binutils-gdb/bfd/aoutx.h
Alan Modra 0a6041ce93 PR28403, null pointer dereference in disassemble_bytes
Indexing of symbol and howto arrays wasn't checked in aout targets.

	PR 28403
	* aout-ns32k.c (MY (reloc_howto)): Sanity check howto_table index.
	Make r_index unsigned.
	(MY_swap_std_reloc_in): Make r_index unsigned.
	* aoutx.h (MOVE_ADDRESS): Sanity check symbol r_index.
	(aout_link_input_section_std): Make r_index unsigned.
	(aout_link_input_section_ext): Likewise.
	* i386lynx.c (MOVE_ADDRESS): Sanity check symbol r_index.
	(swap_ext_reloc_in, swap_std_reloc_in): Make r_index unsigned.
	* pdp11.c (MOVE_ADDRESS): Sanity check symbol r_index.
2021-10-06 11:24:29 +10:30

5687 lines
161 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* BFD semi-generic back-end for a.out binaries.
Copyright (C) 1990-2021 Free Software Foundation, Inc.
Written by Cygnus Support.
This file is part of BFD, the Binary File Descriptor library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
MA 02110-1301, USA. */
/*
SECTION
a.out backends
DESCRIPTION
BFD supports a number of different flavours of a.out format,
though the major differences are only the sizes of the
structures on disk, and the shape of the relocation
information.
The support is split into a basic support file @file{aoutx.h}
and other files which derive functions from the base. One
derivation file is @file{aoutf1.h} (for a.out flavour 1), and
adds to the basic a.out functions support for sun3, sun4, and
386 a.out files, to create a target jump vector for a specific
target.
This information is further split out into more specific files
for each machine, including @file{sunos.c} for sun3 and sun4,
and @file{demo64.c} for a demonstration of a 64 bit a.out format.
The base file @file{aoutx.h} defines general mechanisms for
reading and writing records to and from disk and various
other methods which BFD requires. It is included by
@file{aout32.c} and @file{aout64.c} to form the names
<<aout_32_swap_exec_header_in>>, <<aout_64_swap_exec_header_in>>, etc.
As an example, this is what goes on to make the back end for a
sun4, from @file{aout32.c}:
| #define ARCH_SIZE 32
| #include "aoutx.h"
Which exports names:
| ...
| aout_32_canonicalize_reloc
| aout_32_find_nearest_line
| aout_32_get_lineno
| aout_32_get_reloc_upper_bound
| ...
from @file{sunos.c}:
| #define TARGET_NAME "a.out-sunos-big"
| #define VECNAME sparc_aout_sunos_be_vec
| #include "aoutf1.h"
requires all the names from @file{aout32.c}, and produces the jump vector
| sparc_aout_sunos_be_vec
The file @file{host-aout.c} is a special case. It is for a large set
of hosts that use ``more or less standard'' a.out files, and
for which cross-debugging is not interesting. It uses the
standard 32-bit a.out support routines, but determines the
file offsets and addresses of the text, data, and BSS
sections, the machine architecture and machine type, and the
entry point address, in a host-dependent manner. Once these
values have been determined, generic code is used to handle
the object file.
When porting it to run on a new system, you must supply:
| HOST_PAGE_SIZE
| HOST_SEGMENT_SIZE
| HOST_MACHINE_ARCH (optional)
| HOST_MACHINE_MACHINE (optional)
| HOST_TEXT_START_ADDR
| HOST_STACK_END_ADDR
in the file @file{../include/sys/h-@var{XXX}.h} (for your host). These
values, plus the structures and macros defined in @file{a.out.h} on
your host system, will produce a BFD target that will access
ordinary a.out files on your host. To configure a new machine
to use @file{host-aout.c}, specify:
| TDEFAULTS = -DDEFAULT_VECTOR=host_aout_big_vec
| TDEPFILES= host-aout.o trad-core.o
in the @file{config/@var{XXX}.mt} file, and modify @file{configure.ac}
to use the
@file{@var{XXX}.mt} file (by setting "<<bfd_target=XXX>>") when your
configuration is selected. */
/* Some assumptions:
* Any BFD with D_PAGED set is ZMAGIC, and vice versa.
Doesn't matter what the setting of WP_TEXT is on output, but it'll
get set on input.
* Any BFD with D_PAGED clear and WP_TEXT set is NMAGIC.
* Any BFD with both flags clear is OMAGIC.
(Just want to make these explicit, so the conditions tested in this
file make sense if you're more familiar with a.out than with BFD.) */
#define KEEPIT udata.i
#include "sysdep.h"
#include <limits.h>
#include "bfd.h"
#include "safe-ctype.h"
#include "bfdlink.h"
#include "libaout.h"
#include "libbfd.h"
#include "aout/aout64.h"
#include "aout/stab_gnu.h"
#include "aout/ar.h"
#ifdef BMAGIC
#define N_IS_BMAGIC(x) (N_MAGIC (x) == BMAGIC)
#else
#define N_IS_BMAGIC(x) (0)
#endif
#ifdef QMAGIC
#define N_SET_QMAGIC(x) N_SET_MAGIC (x, QMAGIC)
#else
#define N_SET_QMAGIC(x) do { /**/ } while (0)
#endif
/*
SUBSECTION
Relocations
DESCRIPTION
The file @file{aoutx.h} provides for both the @emph{standard}
and @emph{extended} forms of a.out relocation records.
The standard records contain only an address, a symbol index,
and a type field. The extended records also have a full
integer for an addend. */
#ifndef CTOR_TABLE_RELOC_HOWTO
#define CTOR_TABLE_RELOC_IDX 2
#define CTOR_TABLE_RELOC_HOWTO(BFD) \
((obj_reloc_entry_size (BFD) == RELOC_EXT_SIZE \
? howto_table_ext : howto_table_std) \
+ CTOR_TABLE_RELOC_IDX)
#endif
#ifndef MY_swap_std_reloc_in
#define MY_swap_std_reloc_in NAME (aout, swap_std_reloc_in)
#endif
#ifndef MY_swap_ext_reloc_in
#define MY_swap_ext_reloc_in NAME (aout, swap_ext_reloc_in)
#endif
#ifndef MY_swap_std_reloc_out
#define MY_swap_std_reloc_out NAME (aout, swap_std_reloc_out)
#endif
#ifndef MY_swap_ext_reloc_out
#define MY_swap_ext_reloc_out NAME (aout, swap_ext_reloc_out)
#endif
#ifndef MY_final_link_relocate
#define MY_final_link_relocate _bfd_final_link_relocate
#endif
#ifndef MY_relocate_contents
#define MY_relocate_contents _bfd_relocate_contents
#endif
#define howto_table_ext NAME (aout, ext_howto_table)
#define howto_table_std NAME (aout, std_howto_table)
reloc_howto_type howto_table_ext[] =
{
/* Type rs size bsz pcrel bitpos ovrf sf name part_inpl readmask setmask pcdone. */
HOWTO (RELOC_8, 0, 0, 8, false, 0, complain_overflow_bitfield, 0, "8", false, 0, 0x000000ff, false),
HOWTO (RELOC_16, 0, 1, 16, false, 0, complain_overflow_bitfield, 0, "16", false, 0, 0x0000ffff, false),
HOWTO (RELOC_32, 0, 2, 32, false, 0, complain_overflow_bitfield, 0, "32", false, 0, 0xffffffff, false),
HOWTO (RELOC_DISP8, 0, 0, 8, true, 0, complain_overflow_signed, 0, "DISP8", false, 0, 0x000000ff, false),
HOWTO (RELOC_DISP16, 0, 1, 16, true, 0, complain_overflow_signed, 0, "DISP16", false, 0, 0x0000ffff, false),
HOWTO (RELOC_DISP32, 0, 2, 32, true, 0, complain_overflow_signed, 0, "DISP32", false, 0, 0xffffffff, false),
HOWTO (RELOC_WDISP30, 2, 2, 30, true, 0, complain_overflow_signed, 0, "WDISP30", false, 0, 0x3fffffff, false),
HOWTO (RELOC_WDISP22, 2, 2, 22, true, 0, complain_overflow_signed, 0, "WDISP22", false, 0, 0x003fffff, false),
HOWTO (RELOC_HI22, 10, 2, 22, false, 0, complain_overflow_bitfield, 0, "HI22", false, 0, 0x003fffff, false),
HOWTO (RELOC_22, 0, 2, 22, false, 0, complain_overflow_bitfield, 0, "22", false, 0, 0x003fffff, false),
HOWTO (RELOC_13, 0, 2, 13, false, 0, complain_overflow_bitfield, 0, "13", false, 0, 0x00001fff, false),
HOWTO (RELOC_LO10, 0, 2, 10, false, 0, complain_overflow_dont, 0, "LO10", false, 0, 0x000003ff, false),
HOWTO (RELOC_SFA_BASE,0, 2, 32, false, 0, complain_overflow_bitfield, 0, "SFA_BASE", false, 0, 0xffffffff, false),
HOWTO (RELOC_SFA_OFF13,0, 2, 32, false, 0, complain_overflow_bitfield, 0, "SFA_OFF13", false, 0, 0xffffffff, false),
HOWTO (RELOC_BASE10, 0, 2, 10, false, 0, complain_overflow_dont, 0, "BASE10", false, 0, 0x000003ff, false),
HOWTO (RELOC_BASE13, 0, 2, 13, false, 0, complain_overflow_signed, 0, "BASE13", false, 0, 0x00001fff, false),
HOWTO (RELOC_BASE22, 10, 2, 22, false, 0, complain_overflow_bitfield, 0, "BASE22", false, 0, 0x003fffff, false),
HOWTO (RELOC_PC10, 0, 2, 10, true, 0, complain_overflow_dont, 0, "PC10", false, 0, 0x000003ff, true),
HOWTO (RELOC_PC22, 10, 2, 22, true, 0, complain_overflow_signed, 0, "PC22", false, 0, 0x003fffff, true),
HOWTO (RELOC_JMP_TBL, 2, 2, 30, true, 0, complain_overflow_signed, 0, "JMP_TBL", false, 0, 0x3fffffff, false),
HOWTO (RELOC_SEGOFF16,0, 2, 0, false, 0, complain_overflow_bitfield, 0, "SEGOFF16", false, 0, 0x00000000, false),
HOWTO (RELOC_GLOB_DAT,0, 2, 0, false, 0, complain_overflow_bitfield, 0, "GLOB_DAT", false, 0, 0x00000000, false),
HOWTO (RELOC_JMP_SLOT,0, 2, 0, false, 0, complain_overflow_bitfield, 0, "JMP_SLOT", false, 0, 0x00000000, false),
HOWTO (RELOC_RELATIVE,0, 2, 0, false, 0, complain_overflow_bitfield, 0, "RELATIVE", false, 0, 0x00000000, false),
HOWTO (0, 0, 3, 0, false, 0, complain_overflow_dont, 0, "R_SPARC_NONE",false, 0, 0x00000000, true),
HOWTO (0, 0, 3, 0, false, 0, complain_overflow_dont, 0, "R_SPARC_NONE",false, 0, 0x00000000, true),
#define RELOC_SPARC_REV32 RELOC_WDISP19
HOWTO (RELOC_SPARC_REV32, 0, 2, 32, false, 0, complain_overflow_dont, 0,"R_SPARC_REV32",false, 0, 0xffffffff, false),
};
/* Convert standard reloc records to "arelent" format (incl byte swap). */
reloc_howto_type howto_table_std[] =
{
/* type rs size bsz pcrel bitpos ovrf sf name part_inpl readmask setmask pcdone. */
HOWTO ( 0, 0, 0, 8, false, 0, complain_overflow_bitfield,0,"8", true, 0x000000ff,0x000000ff, false),
HOWTO ( 1, 0, 1, 16, false, 0, complain_overflow_bitfield,0,"16", true, 0x0000ffff,0x0000ffff, false),
HOWTO ( 2, 0, 2, 32, false, 0, complain_overflow_bitfield,0,"32", true, 0xffffffff,0xffffffff, false),
HOWTO ( 3, 0, 4, 64, false, 0, complain_overflow_bitfield,0,"64", true, 0xdeaddead,0xdeaddead, false),
HOWTO ( 4, 0, 0, 8, true, 0, complain_overflow_signed, 0,"DISP8", true, 0x000000ff,0x000000ff, false),
HOWTO ( 5, 0, 1, 16, true, 0, complain_overflow_signed, 0,"DISP16", true, 0x0000ffff,0x0000ffff, false),
HOWTO ( 6, 0, 2, 32, true, 0, complain_overflow_signed, 0,"DISP32", true, 0xffffffff,0xffffffff, false),
HOWTO ( 7, 0, 4, 64, true, 0, complain_overflow_signed, 0,"DISP64", true, 0xfeedface,0xfeedface, false),
HOWTO ( 8, 0, 2, 0, false, 0, complain_overflow_bitfield,0,"GOT_REL", false, 0,0x00000000, false),
HOWTO ( 9, 0, 1, 16, false, 0, complain_overflow_bitfield,0,"BASE16", false,0xffffffff,0xffffffff, false),
HOWTO (10, 0, 2, 32, false, 0, complain_overflow_bitfield,0,"BASE32", false,0xffffffff,0xffffffff, false),
EMPTY_HOWTO (-1),
EMPTY_HOWTO (-1),
EMPTY_HOWTO (-1),
EMPTY_HOWTO (-1),
