mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-18 12:24:38 +08:00
94d4b71373
find, to locate TM_FILE, XM_FILE, and NAT_FILE. This is faster and means that these filenames no longer need be unique across all the config/* directories. * configure.in: Put the config/*/ into TM_FILE, etc. * m68k-stub.c (computeSignal): Return SIGFPE, not SIGURG, for chk and trapv exceptions. * target.h (struct section_table), objfiles.h (struct obj_section): Change name of field sec_ptr to the_bfd_section. More mnemonic and avoids the (sort of, for the ptx compiler) name clash with the name of the typedef. * exec.c, xcoffexec.c, sparc-tdep.c, rs6000-nat.c, osfsolib.c, solib.c, irix5-nat.c, objfiles.c, remote.c: Change users. * utils.c: Include readline.h. * Makefile.in (utils.o): Add dependency. * remote.c (getpkt): Add support for run-length encoding.
806 lines
24 KiB
C
806 lines
24 KiB
C
/* Target-dependent code for the SPARC for GDB, the GNU debugger.
|
||
Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994
|
||
Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
#include "defs.h"
|
||
#include "frame.h"
|
||
#include "inferior.h"
|
||
#include "obstack.h"
|
||
#include "target.h"
|
||
#include "value.h"
|
||
|
||
#include "symfile.h" /* for objfiles.h */
|
||
#include "objfiles.h" /* for find_pc_section */
|
||
|
||
#ifdef USE_PROC_FS
|
||
#include <sys/procfs.h>
|
||
#endif
|
||
|
||
#include "gdbcore.h"
|
||
|
||
/* From infrun.c */
|
||
extern int stop_after_trap;
|
||
|
||
/* We don't store all registers immediately when requested, since they
|
||
get sent over in large chunks anyway. Instead, we accumulate most
|
||
of the changes and send them over once. "deferred_stores" keeps
|
||
track of which sets of registers we have locally-changed copies of,
|
||
so we only need send the groups that have changed. */
|
||
|
||
int deferred_stores = 0; /* Cumulates stores we want to do eventually. */
|
||
|
||
typedef enum
|
||
{
|
||
Error, not_branch, bicc, bicca, ba, baa, ticc, ta
|
||
} branch_type;
|
||
|
||
/* Simulate single-step ptrace call for sun4. Code written by Gary
|
||
Beihl (beihl@mcc.com). */
|
||
|
||
/* npc4 and next_pc describe the situation at the time that the
|
||
step-breakpoint was set, not necessary the current value of NPC_REGNUM. */
|
||
static CORE_ADDR next_pc, npc4, target;
|
||
static int brknpc4, brktrg;
|
||
typedef char binsn_quantum[BREAKPOINT_MAX];
|
||
static binsn_quantum break_mem[3];
|
||
|
||
/* Non-zero if we just simulated a single-step ptrace call. This is
|
||
needed because we cannot remove the breakpoints in the inferior
|
||
process until after the `wait' in `wait_for_inferior'. Used for
|
||
sun4. */
|
||
|
||
int one_stepped;
|
||
|
||
/* single_step() is called just before we want to resume the inferior,
|
||
if we want to single-step it but there is no hardware or kernel single-step
|
||
support (as on all SPARCs). We find all the possible targets of the
|
||
coming instruction and breakpoint them.
|
||
|
||
single_step is also called just after the inferior stops. If we had
|
||
set up a simulated single-step, we undo our damage. */
|
||
|
||
void
|
||
single_step (ignore)
|
||
int ignore; /* pid, but we don't need it */
|
||
{
|
||
branch_type br, isannulled();
|
||
CORE_ADDR pc;
|
||
long pc_instruction;
|
||
|
||
if (!one_stepped)
|
||
{
|
||
/* Always set breakpoint for NPC. */
|
||
next_pc = read_register (NPC_REGNUM);
|
||
npc4 = next_pc + 4; /* branch not taken */
|
||
|
||
target_insert_breakpoint (next_pc, break_mem[0]);
|
||
/* printf_unfiltered ("set break at %x\n",next_pc); */
|
||
|
||
pc = read_register (PC_REGNUM);
|
||
pc_instruction = read_memory_integer (pc, sizeof(pc_instruction));
|
||
br = isannulled (pc_instruction, pc, &target);
|
||
brknpc4 = brktrg = 0;
|
||
|
||
if (br == bicca)
|
||
{
|
||
/* Conditional annulled branch will either end up at
|
||
npc (if taken) or at npc+4 (if not taken).
