mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-18 12:24:38 +08:00
12c266ea56
* gdbarch.sh (DEPRECATED_REGISTER_RAW_SIZE): Rename REGISTER_RAW_SIZE. * gdbarch.h, gdbarch.c: Re-generate. * aix-thread.c, alpha-tdep.h, arm-tdep.c, core-sol2.c: Update. * cris-tdep.c, dve3900-rom.c, findvar.c, frame.c: Update. * hppa-tdep.c, hppab-nat.c, hppah-nat.c, hppam3-nat.c: Update. * hpux-thread.c, i386gnu-nat.c, ia64-aix-nat.c: Update. * ia64-linux-nat.c, ia64-tdep.c, infcmd.c, infptrace.c: Update. * infrun.c, irix5-nat.c, lynx-nat.c, mips-linux-tdep.c: Update. * mips-nat.c, mips-tdep.c, mipsv4-nat.c, mn10300-tdep.c: Update. * monitor.c, ns32k-tdep.c, ppc-linux-nat.c, regcache.c: Update. * remote-e7000.c, remote-mips.c, remote-sim.c: Update. * remote-vxmips.c, remote-vxsparc.c, remote.c: Update. * rom68k-rom.c, rs6000-nat.c, rs6000-tdep.c, s390-tdep.c: Update. * sh64-tdep.c, sparc-nat.c, sparc-tdep.c, stack.c: Update. * target.c, tracepoint.c, v850-tdep.c, v850ice.c, valops.c: Update. * vax-tdep.c, vax-tdep.h, x86-64-tdep.c, xstormy16-tdep.c: Update. * config/m68k/tm-delta68.h, config/m68k/tm-vx68.h: Update. * config/sparc/tm-sparc.h, config/sparc/tm-sparclynx.h: Update. 2003-10-02 Andrew Cagney <cagney@redhat.com> * gdbint.texinfo (Target Architecture Definition): Rename REGISTER_RAW_SIZE to DEPRECATED_REGISTER_RAW_SIZE. * gdb.texinfo (Packets, Stop Reply Packets): Ditto. * gdbint.texinfo (Target Architecture Definition): Rename 2003-10-02 Andrew Cagney <cagney@redhat.com> * mi-main.c: Rename REGISTER_RAW_SIZE to DEPRECATED_REGISTER_RAW_SIZE.
1435 lines
41 KiB
C
1435 lines
41 KiB
C
/* Native support code for HPUX PA-RISC.
|
||
Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
|
||
1998, 1999, 2000, 2001
|
||
Free Software Foundation, Inc.
|
||
|
||
Contributed by the Center for Software Science at the
|
||
University of Utah (pa-gdb-bugs@cs.utah.edu).
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
|
||
#include "defs.h"
|
||
#include "inferior.h"
|
||
#include "target.h"
|
||
#include <sys/ptrace.h>
|
||
#include "gdbcore.h"
|
||
#include "gdb_wait.h"
|
||
#include "regcache.h"
|
||
#include "gdb_string.h"
|
||
#include <signal.h>
|
||
|
||
extern int hpux_has_forked (int pid, int *childpid);
|
||
extern int hpux_has_vforked (int pid, int *childpid);
|
||
extern int hpux_has_execd (int pid, char **execd_pathname);
|
||
extern int hpux_has_syscall_event (int pid, enum target_waitkind *kind,
|
||
int *syscall_id);
|
||
|
||
static CORE_ADDR text_end;
|
||
|
||
void
|
||
deprecated_hpux_text_end (struct target_ops *exec_ops)
|
||
{
|
||
struct section_table *p;
|
||
|
||
/* Set text_end to the highest address of the end of any readonly
|
||
code section. */
|
||
/* FIXME: The comment above does not match the code. The code
|
||
checks for sections with are either code *or* readonly. */
|
||
text_end = (CORE_ADDR) 0;
|
||
for (p = exec_ops->to_sections; p < exec_ops->to_sections_end; p++)
|
||
if (bfd_get_section_flags (p->bfd, p->the_bfd_section)
|
||
& (SEC_CODE | SEC_READONLY))
|
||
{
|
||
if (text_end < p->endaddr)
|
||
text_end = p->endaddr;
|
||
}
|
||
}
|
||
|
||
|
||
static void fetch_register (int);
|
||
|
||
void
|
||
fetch_inferior_registers (int regno)
|
||
{
|
||
if (regno == -1)
|
||
for (regno = 0; regno < NUM_REGS; regno++)
|
||
fetch_register (regno);
|
||
else
|
||
fetch_register (regno);
|
||
}
|
||
|
||
/* Our own version of the offsetof macro, since we can't assume ANSI C. */
|
||
#define HPPAH_OFFSETOF(type, member) ((int) (&((type *) 0)->member))
|
||
|
||
/* Store our register values back into the inferior.
|
||
If REGNO is -1, do this for all registers.
|
||
Otherwise, REGNO specifies which register (so we can save time). */
|
||
|
||
void
|
||
store_inferior_registers (int regno)
|
||
{
|
||
unsigned int regaddr;
|
||
char buf[80];
|
||
int i;
|
||
unsigned int offset = U_REGS_OFFSET;
|
||
int scratch;
|
||
|
||
if (regno >= 0)
|
||
{
|
||
unsigned int addr, len, offset;
|
||
|
||
if (CANNOT_STORE_REGISTER (regno))
|
||
return;
|
||
|
||
offset = 0;
|
||
len = DEPRECATED_REGISTER_RAW_SIZE (regno);
|
||
|
||
/* Requests for register zero actually want the save_state's
|
||
ss_flags member. As RM says: "Oh, what a hack!" */
|
||
if (regno == 0)
|
||
{
|
||
save_state_t ss;
|
||
addr = HPPAH_OFFSETOF (save_state_t, ss_flags);
|
||
len = sizeof (ss.ss_flags);
|
||
|
||
/* Note that ss_flags is always an int, no matter what
|
||
DEPRECATED_REGISTER_RAW_SIZE(0) says. Assuming all HP-UX
|
||
PA machines are big-endian, put it at the least
|
||
significant end of the value, and zap the rest of the
|
||
buffer. */
|
||
offset = DEPRECATED_REGISTER_RAW_SIZE (0) - len;
|
||
}
|
||
|
||
/* Floating-point registers come from the ss_fpblock area. */
|
||
else if (regno >= FP0_REGNUM)
|
||
addr = (HPPAH_OFFSETOF (save_state_t, ss_fpblock)
|
||
+ (DEPRECATED_REGISTER_BYTE (regno) - DEPRECATED_REGISTER_BYTE (FP0_REGNUM)));
|
||
|
||
/* Wide registers come from the ss_wide area.
|
||
I think it's more PC to test (ss_flags & SS_WIDEREGS) to select
|
||
between ss_wide and ss_narrow than to use the raw register size.
|
||
But checking ss_flags would require an extra ptrace call for
|
||
every register reference. Bleah. */
|
||
else if (len == 8)
|
||
addr = (HPPAH_OFFSETOF (save_state_t, ss_wide)
|
||
+ DEPRECATED_REGISTER_BYTE (regno));
|
||
|
||
/* Narrow registers come from the ss_narrow area. Note that
|
||
ss_narrow starts with gr1, not gr0. */
|
||
else if (len == 4)
|
||
addr = (HPPAH_OFFSETOF (save_state_t, ss_narrow)
|
||
+ (DEPRECATED_REGISTER_BYTE (regno) - DEPRECATED_REGISTER_BYTE (1)));
|
||
else
|
||
internal_error (__FILE__, __LINE__,
|
||
"hppah-nat.c (write_register): unexpected register size");
|
||
|
||
#ifdef GDB_TARGET_IS_HPPA_20W
|
||
/* Unbelieveable. The PC head and tail must be written in 64bit hunks
|
||
or we will get an error. Worse yet, the oddball ptrace/ttrace
|
||
layering will not allow us to perform a 64bit register store.
