness:

- Any potential register saves and unsaves.  Hence, process instructions
  belonging to a variety of iclasses involving str, ldr, stp, ldp.
- Any change of flow instructions.  This includes all conditional and
  unconditional branches, call (bl, blr, etc.) and return.
- Most importantly, any instruction that could affect the two registers
  of interest: REG_SP, REG_FP.  This set includes all pre-indexed and
  post-indexed memory operations, with writeback, on the stack.  This
  set must also include other instructions (e.g., arithmetic insns)
  where the destination register is one of the afore-mentioned registers.

With respect to callee-saved registers in Aarch64, FP/Advanced SIMD
registers D8-D15 are included along with the relevant GPRs.  Calculating
offsets for loads and stores especially for Q registers needs special
attention here.

As an example,
   str q8, [sp, #16]
On big-endian:
   STR Qn stores as a 128-bit integer (MSB first), hence, should record
   D8 as being saved at sp+24 rather than sp+16.
On little-endian:
   should record D8 as being saved at sp+16

D8-D15 are the low 64 bits of Q8-Q15, and of Z8-Z15 if SVE is used;
hence, they remain "interesting" for SCFI purposes in such cases.  A CFI
save slot always represents the low 64 bits, regardless of whether a
save occurs on D, Q or Z registers.  Currently, the ginsn creation
machinery can handle D and Q registers on little-endian and big-endian.

Apart from creating ginsn, another key responsibility of the backend is
to make sure there are safeguards in place to detect and alert if an
instruction of interest may have been skipped.  This is done via
aarch64_ginsn_unhandled () (similar to the x86 backend).  This function
, hence, is also intended to alert when future ISA changes may otherwise
render SCFI results incorrect, because of missing ginsns for the newly
added machine instructions.

At this time, becuase of the complexities wrt endianness in handling Z
register usage, skip sve_misc opclass altogether for now.  The SCFI
machinery will error out (using the aarch64_ginsn_unhandled () code
path) though if Z register usage affects correctness.

The current SCFI machinery does not currently synthesize the
PAC-related, aarch64-specific CFI directives: .cfi_b_key_frame.  The
support for this is planned for near future.

SCFI is enabled for ELF targets only.

gas/
	* config/tc-aarch64-ginsn.c: New file.
	* config/tc-aarch64.c (md_assemble): Include tc-aarch64-ginsn.c
	file.  Invoke aarch64_ginsn_new.
	* config/tc-aarch64.h (TARGET_USE_GINSN): Define for SCFI
	enablement.
	(TARGET_USE_SCFI): Likewise.
	(SCFI_MAX_REG_ID): New definition.
	(REG_FP): Likewise.
	(REG_LR): Likewise.
	(REG_SP): Likewise.
	(SCFI_INIT_CFA_OFFSET): Likewise.
	(SCFI_CALLEE_SAVED_REG_P): Likewise.
	(aarch64_scfi_callee_saved_p): New declaration.
2024-07-18 20:54:14 -07:00

964 lines
31 KiB
C

/* tc-aarch64-ginsn.c -- Ginsn generation for the AArch64 ISA
Copyright (C) 2024 Free Software Foundation, Inc.
This file is part of GAS.
GAS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the license, or
(at your option) any later version.
GAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING3. If not,
see <http://www.gnu.org/licenses/>. */
/* This file contains the implementation of the ginsn creation for aarch64
instructions. Most functions will read the aarch64_instruction inst
object, but none should need to modify it. */
#ifdef OBJ_ELF
/* Invalid DWARF register number. Used when WZR / XZR is seen. */
#define GINSN_DW2_REGNUM_INVALID (~0U)
/* Return whether the given register number is a callee-saved register for
SCFI purposes.