|
||
Trap npc+4. */
|
||
brknpc4 = 1;
|
||
target_insert_breakpoint (npc4, break_mem[1]);
|
||
}
|
||
else if (br == baa && target != next_pc)
|
||
{
|
||
/* Unconditional annulled branch will always end up at
|
||
the target. */
|
||
brktrg = 1;
|
||
target_insert_breakpoint (target, break_mem[2]);
|
||
}
|
||
|
||
/* We are ready to let it go */
|
||
one_stepped = 1;
|
||
return;
|
||
}
|
||
else
|
||
{
|
||
/* Remove breakpoints */
|
||
target_remove_breakpoint (next_pc, break_mem[0]);
|
||
|
||
if (brknpc4)
|
||
target_remove_breakpoint (npc4, break_mem[1]);
|
||
|
||
if (brktrg)
|
||
target_remove_breakpoint (target, break_mem[2]);
|
||
|
||
one_stepped = 0;
|
||
}
|
||
}
|
||
|
||
CORE_ADDR
|
||
sparc_frame_chain (thisframe)
|
||
FRAME thisframe;
|
||
{
|
||
char buf[MAX_REGISTER_RAW_SIZE];
|
||
int err;
|
||
CORE_ADDR addr;
|
||
|
||
addr = thisframe->frame + FRAME_SAVED_I0 +
|
||
REGISTER_RAW_SIZE (FP_REGNUM) * (FP_REGNUM - I0_REGNUM);
|
||
err = target_read_memory (addr, buf, REGISTER_RAW_SIZE (FP_REGNUM));
|
||
if (err)
|
||
return 0;
|
||
return extract_address (buf, REGISTER_RAW_SIZE (FP_REGNUM));
|
||
}
|
||
|
||
CORE_ADDR
|
||
sparc_extract_struct_value_address (regbuf)
|
||
char regbuf[REGISTER_BYTES];
|
||
{
|
||
return read_memory_integer (((int *)(regbuf))[SP_REGNUM]+(16*4),
|
||
TARGET_PTR_BIT / TARGET_CHAR_BIT);
|
||
}
|
||
|
||
/* Find the pc saved in frame FRAME. */
|
||
|
||
CORE_ADDR
|
||
sparc_frame_saved_pc (frame)
|
||
FRAME frame;
|
||
{
|
||
char buf[MAX_REGISTER_RAW_SIZE];
|
||
CORE_ADDR addr;
|
||
|
||
if (frame->signal_handler_caller)
|
||
{
|
||
/* This is the signal trampoline frame.
|
||
Get the saved PC from the sigcontext structure. */
|
||
|
||
#ifndef SIGCONTEXT_PC_OFFSET
|
||
#define SIGCONTEXT_PC_OFFSET 12
|
||
#endif
|
||
|
||
CORE_ADDR sigcontext_addr;
|
||
char scbuf[TARGET_PTR_BIT / HOST_CHAR_BIT];
|
||
int saved_pc_offset = SIGCONTEXT_PC_OFFSET;
|
||
char *name = NULL;
|
||
|
||
/* Solaris2 ucbsigvechandler passes a pointer to a sigcontext
|
||
as the third parameter. The offset to the saved pc is 12. */
|
||
find_pc_partial_function (frame->pc, &name,
|
||
(CORE_ADDR *)NULL,(CORE_ADDR *)NULL);
|
||
if (name && STREQ (name, "ucbsigvechandler"))
|
||
saved_pc_offset = 12;
|
||
|
||
/* The sigcontext address is contained in register O2. */
|
||
get_saved_register (buf, (int *)NULL, (CORE_ADDR *)NULL,
|
||
frame, O0_REGNUM + 2, (enum lval_type *)NULL);
|
||
sigcontext_addr = extract_address (buf, REGISTER_RAW_SIZE (O0_REGNUM));
|
||
|
||
/* Don't cause a memory_error when accessing sigcontext in case the
|
||
stack layout has changed or the stack is corrupt. */
|
||
target_read_memory (sigcontext_addr + saved_pc_offset,
|
||
scbuf, sizeof (scbuf));
|
||
return extract_address (scbuf, sizeof (scbuf));
|
||
}
|
||
addr = (frame->bottom + FRAME_SAVED_I0 +
|
||
REGISTER_RAW_SIZE (I7_REGNUM) * (I7_REGNUM - I0_REGNUM));
|
||
read_memory (addr, buf, REGISTER_RAW_SIZE (I7_REGNUM));
|
||
return PC_ADJUST (extract_address (buf, REGISTER_RAW_SIZE (I7_REGNUM)));
|
||
}
|
||
|
||
/*
|
||
* Since an individual frame in the frame cache is defined by two
|
||
* arguments (a frame pointer and a stack pointer), we need two
|
||
* arguments to get info for an arbitrary stack frame. This routine
|
||
* takes two arguments and makes the cached frames look as if these
|
||
* two arguments defined a frame on the cache. This allows the rest
|
||
* of info frame to extract the important arguments without
|
||
* difficulty.