|
||
|
||
What a crock. */
|
||
if (regno == PCOQ_HEAD_REGNUM || regno == PCOQ_TAIL_REGNUM && len == 8)
|
||
{
|
||
CORE_ADDR temp;
|
||
|
||
temp = *(CORE_ADDR *)&deprecated_registers[DEPRECATED_REGISTER_BYTE (regno)];
|
||
|
||
/* Set the priv level (stored in the low two bits of the PC. */
|
||
temp |= 0x3;
|
||
|
||
ttrace_write_reg_64 (PIDGET (inferior_ptid), (CORE_ADDR)addr,
|
||
(CORE_ADDR)&temp);
|
||
|
||
/* If we fail to write the PC, give a true error instead of
|
||
just a warning. */
|
||
if (errno != 0)
|
||
{
|
||
char *err = safe_strerror (errno);
|
||
char *msg = alloca (strlen (err) + 128);
|
||
sprintf (msg, "writing `%s' register: %s",
|
||
REGISTER_NAME (regno), err);
|
||
perror_with_name (msg);
|
||
}
|
||
return;
|
||
}
|
||
|
||
/* Another crock. HPUX complains if you write a nonzero value to
|
||
the high part of IPSW. What will it take for HP to catch a
|
||
clue about building sensible interfaces? */
|
||
if (regno == IPSW_REGNUM && len == 8)
|
||
*(int *)&deprecated_registers[DEPRECATED_REGISTER_BYTE (regno)] = 0;
|
||
#endif
|
||
|
||
for (i = 0; i < len; i += sizeof (int))
|
||
{
|
||
errno = 0;
|
||
call_ptrace (PT_WUREGS, PIDGET (inferior_ptid),
|
||
(PTRACE_ARG3_TYPE) addr + i,
|
||
*(int *) &deprecated_registers[DEPRECATED_REGISTER_BYTE (regno) + i]);
|
||
if (errno != 0)
|
||
{
|
||
/* Warning, not error, in case we are attached; sometimes
|
||
the kernel doesn't let us at the registers. */
|
||
char *err = safe_strerror (errno);
|
||
char *msg = alloca (strlen (err) + 128);
|
||
sprintf (msg, "writing `%s' register: %s",
|
||
REGISTER_NAME (regno), err);
|
||
/* If we fail to write the PC, give a true error instead of
|
||
just a warning. */
|
||
if (regno == PCOQ_HEAD_REGNUM || regno == PCOQ_TAIL_REGNUM)
|
||
perror_with_name (msg);
|
||
else
|
||
warning (msg);
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
for (regno = 0; regno < NUM_REGS; regno++)
|
||
store_inferior_registers (regno);
|
||
}
|
||
|
||
|
||
/* Fetch a register's value from the process's U area. */
|
||
static void
|
||
fetch_register (int regno)
|
||
{
|
||
char buf[MAX_REGISTER_SIZE];
|
||
unsigned int addr, len, offset;
|
||
int i;
|
||
|
||
offset = 0;
|
||
len = DEPRECATED_REGISTER_RAW_SIZE (regno);
|
||
|
||
/* Requests for register zero actually want the save_state's
|
||
ss_flags member. As RM says: "Oh, what a hack!" */
|
||
if (regno == 0)
|
||
{
|
||
save_state_t ss;
|
||
addr = HPPAH_OFFSETOF (save_state_t, ss_flags);
|
||
len = sizeof (ss.ss_flags);
|
||
|
||
/* Note that ss_flags is always an int, no matter what
|
||
DEPRECATED_REGISTER_RAW_SIZE(0) says. Assuming all HP-UX PA
|
||
machines are big-endian, put it at the least significant end
|
||
of the value, and zap the rest of the buffer. */
|
||
offset = DEPRECATED_REGISTER_RAW_SIZE (0) - len;
|
||
memset (buf, 0, sizeof (buf));
|
||
}
|
||
|
||
/* Floating-point registers come from the ss_fpblock area. */
|
||
else if (regno >= FP0_REGNUM)
|
||
addr = (HPPAH_OFFSETOF (save_state_t, ss_fpblock)
|
||
+ (DEPRECATED_REGISTER_BYTE (regno) - DEPRECATED_REGISTER_BYTE (FP0_REGNUM)));
|
||
|
||
/* Wide registers come from the ss_wide area.
|
||
I think it's more PC to test (ss_flags & SS_WIDEREGS) to select
|
||
between ss_wide and ss_narrow than to use the raw register size.
|
||
But checking ss_flags would require an extra ptrace call for
|
||
every register reference. Bleah. */
|
||
else if (len == 8)
|
||
addr = (HPPAH_OFFSETOF (save_state_t, ss_wide)
|
||
+ DEPRECATED_REGISTER_BYTE (regno));
|
||
|
||
/* Narrow registers come from the ss_narrow area. Note that
|
||
ss_narrow starts with gr1, not gr0. */
|
||
else if (len == 4)
|
||
addr = (HPPAH_OFFSETOF (save_state_t, ss_narrow)
|
||
+ (DEPRECATED_REGISTER_BYTE (regno) - DEPRECATED_REGISTER_BYTE (1)));
|
||
|
||
else
|
||
internal_error (__FILE__, __LINE__,
|
||
"hppa-nat.c (fetch_register): unexpected register size");
|
||
|
||
for (i = 0; i < len; i += sizeof (int))
|
||
{
|
||
errno = 0;
|
||
/* Copy an int from the U area to buf. Fill the least
|
||
significant end if len != raw_size. */
|
||
* (int *) &buf[offset + i] =
|
||
call_ptrace (PT_RUREGS, PIDGET (inferior_ptid),
|
||
(PTRACE_ARG3_TYPE) addr + i, 0);
|
||
if (errno != 0)
|
||
{
|
||
/* Warning, not error, in case we are attached; sometimes
|
||
the kernel doesn't let us at the registers. */
|
||
char *err = safe_strerror (errno);
|
||
char *msg = alloca (strlen (err) + 128);
|
||
sprintf (msg, "reading `%s' register: %s",
|
||
REGISTER_NAME (regno), err);
|
||
warning (msg);
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* If we're reading an address from the instruction address queue,
|
||
mask out the bottom two bits --- they contain the privilege
|
||
level. */
|
||
if (regno == PCOQ_HEAD_REGNUM || regno == PCOQ_TAIL_REGNUM)
|
||
buf[len - 1] &= ~0x3;
|
||
|
||
supply_register (regno, buf);
|
||
}
|
||
|
||
|
||
/* Copy LEN bytes to or from inferior's memory starting at MEMADDR
|
||
to debugger memory starting at MYADDR. Copy to inferior if
|
||
WRITE is nonzero.
|
||
|
||
Returns the length copied, which is either the LEN argument or zero.