Apart from the callee-saved GPRs, SCFI always tracks SP, FP and LR
additionally. As for the FP/Advanced SIMD registers, v8-v15 are
callee-saved. */
bool
aarch64_scfi_callee_saved_p (unsigned int dw2reg_num)
{
/* PS: Ensure SCFI_MAX_REG_ID is the max DWARF register number to cover
all the registers here. */
if (dw2reg_num == REG_SP /* x31. */
|| dw2reg_num == REG_FP /* x29. */
|| dw2reg_num == REG_LR /* x30. */
|| (dw2reg_num >= 19 && dw2reg_num <= 28) /* x19 - x28. */
|| (dw2reg_num >= 72 && dw2reg_num <= 79) /* v8 - v15. */)
return true;
return false;
}
/* Get the DWARF register number for the given OPND. If OPND is an address,
the returned register is the base register. If OPND spans multiple
registers, the returned register is the first of those registers. */
static unsigned int
ginsn_dw2_regnum (aarch64_opnd_info *opnd)
{
enum aarch64_operand_class opnd_class;
unsigned int dw2reg_num = 0;
opnd_class = aarch64_get_operand_class (opnd->type);
switch (opnd_class)
{
case AARCH64_OPND_CLASS_FP_REG:
dw2reg_num = opnd->reg.regno + 64;
break;
case AARCH64_OPND_CLASS_SVE_REGLIST:
dw2reg_num = opnd->reglist.first_regno + 64;
break;
case AARCH64_OPND_CLASS_ADDRESS:
dw2reg_num = opnd->addr.base_regno;
break;
case AARCH64_OPND_CLASS_INT_REG:
case AARCH64_OPND_CLASS_MODIFIED_REG:
/* Use an invalid DWARF register value in case of WZR, else this will be an
incorrect dependency on REG_SP. */
if (aarch64_zero_register_p (opnd))
dw2reg_num = GINSN_DW2_REGNUM_INVALID;
else
/* For GPRs of our interest (callee-saved regs, SP, FP, LR),
DWARF register number is the same as AArch64 register number. */
dw2reg_num = opnd->reg.regno;
break;
default:
as_bad ("Unexpected operand class in ginsn_dw2_regnum");
break;
}
return dw2reg_num;
}
static bool
ginsn_dw2_regnum_invalid_p (unsigned int opnd_reg)
{
return (opnd_reg == GINSN_DW2_REGNUM_INVALID);
}
/* Generate ginsn for addsub instructions with immediate opnd. */
static ginsnS *
aarch64_ginsn_addsub_imm (const symbolS *insn_end_sym)
{
ginsnS *ginsn = NULL;
bool add_p, sub_p;
offsetT src_imm = 0;
unsigned int dst_reg, opnd_reg;
aarch64_opnd_info *dst, *opnd;
ginsnS *(*ginsn_func) (const symbolS *, bool,
enum ginsn_src_type, unsigned int, offsetT,
enum ginsn_src_type, unsigned int, offsetT,
enum ginsn_dst_type, unsigned int, offsetT);
aarch64_inst *base = &inst.base;
const aarch64_opcode *opcode = base->opcode;
add_p = aarch64_opcode_subclass_p (opcode, F_ARITH_ADD);
sub_p = aarch64_opcode_subclass_p (opcode, F_ARITH_SUB);
gas_assert (add_p || sub_p);
ginsn_func = add_p ? ginsn_new_add : ginsn_new_sub;
gas_assert (aarch64_num_of_operands (opcode) == 3);
dst = &base->operands[0];
opnd = &base->operands[1];
if (aarch64_gas_internal_fixup_p () && inst.reloc.exp.X_op == O_constant)
src_imm = inst.reloc.exp.X_add_number;
/* For any other relocation type, e.g., in add reg, reg, symbol, skip now
and handle via aarch64_ginsn_unhandled () code path. */
else if (inst.reloc.type != BFD_RELOC_UNUSED)
return ginsn;
/* FIXME - verify the understanding and remove assert. */
else
gas_assert (0);
dst_reg = ginsn_dw2_regnum (dst);
opnd_reg = ginsn_dw2_regnum (opnd);
if (ginsn_dw2_regnum_invalid_p (dst_reg)
|| ginsn_dw2_regnum_invalid_p (opnd_reg))
return ginsn;
ginsn = ginsn_func (insn_end_sym, true,
GINSN_SRC_REG, opnd_reg, 0,
GINSN_SRC_IMM, 0, src_imm,
GINSN_DST_REG, dst_reg, 0);
ginsn_set_where (ginsn);
return ginsn;
}
/* Generate ginsn for addsub instructions with reg opnd. */
static ginsnS *
aarch64_ginsn_addsub_reg (const symbolS *insn_end_sym)
{
ginsnS *ginsn = NULL;
bool add_p, sub_p;
unsigned int dst_reg, src1_reg, src2_reg;
aarch64_opnd_info *dst, *src1, *src2;
ginsnS *(*ginsn_func) (const symbolS *, bool,
enum ginsn_src_type, unsigned int, offsetT,
enum ginsn_src_type, unsigned int, offsetT,
enum ginsn_dst_type, unsigned int, offsetT);
aarch64_inst *base = &inst.base;
const aarch64_opcode *opcode = base->opcode;
add_p = aarch64_opcode_subclass_p (opcode, F_ARITH_ADD);
sub_p = aarch64_opcode_subclass_p (opcode, F_ARITH_SUB);
gas_assert (add_p || sub_p);