|
||
*/
|
||
FRAME
|
||
setup_arbitrary_frame (argc, argv)
|
||
int argc;
|
||
FRAME_ADDR *argv;
|
||
{
|
||
FRAME fid;
|
||
|
||
if (argc != 2)
|
||
error ("Sparc frame specifications require two arguments: fp and sp");
|
||
|
||
fid = create_new_frame (argv[0], 0);
|
||
|
||
if (!fid)
|
||
fatal ("internal: create_new_frame returned invalid frame id");
|
||
|
||
fid->bottom = argv[1];
|
||
fid->pc = FRAME_SAVED_PC (fid);
|
||
return fid;
|
||
}
|
||
|
||
/* Given a pc value, skip it forward past the function prologue by
|
||
disassembling instructions that appear to be a prologue.
|
||
|
||
If FRAMELESS_P is set, we are only testing to see if the function
|
||
is frameless. This allows a quicker answer.
|
||
|
||
This routine should be more specific in its actions; making sure
|
||
that it uses the same register in the initial prologue section. */
|
||
CORE_ADDR
|
||
skip_prologue (start_pc, frameless_p)
|
||
CORE_ADDR start_pc;
|
||
int frameless_p;
|
||
{
|
||
union
|
||
{
|
||
unsigned long int code;
|
||
struct
|
||
{
|
||
unsigned int op:2;
|
||
unsigned int rd:5;
|
||
unsigned int op2:3;
|
||
unsigned int imm22:22;
|
||
} sethi;
|
||
struct
|
||
{
|
||
unsigned int op:2;
|
||
unsigned int rd:5;
|
||
unsigned int op3:6;
|
||
unsigned int rs1:5;
|
||
unsigned int i:1;
|
||
unsigned int simm13:13;
|
||
} add;
|
||
int i;
|
||
} x;
|
||
int dest = -1;
|
||
CORE_ADDR pc = start_pc;
|
||
|
||
x.i = read_memory_integer (pc, 4);
|
||
|
||
/* Recognize the `sethi' insn and record its destination. */
|
||
if (x.sethi.op == 0 && x.sethi.op2 == 4)
|
||
{
|
||
dest = x.sethi.rd;
|
||
pc += 4;
|
||
x.i = read_memory_integer (pc, 4);
|
||
}
|
||
|
||
/* Recognize an add immediate value to register to either %g1 or
|
||
the destination register recorded above. Actually, this might
|
||
well recognize several different arithmetic operations.
|
||
It doesn't check that rs1 == rd because in theory "sub %g0, 5, %g1"
|
||
followed by "save %sp, %g1, %sp" is a valid prologue (Not that
|
||
I imagine any compiler really does that, however). */
|
||
if (x.add.op == 2 && x.add.i && (x.add.rd == 1 || x.add.rd == dest))
|
||
{
|
||
pc += 4;
|
||
x.i = read_memory_integer (pc, 4);
|
||
}
|
||
|
||
/* This recognizes any SAVE insn. But why do the XOR and then
|
||
the compare? That's identical to comparing against 60 (as long
|
||
as there isn't any sign extension). */
|
||
if (x.add.op == 2 && (x.add.op3 ^ 32) == 28)
|
||
{
|
||
pc += 4;
|
||
if (frameless_p) /* If the save is all we care about, */
|
||
return pc; /* return before doing more work */
|
||
x.i = read_memory_integer (pc, 4);
|
||
}
|
||
else
|
||
{
|
||
/* Without a save instruction, it's not a prologue. */
|
||
return start_pc;
|
||
}
|
||
|
||
/* Now we need to recognize stores into the frame from the input
|
||
registers. This recognizes all non alternate stores of input
|
||
register, into a location offset from the frame pointer. */
|
||
while (x.add.op == 3
|
||
&& (x.add.op3 & 0x3c) == 4 /* Store, non-alternate. */
|
||
&& (x.add.rd & 0x18) == 0x18 /* Input register. */
|
||
&& x.add.i /* Immediate mode. */
|
||
&& x.add.rs1 == 30 /* Off of frame pointer. */
|
||
/* Into reserved stack space. */
|
||
&& x.add.simm13 >= 0x44
|
||
&& x.add.simm13 < 0x5b)
|
||
{
|
||
pc += 4;
|
||
x.i = read_memory_integer (pc, 4);
|
||
}
|
||
return pc;
|
||
}
|
||
|
||
/* Check instruction at ADDR to see if it is an annulled branch.