EMPTY_HOWTO (-1),
HOWTO (16, 0, 2, 0, false, 0, complain_overflow_bitfield,0,"JMP_TABLE", false, 0,0x00000000, false),
EMPTY_HOWTO (-1),
EMPTY_HOWTO (-1),
EMPTY_HOWTO (-1),
EMPTY_HOWTO (-1),
EMPTY_HOWTO (-1),
EMPTY_HOWTO (-1),
EMPTY_HOWTO (-1),
EMPTY_HOWTO (-1),
EMPTY_HOWTO (-1),
EMPTY_HOWTO (-1),
EMPTY_HOWTO (-1),
EMPTY_HOWTO (-1),
EMPTY_HOWTO (-1),
EMPTY_HOWTO (-1),
EMPTY_HOWTO (-1),
HOWTO (32, 0, 2, 0, false, 0, complain_overflow_bitfield,0,"RELATIVE", false, 0,0x00000000, false),
EMPTY_HOWTO (-1),
EMPTY_HOWTO (-1),
EMPTY_HOWTO (-1),
EMPTY_HOWTO (-1),
EMPTY_HOWTO (-1),
EMPTY_HOWTO (-1),
EMPTY_HOWTO (-1),
HOWTO (40, 0, 2, 0, false, 0, complain_overflow_bitfield,0,"BASEREL", false, 0,0x00000000, false),
};
#define TABLE_SIZE(TABLE) (sizeof (TABLE) / sizeof (TABLE[0]))
reloc_howto_type *
NAME (aout, reloc_type_lookup) (bfd *abfd, bfd_reloc_code_real_type code)
{
#define EXT(i, j) case i: return & howto_table_ext [j]
#define STD(i, j) case i: return & howto_table_std [j]
int ext = obj_reloc_entry_size (abfd) == RELOC_EXT_SIZE;
if (code == BFD_RELOC_CTOR)
switch (bfd_arch_bits_per_address (abfd))
{
case 32:
code = BFD_RELOC_32;
break;
case 64:
code = BFD_RELOC_64;
break;
}
if (ext)
switch (code)
{
EXT (BFD_RELOC_8, 0);
EXT (BFD_RELOC_16, 1);
EXT (BFD_RELOC_32, 2);
EXT (BFD_RELOC_HI22, 8);
EXT (BFD_RELOC_LO10, 11);
EXT (BFD_RELOC_32_PCREL_S2, 6);
EXT (BFD_RELOC_SPARC_WDISP22, 7);
EXT (BFD_RELOC_SPARC13, 10);
EXT (BFD_RELOC_SPARC_GOT10, 14);
EXT (BFD_RELOC_SPARC_BASE13, 15);
EXT (BFD_RELOC_SPARC_GOT13, 15);
EXT (BFD_RELOC_SPARC_GOT22, 16);
EXT (BFD_RELOC_SPARC_PC10, 17);
EXT (BFD_RELOC_SPARC_PC22, 18);
EXT (BFD_RELOC_SPARC_WPLT30, 19);
EXT (BFD_RELOC_SPARC_REV32, 26);
default:
return NULL;
}
else
/* std relocs. */
switch (code)
{
STD (BFD_RELOC_8, 0);
STD (BFD_RELOC_16, 1);
STD (BFD_RELOC_32, 2);
STD (BFD_RELOC_8_PCREL, 4);
STD (BFD_RELOC_16_PCREL, 5);
STD (BFD_RELOC_32_PCREL, 6);
STD (BFD_RELOC_16_BASEREL, 9);
STD (BFD_RELOC_32_BASEREL, 10);
default:
return NULL;
}
}
reloc_howto_type *
NAME (aout, reloc_name_lookup) (bfd *abfd, const char *r_name)
{
unsigned int i, size;
reloc_howto_type *howto_table;
if (obj_reloc_entry_size (abfd) == RELOC_EXT_SIZE)
{
howto_table = howto_table_ext;
size = sizeof (howto_table_ext) / sizeof (howto_table_ext[0]);
}
else
{
howto_table = howto_table_std;
size = sizeof (howto_table_std) / sizeof (howto_table_std[0]);
}
for (i = 0; i < size; i++)
if (howto_table[i].name != NULL
&& strcasecmp (howto_table[i].name, r_name) == 0)
return &howto_table[i];
return NULL;
}
/*
SUBSECTION
Internal entry points
DESCRIPTION
@file{aoutx.h} exports several routines for accessing the
contents of an a.out file, which are gathered and exported in
turn by various format specific files (eg sunos.c).
*/
/*
FUNCTION
aout_@var{size}_swap_exec_header_in
SYNOPSIS
void aout_@var{size}_swap_exec_header_in,
(bfd *abfd,
struct external_exec *bytes,
struct internal_exec *execp);
DESCRIPTION
Swap the information in an executable header @var{raw_bytes} taken
from a raw byte stream memory image into the internal exec header
structure @var{execp}.
*/
#ifndef NAME_swap_exec_header_in
void
NAME (aout, swap_exec_header_in) (bfd *abfd,
struct external_exec *bytes,
struct internal_exec *execp)
{
/* The internal_exec structure has some fields that are unused in this
configuration (IE for i960), so ensure that all such uninitialized
fields are zero'd out. There are places where two of these structs
are memcmp'd, and thus the contents do matter. */
memset ((void *) execp, 0, sizeof (struct internal_exec));
/* Now fill in fields in the execp, from the bytes in the raw data. */
execp->a_info = H_GET_32 (abfd, bytes->e_info);
execp->a_text = GET_WORD (abfd, bytes->e_text);
execp->a_data = GET_WORD (abfd, bytes->e_data);
execp->a_bss = GET_WORD (abfd, bytes->e_bss);
execp->a_syms = GET_WORD (abfd, bytes->e_syms);
execp->a_entry = GET_WORD (abfd, bytes->e_entry);
execp->a_trsize = GET_WORD (abfd, bytes->e_trsize);
execp->a_drsize = GET_WORD (abfd, bytes->e_drsize);
}
#define NAME_swap_exec_header_in NAME (aout, swap_exec_header_in)
#endif
/*
FUNCTION
aout_@var{size}_swap_exec_header_out
SYNOPSIS
void aout_@var{size}_swap_exec_header_out
(bfd *abfd,
struct internal_exec *execp,
struct external_exec *raw_bytes);
DESCRIPTION
Swap the information in an internal exec header structure
@var{execp} into the buffer @var{raw_bytes} ready for writing to disk.
*/
void
NAME (aout, swap_exec_header_out) (bfd *abfd,
struct internal_exec *execp,
struct external_exec *bytes)
{
/* Now fill in fields in the raw data, from the fields in the exec struct. */
H_PUT_32 (abfd, execp->a_info , bytes->e_info);
PUT_WORD (abfd, execp->a_text , bytes->e_text);
PUT_WORD (abfd, execp->a_data , bytes->e_data);
PUT_WORD (abfd, execp->a_bss , bytes->e_bss);
PUT_WORD (abfd, execp->a_syms , bytes->e_syms);
PUT_WORD (abfd, execp->a_entry , bytes->e_entry);
PUT_WORD (abfd, execp->a_trsize, bytes->e_trsize);
PUT_WORD (abfd, execp->a_drsize, bytes->e_drsize);
}
/* Make all the section for an a.out file. */
bool
NAME (aout, make_sections) (bfd *abfd)
{
if (obj_textsec (abfd) == NULL && bfd_make_section (abfd, ".text") == NULL)
return false;
if (obj_datasec (abfd) == NULL && bfd_make_section (abfd, ".data") == NULL)
return false;
if (obj_bsssec (abfd) == NULL && bfd_make_section (abfd, ".bss") == NULL)
return false;
return true;
}
/*
FUNCTION
aout_@var{size}_some_aout_object_p
SYNOPSIS
const bfd_target *aout_@var{size}_some_aout_object_p
(bfd *abfd,
struct internal_exec *execp,
const bfd_target *(*callback_to_real_object_p) (bfd *));
DESCRIPTION
Some a.out variant thinks that the file open in @var{abfd}
checking is an a.out file. Do some more checking, and set up
for access if it really is. Call back to the calling
environment's "finish up" function just before returning, to
handle any last-minute setup.
*/
bfd_cleanup
NAME (aout, some_aout_object_p) (bfd *abfd,
struct internal_exec *execp,
bfd_cleanup (*callback_to_real_object_p) (bfd *))
{
struct aout_data_struct *rawptr, *oldrawptr;
bfd_cleanup result;
size_t amt = sizeof (* rawptr);
rawptr = (struct aout_data_struct *) bfd_zalloc (abfd, amt);
if (rawptr == NULL)
return NULL;
oldrawptr = abfd->tdata.aout_data;
abfd->tdata.aout_data = rawptr;
/* Copy the contents of the old tdata struct. */
if (oldrawptr != NULL)
*abfd->tdata.aout_data = *oldrawptr;
abfd->tdata.aout_data->a.hdr = &rawptr->e;
/* Copy in the internal_exec struct. */
*(abfd->tdata.aout_data->a.hdr) = *execp;
execp = abfd->tdata.aout_data->a.hdr;
/* Set the file flags. */
abfd->flags = BFD_NO_FLAGS;
if (execp->a_drsize || execp->a_trsize)
abfd->flags |= HAS_RELOC;
/* Setting of EXEC_P has been deferred to the bottom of this function. */
if (execp->a_syms)
abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
if (N_DYNAMIC (execp))
abfd->flags |= DYNAMIC;
if (N_MAGIC (execp) == ZMAGIC)
{
abfd->flags |= D_PAGED | WP_TEXT;
adata (abfd).magic = z_magic;
}
else if (N_IS_QMAGIC (execp))
{
abfd->flags |= D_PAGED | WP_TEXT;
adata (abfd).magic = z_magic;
adata (abfd).subformat = q_magic_format;
}
else if (N_MAGIC (execp) == NMAGIC)
{
abfd->flags |= WP_TEXT;
adata (abfd).magic = n_magic;
}
else if (N_MAGIC (execp) == OMAGIC || N_IS_BMAGIC (execp))
adata (abfd).magic = o_magic;
else
/* Should have been checked with N_BADMAG before this routine
was called. */
abort ();
abfd->start_address = execp->a_entry;
obj_aout_symbols (abfd) = NULL;
abfd->symcount = execp->a_syms / sizeof (struct external_nlist);
/* The default relocation entry size is that of traditional V7 Unix. */
obj_reloc_entry_size (abfd) = RELOC_STD_SIZE;
/* The default symbol entry size is that of traditional Unix. */
obj_symbol_entry_size (abfd) = EXTERNAL_NLIST_SIZE;
#ifdef USE_MMAP
bfd_init_window (&obj_aout_sym_window (abfd));
bfd_init_window (&obj_aout_string_window (abfd));
#endif
obj_aout_external_syms (abfd) = NULL;
obj_aout_external_strings (abfd) = NULL;
obj_aout_sym_hashes (abfd) = NULL;
if (! NAME (aout, make_sections) (abfd))
goto error_ret;
obj_datasec (abfd)->size = execp->a_data;
obj_bsssec (abfd)->size = execp->a_bss;
obj_textsec (abfd)->flags =
(execp->a_trsize != 0
? (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS | SEC_RELOC)
: (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS));
obj_datasec (abfd)->flags =
(execp->a_drsize != 0
? (SEC_ALLOC | SEC_LOAD | SEC_DATA | SEC_HAS_CONTENTS | SEC_RELOC)
: (SEC_ALLOC | SEC_LOAD | SEC_DATA | SEC_HAS_CONTENTS));
obj_bsssec (abfd)->flags = SEC_ALLOC;
#ifdef THIS_IS_ONLY_DOCUMENTATION
/* The common code can't fill in these things because they depend
on either the start address of the text segment, the rounding
up of virtual addresses between segments, or the starting file
position of the text segment -- all of which varies among different
versions of a.out. */
/* Call back to the format-dependent code to fill in the rest of the
fields and do any further cleanup. Things that should be filled
in by the callback: */
struct exec *execp = exec_hdr (abfd);
obj_textsec (abfd)->size = N_TXTSIZE (execp);
/* Data and bss are already filled in since they're so standard. */
/* The virtual memory addresses of the sections. */
obj_textsec (abfd)->vma = N_TXTADDR (execp);
obj_datasec (abfd)->vma = N_DATADDR (execp);
obj_bsssec (abfd)->vma = N_BSSADDR (execp);
/* The file offsets of the sections. */
obj_textsec (abfd)->filepos = N_TXTOFF (execp);
obj_datasec (abfd)->filepos = N_DATOFF (execp);
/* The file offsets of the relocation info. */
obj_textsec (abfd)->rel_filepos = N_TRELOFF (execp);
obj_datasec (abfd)->rel_filepos = N_DRELOFF (execp);
/* The file offsets of the string table and symbol table. */
obj_str_filepos (abfd) = N_STROFF (execp);
obj_sym_filepos (abfd) = N_SYMOFF (execp);
/* Determine the architecture and machine type of the object file. */
switch (N_MACHTYPE (exec_hdr (abfd)))
{
default:
abfd->obj_arch = bfd_arch_obscure;
break;
}
adata (abfd)->page_size = TARGET_PAGE_SIZE;
adata (abfd)->segment_size = SEGMENT_SIZE;
adata (abfd)->exec_bytes_size = EXEC_BYTES_SIZE;
return _bfd_no_cleanup
/* The architecture is encoded in various ways in various a.out variants,
or is not encoded at all in some of them. The relocation size depends
on the architecture and the a.out variant. Finally, the return value
is the bfd_target vector in use. If an error occurs, return zero and
set bfd_error to the appropriate error code.