|
||
This xfer function does not do partial moves, since child_ops
|
||
doesn't allow memory operations to cross below us in the target stack
|
||
anyway. TARGET is ignored. */
|
||
|
||
int
|
||
child_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
|
||
struct mem_attrib *mem,
|
||
struct target_ops *target)
|
||
{
|
||
int i;
|
||
/* Round starting address down to longword boundary. */
|
||
CORE_ADDR addr = memaddr & - (CORE_ADDR)(sizeof (int));
|
||
/* Round ending address up; get number of longwords that makes. */
|
||
int count
|
||
= (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
|
||
|
||
/* Allocate buffer of that many longwords.
|
||
Note -- do not use alloca to allocate this buffer since there is no
|
||
guarantee of when the buffer will actually be deallocated.
|
||
|
||
This routine can be called over and over with the same call chain;
|
||
this (in effect) would pile up all those alloca requests until a call
|
||
to alloca was made from a point higher than this routine in the
|
||
call chain. */
|
||
int *buffer = (int *) xmalloc (count * sizeof (int));
|
||
|
||
if (write)
|
||
{
|
||
/* Fill start and end extra bytes of buffer with existing memory data. */
|
||
if (addr != memaddr || len < (int) sizeof (int))
|
||
{
|
||
/* Need part of initial word -- fetch it. */
|
||
buffer[0] = call_ptrace (addr < text_end ? PT_RIUSER : PT_RDUSER,
|
||
PIDGET (inferior_ptid),
|
||
(PTRACE_ARG3_TYPE) addr, 0);
|
||
}
|
||
|
||
if (count > 1) /* FIXME, avoid if even boundary */
|
||
{
|
||
buffer[count - 1]
|
||
= call_ptrace (addr < text_end ? PT_RIUSER : PT_RDUSER,
|
||
PIDGET (inferior_ptid),
|
||
(PTRACE_ARG3_TYPE) (addr
|
||
+ (count - 1) * sizeof (int)),
|
||
0);
|
||
}
|
||
|
||
/* Copy data to be written over corresponding part of buffer */
|
||
memcpy ((char *) buffer + (memaddr & (sizeof (int) - 1)), myaddr, len);
|
||
|
||
/* Write the entire buffer. */
|
||
for (i = 0; i < count; i++, addr += sizeof (int))
|
||
{
|
||
int pt_status;
|
||
int pt_request;
|
||
/* The HP-UX kernel crashes if you use PT_WDUSER to write into the
|
||
text segment. FIXME -- does it work to write into the data
|
||
segment using WIUSER, or do these idiots really expect us to
|
||
figure out which segment the address is in, so we can use a
|
||
separate system call for it??! */
|
||
errno = 0;
|
||
pt_request = (addr < text_end) ? PT_WIUSER : PT_WDUSER;
|
||
pt_status = call_ptrace (pt_request,
|
||
PIDGET (inferior_ptid),
|
||
(PTRACE_ARG3_TYPE) addr,
|
||
buffer[i]);
|
||
|
||
/* Did we fail? Might we've guessed wrong about which
|
||
segment this address resides in? Try the other request,
|
||
and see if that works... */
|
||
if ((pt_status == -1) && errno)
|
||
{
|
||
errno = 0;
|
||
pt_request = (pt_request == PT_WIUSER) ? PT_WDUSER : PT_WIUSER;
|
||
pt_status = call_ptrace (pt_request,
|
||
PIDGET (inferior_ptid),
|
||
(PTRACE_ARG3_TYPE) addr,
|
||
buffer[i]);
|
||
|
||
/* No, we still fail. Okay, time to punt. */
|
||
if ((pt_status == -1) && errno)
|
||
{
|
||
xfree (buffer);
|
||
return 0;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Read all the longwords */
|
||
for (i = 0; i < count; i++, addr += sizeof (int))
|
||
{
|
||
errno = 0;
|
||
buffer[i] = call_ptrace (addr < text_end ? PT_RIUSER : PT_RDUSER,
|
||
PIDGET (inferior_ptid),
|
||
(PTRACE_ARG3_TYPE) addr, 0);
|
||
if (errno)
|
||
{
|
||
xfree (buffer);
|
||
return 0;
|
||
}
|
||
QUIT;
|
||
}
|
||
|
||
/* Copy appropriate bytes out of the buffer. */
|
||
memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (int) - 1)), len);
|
||
}
|
||
xfree (buffer);
|
||
return len;
|
||
}
|
||
|
||
char *saved_child_execd_pathname = NULL;
|
||
int saved_vfork_pid;
|
||
enum {
|
||
STATE_NONE,
|
||
STATE_GOT_CHILD,
|
||
STATE_GOT_EXEC,
|
||
STATE_GOT_PARENT,
|
||
STATE_FAKE_EXEC
|
||
} saved_vfork_state = STATE_NONE;
|
||
|
||
int
|
||
child_follow_fork (int follow_child)
|
||
{
|
||
ptid_t last_ptid;
|
||
struct target_waitstatus last_status;
|
||
int has_vforked;
|
||
int parent_pid, child_pid;
|
||
|
||
get_last_target_status (&last_ptid, &last_status);
|
||
has_vforked = (last_status.kind == TARGET_WAITKIND_VFORKED);
|
||
parent_pid = ptid_get_pid (last_ptid);
|
||
child_pid = last_status.value.related_pid;
|
||
|
||
/* At this point, if we are vforking, breakpoints were already
|
||
detached from the child in child_wait; and the child has already
|
||
called execve(). If we are forking, both the parent and child
|
||
have breakpoints inserted. */
|
||
|
||
if (! follow_child)
|
||
{
|
||
if (! has_vforked)
|
||
{
|
||
detach_breakpoints (child_pid);
|
||
#ifdef SOLIB_REMOVE_INFERIOR_HOOK
|
||
SOLIB_REMOVE_INFERIOR_HOOK (child_pid);
|
||
#endif
|
||
}
|
||
|
||
/* Detach from the child. */
|
||
printf_unfiltered ("Detaching after fork from %s\n",
|
||
target_pid_to_str (pid_to_ptid (child_pid)));
|
||
hppa_require_detach (child_pid, 0);
|
||
|
||
/* The parent and child of a vfork share the same address space.
|
||
Also, on some targets the order in which vfork and exec events
|
||
are received for parent in child requires some delicate handling
|
||
of the events.
|
||
|
||
For instance, on ptrace-based HPUX we receive the child's vfork
|
||
event first, at which time the parent has been suspended by the
|
||
OS and is essentially untouchable until the child's exit or second
|
||
exec event arrives. At that time, the parent's vfork event is
|
||
delivered to us, and that's when we see and decide how to follow
|
||
the vfork. But to get to that point, we must continue the child
|
||
until it execs or exits. To do that smoothly, all breakpoints
|
||
must be removed from the child, in case there are any set between
|
||
the vfork() and exec() calls. But removing them from the child
|
||
also removes them from the parent, due to the shared-address-space
|
||
nature of a vfork'd parent and child. On HPUX, therefore, we must
|
||
take care to restore the bp's to the parent before we continue it.
|
||
Else, it's likely that we may not stop in the expected place. (The
|
||
worst scenario is when the user tries to step over a vfork() call;
|
||
the step-resume bp must be restored for the step to properly stop
|
||
in the parent after the call completes!)