ginsn_func = add_p ? ginsn_new_add : ginsn_new_sub;
gas_assert (aarch64_num_of_operands (opcode) == 3);
dst = &base->operands[0];
src1 = &base->operands[1];
src2 = &base->operands[2];
dst_reg = ginsn_dw2_regnum (dst);
src1_reg = ginsn_dw2_regnum (src1);
src2_reg = ginsn_dw2_regnum (src2);
if (ginsn_dw2_regnum_invalid_p (dst_reg)
|| ginsn_dw2_regnum_invalid_p (src1_reg)
|| ginsn_dw2_regnum_invalid_p (src2_reg))
return ginsn;
/* ATM, shift amount, if any, cannot be represented in the GINSN_TYPE_ADD or
GINSN_TYPE_SUB. As the extra information does not impact SCFI
correctness, skip generating ginsn for these cases. Note
TBD_GINSN_INFO_LOSS. */
if (src2->shifter.kind != AARCH64_MOD_NONE
&& (src2->shifter.kind != AARCH64_MOD_LSL || src2->shifter.amount != 0))
return ginsn;
ginsn = ginsn_func (insn_end_sym, true,
GINSN_SRC_REG, src1_reg, 0,
GINSN_SRC_REG, src2_reg, 0,
GINSN_DST_REG, dst_reg, 0);
ginsn_set_where (ginsn);
return ginsn;
}
/* Generate ginsn for the load pair and store pair instructions. */
static ginsnS *
aarch64_ginsn_ldstp (const symbolS *insn_end_sym)
{
ginsnS *ginsn = NULL;
ginsnS *ginsn_ind = NULL;
ginsnS *ginsn_mem1 = NULL;
ginsnS *ginsn_mem2 = NULL;
ginsnS *ginsn_mem = NULL;
unsigned int opnd1_reg, opnd2_reg, addr_reg;
offsetT offset, mem_offset;
unsigned int width = 8;
bool load_p = false;
bool store_p = false;
bool other_p = false;
aarch64_opnd_info *opnd1, *opnd2, *addr;
aarch64_inst *base = &inst.base;
const aarch64_opcode *opcode = base->opcode;
/* This function is for handling ldp / stp ops only. */
gas_assert (opcode->iclass == ldstpair_indexed
|| opcode->iclass == ldstnapair_offs
|| opcode->iclass == ldstpair_off);
gas_assert (aarch64_num_of_operands (opcode) == 3);
opnd1 = &base->operands[0];
opnd2 = &base->operands[1];
addr = &base->operands[2];
load_p = aarch64_opcode_subclass_p (opcode, F_LDST_LOAD);
store_p = aarch64_opcode_subclass_p (opcode, F_LDST_STORE);
other_p = aarch64_opcode_subclass_p (opcode, F_SUBCLASS_OTHER);
gas_assert (load_p || store_p || other_p);
addr_reg = ginsn_dw2_regnum (addr);
gas_assert (!addr->addr.offset.is_reg);
mem_offset = addr->addr.offset.imm;
offset = mem_offset;
/* Handle address calculation. */
if ((addr->addr.preind || addr->addr.postind) && addr->addr.writeback)
{
/* Pre-indexed store, e.g., stp x29, x30, [sp, -128]!
Pre-indexed addressing is like offset addressing, except that
the base pointer is updated as a result of the instruction.
Post-indexed store, e.g., stp x29, x30, [sp],128
Post-index addressing is useful for popping off the stack. The
instruction loads the value from the location pointed at by the stack
pointer, and then moves the stack pointer on to the next full location
in the stack. */
ginsn_ind = ginsn_new_add (insn_end_sym, false,
GINSN_SRC_REG, addr_reg, 0,
GINSN_SRC_IMM, 0, mem_offset,
GINSN_DST_REG, addr_reg, 0);
ginsn_set_where (ginsn_ind);
/* With post-index addressing, the value is loaded from the address in
the base pointer, and then the pointer is updated. With pre-index
addressing, the addr computation has already been explicitly done. */
offset = 0;
}
/* Insns like ldpsw (marked with subclass F_SUBCLASS_OTHER) do not need to
generate any load or store for SCFI purposes. Next, enforce that for CFI
purposes, the width of save / restore operation has to be 8 bytes or more.
However, the address processing component may have updated the stack
pointer. At least, emit that ginsn and return. Also note,
TBD_GINSN_GEN_NOT_SCFI. */
if (other_p || aarch64_get_qualifier_esize (opnd1->qualifier) < 8)
return ginsn_ind;
opnd1_reg = ginsn_dw2_regnum (opnd1);
opnd2_reg = ginsn_dw2_regnum (opnd2);
/* Save / restore of WZR is not of interest for SCFI. Exit now if both
registers are not of interest. */
if (ginsn_dw2_regnum_invalid_p (opnd1_reg)
&& ginsn_dw2_regnum_invalid_p (opnd2_reg))
return ginsn_ind;
if (opnd1->qualifier == AARCH64_OPND_QLF_S_Q)
{
width = 16;
if (target_big_endian)
offset += 8;
}
/* Load store pair where only one of the opnd registers is a zero register