Formats such as b.out, which have additional fields in the a.out
header, should cope with them in this callback as well. */
#endif /* DOCUMENTATION */
result = (*callback_to_real_object_p) (abfd);
/* Now that the segment addresses have been worked out, take a better
guess at whether the file is executable. If the entry point
is within the text segment, assume it is. (This makes files
executable even if their entry point address is 0, as long as
their text starts at zero.).
This test had to be changed to deal with systems where the text segment
runs at a different location than the default. The problem is that the
entry address can appear to be outside the text segment, thus causing an
erroneous conclusion that the file isn't executable.
To fix this, we now accept any non-zero entry point as an indication of
executability. This will work most of the time, since only the linker
sets the entry point, and that is likely to be non-zero for most systems. */
if (execp->a_entry != 0
|| (execp->a_entry >= obj_textsec (abfd)->vma
&& execp->a_entry < (obj_textsec (abfd)->vma
+ obj_textsec (abfd)->size)
&& execp->a_trsize == 0
&& execp->a_drsize == 0))
abfd->flags |= EXEC_P;
#ifdef STAT_FOR_EXEC
else
{
struct stat stat_buf;
/* The original heuristic doesn't work in some important cases.
The a.out file has no information about the text start
address. For files (like kernels) linked to non-standard
addresses (ld -Ttext nnn) the entry point may not be between
the default text start (obj_textsec(abfd)->vma) and
(obj_textsec(abfd)->vma) + text size. This is not just a mach
issue. Many kernels are loaded at non standard addresses. */
if (abfd->iostream != NULL
&& (abfd->flags & BFD_IN_MEMORY) == 0
&& (fstat (fileno ((FILE *) (abfd->iostream)), &stat_buf) == 0)
&& ((stat_buf.st_mode & 0111) != 0))
abfd->flags |= EXEC_P;
}
#endif /* STAT_FOR_EXEC */
if (result)
return result;
error_ret:
bfd_release (abfd, rawptr);
abfd->tdata.aout_data = oldrawptr;
return NULL;
}
/*
FUNCTION
aout_@var{size}_mkobject
SYNOPSIS
bool aout_@var{size}_mkobject, (bfd *abfd);
DESCRIPTION
Initialize BFD @var{abfd} for use with a.out files.
*/
bool
NAME (aout, mkobject) (bfd *abfd)
{
struct aout_data_struct *rawptr;
size_t amt = sizeof (* rawptr);
bfd_set_error (bfd_error_system_call);
rawptr = (struct aout_data_struct *) bfd_zalloc (abfd, amt);
if (rawptr == NULL)
return false;
abfd->tdata.aout_data = rawptr;
exec_hdr (abfd) = &(rawptr->e);
obj_textsec (abfd) = NULL;
obj_datasec (abfd) = NULL;
obj_bsssec (abfd) = NULL;
return true;
}
/*
FUNCTION
aout_@var{size}_machine_type
SYNOPSIS
enum machine_type aout_@var{size}_machine_type
(enum bfd_architecture arch,
unsigned long machine,
bool *unknown);
DESCRIPTION
Keep track of machine architecture and machine type for
a.out's. Return the <<machine_type>> for a particular
architecture and machine, or <<M_UNKNOWN>> if that exact architecture
and machine can't be represented in a.out format.
If the architecture is understood, machine type 0 (default)
is always understood.
*/
enum machine_type
NAME (aout, machine_type) (enum bfd_architecture arch,
unsigned long machine,
bool *unknown)
{
enum machine_type arch_flags;
arch_flags = M_UNKNOWN;
*unknown = true;
switch (arch)
{
case bfd_arch_sparc:
if (machine == 0
|| machine == bfd_mach_sparc
|| machine == bfd_mach_sparc_sparclite
|| machine == bfd_mach_sparc_sparclite_le
|| machine == bfd_mach_sparc_v8plus
|| machine == bfd_mach_sparc_v8plusa
|| machine == bfd_mach_sparc_v8plusb
|| machine == bfd_mach_sparc_v8plusc
|| machine == bfd_mach_sparc_v8plusd
|| machine == bfd_mach_sparc_v8pluse
|| machine == bfd_mach_sparc_v8plusv
|| machine == bfd_mach_sparc_v8plusm
|| machine == bfd_mach_sparc_v8plusm8
|| machine == bfd_mach_sparc_v9
|| machine == bfd_mach_sparc_v9a
|| machine == bfd_mach_sparc_v9b
|| machine == bfd_mach_sparc_v9c
|| machine == bfd_mach_sparc_v9d
|| machine == bfd_mach_sparc_v9e
|| machine == bfd_mach_sparc_v9v
|| machine == bfd_mach_sparc_v9m
|| machine == bfd_mach_sparc_v9m8)
arch_flags = M_SPARC;
else if (machine == bfd_mach_sparc_sparclet)
arch_flags = M_SPARCLET;
break;
case bfd_arch_i386:
if (machine == 0
|| machine == bfd_mach_i386_i386
|| machine == bfd_mach_i386_i386_intel_syntax)
arch_flags = M_386;
break;
case bfd_arch_arm:
if (machine == 0)
arch_flags = M_ARM;
break;
case bfd_arch_mips:
switch (machine)
{
case 0:
case bfd_mach_mips3000:
case bfd_mach_mips3900:
arch_flags = M_MIPS1;
break;
case bfd_mach_mips6000:
arch_flags = M_MIPS2;
break;
case bfd_mach_mips4000:
case bfd_mach_mips4010:
case bfd_mach_mips4100:
case bfd_mach_mips4300:
case bfd_mach_mips4400:
case bfd_mach_mips4600:
case bfd_mach_mips4650:
case bfd_mach_mips8000:
case bfd_mach_mips9000:
case bfd_mach_mips10000:
case bfd_mach_mips12000:
case bfd_mach_mips14000:
case bfd_mach_mips16000:
case bfd_mach_mips16:
case bfd_mach_mipsisa32:
case bfd_mach_mipsisa32r2:
case bfd_mach_mipsisa32r3:
case bfd_mach_mipsisa32r5:
case bfd_mach_mipsisa32r6:
case bfd_mach_mips5:
case bfd_mach_mipsisa64:
case bfd_mach_mipsisa64r2:
case bfd_mach_mipsisa64r3:
case bfd_mach_mipsisa64r5:
case bfd_mach_mipsisa64r6:
case bfd_mach_mips_sb1:
case bfd_mach_mips_xlr:
/* FIXME: These should be MIPS3, MIPS4, MIPS16, MIPS32, etc. */
arch_flags = M_MIPS2;
break;
default:
arch_flags = M_UNKNOWN;
break;
}
break;
case bfd_arch_ns32k:
switch (machine)
{
case 0: arch_flags = M_NS32532; break;
case 32032: arch_flags = M_NS32032; break;
case 32532: arch_flags = M_NS32532; break;
default: arch_flags = M_UNKNOWN; break;
}
break;
case bfd_arch_vax:
*unknown = false;
break;
case bfd_arch_cris:
if (machine == 0 || machine == 255)
arch_flags = M_CRIS;
break;
default:
arch_flags = M_UNKNOWN;
}
if (arch_flags != M_UNKNOWN)
*unknown = false;
return arch_flags;
}
/*
FUNCTION
aout_@var{size}_set_arch_mach
SYNOPSIS
bool aout_@var{size}_set_arch_mach,
(bfd *,
enum bfd_architecture arch,
unsigned long machine);
DESCRIPTION
Set the architecture and the machine of the BFD @var{abfd} to the
values @var{arch} and @var{machine}. Verify that @var{abfd}'s format
can support the architecture required.
*/
bool
NAME (aout, set_arch_mach) (bfd *abfd,
enum bfd_architecture arch,
unsigned long machine)
{
if (! bfd_default_set_arch_mach (abfd, arch, machine))
return false;
if (arch != bfd_arch_unknown)
{
bool unknown;
NAME (aout, machine_type) (arch, machine, &unknown);
if (unknown)
return false;
}
/* Determine the size of a relocation entry. */
switch (arch)
{
case bfd_arch_sparc:
case bfd_arch_mips:
obj_reloc_entry_size (abfd) = RELOC_EXT_SIZE;
break;
default:
obj_reloc_entry_size (abfd) = RELOC_STD_SIZE;
break;
}
return (*aout_backend_info (abfd)->set_sizes) (abfd);
}
static void
adjust_o_magic (bfd *abfd, struct internal_exec *execp)
{
file_ptr pos = adata (abfd).exec_bytes_size;
bfd_vma vma = 0;
int pad = 0;
asection *text = obj_textsec (abfd);
asection *data = obj_datasec (abfd);
asection *bss = obj_bsssec (abfd);
/* Text. */
text->filepos = pos;
if (!text->user_set_vma)
text->vma = vma;
else
vma = text->vma;
pos += execp->a_text;
vma += execp->a_text;
/* Data. */
if (!data->user_set_vma)
{
pos += pad;
vma += pad;
data->vma = vma;
}
else
vma = data->vma;
execp->a_text += pad;
data->filepos = pos;
pos += data->size;
vma += data->size;
/* BSS. */
if (!bss->user_set_vma)
{
pos += pad;
vma += pad;
bss->vma = vma;
}
else
{
/* The VMA of the .bss section is set by the VMA of the
.data section plus the size of the .data section. We may
need to add padding bytes to make this true. */
pad = bss->vma - vma;
if (pad < 0)
pad = 0;
pos += pad;
}
execp->a_data = data->size + pad;
bss->filepos = pos;
execp->a_bss = bss->size;
N_SET_MAGIC (execp, OMAGIC);
}
static void
adjust_z_magic (bfd *abfd, struct internal_exec *execp)
{
bfd_size_type data_pad, text_pad;
file_ptr text_end;
const struct aout_backend_data *abdp;
/* TRUE if text includes exec header. */
bool ztih;
asection *text = obj_textsec (abfd);
asection *data = obj_datasec (abfd);
asection *bss = obj_bsssec (abfd);
abdp = aout_backend_info (abfd);
/* Text. */
ztih = (abdp != NULL
&& (abdp->text_includes_header
|| obj_aout_subformat (abfd) == q_magic_format));
text->filepos = (ztih
? adata (abfd).exec_bytes_size
: adata (abfd).zmagic_disk_block_size);
if (!text->user_set_vma)
{
/* ?? Do we really need to check for relocs here? */
text->vma = ((abfd->flags & HAS_RELOC)
? 0
: (ztih
? abdp->default_text_vma + adata (abfd).exec_bytes_size
: abdp->default_text_vma));
text_pad = 0;
}
else
{
/* The .text section is being loaded at an unusual address. We
may need to pad it such that the .data section starts at a page
boundary. */
if (ztih)
text_pad = ((text->filepos - text->vma)
& (adata (abfd).page_size - 1));
else
text_pad = (-text->vma
& (adata (abfd).page_size - 1));
}
/* Find start of data. */
if (ztih)
{
text_end = text->filepos + execp->a_text;
text_pad += BFD_ALIGN (text_end, adata (abfd).page_size) - text_end;
}
else
{
/* Note that if page_size == zmagic_disk_block_size, then
filepos == page_size, and this case is the same as the ztih
case. */
text_end = execp->a_text;
text_pad += BFD_ALIGN (text_end, adata (abfd).page_size) - text_end;
text_end += text->filepos;
}
execp->a_text += text_pad;
/* Data. */
if (!data->user_set_vma)
{
bfd_vma vma;
vma = text->vma + execp->a_text;
data->vma = BFD_ALIGN (vma, adata (abfd).segment_size);
}
if (abdp && abdp->zmagic_mapped_contiguous)
{
text_pad = data->vma - (text->vma + execp->a_text);
/* Only pad the text section if the data
section is going to be placed after it. */
if (text_pad > 0)
execp->a_text += text_pad;
}
data->filepos = text->filepos + execp->a_text;
/* Fix up exec header while we're at it. */
if (ztih && (!abdp || (abdp && !abdp->exec_header_not_counted)))
execp->a_text += adata (abfd).exec_bytes_size;
if (obj_aout_subformat (abfd) == q_magic_format)
N_SET_QMAGIC (execp);
else
N_SET_MAGIC (execp, ZMAGIC);
/* Spec says data section should be rounded up to page boundary. */
execp->a_data = align_power (data->size, bss->alignment_power);
execp->a_data = BFD_ALIGN (execp->a_data, adata (abfd).page_size);
data_pad = execp->a_data - data->size;
/* BSS. */
if (!bss->user_set_vma)
bss->vma = data->vma + execp->a_data;
/* If the BSS immediately follows the data section and extra space
in the page is left after the data section, fudge data
in the header so that the bss section looks smaller by that
amount. We'll start the bss section there, and lie to the OS.