|
||
All other instructions will go to NPC or will trap.
|
||
Set *TARGET if we find a canidate branch; set to zero if not. */
|
||
|
||
branch_type
|
||
isannulled (instruction, addr, target)
|
||
long instruction;
|
||
CORE_ADDR addr, *target;
|
||
{
|
||
branch_type val = not_branch;
|
||
long int offset; /* Must be signed for sign-extend. */
|
||
union
|
||
{
|
||
unsigned long int code;
|
||
struct
|
||
{
|
||
unsigned int op:2;
|
||
unsigned int a:1;
|
||
unsigned int cond:4;
|
||
unsigned int op2:3;
|
||
unsigned int disp22:22;
|
||
} b;
|
||
} insn;
|
||
|
||
*target = 0;
|
||
insn.code = instruction;
|
||
|
||
if (insn.b.op == 0
|
||
&& (insn.b.op2 == 2 || insn.b.op2 == 6 || insn.b.op2 == 7))
|
||
{
|
||
if (insn.b.cond == 8)
|
||
val = insn.b.a ? baa : ba;
|
||
else
|
||
val = insn.b.a ? bicca : bicc;
|
||
offset = 4 * ((int) (insn.b.disp22 << 10) >> 10);
|
||
*target = addr + offset;
|
||
}
|
||
|
||
return val;
|
||
}
|
||
|
||
/* sparc_frame_find_saved_regs ()
|
||
|
||
Stores, into a struct frame_saved_regs,
|
||
the addresses of the saved registers of frame described by FRAME_INFO.
|
||
This includes special registers such as pc and fp saved in special
|
||
ways in the stack frame. sp is even more special:
|
||
the address we return for it IS the sp for the next frame.
|
||
|
||
Note that on register window machines, we are currently making the
|
||
assumption that window registers are being saved somewhere in the
|
||
frame in which they are being used. If they are stored in an
|
||
inferior frame, find_saved_register will break.
|
||
|
||
On the Sun 4, the only time all registers are saved is when
|
||
a dummy frame is involved. Otherwise, the only saved registers
|
||
are the LOCAL and IN registers which are saved as a result
|
||
of the "save/restore" opcodes. This condition is determined
|
||
by address rather than by value.
|
||
|
||
The "pc" is not stored in a frame on the SPARC. (What is stored
|
||
is a return address minus 8.) sparc_pop_frame knows how to
|
||
deal with that. Other routines might or might not.
|
||
|
||
See tm-sparc.h (PUSH_FRAME and friends) for CRITICAL information
|
||
about how this works. */
|
||
|
||
void
|
||
sparc_frame_find_saved_regs (fi, saved_regs_addr)
|
||
struct frame_info *fi;
|
||
struct frame_saved_regs *saved_regs_addr;
|
||
{
|
||
register int regnum;
|
||
FRAME_ADDR frame = FRAME_FP(fi);
|
||
FRAME fid = FRAME_INFO_ID (fi);
|
||
|
||
if (!fid)
|
||
fatal ("Bad frame info struct in FRAME_FIND_SAVED_REGS");
|
||
|
||
memset (saved_regs_addr, 0, sizeof (*saved_regs_addr));
|
||
|
||
if (fi->pc >= (fi->bottom ? fi->bottom :
|
||
read_register (SP_REGNUM))
|
||
&& fi->pc <= FRAME_FP(fi))
|
||
{
|
||
/* Dummy frame. All but the window regs are in there somewhere. */
|
||
for (regnum = G1_REGNUM; regnum < G1_REGNUM+7; regnum++)
|
||
saved_regs_addr->regs[regnum] =
|
||
frame + (regnum - G0_REGNUM) * 4 - 0xa0;
|
||
for (regnum = I0_REGNUM; regnum < I0_REGNUM+8; regnum++)
|
||
saved_regs_addr->regs[regnum] =
|
||
frame + (regnum - I0_REGNUM) * 4 - 0xc0;
|
||
for (regnum = FP0_REGNUM; regnum < FP0_REGNUM + 32; regnum++)
|
||
saved_regs_addr->regs[regnum] =
|
||
frame + (regnum - FP0_REGNUM) * 4 - 0x80;
|
||
for (regnum = Y_REGNUM; regnum < NUM_REGS; regnum++)
|
||
saved_regs_addr->regs[regnum] =
|
||
frame + (regnum - Y_REGNUM) * 4 - 0xe0;
|
||
frame = fi->bottom ?