is possible. E.g., stp xzr, x19, [sp, #16]. */
if (!ginsn_dw2_regnum_invalid_p (opnd1_reg))
{
if (store_p)
{
ginsn_mem1 = ginsn_new_store (insn_end_sym, false,
GINSN_SRC_REG, opnd1_reg,
GINSN_DST_INDIRECT, addr_reg, offset);
ginsn_set_where (ginsn_mem1);
}
else
{
ginsn_mem1 = ginsn_new_load (insn_end_sym, false,
GINSN_SRC_INDIRECT, addr_reg, offset,
GINSN_DST_REG, opnd1_reg);
ginsn_set_where (ginsn_mem1);
}
/* Keep track of the last memory ginsn created so far. */
ginsn_mem = ginsn_mem1;
}
if (!ginsn_dw2_regnum_invalid_p (opnd2_reg))
{
if (store_p)
{
ginsn_mem2 = ginsn_new_store (insn_end_sym, false,
GINSN_SRC_REG, opnd2_reg,
GINSN_DST_INDIRECT, addr_reg,
offset + width);
ginsn_set_where (ginsn_mem2);
}
else
{
ginsn_mem2 = ginsn_new_load (insn_end_sym, false,
GINSN_SRC_INDIRECT, addr_reg, offset + width,
GINSN_DST_REG, opnd2_reg);
ginsn_set_where (ginsn_mem2);
}
/* Keep track of the last memory ginsn created so far. */
ginsn_mem = ginsn_mem2;
}
if (!ginsn_dw2_regnum_invalid_p (opnd1_reg)
&& !ginsn_dw2_regnum_invalid_p (opnd2_reg))
goto link_two_ginsn_mem;
else
goto link_one_ginsn_mem;
link_one_ginsn_mem:
/* Link the list of ginsns created. */
if (addr->addr.preind && addr->addr.writeback)
gas_assert (!ginsn_link_next (ginsn_ind, ginsn_mem));
if (addr->addr.postind && addr->addr.writeback)
gas_assert (!ginsn_link_next (ginsn_mem, ginsn_ind));
/* Make note of the first instruction in the list. */
ginsn = (addr->addr.preind && addr->addr.writeback) ? ginsn_ind : ginsn_mem;
return ginsn;
link_two_ginsn_mem:
/* Link the list of ginsns created. */
if (addr->addr.preind && addr->addr.writeback)
gas_assert (!ginsn_link_next (ginsn_ind, ginsn_mem1));
gas_assert (ginsn_mem1 && ginsn_mem2 && ginsn_mem1 != ginsn_mem2);
gas_assert (!ginsn_link_next (ginsn_mem1, ginsn_mem2));
if (addr->addr.postind && addr->addr.writeback)
gas_assert (!ginsn_link_next (ginsn_mem2, ginsn_ind));
/* Make note of the first instruction in the list. */
ginsn = (addr->addr.preind && addr->addr.writeback) ? ginsn_ind : ginsn_mem1;
return ginsn;
}
/* Generate ginsn for load and store instructions. */
static ginsnS *
aarch64_ginsn_ldstr (const symbolS *insn_end_sym)
{
ginsnS *ginsn = NULL;
ginsnS *ginsn_ind = NULL;
ginsnS *ginsn_mem = NULL;
unsigned int opnd_reg, addr_reg;
offsetT offset, mem_offset;
bool load_p = false;
bool store_p = false;
bool other_p = false;
aarch64_opnd_info *opnd1, *addr;
aarch64_inst *base = &inst.base;
const aarch64_opcode *opcode = base->opcode;
/* This function is for handling ldr, str ops only. */
gas_assert (opcode->iclass == ldst_imm9 || opcode->iclass == ldst_pos);
gas_assert (aarch64_num_of_operands (opcode) == 2);
opnd1 = &base->operands[0];
addr = &base->operands[1];
load_p = aarch64_opcode_subclass_p (opcode, F_LDST_LOAD);
store_p = aarch64_opcode_subclass_p (opcode, F_LDST_STORE);
other_p = aarch64_opcode_subclass_p (opcode, F_SUBCLASS_OTHER);
gas_assert (load_p || store_p || other_p);
addr_reg = ginsn_dw2_regnum (addr);
if (aarch64_gas_internal_fixup_p () && inst.reloc.exp.X_op == O_constant)
mem_offset = inst.reloc.exp.X_add_number;
else
{
gas_assert (!addr->addr.offset.is_reg);
mem_offset = addr->addr.offset.imm;
}
offset = mem_offset;
/* Handle address calculation. */
if ((addr->addr.preind || addr->addr.postind) && addr->addr.writeback)
{
ginsn_ind = ginsn_new_add (insn_end_sym, false,
GINSN_SRC_REG, addr_reg, 0,
GINSN_SRC_IMM, 0, mem_offset,
GINSN_DST_REG, addr_reg, 0);
ginsn_set_where (ginsn_ind);
/* With post-index addressing, the value is loaded from the address in
the base pointer, and then the pointer is updated. With pre-index
addressing, the addr computation has already been explicitly done. */
offset = 0;
}
/* Insns like stg, prfm, ldrsw etc. (marked with subclass F_SUBCLASS_OTHER)
do not need to generate any load / store ginsns for SCFI purposes. Next,
enforce that for CFI purposes, the width of save / restore operation has
to be 8 bytes or more. That said, the address processing component may
have updated the stack pointer. At least, emit that ginsn and return.