(Note that a linker script, as well as the above assignment,
could have explicitly set the BSS vma to immediately follow
the data section.) */
if (align_power (bss->vma, bss->alignment_power) == data->vma + execp->a_data)
execp->a_bss = data_pad > bss->size ? 0 : bss->size - data_pad;
else
execp->a_bss = bss->size;
}
static void
adjust_n_magic (bfd *abfd, struct internal_exec *execp)
{
file_ptr pos = adata (abfd).exec_bytes_size;
bfd_vma vma = 0;
int pad;
asection *text = obj_textsec (abfd);
asection *data = obj_datasec (abfd);
asection *bss = obj_bsssec (abfd);
/* Text. */
text->filepos = pos;
if (!text->user_set_vma)
text->vma = vma;
else
vma = text->vma;
pos += execp->a_text;
vma += execp->a_text;
/* Data. */
data->filepos = pos;
if (!data->user_set_vma)
data->vma = BFD_ALIGN (vma, adata (abfd).segment_size);
vma = data->vma;
/* Since BSS follows data immediately, see if it needs alignment. */
vma += data->size;
pad = align_power (vma, bss->alignment_power) - vma;
execp->a_data = data->size + pad;
pos += execp->a_data;
/* BSS. */
if (!bss->user_set_vma)
bss->vma = vma;
else
vma = bss->vma;
/* Fix up exec header. */
execp->a_bss = bss->size;
N_SET_MAGIC (execp, NMAGIC);
}
bool
NAME (aout, adjust_sizes_and_vmas) (bfd *abfd)
{
struct internal_exec *execp = exec_hdr (abfd);
if (! NAME (aout, make_sections) (abfd))
return false;
if (adata (abfd).magic != undecided_magic)
return true;
execp->a_text = align_power (obj_textsec (abfd)->size,
obj_textsec (abfd)->alignment_power);
/* Rule (heuristic) for when to pad to a new page. Note that there
are (at least) two ways demand-paged (ZMAGIC) files have been
handled. Most Berkeley-based systems start the text segment at
(TARGET_PAGE_SIZE). However, newer versions of SUNOS start the text
segment right after the exec header; the latter is counted in the
text segment size, and is paged in by the kernel with the rest of
the text. */
/* This perhaps isn't the right way to do this, but made it simpler for me
to understand enough to implement it. Better would probably be to go
right from BFD flags to alignment/positioning characteristics. But the
old code was sloppy enough about handling the flags, and had enough
other magic, that it was a little hard for me to understand. I think
I understand it better now, but I haven't time to do the cleanup this
minute. */
if (abfd->flags & D_PAGED)
/* Whether or not WP_TEXT is set -- let D_PAGED override. */
adata (abfd).magic = z_magic;
else if (abfd->flags & WP_TEXT)
adata (abfd).magic = n_magic;
else
adata (abfd).magic = o_magic;
#ifdef BFD_AOUT_DEBUG /* requires gcc2 */
#if __GNUC__ >= 2
fprintf (stderr, "%s text=<%x,%x,%x> data=<%x,%x,%x> bss=<%x,%x,%x>\n",
({ char *str;
switch (adata (abfd).magic)
{
case n_magic: str = "NMAGIC"; break;
case o_magic: str = "OMAGIC"; break;
case z_magic: str = "ZMAGIC"; break;
default: abort ();
}
str;
}),
obj_textsec (abfd)->vma, obj_textsec (abfd)->size,
obj_textsec (abfd)->alignment_power,
obj_datasec (abfd)->vma, obj_datasec (abfd)->size,
obj_datasec (abfd)->alignment_power,
obj_bsssec (abfd)->vma, obj_bsssec (abfd)->size,
obj_bsssec (abfd)->alignment_power);
#endif
#endif
switch (adata (abfd).magic)
{
case o_magic:
adjust_o_magic (abfd, execp);
break;
case z_magic:
adjust_z_magic (abfd, execp);
break;
case n_magic:
adjust_n_magic (abfd, execp);
break;
default:
abort ();
}
#ifdef BFD_AOUT_DEBUG
fprintf (stderr, " text=<%x,%x,%x> data=<%x,%x,%x> bss=<%x,%x>\n",
obj_textsec (abfd)->vma, execp->a_text,
obj_textsec (abfd)->filepos,
obj_datasec (abfd)->vma, execp->a_data,
obj_datasec (abfd)->filepos,
obj_bsssec (abfd)->vma, execp->a_bss);
#endif
return true;
}
/*
FUNCTION
aout_@var{size}_new_section_hook
SYNOPSIS
bool aout_@var{size}_new_section_hook,
(bfd *abfd,
asection *newsect);
DESCRIPTION
Called by the BFD in response to a @code{bfd_make_section}
request.
*/
bool
NAME (aout, new_section_hook) (bfd *abfd, asection *newsect)
{
/* Align to double at least. */
newsect->alignment_power = bfd_get_arch_info (abfd)->section_align_power;
if (bfd_get_format (abfd) == bfd_object)
{
if (obj_textsec (abfd) == NULL && !strcmp (newsect->name, ".text"))
{
obj_textsec (abfd)= newsect;
newsect->target_index = N_TEXT;
}
else if (obj_datasec (abfd) == NULL && !strcmp (newsect->name, ".data"))
{
obj_datasec (abfd) = newsect;
newsect->target_index = N_DATA;
}
else if (obj_bsssec (abfd) == NULL && !strcmp (newsect->name, ".bss"))
{
obj_bsssec (abfd) = newsect;
newsect->target_index = N_BSS;
}
}
/* We allow more than three sections internally. */
return _bfd_generic_new_section_hook (abfd, newsect);
}
bool
NAME (aout, set_section_contents) (bfd *abfd,
sec_ptr section,
const void * location,
file_ptr offset,
bfd_size_type count)
{
if (! abfd->output_has_begun)
{
if (! NAME (aout, adjust_sizes_and_vmas) (abfd))
return false;
}
if (section == obj_bsssec (abfd))
{
bfd_set_error (bfd_error_no_contents);
return false;
}
if (section != obj_textsec (abfd)
&& section != obj_datasec (abfd))
{
if (aout_section_merge_with_text_p (abfd, section))
section->filepos = obj_textsec (abfd)->filepos +
(section->vma - obj_textsec (abfd)->vma);
else
{
_bfd_error_handler
/* xgettext:c-format */
(_("%pB: can not represent section `%pA' in a.out object file format"),
abfd, section);
bfd_set_error (bfd_error_nonrepresentable_section);
return false;
}
}
if (count != 0)
{
if (bfd_seek (abfd, section->filepos + offset, SEEK_SET) != 0
|| bfd_bwrite (location, count, abfd) != count)
return false;
}
return true;
}
/* Read the external symbols from an a.out file. */
static bool
aout_get_external_symbols (bfd *abfd)
{
if (obj_aout_external_syms (abfd) == NULL)
{
bfd_size_type count;
struct external_nlist *syms;
bfd_size_type amt = exec_hdr (abfd)->a_syms;
count = amt / EXTERNAL_NLIST_SIZE;
if (count == 0)
return true; /* Nothing to do. */
#ifdef USE_MMAP
if (! bfd_get_file_window (abfd, obj_sym_filepos (abfd), amt,
&obj_aout_sym_window (abfd), true))
return false;
syms = (struct external_nlist *) obj_aout_sym_window (abfd).data;
#else
/* We allocate using malloc to make the values easy to free
later on. If we put them on the objalloc it might not be
possible to free them. */
if (bfd_seek (abfd, obj_sym_filepos (abfd), SEEK_SET) != 0)
return false;
syms = (struct external_nlist *) _bfd_malloc_and_read (abfd, amt, amt);
if (syms == NULL)
return false;
#endif
obj_aout_external_syms (abfd) = syms;
obj_aout_external_sym_count (abfd) = count;
}
if (obj_aout_external_strings (abfd) == NULL
&& exec_hdr (abfd)->a_syms != 0)
{
unsigned char string_chars[BYTES_IN_WORD];
bfd_size_type stringsize;
char *strings;
bfd_size_type amt = BYTES_IN_WORD;
/* Get the size of the strings. */
if (bfd_seek (abfd, obj_str_filepos (abfd), SEEK_SET) != 0
|| bfd_bread ((void *) string_chars, amt, abfd) != amt)
return false;
stringsize = GET_WORD (abfd, string_chars);
if (stringsize == 0)
stringsize = 1;
else if (stringsize < BYTES_IN_WORD
|| (size_t) stringsize != stringsize)
{
bfd_set_error (bfd_error_bad_value);
return false;
}
#ifdef USE_MMAP
if (stringsize >= BYTES_IN_WORD)
{
if (! bfd_get_file_window (abfd, obj_str_filepos (abfd), stringsize + 1,
&obj_aout_string_window (abfd), true))
return false;
strings = (char *) obj_aout_string_window (abfd).data;
}
else
#endif
{
strings = (char *) bfd_malloc (stringsize + 1);
if (strings == NULL)
return false;
if (stringsize >= BYTES_IN_WORD)
{
/* Keep the string count in the buffer for convenience
when indexing with e_strx. */
amt = stringsize - BYTES_IN_WORD;
if (bfd_bread (strings + BYTES_IN_WORD, amt, abfd) != amt)
{
free (strings);
return false;
}
}
}
/* Ensure that a zero index yields an empty string. */
memset (strings, 0, BYTES_IN_WORD);
/* Ensure that the string buffer is NUL terminated. */
strings[stringsize] = 0;
obj_aout_external_strings (abfd) = strings;
obj_aout_external_string_size (abfd) = stringsize;
}
return true;
}
/* Translate an a.out symbol into a BFD symbol. The desc, other, type
and symbol->value fields of CACHE_PTR will be set from the a.out
nlist structure. This function is responsible for setting
symbol->flags and symbol->section, and adjusting symbol->value. */
static bool
translate_from_native_sym_flags (bfd *abfd, aout_symbol_type *cache_ptr)
{
flagword visible;
if ((cache_ptr->type & N_STAB) != 0
|| cache_ptr->type == N_FN)
{
asection *sec;
/* This is a debugging symbol. */
cache_ptr->symbol.flags = BSF_DEBUGGING;
/* Work out the symbol section. */
switch (cache_ptr->type & N_TYPE)
{
case N_TEXT:
case N_FN:
sec = obj_textsec (abfd);
break;
case N_DATA:
sec = obj_datasec (abfd);
break;
case N_BSS:
sec = obj_bsssec (abfd);
break;
default:
case N_ABS:
sec = bfd_abs_section_ptr;
break;
}
cache_ptr->symbol.section = sec;
cache_ptr->symbol.value -= sec->vma;
return true;
}
/* Get the default visibility. This does not apply to all types, so
we just hold it in a local variable to use if wanted. */
if ((cache_ptr->type & N_EXT) == 0)
visible = BSF_LOCAL;
else
visible = BSF_GLOBAL;
switch (cache_ptr->type)
{
default:
case N_ABS: case N_ABS | N_EXT:
cache_ptr->symbol.section = bfd_abs_section_ptr;
cache_ptr->symbol.flags = visible;
break;
case N_UNDF | N_EXT:
if (cache_ptr->symbol.value != 0)
{
/* This is a common symbol. */
cache_ptr->symbol.flags = BSF_GLOBAL;
cache_ptr->symbol.section = bfd_com_section_ptr;
}
else
{
cache_ptr->symbol.flags = 0;
cache_ptr->symbol.section = bfd_und_section_ptr;
}
break;
case N_TEXT: case N_TEXT | N_EXT:
cache_ptr->symbol.section = obj_textsec (abfd);
cache_ptr->symbol.value -= cache_ptr->symbol.section->vma;
cache_ptr->symbol.flags = visible;
break;
/* N_SETV symbols used to represent set vectors placed in the
data section. They are no longer generated. Theoretically,
it was possible to extract the entries and combine them with
new ones, although I don't know if that was ever actually
done. Unless that feature is restored, treat them as data
symbols. */
case N_SETV: case N_SETV | N_EXT:
case N_DATA: case N_DATA | N_EXT:
cache_ptr->symbol.section = obj_datasec (abfd);
cache_ptr->symbol.value -= cache_ptr->symbol.section->vma;
cache_ptr->symbol.flags = visible;
break;
case N_BSS: case N_BSS | N_EXT:
cache_ptr->symbol.section = obj_bsssec (abfd);
cache_ptr->symbol.value -= cache_ptr->symbol.section->vma;
cache_ptr->symbol.flags = visible;
break;
case N_SETA: case N_SETA | N_EXT:
case N_SETT: case N_SETT | N_EXT:
case N_SETD: case N_SETD | N_EXT:
case N_SETB: case N_SETB | N_EXT:
{
/* This code is no longer needed. It used to be used to make
the linker handle set symbols, but they are now handled in
the add_symbols routine instead. */
switch (cache_ptr->type & N_TYPE)
{
case N_SETA:
cache_ptr->symbol.section = bfd_abs_section_ptr;
break;
case N_SETT:
cache_ptr->symbol.section = obj_textsec (abfd);
break;
case N_SETD:
cache_ptr->symbol.section = obj_datasec (abfd);
break;
case N_SETB:
cache_ptr->symbol.section = obj_bsssec (abfd);
break;
}
cache_ptr->symbol.flags |= BSF_CONSTRUCTOR;
}
break;
case N_WARNING:
/* This symbol is the text of a warning message. The next
symbol is the symbol to associate the warning with. If a
reference is made to that symbol, a warning is issued. */
cache_ptr->symbol.flags = BSF_DEBUGGING | BSF_WARNING;
cache_ptr->symbol.section = bfd_abs_section_ptr;
break;
case N_INDR: case N_INDR | N_EXT:
/* An indirect symbol. This consists of two symbols in a row.