|
||
|
||
Sequence of events, as reported to gdb from HPUX:
|
||
|
||
Parent Child Action for gdb to take
|
||
-------------------------------------------------------
|
||
1 VFORK Continue child
|
||
2 EXEC
|
||
3 EXEC or EXIT
|
||
4 VFORK
|
||
|
||
Now that the child has safely exec'd or exited, we must restore
|
||
the parent's breakpoints before we continue it. Else, we may
|
||
cause it run past expected stopping points. */
|
||
|
||
if (has_vforked)
|
||
reattach_breakpoints (parent_pid);
|
||
}
|
||
else
|
||
{
|
||
/* Needed to keep the breakpoint lists in sync. */
|
||
if (! has_vforked)
|
||
detach_breakpoints (child_pid);
|
||
|
||
/* Before detaching from the parent, remove all breakpoints from it. */
|
||
remove_breakpoints ();
|
||
|
||
/* Also reset the solib inferior hook from the parent. */
|
||
#ifdef SOLIB_REMOVE_INFERIOR_HOOK
|
||
SOLIB_REMOVE_INFERIOR_HOOK (PIDGET (inferior_ptid));
|
||
#endif
|
||
|
||
/* Detach from the parent. */
|
||
target_detach (NULL, 1);
|
||
|
||
/* Attach to the child. */
|
||
printf_unfiltered ("Attaching after fork to %s\n",
|
||
target_pid_to_str (pid_to_ptid (child_pid)));
|
||
hppa_require_attach (child_pid);
|
||
inferior_ptid = pid_to_ptid (child_pid);
|
||
|
||
/* If we vforked, then we've also execed by now. The exec will be
|
||
reported momentarily. follow_exec () will handle breakpoints, so
|
||
we don't have to.. */
|
||
if (!has_vforked)
|
||
follow_inferior_reset_breakpoints ();
|
||
}
|
||
|
||
if (has_vforked)
|
||
{
|
||
/* If we followed the parent, don't try to follow the child's exec. */
|
||
if (saved_vfork_state != STATE_GOT_PARENT
|
||
&& saved_vfork_state != STATE_FAKE_EXEC)
|
||
fprintf_unfiltered (gdb_stdout,
|
||
"hppa: post follow vfork: confused state\n");
|
||
|
||
if (! follow_child || saved_vfork_state == STATE_GOT_PARENT)
|
||
saved_vfork_state = STATE_NONE;
|
||
else
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Format a process id, given PID. Be sure to terminate
|
||
this with a null--it's going to be printed via a "%s". */
|
||
char *
|
||
child_pid_to_str (ptid_t ptid)
|
||
{
|
||
/* Static because address returned */
|
||
static char buf[30];
|
||
pid_t pid = PIDGET (ptid);
|
||
|
||
/* Extra NUL for paranoia's sake */
|
||
sprintf (buf, "process %d%c", pid, '\0');
|
||
|
||
return buf;
|
||
}
|
||
|
||
/* Format a thread id, given TID. Be sure to terminate
|
||
this with a null--it's going to be printed via a "%s".
|
||
|
||
Note: This is a core-gdb tid, not the actual system tid.
|
||
See infttrace.c for details. */
|
||
char *
|
||
hppa_tid_to_str (ptid_t ptid)
|
||
{
|
||
/* Static because address returned */
|
||
static char buf[30];
|
||
/* This seems strange, but when I did the ptid conversion, it looked
|
||
as though a pid was always being passed. - Kevin Buettner */
|
||
pid_t tid = PIDGET (ptid);
|
||
|
||
/* Extra NULLs for paranoia's sake */
|
||
sprintf (buf, "system thread %d%c", tid, '\0');
|
||
|
||
return buf;
|
||
}
|
||
|
||
/*## */
|
||
/* Enable HACK for ttrace work. In
|
||
* infttrace.c/require_notification_of_events,
|
||
* this is set to 0 so that the loop in child_wait
|
||
* won't loop.
|
||
*/
|
||
int not_same_real_pid = 1;
|
||
/*## */
|
||
|
||
/* Wait for child to do something. Return pid of child, or -1 in case
|
||
of error; store status through argument pointer OURSTATUS. */
|
||
|
||
ptid_t
|
||
child_wait (ptid_t ptid, struct target_waitstatus *ourstatus)
|
||
{
|
||
int save_errno;
|
||
int status;
|
||
char *execd_pathname = NULL;
|
||
int exit_status;
|
||
int related_pid;
|
||
int syscall_id;
|
||
enum target_waitkind kind;
|
||
int pid;
|
||
|
||
if (saved_vfork_state == STATE_FAKE_EXEC)
|
||
{
|
||
saved_vfork_state = STATE_NONE;
|
||
ourstatus->kind = TARGET_WAITKIND_EXECD;
|
||
ourstatus->value.execd_pathname = saved_child_execd_pathname;
|
||
return inferior_ptid;
|
||
}
|
||
|
||
do
|
||
{
|
||
set_sigint_trap (); /* Causes SIGINT to be passed on to the
|
||
attached process. */
|
||
set_sigio_trap ();
|
||
|
||
pid = ptrace_wait (inferior_ptid, &status);
|
||
|
||
save_errno = errno;
|
||
|
||
clear_sigio_trap ();
|
||
|
||
clear_sigint_trap ();
|
||
|
||
if (pid == -1)
|
||
{
|
||
if (save_errno == EINTR)
|
||
continue;
|
||
|
||
fprintf_unfiltered (gdb_stderr, "Child process unexpectedly missing: %s.\n",
|
||
safe_strerror (save_errno));
|
||
|
||
/* Claim it exited with unknown signal. */
|
||
ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
|
||
ourstatus->value.sig = TARGET_SIGNAL_UNKNOWN;
|
||
return pid_to_ptid (-1);
|
||
}
|
||
|
||
/* Did it exit?
|
||
*/
|
||
if (target_has_exited (pid, status, &exit_status))
|
||
{
|
||
/* ??rehrauer: For now, ignore this. */
|
||
continue;
|
||
}
|
||
|
||
if (!target_thread_alive (pid_to_ptid (pid)))
|
||
{
|
||
ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
|
||
return pid_to_ptid (pid);
|
||
}
|
||
|
||
if (hpux_has_forked (pid, &related_pid))
|
||
{
|
||
/* Ignore the parent's fork event. */
|
||
if (pid == PIDGET (inferior_ptid))
|
||
{
|
||
ourstatus->kind = TARGET_WAITKIND_IGNORE;
|
||
return inferior_ptid;
|
||
}
|
||
|
||
/* If this is the child's fork event, report that the
|
||
process has forked. */
|
||
if (related_pid == PIDGET (inferior_ptid))
|
||
{
|
||
ourstatus->kind = TARGET_WAITKIND_FORKED;
|
||
ourstatus->value.related_pid = pid;
|
||
return inferior_ptid;
|
||
}
|
||
}
|
||
|
||
if (hpux_has_vforked (pid, &related_pid))
|
||
{
|
||
if (pid == PIDGET (inferior_ptid))
|
||
{
|
||
if (saved_vfork_state == STATE_GOT_CHILD)
|
||
saved_vfork_state = STATE_GOT_PARENT;
|
||
else if (saved_vfork_state == STATE_GOT_EXEC)
|
||
saved_vfork_state = STATE_FAKE_EXEC;
|
||
else
|
||
fprintf_unfiltered (gdb_stdout,
|
||
"hppah: parent vfork: confused\n");
|
||
}
|
||
else if (related_pid == PIDGET (inferior_ptid))
|
||
{
|
||
if (saved_vfork_state == STATE_NONE)
|
||
saved_vfork_state = STATE_GOT_CHILD;
|
||
else
|
||
fprintf_unfiltered (gdb_stdout,
|
||
"hppah: child vfork: confused\n");
|
||
}
|
||
else
|
||
fprintf_unfiltered (gdb_stdout,
|
||
"hppah: unknown vfork: confused\n");
|
||
|
||
if (saved_vfork_state == STATE_GOT_CHILD)
|
||
{
|
||
child_post_startup_inferior (pid_to_ptid (pid));
|
||
detach_breakpoints (pid);
|
||
#ifdef SOLIB_REMOVE_INFERIOR_HOOK
|
||
SOLIB_REMOVE_INFERIOR_HOOK (pid);
|
||
#endif
|
||
child_resume (pid_to_ptid (pid), 0, TARGET_SIGNAL_0);
|
||
ourstatus->kind = TARGET_WAITKIND_IGNORE;
|
||
return pid_to_ptid (related_pid);
|
||
}
|
||
else if (saved_vfork_state == STATE_FAKE_EXEC)
|
||
{
|
||
ourstatus->kind = TARGET_WAITKIND_VFORKED;
|
||
ourstatus->value.related_pid = related_pid;
|
||
return pid_to_ptid (pid);
|
||
}
|
||
else
|
||
{
|
||
/* We saw the parent's vfork, but we haven't seen the exec yet.