Also note, TBD_GINSN_GEN_NOT_SCFI. */
if (other_p || aarch64_get_qualifier_esize (opnd1->qualifier) < 8)
return ginsn_ind;
opnd_reg = ginsn_dw2_regnum (opnd1);
/* Save / restore of WZR is not of interest for SCFI. */
if (ginsn_dw2_regnum_invalid_p (opnd_reg))
return ginsn_ind;
if (target_big_endian && opnd1->qualifier == AARCH64_OPND_QLF_S_Q)
offset += 8;
if (store_p)
ginsn_mem = ginsn_new_store (insn_end_sym, false,
GINSN_SRC_REG, opnd_reg,
GINSN_DST_INDIRECT, addr_reg, offset);
else
ginsn_mem = ginsn_new_load (insn_end_sym, false,
GINSN_SRC_INDIRECT, addr_reg, offset,
GINSN_DST_REG, opnd_reg);
ginsn_set_where (ginsn_mem);
if (addr->addr.preind && addr->addr.writeback)
gas_assert (!ginsn_link_next (ginsn_ind, ginsn_mem));
else if (addr->addr.postind && addr->addr.writeback)
gas_assert (!ginsn_link_next (ginsn_mem, ginsn_ind));
/* Make note of the first instruction in the list. */
ginsn = (addr->addr.preind && addr->addr.writeback) ? ginsn_ind : ginsn_mem;
return ginsn;
}
/* Generate ginsn for unconditional branch instructions. */
static ginsnS *
aarch64_ginsn_branch_uncond (const symbolS *insn_end_sym)
{
ginsnS *ginsn = NULL;
const symbolS *src_symbol = NULL;
enum ginsn_src_type src_type = GINSN_SRC_UNKNOWN;
unsigned int src_reg = 0;
aarch64_inst *base = &inst.base;
const aarch64_opcode *opcode = base->opcode;
if (opcode->iclass == branch_imm
&& (inst.reloc.type == BFD_RELOC_AARCH64_CALL26
|| inst.reloc.type == BFD_RELOC_AARCH64_JUMP26))
{
if (inst.reloc.exp.X_add_number)
{
/* A non-zero addend in b/bl target makes control-flow tracking
difficult. Skip SCFI for now. */
as_bad (_("SCFI: %#x op with non-zero addend to sym not supported"),
opcode->opcode);
return ginsn;
}
/* b or bl. */
src_symbol = inst.reloc.exp.X_add_symbol;
src_type = GINSN_SRC_SYMBOL;
}
else if (opcode->iclass == branch_reg
&& aarch64_num_of_operands (opcode) >= 1)
{
/* Some insns (e.g., braa, blraa etc.) may have > 1 operands. For
current SCFI implementation, it suffices however to simply pass
the information about the first source. Although, strictly speaking,
(if reg) the source info is currently of no material use either. */
src_type = GINSN_SRC_REG;
src_reg = ginsn_dw2_regnum (&base->operands[0]);
}
else
/* Skip insns like branch imm. */
return ginsn;
if (aarch64_opcode_subclass_p (opcode, F_BRANCH_CALL))
{
gas_assert (src_type != GINSN_SRC_UNKNOWN);
ginsn = ginsn_new_call (insn_end_sym, true,
src_type, src_reg, src_symbol);
}
else if (aarch64_opcode_subclass_p (opcode, F_BRANCH_RET))
/* TBD_GINSN_REPRESENTATION_LIMIT. The following function to create a
GINSN_TYPE_RETURN does not allow src info ATM. */
ginsn = ginsn_new_return (insn_end_sym, true);
else
ginsn = ginsn_new_jump (insn_end_sym, true,
src_type, src_reg, src_symbol);
ginsn_set_where (ginsn);
return ginsn;
}
/* Generate ginsn for conditional branch instructions. */
static ginsnS *
aarch64_ginsn_branch_cond (const symbolS *insn_end_sym)
{
ginsnS *ginsn = NULL;
const symbolS *src_symbol;
enum ginsn_src_type src_type;
aarch64_inst *base = &inst.base;
const aarch64_opcode *opcode = base->opcode;
if (inst.reloc.type == BFD_RELOC_AARCH64_BRANCH19
|| inst.reloc.type == BFD_RELOC_AARCH64_TSTBR14)
{
if (inst.reloc.exp.X_add_number)
{
/* A non-zero addend in target makes control-flow tracking
difficult. Skip SCFI for now. */
as_bad (_("SCFI: %#x op with non-zero addend to sym not supported"),
opcode->opcode);
return ginsn;
}
src_symbol = inst.reloc.exp.X_add_symbol;
src_type = GINSN_SRC_SYMBOL;
ginsn = ginsn_new_jump_cond (insn_end_sym, true, src_type, 0, src_symbol);
ginsn_set_where (ginsn);
}
return ginsn;
}
/* Generate ginsn for mov instructions with reg opnd. */
static ginsnS *
aarch64_ginsn_mov_reg (const symbolS *insn_end_sym)
{
ginsnS *ginsn = NULL;
unsigned int src_reg = 0, dst_reg;
aarch64_opnd_info *src, *dst;
offsetT src_imm = 0;
enum ginsn_src_type src_type;
aarch64_inst *base = &inst.base;
const aarch64_opcode *opcode = base->opcode;
gas_assert (aarch64_num_of_operands (opcode) == 2);
dst = &base->operands[0];
src = &base->operands[1];
dst_reg = ginsn_dw2_regnum (dst);
src_reg = ginsn_dw2_regnum (src);
src_type = GINSN_SRC_REG;
/* FIXME Explicitly bar GINSN_TYPE_MOV with a GINSN_DW2_REGNUM_INVALID in src