The first symbol is the name of the indirection. The second
symbol is the name of the target. A reference to the first
symbol becomes a reference to the second. */
cache_ptr->symbol.flags = BSF_DEBUGGING | BSF_INDIRECT | visible;
cache_ptr->symbol.section = bfd_ind_section_ptr;
break;
case N_WEAKU:
cache_ptr->symbol.section = bfd_und_section_ptr;
cache_ptr->symbol.flags = BSF_WEAK;
break;
case N_WEAKA:
cache_ptr->symbol.section = bfd_abs_section_ptr;
cache_ptr->symbol.flags = BSF_WEAK;
break;
case N_WEAKT:
cache_ptr->symbol.section = obj_textsec (abfd);
cache_ptr->symbol.value -= cache_ptr->symbol.section->vma;
cache_ptr->symbol.flags = BSF_WEAK;
break;
case N_WEAKD:
cache_ptr->symbol.section = obj_datasec (abfd);
cache_ptr->symbol.value -= cache_ptr->symbol.section->vma;
cache_ptr->symbol.flags = BSF_WEAK;
break;
case N_WEAKB:
cache_ptr->symbol.section = obj_bsssec (abfd);
cache_ptr->symbol.value -= cache_ptr->symbol.section->vma;
cache_ptr->symbol.flags = BSF_WEAK;
break;
}
return true;
}
/* Set the fields of SYM_POINTER according to CACHE_PTR. */
static bool
translate_to_native_sym_flags (bfd *abfd,
asymbol *cache_ptr,
struct external_nlist *sym_pointer)
{
bfd_vma value = cache_ptr->value;
asection *sec;
bfd_vma off;
/* Mask out any existing type bits in case copying from one section
to another. */
sym_pointer->e_type[0] &= ~N_TYPE;
sec = bfd_asymbol_section (cache_ptr);
off = 0;
if (sec == NULL)
{
/* This case occurs, e.g., for the *DEBUG* section of a COFF
file. */
_bfd_error_handler
/* xgettext:c-format */
(_("%pB: can not represent section for symbol `%s' in a.out "
"object file format"),
abfd,
cache_ptr->name != NULL ? cache_ptr->name : _("*unknown*"));
bfd_set_error (bfd_error_nonrepresentable_section);
return false;
}
if (sec->output_section != NULL)
{
off = sec->output_offset;
sec = sec->output_section;
}
if (bfd_is_abs_section (sec))
sym_pointer->e_type[0] |= N_ABS;
else if (sec == obj_textsec (abfd))
sym_pointer->e_type[0] |= N_TEXT;
else if (sec == obj_datasec (abfd))
sym_pointer->e_type[0] |= N_DATA;
else if (sec == obj_bsssec (abfd))
sym_pointer->e_type[0] |= N_BSS;
else if (bfd_is_und_section (sec))
sym_pointer->e_type[0] = N_UNDF | N_EXT;
else if (bfd_is_ind_section (sec))
sym_pointer->e_type[0] = N_INDR;
else if (bfd_is_com_section (sec))
sym_pointer->e_type[0] = N_UNDF | N_EXT;
else
{
if (aout_section_merge_with_text_p (abfd, sec))
sym_pointer->e_type[0] |= N_TEXT;
else
{
_bfd_error_handler
/* xgettext:c-format */
(_("%pB: can not represent section `%pA' in a.out object file format"),
abfd, sec);
bfd_set_error (bfd_error_nonrepresentable_section);
return false;
}
}
/* Turn the symbol from section relative to absolute again. */
value += sec->vma + off;
if ((cache_ptr->flags & BSF_WARNING) != 0)
sym_pointer->e_type[0] = N_WARNING;
if ((cache_ptr->flags & BSF_DEBUGGING) != 0)
sym_pointer->e_type[0] = ((aout_symbol_type *) cache_ptr)->type;
else if ((cache_ptr->flags & BSF_GLOBAL) != 0)
sym_pointer->e_type[0] |= N_EXT;
else if ((cache_ptr->flags & BSF_LOCAL) != 0)
sym_pointer->e_type[0] &= ~N_EXT;
if ((cache_ptr->flags & BSF_CONSTRUCTOR) != 0)
{
int type = ((aout_symbol_type *) cache_ptr)->type;
switch (type)
{
case N_ABS: type = N_SETA; break;
case N_TEXT: type = N_SETT; break;
case N_DATA: type = N_SETD; break;
case N_BSS: type = N_SETB; break;
}
sym_pointer->e_type[0] = type;
}
if ((cache_ptr->flags & BSF_WEAK) != 0)
{
int type;
switch (sym_pointer->e_type[0] & N_TYPE)
{
default:
case N_ABS: type = N_WEAKA; break;
case N_TEXT: type = N_WEAKT; break;
case N_DATA: type = N_WEAKD; break;
case N_BSS: type = N_WEAKB; break;
case N_UNDF: type = N_WEAKU; break;
}
sym_pointer->e_type[0] = type;
}
PUT_WORD (abfd, value, sym_pointer->e_value);
return true;
}
/* Native-level interface to symbols. */
asymbol *
NAME (aout, make_empty_symbol) (bfd *abfd)
{
size_t amt = sizeof (aout_symbol_type);
aout_symbol_type *new_symbol = (aout_symbol_type *) bfd_zalloc (abfd, amt);
if (!new_symbol)
return NULL;
new_symbol->symbol.the_bfd = abfd;
return &new_symbol->symbol;
}
/* Translate a set of external symbols into internal symbols. */
bool
NAME (aout, translate_symbol_table) (bfd *abfd,
aout_symbol_type *in,
struct external_nlist *ext,
bfd_size_type count,
char *str,
bfd_size_type strsize,
bool dynamic)
{
struct external_nlist *ext_end;
ext_end = ext + count;
for (; ext < ext_end; ext++, in++)
{
bfd_vma x;
x = GET_WORD (abfd, ext->e_strx);
in->symbol.the_bfd = abfd;
/* For the normal symbols, the zero index points at the number
of bytes in the string table but is to be interpreted as the
null string. For the dynamic symbols, the number of bytes in
the string table is stored in the __DYNAMIC structure and the
zero index points at an actual string. */
if (x == 0 && ! dynamic)
in->symbol.name = "";
else if (x < strsize)
in->symbol.name = str + x;
else
{
_bfd_error_handler
(_("%pB: invalid string offset %" PRIu64 " >= %" PRIu64),
abfd, (uint64_t) x, (uint64_t) strsize);
bfd_set_error (bfd_error_bad_value);
return false;
}
in->symbol.value = GET_SWORD (abfd, ext->e_value);
in->desc = H_GET_16 (abfd, ext->e_desc);
in->other = H_GET_8 (abfd, ext->e_other);
in->type = H_GET_8 (abfd, ext->e_type);
in->symbol.udata.p = NULL;
if (! translate_from_native_sym_flags (abfd, in))
return false;
if (dynamic)
in->symbol.flags |= BSF_DYNAMIC;
}
return true;
}
/* We read the symbols into a buffer, which is discarded when this
function exits. We read the strings into a buffer large enough to
hold them all plus all the cached symbol entries. */
bool
NAME (aout, slurp_symbol_table) (bfd *abfd)
{
struct external_nlist *old_external_syms;
aout_symbol_type *cached;
bfd_size_type cached_size;
/* If there's no work to be done, don't do any. */
if (obj_aout_symbols (abfd) != NULL)
return true;
old_external_syms = obj_aout_external_syms (abfd);
if (! aout_get_external_symbols (abfd))
return false;
cached_size = obj_aout_external_sym_count (abfd);
if (cached_size == 0)
return true; /* Nothing to do. */
cached_size *= sizeof (aout_symbol_type);
cached = (aout_symbol_type *) bfd_zmalloc (cached_size);
if (cached == NULL)
return false;
/* Convert from external symbol information to internal. */
if (! (NAME (aout, translate_symbol_table)
(abfd, cached,
obj_aout_external_syms (abfd),
obj_aout_external_sym_count (abfd),
obj_aout_external_strings (abfd),
obj_aout_external_string_size (abfd),
false)))
{
free (cached);
return false;
}
abfd->symcount = obj_aout_external_sym_count (abfd);
obj_aout_symbols (abfd) = cached;
/* It is very likely that anybody who calls this function will not
want the external symbol information, so if it was allocated
because of our call to aout_get_external_symbols, we free it up
right away to save space. */
if (old_external_syms == NULL
&& obj_aout_external_syms (abfd) != NULL)
{
#ifdef USE_MMAP
bfd_free_window (&obj_aout_sym_window (abfd));
#else
free (obj_aout_external_syms (abfd));
#endif
obj_aout_external_syms (abfd) = NULL;
}
return true;
}
/* We use a hash table when writing out symbols so that we only write
out a particular string once. This helps particularly when the
linker writes out stabs debugging entries, because each different
contributing object file tends to have many duplicate stabs
strings.