|
||
Wait for it, for simplicity's sake. It should be pending. */
|
||
saved_vfork_pid = related_pid;
|
||
ourstatus->kind = TARGET_WAITKIND_IGNORE;
|
||
return pid_to_ptid (pid);
|
||
}
|
||
}
|
||
|
||
if (hpux_has_execd (pid, &execd_pathname))
|
||
{
|
||
/* On HP-UX, events associated with a vforking inferior come in
|
||
threes: a vfork event for the child (always first), followed
|
||
a vfork event for the parent and an exec event for the child.
|
||
The latter two can come in either order. Make sure we get
|
||
both. */
|
||
if (saved_vfork_state != STATE_NONE)
|
||
{
|
||
if (saved_vfork_state == STATE_GOT_CHILD)
|
||
{
|
||
saved_vfork_state = STATE_GOT_EXEC;
|
||
/* On HP/UX with ptrace, the child must be resumed before
|
||
the parent vfork event is delivered. A single-step
|
||
suffices. */
|
||
if (RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK ())
|
||
target_resume (pid_to_ptid (pid), 1, TARGET_SIGNAL_0);
|
||
ourstatus->kind = TARGET_WAITKIND_IGNORE;
|
||
}
|
||
else if (saved_vfork_state == STATE_GOT_PARENT)
|
||
{
|
||
saved_vfork_state = STATE_FAKE_EXEC;
|
||
ourstatus->kind = TARGET_WAITKIND_VFORKED;
|
||
ourstatus->value.related_pid = saved_vfork_pid;
|
||
}
|
||
else
|
||
fprintf_unfiltered (gdb_stdout,
|
||
"hppa: exec: unexpected state\n");
|
||
|
||
saved_child_execd_pathname = execd_pathname;
|
||
|
||
return inferior_ptid;
|
||
}
|
||
|
||
/* Are we ignoring initial exec events? (This is likely because
|
||
we're in the process of starting up the inferior, and another
|
||
(older) mechanism handles those.) If so, we'll report this
|
||
as a regular stop, not an exec.
|
||
*/
|
||
if (inferior_ignoring_startup_exec_events)
|
||
{
|
||
inferior_ignoring_startup_exec_events--;
|
||
}
|
||
else
|
||
{
|
||
ourstatus->kind = TARGET_WAITKIND_EXECD;
|
||
ourstatus->value.execd_pathname = execd_pathname;
|
||
return pid_to_ptid (pid);
|
||
}
|
||
}
|
||
|
||
/* All we must do with these is communicate their occurrence
|
||
to wait_for_inferior...
|
||
*/
|
||
if (hpux_has_syscall_event (pid, &kind, &syscall_id))
|
||
{
|
||
ourstatus->kind = kind;
|
||
ourstatus->value.syscall_id = syscall_id;
|
||
return pid_to_ptid (pid);
|
||
}
|
||
|
||
/*## } while (pid != PIDGET (inferior_ptid)); ## *//* Some other child died or stopped */
|
||
/* hack for thread testing */
|
||
}
|
||
while ((pid != PIDGET (inferior_ptid)) && not_same_real_pid);
|
||
/*## */
|
||
|
||
store_waitstatus (ourstatus, status);
|
||
return pid_to_ptid (pid);
|
||
}
|
||
|
||
#if !defined (GDB_NATIVE_HPUX_11)
|
||
|
||
/* The following code is a substitute for the infttrace.c versions used
|
||
with ttrace() in HPUX 11. */
|
||
|
||
/* This value is an arbitrary integer. */
|
||
#define PT_VERSION 123456
|
||
|
||
/* This semaphore is used to coordinate the child and parent processes
|
||
after a fork(), and before an exec() by the child. See
|
||
parent_attach_all for details. */
|
||
|
||
typedef struct
|
||
{
|
||
int parent_channel[2]; /* Parent "talks" to [1], child "listens" to [0] */
|
||
int child_channel[2]; /* Child "talks" to [1], parent "listens" to [0] */
|
||
}
|
||
startup_semaphore_t;
|
||
|
||
#define SEM_TALK (1)
|
||
#define SEM_LISTEN (0)
|
||
|
||
static startup_semaphore_t startup_semaphore;
|
||
|
||
#ifdef PT_SETTRC
|
||
/* This function causes the caller's process to be traced by its
|
||
parent. This is intended to be called after GDB forks itself,
|
||
and before the child execs the target.
|
||
|
||
Note that HP-UX ptrace is rather funky in how this is done.
|
||
If the parent wants to get the initial exec event of a child,
|
||
it must set the ptrace event mask of the child to include execs.
|
||
(The child cannot do this itself.) This must be done after the
|
||
child is forked, but before it execs.
|
||
|
||
To coordinate the parent and child, we implement a semaphore using
|
||
pipes. After SETTRC'ing itself, the child tells the parent that
|
||
it is now traceable by the parent, and waits for the parent's
|
||
acknowledgement. The parent can then set the child's event mask,
|
||
and notify the child that it can now exec.