or dest at this time. This can be removed later when SCFI machinery is
more robust to deal with GINSN_DW2_REGNUM_INVALID. */
if (ginsn_dw2_regnum_invalid_p (dst_reg)
|| ginsn_dw2_regnum_invalid_p (src_reg))
return ginsn;
ginsn = ginsn_new_mov (insn_end_sym, false,
src_type, src_reg, src_imm,
GINSN_DST_REG, dst_reg, 0);
ginsn_set_where (ginsn);
return ginsn;
}
/* Generate ginsn for mov instructions with imm opnd. */
static ginsnS *
aarch64_ginsn_mov_imm (const symbolS *insn_end_sym)
{
ginsnS *ginsn = NULL;
unsigned int src_reg = 0, dst_reg;
aarch64_opnd_info *src, *dst;
offsetT src_imm = 0;
enum ginsn_src_type src_type;
aarch64_inst *base = &inst.base;
const aarch64_opcode *opcode = base->opcode;
gas_assert (aarch64_num_of_operands (opcode) == 2);
dst = &base->operands[0];
src = &base->operands[1];
/* For some mov ops, e.g., movn, movk, or movz, there may optionally be more
work than just a simple mov. Skip handling these mov altogether and let
the aarch64_ginsn_unhandled () alert if these insns affect SCFI
correctness. TBD_GINSN_GEN_NOT_SCFI. */
if (src->type == AARCH64_OPND_HALF)
return ginsn;
dst_reg = ginsn_dw2_regnum (dst);
/* FIXME Explicitly bar GINSN_TYPE_MOV which write to WZR / XZR at this time.
This can be removed later when SCFI machinery is more robust to deal with
GINSN_DW2_REGNUM_INVALID. */
if (ginsn_dw2_regnum_invalid_p (dst_reg))
return ginsn;
if (src->type == AARCH64_OPND_IMM_MOV
&& aarch64_gas_internal_fixup_p () && inst.reloc.exp.X_op == O_constant)
{
src_imm = inst.reloc.exp.X_add_number;
src_type = GINSN_SRC_IMM;
}
else
/* Skip now and handle via aarch64_ginsn_unhandled () code path. */
return ginsn;
ginsn = ginsn_new_mov (insn_end_sym, false,
src_type, src_reg, src_imm,
GINSN_DST_REG, dst_reg, 0);
ginsn_set_where (ginsn);
return ginsn;
}
/* Check if an instruction is whitelisted.
An instruction is a candidate for whitelisting if not generating ginsn for
it, does not affect SCFI correctness.
TBD_GINSN_GEN_NOT_SCFI. This function assumes GINSN_GEN_SCFI is in effect.
When other ginsn_gen_mode are added, this will need fixing. */
static bool
aarch64_ginsn_safe_to_skip_p (void)
{
bool skip_p = false;
aarch64_opnd_info *opnd = NULL;
unsigned int opnd_reg;
int num_opnds = 0;
bool dp_tag_only_p = false;
aarch64_inst *base = &inst.base;
const aarch64_opcode *opcode = base->opcode;
/* ATM, whitelisting operations with no operands does not seem to be
necessary. In fact, whitelisting insns like ERET will be dangerous for
SCFI. So, return false now and bar any such insns from being whitelisted
altogether. */
num_opnds = aarch64_num_of_operands (opcode);
if (!num_opnds)
return false;
opnd = &base->operands[0];
switch (opcode->iclass)
{
case ldst_regoff:
/* It is not expected to have reg offset based ld/st ops to be used
for reg save and restore operations. Warn the user though. */
opnd_reg = ginsn_dw2_regnum (opnd);
if (aarch64_scfi_callee_saved_p (opnd_reg))
{
skip_p = true;
as_warn ("SCFI: ignored probable save/restore op with reg offset");
}
break;
case dp_2src:
/* irg insn needs to be explicitly whitelisted. This is because the
dest is Rd_SP, but irg insn affects the tag only. To detect irg
insn, avoid an opcode-based check, however. */
dp_tag_only_p = aarch64_opcode_subclass_p (opcode, F_DP_TAG_ONLY);
if (dp_tag_only_p)
skip_p = true;
break;
default:
break;
}
return skip_p;
}
enum aarch64_ginsn_unhandled_code
{
AARCH64_GINSN_UNHANDLED_NONE,
AARCH64_GINSN_UNHANDLED_DEST_REG,
AARCH64_GINSN_UNHANDLED_CFG,
AARCH64_GINSN_UNHANDLED_STACKOP,
AARCH64_GINSN_UNHANDLED_UNEXPECTED,
};
/* Check the input insn for its impact on the correctness of the synthesized
CFI. Returns an error code to the caller. */
static enum aarch64_ginsn_unhandled_code
aarch64_ginsn_unhandled (void)
{
enum aarch64_ginsn_unhandled_code err = AARCH64_GINSN_UNHANDLED_NONE;
aarch64_inst *base = &inst.base;
const aarch64_opcode *opcode = base->opcode;
aarch64_opnd_info *dest = &base->operands[0];
int num_opnds = aarch64_num_of_operands (opcode);
aarch64_opnd_info *addr;
unsigned int dw2_regnum;
unsigned int addr_reg;
aarch64_opnd_info *opnd;
unsigned int opnd_reg;
/* All change of flow instructions (COFI) are important for SCFI.