This hash table code breaks dbx on SunOS 4.1.3, so we don't do it
if BFD_TRADITIONAL_FORMAT is set. */
/* Get the index of a string in a strtab, adding it if it is not
already present. */
static inline bfd_size_type
add_to_stringtab (bfd *abfd,
struct bfd_strtab_hash *tab,
const char *str,
bool copy)
{
bool hash;
bfd_size_type str_index;
/* An index of 0 always means the empty string. */
if (str == 0 || *str == '\0')
return 0;
/* Don't hash if BFD_TRADITIONAL_FORMAT is set, because SunOS dbx
doesn't understand a hashed string table. */
hash = true;
if ((abfd->flags & BFD_TRADITIONAL_FORMAT) != 0)
hash = false;
str_index = _bfd_stringtab_add (tab, str, hash, copy);
if (str_index != (bfd_size_type) -1)
/* Add BYTES_IN_WORD to the return value to account for the
space taken up by the string table size. */
str_index += BYTES_IN_WORD;
return str_index;
}
/* Write out a strtab. ABFD is already at the right location in the
file. */
static bool
emit_stringtab (bfd *abfd, struct bfd_strtab_hash *tab)
{
bfd_byte buffer[BYTES_IN_WORD];
size_t amt = BYTES_IN_WORD;
/* The string table starts with the size. */
PUT_WORD (abfd, _bfd_stringtab_size (tab) + BYTES_IN_WORD, buffer);
if (bfd_bwrite ((void *) buffer, amt, abfd) != amt)
return false;
return _bfd_stringtab_emit (abfd, tab);
}
bool
NAME (aout, write_syms) (bfd *abfd)
{
unsigned int count ;
asymbol **generic = bfd_get_outsymbols (abfd);
struct bfd_strtab_hash *strtab;
strtab = _bfd_stringtab_init ();
if (strtab == NULL)
return false;
for (count = 0; count < bfd_get_symcount (abfd); count++)
{
asymbol *g = generic[count];
bfd_size_type indx;
struct external_nlist nsp;
size_t amt;
indx = add_to_stringtab (abfd, strtab, g->name, false);
if (indx == (bfd_size_type) -1)
goto error_return;
PUT_WORD (abfd, indx, (bfd_byte *) nsp.e_strx);
if (bfd_asymbol_flavour (g) == abfd->xvec->flavour)
{
H_PUT_16 (abfd, aout_symbol (g)->desc, nsp.e_desc);
H_PUT_8 (abfd, aout_symbol (g)->other, nsp.e_other);
H_PUT_8 (abfd, aout_symbol (g)->type, nsp.e_type);
}
else
{
H_PUT_16 (abfd, 0, nsp.e_desc);
H_PUT_8 (abfd, 0, nsp.e_other);
H_PUT_8 (abfd, 0, nsp.e_type);
}
if (! translate_to_native_sym_flags (abfd, g, &nsp))
goto error_return;
amt = EXTERNAL_NLIST_SIZE;
if (bfd_bwrite ((void *) &nsp, amt, abfd) != amt)
goto error_return;
/* NB: `KEEPIT' currently overlays `udata.p', so set this only
here, at the end. */
g->KEEPIT = count;
}
if (! emit_stringtab (abfd, strtab))
goto error_return;
_bfd_stringtab_free (strtab);
return true;
error_return:
_bfd_stringtab_free (strtab);
return false;
}
long
NAME (aout, canonicalize_symtab) (bfd *abfd, asymbol **location)
{
unsigned int counter = 0;
aout_symbol_type *symbase;
if (!NAME (aout, slurp_symbol_table) (abfd))
return -1;
for (symbase = obj_aout_symbols (abfd);
counter++ < bfd_get_symcount (abfd);
)
*(location++) = (asymbol *) (symbase++);
*location++ =0;
return bfd_get_symcount (abfd);
}
/* Standard reloc stuff. */
/* Output standard relocation information to a file in target byte order. */
extern void NAME (aout, swap_std_reloc_out)
(bfd *, arelent *, struct reloc_std_external *);
void
NAME (aout, swap_std_reloc_out) (bfd *abfd,
arelent *g,
struct reloc_std_external *natptr)
{
int r_index;
asymbol *sym = *(g->sym_ptr_ptr);
int r_extern;
unsigned int r_length;
int r_pcrel;
int r_baserel, r_jmptable, r_relative;
asection *output_section = sym->section->output_section;
PUT_WORD (abfd, g->address, natptr->r_address);
BFD_ASSERT (g->howto != NULL);
switch (bfd_get_reloc_size (g->howto))
{
default:
_bfd_error_handler (_("%pB: unsupported AOUT relocation size: %d"),
abfd, bfd_get_reloc_size (g->howto));
bfd_set_error (bfd_error_bad_value);
return;
case 1:
case 2:
case 4:
r_length = g->howto->size; /* Size as a power of two. */
break;
case 8:
r_length = 3;
break;
}
r_pcrel = (int) g->howto->pc_relative; /* Relative to PC? */
/* XXX This relies on relocs coming from a.out files. */
r_baserel = (g->howto->type & 8) != 0;
r_jmptable = (g->howto->type & 16) != 0;
r_relative = (g->howto->type & 32) != 0;
/* Name was clobbered by aout_write_syms to be symbol index. */
/* If this relocation is relative to a symbol then set the
r_index to the symbols index, and the r_extern bit.
Absolute symbols can come in in two ways, either as an offset
from the abs section, or as a symbol which has an abs value.
check for that here. */
if (bfd_is_com_section (output_section)
|| bfd_is_abs_section (output_section)
|| bfd_is_und_section (output_section)
/* PR gas/3041 a.out relocs against weak symbols
must be treated as if they were against externs. */
|| (sym->flags & BSF_WEAK))
{
if (bfd_abs_section_ptr->symbol == sym)
{
/* Whoops, looked like an abs symbol, but is
really an offset from the abs section. */
r_index = N_ABS;
r_extern = 0;
}
else
{
/* Fill in symbol. */
r_extern = 1;
r_index = (*(g->sym_ptr_ptr))->KEEPIT;
}
}
else
{
/* Just an ordinary section. */
r_extern = 0;
r_index = output_section->target_index;
}
/* Now the fun stuff. */
if (bfd_header_big_endian (abfd))
{
natptr->r_index[0] = r_index >> 16;
natptr->r_index[1] = r_index >> 8;
natptr->r_index[2] = r_index;
natptr->r_type[0] = ((r_extern ? RELOC_STD_BITS_EXTERN_BIG : 0)
| (r_pcrel ? RELOC_STD_BITS_PCREL_BIG : 0)
| (r_baserel ? RELOC_STD_BITS_BASEREL_BIG : 0)
| (r_jmptable ? RELOC_STD_BITS_JMPTABLE_BIG : 0)
| (r_relative ? RELOC_STD_BITS_RELATIVE_BIG : 0)
| (r_length << RELOC_STD_BITS_LENGTH_SH_BIG));
}
else
{
natptr->r_index[2] = r_index >> 16;
natptr->r_index[1] = r_index >> 8;
natptr->r_index[0] = r_index;
natptr->r_type[0] = ((r_extern ? RELOC_STD_BITS_EXTERN_LITTLE : 0)
| (r_pcrel ? RELOC_STD_BITS_PCREL_LITTLE : 0)
| (r_baserel ? RELOC_STD_BITS_BASEREL_LITTLE : 0)
| (r_jmptable ? RELOC_STD_BITS_JMPTABLE_LITTLE : 0)
| (r_relative ? RELOC_STD_BITS_RELATIVE_LITTLE : 0)
| (r_length << RELOC_STD_BITS_LENGTH_SH_LITTLE));
}
}
/* Extended stuff. */
/* Output extended relocation information to a file in target byte order. */
extern void NAME (aout, swap_ext_reloc_out)
(bfd *, arelent *, struct reloc_ext_external *);
void
NAME (aout, swap_ext_reloc_out) (bfd *abfd,
arelent *g,
struct reloc_ext_external *natptr)
{
int r_index;
int r_extern;
unsigned int r_type;
bfd_vma r_addend;
asymbol *sym = *(g->sym_ptr_ptr);
asection *output_section = sym->section->output_section;
PUT_WORD (abfd, g->address, natptr->r_address);
r_type = (unsigned int) g->howto->type;
r_addend = g->addend;
if ((sym->flags & BSF_SECTION_SYM) != 0)
r_addend += (*(g->sym_ptr_ptr))->section->output_section->vma;
/* If this relocation is relative to a symbol then set the
r_index to the symbols index, and the r_extern bit.
Absolute symbols can come in in two ways, either as an offset
from the abs section, or as a symbol which has an abs value.
check for that here. */
if (bfd_is_abs_section (bfd_asymbol_section (sym)))
{
r_extern = 0;
r_index = N_ABS;
}
else if ((sym->flags & BSF_SECTION_SYM) == 0)
{
if (bfd_is_und_section (bfd_asymbol_section (sym))
|| (sym->flags & BSF_GLOBAL) != 0)
r_extern = 1;
else
r_extern = 0;
r_index = (*(g->sym_ptr_ptr))->KEEPIT;
}
else
{
/* Just an ordinary section. */
r_extern = 0;
r_index = output_section->target_index;
}
/* Now the fun stuff. */
if (bfd_header_big_endian (abfd))
{
natptr->r_index[0] = r_index >> 16;
natptr->r_index[1] = r_index >> 8;
natptr->r_index[2] = r_index;
natptr->r_type[0] = ((r_extern ? RELOC_EXT_BITS_EXTERN_BIG : 0)
| (r_type << RELOC_EXT_BITS_TYPE_SH_BIG));
}
else
{
natptr->r_index[2] = r_index >> 16;
natptr->r_index[1] = r_index >> 8;
natptr->r_index[0] = r_index;
natptr->r_type[0] = ((r_extern ? RELOC_EXT_BITS_EXTERN_LITTLE : 0)
| (r_type << RELOC_EXT_BITS_TYPE_SH_LITTLE));
}
PUT_WORD (abfd, r_addend, natptr->r_addend);
}
/* BFD deals internally with all things based from the section they're
in. so, something in 10 bytes into a text section with a base of
50 would have a symbol (.text+10) and know .text vma was 50.
Aout keeps all it's symbols based from zero, so the symbol would
contain 60. This macro subs the base of each section from the value
to give the true offset from the section. */
#define MOVE_ADDRESS(ad) \
if (r_extern) \
{ \
/* Undefined symbol. */ \
if (r_index < bfd_get_symcount (abfd)) \
cache_ptr->sym_ptr_ptr = symbols + r_index; \
cache_ptr->addend = ad; \
} \
else \
{ \
/* Defined, section relative. Replace symbol with pointer to \
symbol which points to section. */ \
switch (r_index) \
{ \
case N_TEXT: \
case N_TEXT | N_EXT: \
cache_ptr->sym_ptr_ptr = obj_textsec (abfd)->symbol_ptr_ptr; \
cache_ptr->addend = ad - su->textsec->vma; \
break; \
case N_DATA: \
case N_DATA | N_EXT: \
cache_ptr->sym_ptr_ptr = obj_datasec (abfd)->symbol_ptr_ptr; \
cache_ptr->addend = ad - su->datasec->vma; \
break; \
case N_BSS: \
case N_BSS | N_EXT: \
cache_ptr->sym_ptr_ptr = obj_bsssec (abfd)->symbol_ptr_ptr; \
cache_ptr->addend = ad - su->bsssec->vma; \
break; \
default: \
case N_ABS: \
case N_ABS | N_EXT: \
cache_ptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr; \
cache_ptr->addend = ad; \
break; \
} \
}
void
NAME (aout, swap_ext_reloc_in) (bfd *abfd,
struct reloc_ext_external *bytes,
arelent *cache_ptr,
asymbol **symbols,
bfd_size_type symcount)
{
unsigned int r_index;
int r_extern;
unsigned int r_type;
struct aoutdata *su = &(abfd->tdata.aout_data->a);
cache_ptr->address = (GET_SWORD (abfd, bytes->r_address));
/* Now the fun stuff. */
if (bfd_header_big_endian (abfd))
{
r_index = (((unsigned int) bytes->r_index[0] << 16)
| ((unsigned int) bytes->r_index[1] << 8)
| bytes->r_index[2]);
r_extern = (0 != (bytes->r_type[0] & RELOC_EXT_BITS_EXTERN_BIG));
r_type = ((bytes->r_type[0] & RELOC_EXT_BITS_TYPE_BIG)
>> RELOC_EXT_BITS_TYPE_SH_BIG);
}
else
{
r_index = (((unsigned int) bytes->r_index[2] << 16)
| ((unsigned int) bytes->r_index[1] << 8)
| bytes->r_index[0]);
r_extern = (0 != (bytes->r_type[0] & RELOC_EXT_BITS_EXTERN_LITTLE));
r_type = ((bytes->r_type[0] & RELOC_EXT_BITS_TYPE_LITTLE)
>> RELOC_EXT_BITS_TYPE_SH_LITTLE);
}
if (r_type < TABLE_SIZE (howto_table_ext))
cache_ptr->howto = howto_table_ext + r_type;
else
cache_ptr->howto = NULL;
/* Base relative relocs are always against the symbol table,
regardless of the setting of r_extern. r_extern just reflects
whether the symbol the reloc is against is local or global. */
if (r_type == (unsigned int) RELOC_BASE10
|| r_type == (unsigned int) RELOC_BASE13
|| r_type == (unsigned int) RELOC_BASE22)
r_extern = 1;
if (r_extern && r_index > symcount)
{
/* We could arrange to return an error, but it might be useful
to see the file even if it is bad. */
r_extern = 0;
r_index = N_ABS;
}
MOVE_ADDRESS (GET_SWORD (abfd, bytes->r_addend));
}
void
NAME (aout, swap_std_reloc_in) (bfd *abfd,
struct reloc_std_external *bytes,
arelent *cache_ptr,
asymbol **symbols,
bfd_size_type symcount)
{
unsigned int r_index;
int r_extern;
unsigned int r_length;
int r_pcrel;