|
||
|
||
(The acknowledgement by parent happens as a result of a call to
|
||
child_acknowledge_created_inferior.) */
|
||
|
||
int
|
||
parent_attach_all (int pid, PTRACE_ARG3_TYPE addr, int data)
|
||
{
|
||
int pt_status = 0;
|
||
|
||
/* We need a memory home for a constant. */
|
||
int tc_magic_child = PT_VERSION;
|
||
int tc_magic_parent = 0;
|
||
|
||
/* The remainder of this function is only useful for HPUX 10.0 and
|
||
later, as it depends upon the ability to request notification
|
||
of specific kinds of events by the kernel. */
|
||
#if defined(PT_SET_EVENT_MASK)
|
||
|
||
/* Notify the parent that we're potentially ready to exec(). */
|
||
write (startup_semaphore.child_channel[SEM_TALK],
|
||
&tc_magic_child,
|
||
sizeof (tc_magic_child));
|
||
|
||
/* Wait for acknowledgement from the parent. */
|
||
read (startup_semaphore.parent_channel[SEM_LISTEN],
|
||
&tc_magic_parent,
|
||
sizeof (tc_magic_parent));
|
||
if (tc_magic_child != tc_magic_parent)
|
||
warning ("mismatched semaphore magic");
|
||
|
||
/* Discard our copy of the semaphore. */
|
||
(void) close (startup_semaphore.parent_channel[SEM_LISTEN]);
|
||
(void) close (startup_semaphore.parent_channel[SEM_TALK]);
|
||
(void) close (startup_semaphore.child_channel[SEM_LISTEN]);
|
||
(void) close (startup_semaphore.child_channel[SEM_TALK]);
|
||
#endif
|
||
|
||
return 0;
|
||
}
|
||
#endif
|
||
|
||
int
|
||
hppa_require_attach (int pid)
|
||
{
|
||
int pt_status;
|
||
CORE_ADDR pc;
|
||
CORE_ADDR pc_addr;
|
||
unsigned int regs_offset;
|
||
|
||
/* Are we already attached? There appears to be no explicit way to
|
||
answer this via ptrace, so we try something which should be
|
||
innocuous if we are attached. If that fails, then we assume
|
||
we're not attached, and so attempt to make it so. */
|
||
|
||
errno = 0;
|
||
regs_offset = U_REGS_OFFSET;
|
||
pc_addr = register_addr (PC_REGNUM, regs_offset);
|
||
pc = call_ptrace (PT_READ_U, pid, (PTRACE_ARG3_TYPE) pc_addr, 0);
|
||
|
||
if (errno)
|
||
{
|
||
errno = 0;
|
||
pt_status = call_ptrace (PT_ATTACH, pid, (PTRACE_ARG3_TYPE) 0, 0);
|
||
|
||
if (errno)
|
||
return -1;
|
||
|
||
/* Now we really are attached. */
|
||
errno = 0;
|
||
}
|
||
attach_flag = 1;
|
||
return pid;
|
||
}
|
||
|
||
int
|
||
hppa_require_detach (int pid, int signal)
|
||
{
|
||
errno = 0;
|
||
call_ptrace (PT_DETACH, pid, (PTRACE_ARG3_TYPE) 1, signal);
|
||
errno = 0; /* Ignore any errors. */
|
||
return pid;
|
||
}
|
||
|
||
/* Since ptrace doesn't support memory page-protection events, which
|
||
are used to implement "hardware" watchpoints on HP-UX, these are
|
||
dummy versions, which perform no useful work. */
|
||
|
||
void
|
||
hppa_enable_page_protection_events (int pid)
|
||
{
|
||
}
|
||
|
||
void
|
||
hppa_disable_page_protection_events (int pid)
|
||
{
|
||
}
|
||
|
||
int
|
||
hppa_insert_hw_watchpoint (int pid, CORE_ADDR start, LONGEST len, int type)
|
||
{
|
||
error ("Hardware watchpoints not implemented on this platform.");
|
||
}
|
||
|
||
int
|
||
hppa_remove_hw_watchpoint (int pid, CORE_ADDR start, LONGEST len, int type)
|
||
{
|
||
error ("Hardware watchpoints not implemented on this platform.");
|
||
}
|
||
|
||
int
|
||
hppa_can_use_hw_watchpoint (int type, int cnt, int ot)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
hppa_range_profitable_for_hw_watchpoint (int pid, CORE_ADDR start, LONGEST len)
|
||
{
|
||
error ("Hardware watchpoints not implemented on this platform.");
|
||
}
|
||
|
||
char *
|
||
hppa_pid_or_tid_to_str (ptid_t id)
|
||
{
|
||
/* In the ptrace world, there are only processes. */
|
||
return child_pid_to_str (id);
|
||
}
|
||
|
||
void
|
||
hppa_ensure_vforking_parent_remains_stopped (int pid)
|
||
{
|
||
/* This assumes that the vforked parent is presently stopped, and
|
||
that the vforked child has just delivered its first exec event.
|
||
Calling kill() this way will cause the SIGTRAP to be delivered as
|
||
soon as the parent is resumed, which happens as soon as the
|
||
vforked child is resumed. See wait_for_inferior for the use of
|
||
this function. */
|
||
kill (pid, SIGTRAP);
|
||
}
|
||
|
||
int
|
||
hppa_resume_execd_vforking_child_to_get_parent_vfork (void)
|
||
{
|
||
return 1; /* Yes, the child must be resumed. */
|
||
}
|
||
|
||
void
|
||
require_notification_of_events (int pid)
|
||
{
|
||
#if defined(PT_SET_EVENT_MASK)
|
||
int pt_status;
|
||
ptrace_event_t ptrace_events;
|
||
int nsigs;
|
||
int signum;
|
||
|
||
/* Instruct the kernel as to the set of events we wish to be
|
||
informed of. (This support does not exist before HPUX 10.0.
|
||
We'll assume if PT_SET_EVENT_MASK has not been defined by
|
||
<sys/ptrace.h>, then we're being built on pre-10.0.) */
|
||
memset (&ptrace_events, 0, sizeof (ptrace_events));
|
||
|
||
/* Note: By default, all signals are visible to us. If we wish
|
||
the kernel to keep certain signals hidden from us, we do it
|
||
by calling sigdelset (ptrace_events.pe_signals, signal) for
|
||
each such signal here, before doing PT_SET_EVENT_MASK. */
|
||
/* RM: The above comment is no longer true. We start with ignoring
|
||
all signals, and then add the ones we are interested in. We could
|
||
do it the other way: start by looking at all signals and then
|
||
deleting the ones that we aren't interested in, except that
|
||
multiple gdb signals may be mapped to the same host signal
|
||
(eg. TARGET_SIGNAL_IO and TARGET_SIGNAL_POLL both get mapped to
|
||
signal 22 on HPUX 10.20) We want to be notified if we are
|
||
interested in either signal. */
|
||
sigfillset (&ptrace_events.pe_signals);
|
||
|
||
/* RM: Let's not bother with signals we don't care about */
|
||
nsigs = (int) TARGET_SIGNAL_LAST;
|
||
for (signum = nsigs; signum > 0; signum--)
|
||
{
|
||
if ((signal_stop_state (signum)) ||
|
||
(signal_print_state (signum)) ||
|
||
(!signal_pass_state (signum)))
|
||
{
|
||
if (target_signal_to_host_p (signum))
|
||
sigdelset (&ptrace_events.pe_signals,
|
||
target_signal_to_host (signum));
|
||
}
|
||
}
|
||
|
||
ptrace_events.pe_set_event = 0;
|
||
|
||
ptrace_events.pe_set_event |= PTRACE_SIGNAL;
|
||
ptrace_events.pe_set_event |= PTRACE_EXEC;
|
||
ptrace_events.pe_set_event |= PTRACE_FORK;
|
||
ptrace_events.pe_set_event |= PTRACE_VFORK;
|
||
/* ??rehrauer: Add this one when we're prepared to catch it...