|
||
fi->bottom : read_register (SP_REGNUM);
|
||
}
|
||
else
|
||
{
|
||
/* Normal frame. Just Local and In registers */
|
||
frame = fi->bottom ?
|
||
fi->bottom : read_register (SP_REGNUM);
|
||
for (regnum = L0_REGNUM; regnum < L0_REGNUM+16; regnum++)
|
||
saved_regs_addr->regs[regnum] = frame + (regnum-L0_REGNUM) * 4;
|
||
}
|
||
if (fi->next)
|
||
{
|
||
/* Pull off either the next frame pointer or the stack pointer */
|
||
FRAME_ADDR next_next_frame =
|
||
(fi->next->bottom ?
|
||
fi->next->bottom :
|
||
read_register (SP_REGNUM));
|
||
for (regnum = O0_REGNUM; regnum < O0_REGNUM+8; regnum++)
|
||
saved_regs_addr->regs[regnum] = next_next_frame + regnum * 4;
|
||
}
|
||
/* Otherwise, whatever we would get from ptrace(GETREGS) is accurate */
|
||
saved_regs_addr->regs[SP_REGNUM] = FRAME_FP (fi);
|
||
}
|
||
|
||
/* Push an empty stack frame, and record in it the current PC, regs, etc.
|
||
|
||
We save the non-windowed registers and the ins. The locals and outs
|
||
are new; they don't need to be saved. The i's and l's of
|
||
the last frame were already saved on the stack. */
|
||
|
||
/* Definitely see tm-sparc.h for more doc of the frame format here. */
|
||
|
||
void
|
||
sparc_push_dummy_frame ()
|
||
{
|
||
CORE_ADDR sp, old_sp;
|
||
char register_temp[0x140];
|
||
|
||
old_sp = sp = read_register (SP_REGNUM);
|
||
|
||
/* Y, PS, WIM, TBR, PC, NPC, FPS, CPS regs */
|
||
read_register_bytes (REGISTER_BYTE (Y_REGNUM), ®ister_temp[0],
|
||
REGISTER_RAW_SIZE (Y_REGNUM) * 8);
|
||
|
||
read_register_bytes (REGISTER_BYTE (O0_REGNUM), ®ister_temp[8 * 4],
|
||
REGISTER_RAW_SIZE (O0_REGNUM) * 8);
|
||
|
||
read_register_bytes (REGISTER_BYTE (G0_REGNUM), ®ister_temp[16 * 4],
|
||
REGISTER_RAW_SIZE (G0_REGNUM) * 8);
|
||
|
||
read_register_bytes (REGISTER_BYTE (FP0_REGNUM), ®ister_temp[24 * 4],
|
||
REGISTER_RAW_SIZE (FP0_REGNUM) * 32);
|
||
|
||
sp -= 0x140;
|
||
|
||
write_register (SP_REGNUM, sp);
|
||
|
||
write_memory (sp + 0x60, ®ister_temp[0], (8 + 8 + 8 + 32) * 4);
|
||
|
||
write_register (FP_REGNUM, old_sp);
|
||
|
||
/* Set return address register for the call dummy to the current PC. */
|
||
write_register (I7_REGNUM, read_pc() - 8);
|
||
}
|
||
|
||
/* Discard from the stack the innermost frame, restoring all saved registers.
|
||
|
||
Note that the values stored in fsr by get_frame_saved_regs are *in
|
||
the context of the called frame*. What this means is that the i
|
||
regs of fsr must be restored into the o regs of the (calling) frame that
|
||
we pop into. We don't care about the output regs of the calling frame,
|
||
since unless it's a dummy frame, it won't have any output regs in it.