int r_baserel, r_jmptable, r_relative;
struct aoutdata *su = &(abfd->tdata.aout_data->a);
unsigned int howto_idx;
cache_ptr->address = H_GET_32 (abfd, bytes->r_address);
/* Now the fun stuff. */
if (bfd_header_big_endian (abfd))
{
r_index = (((unsigned int) bytes->r_index[0] << 16)
| ((unsigned int) bytes->r_index[1] << 8)
| bytes->r_index[2]);
r_extern = (0 != (bytes->r_type[0] & RELOC_STD_BITS_EXTERN_BIG));
r_pcrel = (0 != (bytes->r_type[0] & RELOC_STD_BITS_PCREL_BIG));
r_baserel = (0 != (bytes->r_type[0] & RELOC_STD_BITS_BASEREL_BIG));
r_jmptable= (0 != (bytes->r_type[0] & RELOC_STD_BITS_JMPTABLE_BIG));
r_relative= (0 != (bytes->r_type[0] & RELOC_STD_BITS_RELATIVE_BIG));
r_length = ((bytes->r_type[0] & RELOC_STD_BITS_LENGTH_BIG)
>> RELOC_STD_BITS_LENGTH_SH_BIG);
}
else
{
r_index = (((unsigned int) bytes->r_index[2] << 16)
| ((unsigned int) bytes->r_index[1] << 8)
| bytes->r_index[0]);
r_extern = (0 != (bytes->r_type[0] & RELOC_STD_BITS_EXTERN_LITTLE));
r_pcrel = (0 != (bytes->r_type[0] & RELOC_STD_BITS_PCREL_LITTLE));
r_baserel = (0 != (bytes->r_type[0] & RELOC_STD_BITS_BASEREL_LITTLE));
r_jmptable= (0 != (bytes->r_type[0] & RELOC_STD_BITS_JMPTABLE_LITTLE));
r_relative= (0 != (bytes->r_type[0] & RELOC_STD_BITS_RELATIVE_LITTLE));
r_length = ((bytes->r_type[0] & RELOC_STD_BITS_LENGTH_LITTLE)
>> RELOC_STD_BITS_LENGTH_SH_LITTLE);
}
howto_idx = (r_length + 4 * r_pcrel + 8 * r_baserel
+ 16 * r_jmptable + 32 * r_relative);
if (howto_idx < TABLE_SIZE (howto_table_std))
{
cache_ptr->howto = howto_table_std + howto_idx;
if (cache_ptr->howto->type == (unsigned int) -1)
cache_ptr->howto = NULL;
}
else
cache_ptr->howto = NULL;
/* Base relative relocs are always against the symbol table,
regardless of the setting of r_extern. r_extern just reflects
whether the symbol the reloc is against is local or global. */
if (r_baserel)
r_extern = 1;
if (r_extern && r_index >= symcount)
{
/* We could arrange to return an error, but it might be useful
to see the file even if it is bad. FIXME: Of course this
means that objdump -r *doesn't* see the actual reloc, and
objcopy silently writes a different reloc. */
r_extern = 0;
r_index = N_ABS;
}
MOVE_ADDRESS (0);
}
/* Read and swap the relocs for a section. */
bool
NAME (aout, slurp_reloc_table) (bfd *abfd, sec_ptr asect, asymbol **symbols)
{
bfd_size_type count;
bfd_size_type reloc_size;
void * relocs;
arelent *reloc_cache;
size_t each_size;
unsigned int counter = 0;
arelent *cache_ptr;
bfd_size_type amt;
if (asect->relocation)
return true;
if (asect->flags & SEC_CONSTRUCTOR)
return true;
if (asect == obj_datasec (abfd))
reloc_size = exec_hdr (abfd)->a_drsize;
else if (asect == obj_textsec (abfd))
reloc_size = exec_hdr (abfd)->a_trsize;
else if (asect == obj_bsssec (abfd))
reloc_size = 0;
else
{
bfd_set_error (bfd_error_invalid_operation);
return false;
}
each_size = obj_reloc_entry_size (abfd);
count = reloc_size / each_size;
if (count == 0)
return true; /* Nothing to be done. */
if (bfd_seek (abfd, asect->rel_filepos, SEEK_SET) != 0)
return false;
relocs = _bfd_malloc_and_read (abfd, reloc_size, reloc_size);
if (relocs == NULL)
return false;
amt = count * sizeof (arelent);
reloc_cache = (arelent *) bfd_zmalloc (amt);
if (reloc_cache == NULL)
{
free (relocs);
return false;
}
cache_ptr = reloc_cache;
if (each_size == RELOC_EXT_SIZE)
{
struct reloc_ext_external *rptr = (struct reloc_ext_external *) relocs;
for (; counter < count; counter++, rptr++, cache_ptr++)
MY_swap_ext_reloc_in (abfd, rptr, cache_ptr, symbols,
(bfd_size_type) bfd_get_symcount (abfd));
}
else
{
struct reloc_std_external *rptr = (struct reloc_std_external *) relocs;
for (; counter < count; counter++, rptr++, cache_ptr++)
MY_swap_std_reloc_in (abfd, rptr, cache_ptr, symbols,
(bfd_size_type) bfd_get_symcount (abfd));
}
free (relocs);
asect->relocation = reloc_cache;
asect->reloc_count = cache_ptr - reloc_cache;
return true;
}
/* Write out a relocation section into an object file. */
bool
NAME (aout, squirt_out_relocs) (bfd *abfd, asection *section)
{
arelent **generic;
unsigned char *native, *natptr;
size_t each_size;
unsigned int count = section->reloc_count;
bfd_size_type natsize;
if (count == 0 || section->orelocation == NULL)
return true;
each_size = obj_reloc_entry_size (abfd);
natsize = (bfd_size_type) each_size * count;
native = (unsigned char *) bfd_zalloc (abfd, natsize);
if (!native)
return false;
generic = section->orelocation;
if (each_size == RELOC_EXT_SIZE)
{
for (natptr = native;
count != 0;
--count, natptr += each_size, ++generic)
{
/* PR 20921: If the howto field has not been initialised then skip
this reloc.
PR 20929: Similarly for the symbol field. */
if ((*generic)->howto == NULL
|| (*generic)->sym_ptr_ptr == NULL)
{
bfd_set_error (bfd_error_invalid_operation);
_bfd_error_handler (_("%pB: attempt to write out "
"unknown reloc type"), abfd);
return false;
}
MY_swap_ext_reloc_out (abfd, *generic,
(struct reloc_ext_external *) natptr);
}
}
else
{
for (natptr = native;
count != 0;
--count, natptr += each_size, ++generic)
{
if ((*generic)->howto == NULL
|| (*generic)->sym_ptr_ptr == NULL)
{
bfd_set_error (bfd_error_invalid_operation);
_bfd_error_handler (_("%pB: attempt to write out "
"unknown reloc type"), abfd);
return false;
}
MY_swap_std_reloc_out (abfd, *generic,
(struct reloc_std_external *) natptr);
}
}
if (bfd_bwrite ((void *) native, natsize, abfd) != natsize)
{
bfd_release (abfd, native);
return false;
}
bfd_release (abfd, native);
return true;
}
/* This is stupid. This function should be a boolean predicate. */
long
NAME (aout, canonicalize_reloc) (bfd *abfd,
sec_ptr section,
arelent **relptr,
asymbol **symbols)
{
arelent *tblptr = section->relocation;
unsigned int count;
if (section == obj_bsssec (abfd))
{
*relptr = NULL;
return 0;
}
if (!(tblptr || NAME (aout, slurp_reloc_table) (abfd, section, symbols)))
return -1;
if (section->flags & SEC_CONSTRUCTOR)
{
arelent_chain *chain = section->constructor_chain;
for (count = 0; count < section->reloc_count; count ++)
{
*relptr ++ = &chain->relent;
chain = chain->next;
}
}
else
{
tblptr = section->relocation;
for (count = 0; count++ < section->reloc_count; )
{
*relptr++ = tblptr++;
}
}
*relptr = 0;
return section->reloc_count;
}
long
NAME (aout, get_reloc_upper_bound) (bfd *abfd, sec_ptr asect)
{
bfd_size_type count;
if (bfd_get_format (abfd) != bfd_object)
{
bfd_set_error (bfd_error_invalid_operation);
return -1;
}
if (asect->flags & SEC_CONSTRUCTOR)
count = asect->reloc_count;
else if (asect == obj_datasec (abfd))
count = exec_hdr (abfd)->a_drsize / obj_reloc_entry_size (abfd);
else if (asect == obj_textsec (abfd))
count = exec_hdr (abfd)->a_trsize / obj_reloc_entry_size (abfd);
else if (asect == obj_bsssec (abfd))
count = 0;
else
{
bfd_set_error (bfd_error_invalid_operation);
return -1;
}
if (count >= LONG_MAX / sizeof (arelent *))
{
bfd_set_error (bfd_error_file_too_big);
return -1;
}
return (count + 1) * sizeof (arelent *);
}
long
NAME (aout, get_symtab_upper_bound) (bfd *abfd)
{
if (!NAME (aout, slurp_symbol_table) (abfd))
return -1;
return (bfd_get_symcount (abfd)+1) * (sizeof (aout_symbol_type *));
}
alent *
NAME (aout, get_lineno) (bfd *ignore_abfd ATTRIBUTE_UNUSED,
asymbol *ignore_symbol ATTRIBUTE_UNUSED)
{
return NULL;
}
void
NAME (aout, get_symbol_info) (bfd *ignore_abfd ATTRIBUTE_UNUSED,
asymbol *symbol,
symbol_info *ret)
{
bfd_symbol_info (symbol, ret);
if (ret->type == '?')
{
int type_code = aout_symbol (symbol)->type & 0xff;
const char *stab_name = bfd_get_stab_name (type_code);
static char buf[10];
if (stab_name == NULL)
{
sprintf (buf, "(%d)", type_code);
stab_name = buf;
}
ret->type = '-';
ret->stab_type = type_code;
ret->stab_other = (unsigned) (aout_symbol (symbol)->other & 0xff);
ret->stab_desc = (unsigned) (aout_symbol (symbol)->desc & 0xffff);
ret->stab_name = stab_name;
}
}
void
NAME (aout, print_symbol) (bfd *abfd,
void * afile,
asymbol *symbol,
bfd_print_symbol_type how)
{
FILE *file = (FILE *)afile;
switch (how)
{
case bfd_print_symbol_name:
if (symbol->name)
fprintf (file,"%s", symbol->name);
break;
case bfd_print_symbol_more:
fprintf (file,"%4x %2x %2x",
(unsigned) (aout_symbol (symbol)->desc & 0xffff),
(unsigned) (aout_symbol (symbol)->other & 0xff),
(unsigned) (aout_symbol (symbol)->type));
break;
case bfd_print_symbol_all:
{
const char *section_name = symbol->section->name;
bfd_print_symbol_vandf (abfd, (void *)file, symbol);
fprintf (file," %-5s %04x %02x %02x",
section_name,
(unsigned) (aout_symbol (symbol)->desc & 0xffff),
(unsigned) (aout_symbol (symbol)->other & 0xff),
(unsigned) (aout_symbol (symbol)->type & 0xff));
if (symbol->name)
fprintf (file," %s", symbol->name);
}
break;
}
}
/* If we don't have to allocate more than 1MB to hold the generic
symbols, we use the generic minisymbol methord: it's faster, since
it only translates the symbols once, not multiple times. */
#define MINISYM_THRESHOLD (1000000 / sizeof (asymbol))
/* Read minisymbols. For minisymbols, we use the unmodified a.out
symbols. The minisymbol_to_symbol function translates these into
BFD asymbol structures. */
long
NAME (aout, read_minisymbols) (bfd *abfd,
bool dynamic,
void * *minisymsp,
unsigned int *sizep)
{
if (dynamic)
/* We could handle the dynamic symbols here as well, but it's
easier to hand them off. */
return _bfd_generic_read_minisymbols (abfd, dynamic, minisymsp, sizep);
if (! aout_get_external_symbols (abfd))
return -1;
if (obj_aout_external_sym_count (abfd) < MINISYM_THRESHOLD)
return _bfd_generic_read_minisymbols (abfd, dynamic, minisymsp, sizep);
*minisymsp = (void *) obj_aout_external_syms (abfd);
/* By passing the external symbols back from this routine, we are
giving up control over the memory block. Clear
obj_aout_external_syms, so that we do not try to free it
ourselves. */
obj_aout_external_syms (abfd) = NULL;
*sizep = EXTERNAL_NLIST_SIZE;
return obj_aout_external_sym_count (abfd);
}
/* Convert a minisymbol to a BFD asymbol. A minisymbol is just an
unmodified a.out symbol. The SYM argument is a structure returned
by bfd_make_empty_symbol, which we fill in here. */
asymbol *
NAME (aout, minisymbol_to_symbol) (bfd *abfd,
bool dynamic,
const void * minisym,
asymbol *sym)
{
if (dynamic
|| obj_aout_external_sym_count (abfd) < MINISYM_THRESHOLD)
return _bfd_generic_minisymbol_to_symbol (abfd, dynamic, minisym, sym);
memset (sym, 0, sizeof (aout_symbol_type));
/* We call translate_symbol_table to translate a single symbol. */
if (! (NAME (aout, translate_symbol_table)
(abfd,
(aout_symbol_type *) sym,
(struct external_nlist *) minisym,
(bfd_size_type) 1,
obj_aout_external_strings (abfd),
obj_aout_external_string_size (abfd),
false)))
return NULL;
return sym;
}
/* Provided a BFD, a section and an offset into the section, calculate
and return the name of the source file and the line nearest to the
wanted location. */
bool
NAME (aout, find_nearest_line) (bfd *abfd,