|
||
ptrace_events.pe_set_event |= PTRACE_EXIT;
|
||
*/
|
||
|
||
errno = 0;
|
||
pt_status = call_ptrace (PT_SET_EVENT_MASK,
|
||
pid,
|
||
(PTRACE_ARG3_TYPE) & ptrace_events,
|
||
sizeof (ptrace_events));
|
||
if (errno)
|
||
perror_with_name ("ptrace");
|
||
if (pt_status < 0)
|
||
return;
|
||
#endif
|
||
}
|
||
|
||
void
|
||
require_notification_of_exec_events (int pid)
|
||
{
|
||
#if defined(PT_SET_EVENT_MASK)
|
||
int pt_status;
|
||
ptrace_event_t ptrace_events;
|
||
|
||
/* Instruct the kernel as to the set of events we wish to be
|
||
informed of. (This support does not exist before HPUX 10.0.
|
||
We'll assume if PT_SET_EVENT_MASK has not been defined by
|
||
<sys/ptrace.h>, then we're being built on pre-10.0.) */
|
||
memset (&ptrace_events, 0, sizeof (ptrace_events));
|
||
|
||
/* Note: By default, all signals are visible to us. If we wish
|
||
the kernel to keep certain signals hidden from us, we do it
|
||
by calling sigdelset (ptrace_events.pe_signals, signal) for
|
||
each such signal here, before doing PT_SET_EVENT_MASK. */
|
||
sigemptyset (&ptrace_events.pe_signals);
|
||
|
||
ptrace_events.pe_set_event = 0;
|
||
|
||
ptrace_events.pe_set_event |= PTRACE_EXEC;
|
||
/* ??rehrauer: Add this one when we're prepared to catch it...
|
||
ptrace_events.pe_set_event |= PTRACE_EXIT;
|
||
*/
|
||
|
||
errno = 0;
|
||
pt_status = call_ptrace (PT_SET_EVENT_MASK,
|
||
pid,
|
||
(PTRACE_ARG3_TYPE) & ptrace_events,
|
||
sizeof (ptrace_events));
|
||
if (errno)
|
||
perror_with_name ("ptrace");
|
||
if (pt_status < 0)
|
||
return;
|
||
#endif
|
||
}
|
||
|
||
/* This function is called by the parent process, with pid being the
|
||
ID of the child process, after the debugger has forked. */
|
||
|
||
void
|
||
child_acknowledge_created_inferior (int pid)
|
||
{
|
||
/* We need a memory home for a constant. */
|
||
int tc_magic_parent = PT_VERSION;
|
||
int tc_magic_child = 0;
|
||
|
||
/* The remainder of this function is only useful for HPUX 10.0 and
|
||
later, as it depends upon the ability to request notification
|
||
of specific kinds of events by the kernel. */
|
||
#if defined(PT_SET_EVENT_MASK)
|
||
/* Wait for the child to tell us that it has forked. */
|
||
read (startup_semaphore.child_channel[SEM_LISTEN],
|
||
&tc_magic_child,
|
||
sizeof (tc_magic_child));
|
||
|
||
/* Notify the child that it can exec.
|
||
|
||
In the infttrace.c variant of this function, we set the child's
|
||
event mask after the fork but before the exec. In the ptrace
|
||
world, it seems we can't set the event mask until after the exec. */
|
||
write (startup_semaphore.parent_channel[SEM_TALK],
|
||
&tc_magic_parent,
|
||
sizeof (tc_magic_parent));
|
||
|
||
/* We'd better pause a bit before trying to set the event mask,
|
||
though, to ensure that the exec has happened. We don't want to
|
||
wait() on the child, because that'll screw up the upper layers
|
||
of gdb's execution control that expect to see the exec event.
|
||
|
||
After an exec, the child is no longer executing gdb code. Hence,
|
||
we can't have yet another synchronization via the pipes. We'll
|
||
just sleep for a second, and hope that's enough delay... */
|
||
sleep (1);
|
||
|
||
/* Instruct the kernel as to the set of events we wish to be
|
||
informed of. */
|
||
require_notification_of_exec_events (pid);
|
||
|
||
/* Discard our copy of the semaphore. */
|
||
(void) close (startup_semaphore.parent_channel[SEM_LISTEN]);
|
||
(void) close (startup_semaphore.parent_channel[SEM_TALK]);
|
||
(void) close (startup_semaphore.child_channel[SEM_LISTEN]);
|
||
(void) close (startup_semaphore.child_channel[SEM_TALK]);
|
||
#endif
|
||
}
|
||
|
||
void
|
||
child_post_startup_inferior (ptid_t ptid)
|
||
{
|
||
require_notification_of_events (PIDGET (ptid));
|
||
}
|
||
|
||
void
|
||
child_post_attach (int pid)
|
||
{
|
||
require_notification_of_events (pid);
|
||
}
|
||
|
||
int
|
||
child_insert_fork_catchpoint (int pid)
|
||
{
|
||
/* This request is only available on HPUX 10.0 and later. */
|
||
#if !defined(PT_SET_EVENT_MASK)
|
||
error ("Unable to catch forks prior to HPUX 10.0");
|
||
#else
|
||
/* Enable reporting of fork events from the kernel. */
|
||
/* ??rehrauer: For the moment, we're always enabling these events,
|
||
and just ignoring them if there's no catchpoint to catch them. */
|
||
return 0;
|
||
#endif
|
||
}
|
||
|
||
int
|
||
child_remove_fork_catchpoint (int pid)
|
||
{
|
||
/* This request is only available on HPUX 10.0 and later. */
|
||
#if !defined(PT_SET_EVENT_MASK)
|
||
error ("Unable to catch forks prior to HPUX 10.0");
|
||
#else
|
||
/* Disable reporting of fork events from the kernel. */
|
||
/* ??rehrauer: For the moment, we're always enabling these events,
|
||
and just ignoring them if there's no catchpoint to catch them. */
|
||
return 0;
|
||
#endif
|
||
}
|
||
|
||
int
|
||
child_insert_vfork_catchpoint (int pid)
|
||
{
|
||
/* This request is only available on HPUX 10.0 and later. */
|
||
#if !defined(PT_SET_EVENT_MASK)
|
||
error ("Unable to catch vforks prior to HPUX 10.0");
|
||
#else
|
||
/* Enable reporting of vfork events from the kernel. */
|
||
/* ??rehrauer: For the moment, we're always enabling these events,
|
||
and just ignoring them if there's no catchpoint to catch them. */
|
||
return 0;
|
||
#endif
|
||
}
|
||
|
||
int
|
||
child_remove_vfork_catchpoint (int pid)
|
||
{
|
||
/* This request is only available on HPUX 10.0 and later. */
|
||
#if !defined(PT_SET_EVENT_MASK)
|
||
error ("Unable to catch vforks prior to HPUX 10.0");
|
||
#else
|
||
/* Disable reporting of vfork events from the kernel. */
|
||
/* ??rehrauer: For the moment, we're always enabling these events,
|
||
and just ignoring them if there's no catchpoint to catch them. */
|
||
return 0;
|
||
#endif
|
||
}
|
||
|
||
int
|
||
hpux_has_forked (int pid, int *childpid)
|
||
{
|
||
/* This request is only available on HPUX 10.0 and later. */