|
||
|
||
We never have to bother with %l (local) regs, since the called routine's
|
||
locals get tossed, and the calling routine's locals are already saved
|
||
on its stack. */
|
||
|
||
/* Definitely see tm-sparc.h for more doc of the frame format here. */
|
||
|
||
void
|
||
sparc_pop_frame ()
|
||
{
|
||
register FRAME frame = get_current_frame ();
|
||
register CORE_ADDR pc;
|
||
struct frame_saved_regs fsr;
|
||
struct frame_info *fi;
|
||
char raw_buffer[REGISTER_BYTES];
|
||
|
||
fi = get_frame_info (frame);
|
||
get_frame_saved_regs (fi, &fsr);
|
||
if (fsr.regs[FP0_REGNUM])
|
||
{
|
||
read_memory (fsr.regs[FP0_REGNUM], raw_buffer, 32 * 4);
|
||
write_register_bytes (REGISTER_BYTE (FP0_REGNUM), raw_buffer, 32 * 4);
|
||
}
|
||
if (fsr.regs[FPS_REGNUM])
|
||
{
|
||
read_memory (fsr.regs[FPS_REGNUM], raw_buffer, 4);
|
||
write_register_bytes (REGISTER_BYTE (FPS_REGNUM), raw_buffer, 4);
|
||
}
|
||
if (fsr.regs[CPS_REGNUM])
|
||
{
|
||
read_memory (fsr.regs[CPS_REGNUM], raw_buffer, 4);
|
||
write_register_bytes (REGISTER_BYTE (CPS_REGNUM), raw_buffer, 4);
|
||
}
|
||
if (fsr.regs[G1_REGNUM])
|
||
{
|
||
read_memory (fsr.regs[G1_REGNUM], raw_buffer, 7 * 4);
|
||
write_register_bytes (REGISTER_BYTE (G1_REGNUM), raw_buffer, 7 * 4);
|
||
}
|
||
if (fsr.regs[I0_REGNUM])
|
||
{
|
||
CORE_ADDR sp;
|
||
|
||
char reg_temp[REGISTER_BYTES];
|
||
|
||
read_memory (fsr.regs[I0_REGNUM], raw_buffer, 8 * 4);
|
||
|
||
/* Get the ins and locals which we are about to restore. Just
|
||
moving the stack pointer is all that is really needed, except
|
||
store_inferior_registers is then going to write the ins and
|
||
locals from the registers array, so we need to muck with the
|
||
registers array. */
|
||
sp = fsr.regs[SP_REGNUM];
|
||
read_memory (sp, reg_temp, REGISTER_RAW_SIZE (L0_REGNUM) * 16);
|
||
|
||
/* Restore the out registers.
|
||
Among other things this writes the new stack pointer. */
|
||
write_register_bytes (REGISTER_BYTE (O0_REGNUM), raw_buffer,
|
||
REGISTER_RAW_SIZE (O0_REGNUM) * 8);
|
||
|
||
write_register_bytes (REGISTER_BYTE (L0_REGNUM), reg_temp,
|
||
REGISTER_RAW_SIZE (L0_REGNUM) * 16);
|
||
}
|
||
if (fsr.regs[PS_REGNUM])
|
||
write_register (PS_REGNUM, read_memory_integer (fsr.regs[PS_REGNUM], 4));
|
||
if (fsr.regs[Y_REGNUM])
|
||
write_register (Y_REGNUM, read_memory_integer (fsr.regs[Y_REGNUM], 4));
|
||
if (fsr.regs[PC_REGNUM])
|
||
{
|
||
/* Explicitly specified PC (and maybe NPC) -- just restore them. */
|
||
write_register (PC_REGNUM, read_memory_integer (fsr.regs[PC_REGNUM], 4));
|
||
if (fsr.regs[NPC_REGNUM])
|
||
write_register (NPC_REGNUM,
|
||
read_memory_integer (fsr.regs[NPC_REGNUM], 4));
|
||
}
|
||
else if (fsr.regs[I7_REGNUM])
|
||
{
|
||
/* Return address in %i7 -- adjust it, then restore PC and NPC from it */
|
||
pc = PC_ADJUST (read_memory_integer (fsr.regs[I7_REGNUM], 4));
|
||
write_register (PC_REGNUM, pc);
|
||
write_register (NPC_REGNUM, pc + 4);
|
||
}
|
||
flush_cached_frames ();
|
||
set_current_frame ( create_new_frame (read_register (FP_REGNUM),
|
||
read_pc ()));
|
||
}
|
||
|
||
/* On the Sun 4 under SunOS, the compile will leave a fake insn which
|
||
encodes the structure size being returned. If we detect such
|
||
a fake insn, step past it. */
|
||
|
||
CORE_ADDR
|
||
sparc_pc_adjust(pc)
|
||
CORE_ADDR pc;
|
||
{
|
||
unsigned long insn;
|
||
char buf[4];
|
||
int err;
|
||
|
||
err = target_read_memory (pc + 8, buf, sizeof(long));
|
||
insn = extract_unsigned_integer (buf, 4);
|
||
if ((err == 0) && (insn & 0xfffffe00) == 0)
|
||
return pc+12;
|
||
else
|
||
return pc+8;
|
||
}
|
||
|
||
#ifdef USE_PROC_FS /* Target dependent support for /proc */
|
||
|
||
/* The /proc interface divides the target machine's register set up into
|
||
two different sets, the general register set (gregset) and the floating
|
||
point register set (fpregset). For each set, there is an ioctl to get
|
||
the current register set and another ioctl to set the current values.