N.B. New iclasses for COFI when defined must be added here too. */
if (opcode->iclass == condbranch
|| opcode->iclass == compbranch
|| opcode->iclass == testbranch
|| opcode->iclass == branch_imm
|| opcode->iclass == branch_reg)
err = AARCH64_GINSN_UNHANDLED_CFG;
/* Also, any memory instructions that may involve an update to the stack
pointer or save/restore of callee-saved registers must not be skipped.
Note that, some iclasses cannot be used to push or pop stack because of
disallowed writeback: ldst_unscaled, ldst_regoff, ldst_unpriv, ldstexcl,
loadlit, ldstnapair_offs. Except ldstnapair_offs from the afore-mentioned
list, these iclasses do not seem to be amenable to being used for
save/restore ops either. */
else if (opcode->iclass == ldstpair_off
|| opcode->iclass == ldstnapair_offs
|| opcode->iclass == ldstpair_indexed
|| opcode->iclass == ldst_imm9
|| opcode->iclass == ldst_imm10
|| opcode->iclass == ldst_pos)
{
addr = &base->operands[num_opnds - 1];
addr_reg = ginsn_dw2_regnum (addr);
if (addr_reg == REG_SP || addr_reg == REG_FP)
{
/* For all skipped memory operations, check if an update to REG_SP or
REG_FP is involved. */
if ((addr->addr.postind || addr->addr.preind) && addr->addr.writeback)
err = AARCH64_GINSN_UNHANDLED_STACKOP;
/* Also check if a save / restore of a callee-saved register has been
missed. */
else if (!aarch64_opcode_subclass_p (opcode, F_SUBCLASS_OTHER))
{
for (int i = 0; i < num_opnds - 1; i++)
{
opnd = &base->operands[i];
opnd_reg = ginsn_dw2_regnum (opnd);
if (aarch64_scfi_callee_saved_p (opnd_reg)
&& aarch64_get_qualifier_esize (opnd->qualifier) >= 8)
{
err = AARCH64_GINSN_UNHANDLED_STACKOP;
break;
}
}
}
}
}
/* STR Zn are especially complicated as they do not store in the same byte
order for big-endian: STR Qn stores as a 128-bit integer (MSB first),
whereas STR Zn stores as a stream of bytes (LSB first). FIXME Simply punt
on the big-endian and little-endian SVE PCS case for now. */
else if (opcode->iclass == sve_misc)
{
opnd = &base->operands[0];
addr = &base->operands[num_opnds - 1];
addr_reg = ginsn_dw2_regnum (addr);
opnd_reg = ginsn_dw2_regnum (opnd);
/* For all skipped memory operations, check if an update to REG_SP or
REG_FP is involved. */
if (aarch64_get_operand_class (addr->type) == AARCH64_OPND_CLASS_ADDRESS
&& (addr_reg == REG_SP || addr_reg == REG_FP)
&& (((addr->addr.postind || addr->addr.preind) && addr->addr.writeback)
|| aarch64_scfi_callee_saved_p (opnd_reg)))
err = AARCH64_GINSN_UNHANDLED_STACKOP;
}
/* Finally, irrespective of the iclass, check if the missed instructions are
affecting REG_SP or REG_FP. */
else if (dest && (dest->type == AARCH64_OPND_Rd
|| dest->type == AARCH64_OPND_Rd_SP))
{
dw2_regnum = ginsn_dw2_regnum (dest);
if (dw2_regnum == REG_SP || dw2_regnum == REG_FP)
err = AARCH64_GINSN_UNHANDLED_DEST_REG;
}
return err;
}
/* Generate one or more generic GAS instructions, a.k.a, ginsns for the
current machine instruction.
Returns the head of linked list of ginsn(s) added, if success; Returns NULL
if failure.
The input ginsn_gen_mode GMODE determines the set of minimal necessary
ginsns necessary for correctness of any passes applicable for that mode.
For supporting the GINSN_GEN_SCFI generation mode, following is the list of
machine instructions that must be translated into the corresponding ginsns
to ensure correctness of SCFI:
- All instructions affecting the two registers that could potentially
be used as the base register for CFA tracking. For SCFI, the base
register for CFA tracking is limited to REG_SP and REG_FP only.