|
||
#if !defined(PT_GET_PROCESS_STATE)
|
||
*childpid = 0;
|
||
return 0;
|
||
#else
|
||
int pt_status;
|
||
ptrace_state_t ptrace_state;
|
||
|
||
errno = 0;
|
||
pt_status = call_ptrace (PT_GET_PROCESS_STATE,
|
||
pid,
|
||
(PTRACE_ARG3_TYPE) & ptrace_state,
|
||
sizeof (ptrace_state));
|
||
if (errno)
|
||
perror_with_name ("ptrace");
|
||
if (pt_status < 0)
|
||
return 0;
|
||
|
||
if (ptrace_state.pe_report_event & PTRACE_FORK)
|
||
{
|
||
*childpid = ptrace_state.pe_other_pid;
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
#endif
|
||
}
|
||
|
||
int
|
||
hpux_has_vforked (int pid, int *childpid)
|
||
{
|
||
/* This request is only available on HPUX 10.0 and later. */
|
||
#if !defined(PT_GET_PROCESS_STATE)
|
||
*childpid = 0;
|
||
return 0;
|
||
|
||
#else
|
||
int pt_status;
|
||
ptrace_state_t ptrace_state;
|
||
|
||
errno = 0;
|
||
pt_status = call_ptrace (PT_GET_PROCESS_STATE,
|
||
pid,
|
||
(PTRACE_ARG3_TYPE) & ptrace_state,
|
||
sizeof (ptrace_state));
|
||
if (errno)
|
||
perror_with_name ("ptrace");
|
||
if (pt_status < 0)
|
||
return 0;
|
||
|
||
if (ptrace_state.pe_report_event & PTRACE_VFORK)
|
||
{
|
||
*childpid = ptrace_state.pe_other_pid;
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
#endif
|
||
}
|
||
|
||
int
|
||
child_insert_exec_catchpoint (int pid)
|
||
{
|
||
/* This request is only available on HPUX 10.0 and later. */
|
||
#if !defined(PT_SET_EVENT_MASK)
|
||
error ("Unable to catch execs prior to HPUX 10.0");
|
||
|
||
#else
|
||
/* Enable reporting of exec events from the kernel. */
|
||
/* ??rehrauer: For the moment, we're always enabling these events,
|
||
and just ignoring them if there's no catchpoint to catch them. */
|
||
return 0;
|
||
#endif
|
||
}
|
||
|
||
int
|
||
child_remove_exec_catchpoint (int pid)
|
||
{
|
||
/* This request is only available on HPUX 10.0 and later. */
|
||
#if !defined(PT_SET_EVENT_MASK)
|
||
error ("Unable to catch execs prior to HPUX 10.0");
|
||
|
||
#else
|
||
/* Disable reporting of exec events from the kernel. */
|
||
/* ??rehrauer: For the moment, we're always enabling these events,
|
||
and just ignoring them if there's no catchpoint to catch them. */
|
||
return 0;
|
||
#endif
|
||
}
|
||
|
||
int
|
||
hpux_has_execd (int pid, char **execd_pathname)
|
||
{
|
||
/* This request is only available on HPUX 10.0 and later. */
|
||
#if !defined(PT_GET_PROCESS_STATE)
|
||
*execd_pathname = NULL;
|
||
return 0;
|
||
|
||
#else
|
||
int pt_status;
|
||
ptrace_state_t ptrace_state;
|
||
|
||
errno = 0;
|
||
pt_status = call_ptrace (PT_GET_PROCESS_STATE,
|
||
pid,
|
||
(PTRACE_ARG3_TYPE) & ptrace_state,
|
||
sizeof (ptrace_state));
|
||
if (errno)
|
||
perror_with_name ("ptrace");
|
||
if (pt_status < 0)
|
||
return 0;
|
||
|
||
if (ptrace_state.pe_report_event & PTRACE_EXEC)
|
||
{
|
||
char *exec_file = target_pid_to_exec_file (pid);
|
||
*execd_pathname = savestring (exec_file, strlen (exec_file));
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
#endif
|
||
}
|
||
|
||
int
|
||
child_reported_exec_events_per_exec_call (void)
|
||
{
|
||
return 2; /* ptrace reports the event twice per call. */
|
||
}
|
||
|
||
int
|
||
hpux_has_syscall_event (int pid, enum target_waitkind *kind, int *syscall_id)
|
||
{
|
||
/* This request is only available on HPUX 10.30 and later, via
|
||
the ttrace interface. */
|
||
|
||
*kind = TARGET_WAITKIND_SPURIOUS;
|
||
*syscall_id = -1;
|
||
return 0;
|
||
}
|
||
|
||
char *
|
||
child_pid_to_exec_file (int pid)
|
||
{
|
||
static char exec_file_buffer[1024];
|
||
int pt_status;
|
||
CORE_ADDR top_of_stack;
|
||
char four_chars[4];
|
||
int name_index;
|
||
int i;
|
||
ptid_t saved_inferior_ptid;
|
||
int done;
|
||
|
||
#ifdef PT_GET_PROCESS_PATHNAME
|
||
/* As of 10.x HP-UX, there's an explicit request to get the pathname. */
|
||
pt_status = call_ptrace (PT_GET_PROCESS_PATHNAME,
|
||
pid,
|
||
(PTRACE_ARG3_TYPE) exec_file_buffer,
|
||
sizeof (exec_file_buffer) - 1);
|
||
if (pt_status == 0)
|
||
return exec_file_buffer;
|
||
#endif
|
||
|
||
/* It appears that this request is broken prior to 10.30.
|
||
If it fails, try a really, truly amazingly gross hack
|
||
that DDE uses, of pawing through the process' data
|
||
segment to find the pathname. */
|
||
|
||
top_of_stack = 0x7b03a000;
|
||
name_index = 0;
|
||
done = 0;
|
||
|
||
/* On the chance that pid != inferior_ptid, set inferior_ptid
|
||
to pid, so that (grrrr!) implicit uses of inferior_ptid get
|
||
the right id. */
|
||
|
||
saved_inferior_ptid = inferior_ptid;
|
||
inferior_ptid = pid_to_ptid (pid);
|
||
|
||
/* Try to grab a null-terminated string. */
|
||
while (!done)
|
||
{
|
||
if (target_read_memory (top_of_stack, four_chars, 4) != 0)
|
||
{
|
||
inferior_ptid = saved_inferior_ptid;
|
||
return NULL;
|
||
}
|
||
for (i = 0; i < 4; i++)
|
||
{
|
||
exec_file_buffer[name_index++] = four_chars[i];
|
||
done = (four_chars[i] == '\0');
|
||
if (done)
|
||
break;
|
||
}
|
||
top_of_stack += 4;
|
||
}
|
||
|
||
if (exec_file_buffer[0] == '\0')
|
||
{
|
||
inferior_ptid = saved_inferior_ptid;
|
||
return NULL;
|
||
}
|
||
|
||
inferior_ptid = saved_inferior_ptid;
|
||
return exec_file_buffer;
|
||
}
|
||
|
||
void
|
||
pre_fork_inferior (void)
|
||
{
|
||
int status;
|
||
|
||
status = pipe (startup_semaphore.parent_channel);
|
||
if (status < 0)
|
||
{
|
||
warning ("error getting parent pipe for startup semaphore");
|
||
return;
|
||
}
|
||
|
||
status = pipe (startup_semaphore.child_channel);
|
||
if (status < 0)
|
||
{
|
||
warning ("error getting child pipe for startup semaphore");
|
||
return;
|
||
}
|
||
}
|
||
|
||
|
||
/* Check to see if the given thread is alive.
|
||
|
||
This is a no-op, as ptrace doesn't support threads, so we just
|
||
return "TRUE". */
|
||
|
||
int
|
||
child_thread_alive (ptid_t ptid)
|
||
{
|
||
return 1;
|
||
}
|
||
|
||
#endif /* ! GDB_NATIVE_HPUX_11 */
|