|
||
|
||
The actual structure passed through the ioctl interface is, of course,
|
||
naturally machine dependent, and is different for each set of registers.
|
||
For the sparc for example, the general register set is typically defined
|
||
by:
|
||
|
||
typedef int gregset_t[38];
|
||
|
||
#define R_G0 0
|
||
...
|
||
#define R_TBR 37
|
||
|
||
and the floating point set by:
|
||
|
||
typedef struct prfpregset {
|
||
union {
|
||
u_long pr_regs[32];
|
||
double pr_dregs[16];
|
||
} pr_fr;
|
||
void * pr_filler;
|
||
u_long pr_fsr;
|
||
u_char pr_qcnt;
|
||
u_char pr_q_entrysize;
|
||
u_char pr_en;
|
||
u_long pr_q[64];
|
||
} prfpregset_t;
|
||
|
||
These routines provide the packing and unpacking of gregset_t and
|
||
fpregset_t formatted data.
|
||
|
||
*/
|
||
|
||
|
||
/* Given a pointer to a general register set in /proc format (gregset_t *),
|
||
unpack the register contents and supply them as gdb's idea of the current
|
||
register values. */
|
||
|
||
void
|
||
supply_gregset (gregsetp)
|
||
prgregset_t *gregsetp;
|
||
{
|
||
register int regi;
|
||
register prgreg_t *regp = (prgreg_t *) gregsetp;
|
||
|
||
/* GDB register numbers for Gn, On, Ln, In all match /proc reg numbers. */
|
||
for (regi = G0_REGNUM ; regi <= I7_REGNUM ; regi++)
|
||
{
|
||
supply_register (regi, (char *) (regp + regi));
|
||
}
|
||
|
||
/* These require a bit more care. */
|
||
supply_register (PS_REGNUM, (char *) (regp + R_PS));
|
||
supply_register (PC_REGNUM, (char *) (regp + R_PC));
|
||
supply_register (NPC_REGNUM,(char *) (regp + R_nPC));
|
||
supply_register (Y_REGNUM, (char *) (regp + R_Y));
|
||
}
|
||
|
||
void
|
||
fill_gregset (gregsetp, regno)
|
||
prgregset_t *gregsetp;
|
||
int regno;
|
||
{
|
||
int regi;
|
||
register prgreg_t *regp = (prgreg_t *) gregsetp;
|
||
extern char registers[];
|
||
|
||
for (regi = 0 ; regi <= R_I7 ; regi++)
|
||
{
|
||
if ((regno == -1) || (regno == regi))
|
||
{
|
||
*(regp + regi) = *(int *) ®isters[REGISTER_BYTE (regi)];
|
||
}
|
||
}
|
||
if ((regno == -1) || (regno == PS_REGNUM))
|
||
{
|
||
*(regp + R_PS) = *(int *) ®isters[REGISTER_BYTE (PS_REGNUM)];
|
||
}
|
||
if ((regno == -1) || (regno == PC_REGNUM))
|
||
{
|
||
*(regp + R_PC) = *(int *) ®isters[REGISTER_BYTE (PC_REGNUM)];
|
||
}
|
||
if ((regno == -1) || (regno == NPC_REGNUM))
|
||
{
|
||
*(regp + R_nPC) = *(int *) ®isters[REGISTER_BYTE (NPC_REGNUM)];
|
||
}
|
||
if ((regno == -1) || (regno == Y_REGNUM))
|
||
{
|
||
*(regp + R_Y) = *(int *) ®isters[REGISTER_BYTE (Y_REGNUM)];
|
||
}
|
||
}
|
||
|
||
#if defined (FP0_REGNUM)
|
||
|
||
/* Given a pointer to a floating point register set in /proc format
|
||
(fpregset_t *), unpack the register contents and supply them as gdb's
|
||
idea of the current floating point register values. */