- All change of flow instructions: conditional and unconditional
branches, call and return from functions.
- All instructions that can potentially be a register save / restore
operations.
- All instructions that may update the stack pointer: pre-indexed and
post-indexed stack operations with writeback.
The function currently supports GINSN_GEN_SCFI ginsn generation mode only.
To support other generation modes will require work on this target-specific
process of creation of ginsns:
- Some of such places are tagged with TBD_GINSN_GEN_NOT_SCFI to serve as
possible starting points.
- Also note that ginsn representation may need enhancements. Specifically,
note some TBD_GINSN_INFO_LOSS and TBD_GINSN_REPRESENTATION_LIMIT markers.
*/
static ginsnS *
aarch64_ginsn_new (const symbolS *insn_end_sym, enum ginsn_gen_mode gmode)
{
enum aarch64_ginsn_unhandled_code err = 0;
ginsnS *ginsn = NULL;
unsigned int dw2_regnum;
aarch64_opnd_info *dest = NULL;
aarch64_inst *base = &inst.base;
const aarch64_opcode *opcode = base->opcode;
/* Currently supports generation of selected ginsns, sufficient for
the use-case of SCFI only. To remove this condition will require
work on this target-specific process of creation of ginsns. Some
of such places are tagged with TBD_GINSN_GEN_NOT_SCFI to serve as
examples. */
if (gmode != GINSN_GEN_SCFI)
return ginsn;
switch (opcode->iclass)
{
case addsub_ext:
/* TBD_GINSN_GEN_NOT_SCFI: other insns are not of interest for SCFI. */
if (aarch64_opcode_subclass_p (opcode, F_ARITH_ADD)
|| aarch64_opcode_subclass_p (opcode, F_ARITH_SUB))
ginsn = aarch64_ginsn_addsub_reg (insn_end_sym);
break;
case addsub_imm:
if (aarch64_opcode_subclass_p (opcode, F_ARITH_MOV))
ginsn = aarch64_ginsn_mov_reg (insn_end_sym);
else if (aarch64_opcode_subclass_p (opcode, F_ARITH_ADD)
|| aarch64_opcode_subclass_p (opcode, F_ARITH_SUB))
ginsn = aarch64_ginsn_addsub_imm (insn_end_sym);
/* Note how addg, subg involving tags have F_SUBCLASS_OTHER flag. These
insns will see a GINSN_TYPE_OTHER created for them if the destination
register is of interest via the aarch64_ginsn_unhandled ()
codepath. */
break;
case movewide:
ginsn = aarch64_ginsn_mov_imm (insn_end_sym);
break;
case ldst_imm9:
case ldst_pos:
ginsn = aarch64_ginsn_ldstr (insn_end_sym);
break;
case ldstpair_indexed:
case ldstpair_off:
case ldstnapair_offs:
ginsn = aarch64_ginsn_ldstp (insn_end_sym);
break;
case branch_imm:
case branch_reg:
ginsn = aarch64_ginsn_branch_uncond (insn_end_sym);
break;
case compbranch:
/* Although cbz/cbnz has an additional operand and are functionally
distinct from conditional branches, it is fine to use the same ginsn
type for both from the perspective of SCFI. */
case testbranch:
case condbranch:
ginsn = aarch64_ginsn_branch_cond (insn_end_sym);
break;
default:
/* TBD_GINSN_GEN_NOT_SCFI: Skip all other opcodes uninteresting for
GINSN_GEN_SCFI mode. */
break;
}
if (!ginsn && !aarch64_ginsn_safe_to_skip_p ())
{
/* For all unhandled insns, check that they no not impact SCFI
correctness. */
err = aarch64_ginsn_unhandled ();
switch (err)
{
case AARCH64_GINSN_UNHANDLED_NONE:
break;
case AARCH64_GINSN_UNHANDLED_DEST_REG:
/* Not all writes to REG_FP are harmful in context of SCFI. Simply
generate a GINSN_TYPE_OTHER with destination set to the
appropriate register. The SCFI machinery will bail out if this
ginsn affects SCFI correctness. */
dest = &base->operands[0];
dw2_regnum = ginsn_dw2_regnum (dest);
/* Sanity check. */
gas_assert (!ginsn_dw2_regnum_invalid_p (dw2_regnum));
ginsn = ginsn_new_other (insn_end_sym, true,
GINSN_SRC_IMM, 0,
GINSN_SRC_IMM, 0,
GINSN_DST_REG, dw2_regnum);
ginsn_set_where (ginsn);
break;
case AARCH64_GINSN_UNHANDLED_CFG:
case AARCH64_GINSN_UNHANDLED_STACKOP:
as_bad (_("SCFI: unhandled op %#x may cause incorrect CFI"),
opcode->opcode);
break;
case AARCH64_GINSN_UNHANDLED_UNEXPECTED:
as_bad (_("SCFI: unexpected op %#x may cause incorrect CFI"),
opcode->opcode);
break;
default:
abort ();
break;
}
}
return ginsn;
}
#endif /* OBJ_ELF. */