|
||
|
||
void
|
||
supply_fpregset (fpregsetp)
|
||
prfpregset_t *fpregsetp;
|
||
{
|
||
register int regi;
|
||
char *from;
|
||
|
||
for (regi = FP0_REGNUM ; regi < FP0_REGNUM+32 ; regi++)
|
||
{
|
||
from = (char *) &fpregsetp->pr_fr.pr_regs[regi-FP0_REGNUM];
|
||
supply_register (regi, from);
|
||
}
|
||
supply_register (FPS_REGNUM, (char *) &(fpregsetp->pr_fsr));
|
||
}
|
||
|
||
/* Given a pointer to a floating point register set in /proc format
|
||
(fpregset_t *), update the register specified by REGNO from gdb's idea
|
||
of the current floating point register set. If REGNO is -1, update
|
||
them all. */
|
||
|
||
void
|
||
fill_fpregset (fpregsetp, regno)
|
||
prfpregset_t *fpregsetp;
|
||
int regno;
|
||
{
|
||
int regi;
|
||
char *to;
|
||
char *from;
|
||
extern char registers[];
|
||
|
||
for (regi = FP0_REGNUM ; regi < FP0_REGNUM+32 ; regi++)
|
||
{
|
||
if ((regno == -1) || (regno == regi))
|
||
{
|
||
from = (char *) ®isters[REGISTER_BYTE (regi)];
|
||
to = (char *) &fpregsetp->pr_fr.pr_regs[regi-FP0_REGNUM];
|
||
memcpy (to, from, REGISTER_RAW_SIZE (regi));
|
||
}
|
||
}
|
||
if ((regno == -1) || (regno == FPS_REGNUM))
|
||
{
|
||
fpregsetp->pr_fsr = *(int *) ®isters[REGISTER_BYTE (FPS_REGNUM)];
|
||
}
|
||
}
|
||
|
||
#endif /* defined (FP0_REGNUM) */
|
||
|
||
#endif /* USE_PROC_FS */
|
||
|
||
|
||
#ifdef GET_LONGJMP_TARGET
|
||
|
||
/* Figure out where the longjmp will land. We expect that we have just entered
|
||
longjmp and haven't yet setup the stack frame, so the args are still in the
|
||
output regs. %o0 (O0_REGNUM) points at the jmp_buf structure from which we
|
||
extract the pc (JB_PC) that we will land at. The pc is copied into ADDR.
|
||
This routine returns true on success */
|
||
|
||
int
|
||
get_longjmp_target(pc)
|
||
CORE_ADDR *pc;
|
||
{
|
||
CORE_ADDR jb_addr;
|
||
#define LONGJMP_TARGET_SIZE 4
|
||
char buf[LONGJMP_TARGET_SIZE];
|
||
|
||
jb_addr = read_register(O0_REGNUM);
|
||
|
||
if (target_read_memory(jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
|
||
LONGJMP_TARGET_SIZE))
|
||
return 0;
|
||
|
||
*pc = extract_address (buf, LONGJMP_TARGET_SIZE);
|
||
|
||
return 1;
|
||
}
|
||
#endif /* GET_LONGJMP_TARGET */
|
||
|
||
/* So far used only for sparc solaris. In sparc solaris, we recognize
|
||
a trampoline by it's section name. That is, if the pc is in a
|
||
section named ".plt" then we are in a trampline. */
|
||
|
||
int
|
||
in_solib_trampoline(pc, name)
|
||
CORE_ADDR pc;
|
||
char *name;
|
||
{
|
||
struct obj_section *s;
|
||
int retval = 0;
|
||
|
||
s = find_pc_section(pc);
|
||
|
||
retval = (s != NULL
|
||
&& s->the_bfd_section->name != NULL
|
||
&& STREQ (s->the_bfd_section->name, ".plt"));
|
||
return(retval);
|
||
}
|
||
|