asymbol **symbols,
asection *section,
bfd_vma offset,
const char **filename_ptr,
const char **functionname_ptr,
unsigned int *line_ptr,
unsigned int *disriminator_ptr)
{
/* Run down the file looking for the filename, function and linenumber. */
asymbol **p;
const char *directory_name = NULL;
const char *main_file_name = NULL;
const char *current_file_name = NULL;
const char *line_file_name = NULL; /* Value of current_file_name at line number. */
const char *line_directory_name = NULL; /* Value of directory_name at line number. */
bfd_vma low_line_vma = 0;
bfd_vma low_func_vma = 0;
asymbol *func = 0;
bfd_size_type filelen, funclen;
char *buf;
*filename_ptr = bfd_get_filename (abfd);
*functionname_ptr = NULL;
*line_ptr = 0;
if (disriminator_ptr)
*disriminator_ptr = 0;
if (symbols != NULL)
{
for (p = symbols; *p; p++)
{
aout_symbol_type *q = (aout_symbol_type *) (*p);
next:
switch (q->type)
{
case N_TEXT:
/* If this looks like a file name symbol, and it comes after
the line number we have found so far, but before the
offset, then we have probably not found the right line
number. */
if (q->symbol.value <= offset
&& ((q->symbol.value > low_line_vma
&& (line_file_name != NULL
|| *line_ptr != 0))
|| (q->symbol.value > low_func_vma
&& func != NULL)))
{
const char *symname;
symname = q->symbol.name;
if (symname != NULL
&& strlen (symname) > 2
&& strcmp (symname + strlen (symname) - 2, ".o") == 0)
{
if (q->symbol.value > low_line_vma)
{
*line_ptr = 0;
line_file_name = NULL;
}
if (q->symbol.value > low_func_vma)
func = NULL;
}
}
break;
case N_SO:
/* If this symbol is less than the offset, but greater than
the line number we have found so far, then we have not
found the right line number. */
if (q->symbol.value <= offset)
{
if (q->symbol.value > low_line_vma)
{
*line_ptr = 0;
line_file_name = NULL;
}
if (q->symbol.value > low_func_vma)
func = NULL;
}
main_file_name = current_file_name = q->symbol.name;
/* Look ahead to next symbol to check if that too is an N_SO. */
p++;
if (*p == NULL)
goto done;
q = (aout_symbol_type *) (*p);
if (q->type != (int)N_SO)
goto next;
/* Found a second N_SO First is directory; second is filename. */
directory_name = current_file_name;
main_file_name = current_file_name = q->symbol.name;
if (obj_textsec (abfd) != section)
goto done;
break;
case N_SOL:
current_file_name = q->symbol.name;
break;
case N_SLINE:
case N_DSLINE:
case N_BSLINE:
/* We'll keep this if it resolves nearer than the one we have
already. */
if (q->symbol.value >= low_line_vma
&& q->symbol.value <= offset)
{
*line_ptr = q->desc;
low_line_vma = q->symbol.value;
line_file_name = current_file_name;
line_directory_name = directory_name;
}
break;
case N_FUN:
{
/* We'll keep this if it is nearer than the one we have already. */
if (q->symbol.value >= low_func_vma
&& q->symbol.value <= offset)
{
low_func_vma = q->symbol.value;
func = (asymbol *)q;
}
else if (q->symbol.value > offset)
goto done;
}
break;
}
}
}
done:
if (*line_ptr != 0)
{
main_file_name = line_file_name;
directory_name = line_directory_name;
}
if (main_file_name == NULL
|| IS_ABSOLUTE_PATH (main_file_name)
|| directory_name == NULL)
filelen = 0;
else
filelen = strlen (directory_name) + strlen (main_file_name);
if (func == NULL)
funclen = 0;
else
funclen = strlen (bfd_asymbol_name (func));
free (adata (abfd).line_buf);
if (filelen + funclen == 0)
adata (abfd).line_buf = buf = NULL;
else
{
buf = (char *) bfd_malloc (filelen + funclen + 3);
adata (abfd).line_buf = buf;
if (buf == NULL)
return false;
}
if (main_file_name != NULL)
{
if (IS_ABSOLUTE_PATH (main_file_name) || directory_name == NULL)
*filename_ptr = main_file_name;
else
{
if (buf == NULL)
/* PR binutils/20891: In a corrupt input file both
main_file_name and directory_name can be empty... */
* filename_ptr = NULL;
else
{
snprintf (buf, filelen + 1, "%s%s", directory_name,
main_file_name);
*filename_ptr = buf;
buf += filelen + 1;
}
}
}
if (func)
{
const char *function = func->name;
char *colon;
if (buf == NULL)
{
/* PR binutils/20892: In a corrupt input file func can be empty. */
* functionname_ptr = NULL;
return true;
}
/* The caller expects a symbol name. We actually have a
function name, without the leading underscore. Put the
underscore back in, so that the caller gets a symbol name. */
if (bfd_get_symbol_leading_char (abfd) == '\0')
strcpy (buf, function);
else
{
buf[0] = bfd_get_symbol_leading_char (abfd);
strcpy (buf + 1, function);
}
/* Have to remove : stuff. */
colon = strchr (buf, ':');
if (colon != NULL)
*colon = '\0';
*functionname_ptr = buf;
}
return true;
}
int
NAME (aout, sizeof_headers) (bfd *abfd,
struct bfd_link_info *info ATTRIBUTE_UNUSED)
{
return adata (abfd).exec_bytes_size;
}
/* Free all information we have cached for this BFD. We can always
read it again later if we need it. */
bool
NAME (aout, bfd_free_cached_info) (bfd *abfd)
{
asection *o;
if (bfd_get_format (abfd) != bfd_object
|| abfd->tdata.aout_data == NULL)
return true;
#define BFCI_FREE(x) do { free (x); x = NULL; } while (0)
BFCI_FREE (obj_aout_symbols (abfd));
#ifdef USE_MMAP
obj_aout_external_syms (abfd) = 0;
bfd_free_window (&obj_aout_sym_window (abfd));
bfd_free_window (&obj_aout_string_window (abfd));
obj_aout_external_strings (abfd) = 0;
#else
BFCI_FREE (obj_aout_external_syms (abfd));
BFCI_FREE (obj_aout_external_strings (abfd));
#endif
for (o = abfd->sections; o != NULL; o = o->next)
BFCI_FREE (o->relocation);
#undef BFCI_FREE
return true;
}
/* a.out link code. */
/* Routine to create an entry in an a.out link hash table. */
struct bfd_hash_entry *
NAME (aout, link_hash_newfunc) (struct bfd_hash_entry *entry,
struct bfd_hash_table *table,
const char *string)
{
struct aout_link_hash_entry *ret = (struct aout_link_hash_entry *) entry;
/* Allocate the structure if it has not already been allocated by a
subclass. */
if (ret == NULL)
ret = (struct aout_link_hash_entry *) bfd_hash_allocate (table,
sizeof (* ret));
if (ret == NULL)
return NULL;
/* Call the allocation method of the superclass. */
ret = ((struct aout_link_hash_entry *)
_bfd_link_hash_newfunc ((struct bfd_hash_entry *) ret,
table, string));
if (ret)
{
/* Set local fields. */
ret->written = false;
ret->indx = -1;
}
return (struct bfd_hash_entry *) ret;
}
/* Initialize an a.out link hash table. */
bool
NAME (aout, link_hash_table_init) (struct aout_link_hash_table *table,
bfd *abfd,
struct bfd_hash_entry *(*newfunc)
(struct bfd_hash_entry *, struct bfd_hash_table *,
const char *),
unsigned int entsize)
{
return _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
}
/* Create an a.out link hash table. */
struct bfd_link_hash_table *
NAME (aout, link_hash_table_create) (bfd *abfd)
{
struct aout_link_hash_table *ret;
size_t amt = sizeof (* ret);
ret = (struct aout_link_hash_table *) bfd_malloc (amt);
if (ret == NULL)
return NULL;
if (!NAME (aout, link_hash_table_init) (ret, abfd,
NAME (aout, link_hash_newfunc),
sizeof (struct aout_link_hash_entry)))
{
free (ret);
return NULL;
}
return &ret->root;
}
/* Add all symbols from an object file to the hash table. */
static bool
aout_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
{
bool (*add_one_symbol)
(struct bfd_link_info *, bfd *, const char *, flagword, asection *,
bfd_vma, const char *, bool, bool, struct bfd_link_hash_entry **);
struct external_nlist *syms;
bfd_size_type sym_count;
char *strings;
bool copy;
struct aout_link_hash_entry **sym_hash;
struct external_nlist *p;
struct external_nlist *pend;
bfd_size_type amt;
syms = obj_aout_external_syms (abfd);
sym_count = obj_aout_external_sym_count (abfd);
strings = obj_aout_external_strings (abfd);
if (info->keep_memory)
copy = false;
else
copy = true;
if (aout_backend_info (abfd)->add_dynamic_symbols != NULL)
{
if (! ((*aout_backend_info (abfd)->add_dynamic_symbols)
(abfd, info, &syms, &sym_count, &strings)))
return false;
}
if (sym_count == 0)
return true; /* Nothing to do. */
/* We keep a list of the linker hash table entries that correspond
to particular symbols. We could just look them up in the hash
table, but keeping the list is more efficient. Perhaps this
should be conditional on info->keep_memory. */
amt = sym_count * sizeof (struct aout_link_hash_entry *);
sym_hash = (struct aout_link_hash_entry **) bfd_alloc (abfd, amt);
if (sym_hash == NULL)
return false;
obj_aout_sym_hashes (abfd) = sym_hash;
add_one_symbol = aout_backend_info (abfd)->add_one_symbol;
if (add_one_symbol == NULL)
add_one_symbol = _bfd_generic_link_add_one_symbol;
p = syms;
pend = p + sym_count;
for (; p < pend; p++, sym_hash++)
{
int type;
const char *name;
bfd_vma value;
asection *section;
flagword flags;
const char *string;
*sym_hash = NULL;
type = H_GET_8 (abfd, p->e_type);
/* Ignore debugging symbols. */
if ((type & N_STAB) != 0)
continue;
/* PR 19629: Corrupt binaries can contain illegal string offsets. */
if (GET_WORD (abfd, p->e_strx) >= obj_aout_external_string_size (abfd))
return false;
name = strings + GET_WORD (abfd, p->e_strx);
value = GET_WORD (abfd, p->e_value);
flags = BSF_GLOBAL;
string = NULL;
switch (type)
{
default:
abort ();
case N_UNDF:
case N_ABS:
case N_TEXT:
case N_DATA:
case N_BSS:
case N_FN_SEQ:
case N_COMM:
case N_SETV:
case N_FN:
/* Ignore symbols that are not externally visible. */
continue;
case N_INDR:
/* Ignore local indirect symbol. */
++p;
++sym_hash;
continue;
case N_UNDF | N_EXT:
if (value == 0)
{
section = bfd_und_section_ptr;
flags = 0;
}
else
section = bfd_com_section_ptr;
break;
case N_ABS | N_EXT:
section = bfd_abs_section_ptr;
break;
case N_TEXT | N_EXT:
section = obj_textsec (abfd);
value -= bfd_section_vma (section);
break;
case N_DATA | N_EXT:
case N_SETV | N_EXT:
/* Treat N_SETV symbols as N_DATA symbol; see comment in
translate_from_native_sym_flags. */
section = obj_datasec (abfd);
value -= bfd_section_vma (section);
break;
case N_BSS | N_EXT:
section = obj_bsssec (abfd);
value -= bfd_section_vma (section);
break;
case N_INDR | N_EXT:
/* An indirect symbol. The next symbol is the symbol
which this one really is. */
/* See PR 20925 for a reproducer. */
if (p + 1 >= pend)
return false;
++p;
/* PR 19629: Corrupt binaries can contain illegal string offsets. */
if (GET_WORD (abfd, p->e_strx) >= obj_aout_external_string_size (abfd))
return false;
string = strings + GET_WORD (abfd, p->e_strx);
section = bfd_ind_section_ptr;
flags |= BSF_INDIRECT;
break;
case N_COMM | N_EXT:
section = bfd_com_section_ptr;
break;
case N_SETA: case N_SETA | N_EXT:
section = bfd_abs_section_ptr;
flags |= BSF_CONSTRUCTOR;
break;
case N_SETT: case N_SETT | N_EXT:
section = obj_textsec (abfd);
flags |= BSF_CONSTRUCTOR;
value -= bfd_section_vma (section);
break;
case N_SETD: case N_SETD | N_EXT:
section = obj_datasec (abfd);
flags |= BSF_CONSTRUCTOR;
value -= bfd_section_vma (section);
break;
case N_SETB: case N_SETB | N_EXT:
section = obj_bsssec (abfd);
flags |= BSF_CONSTRUCTOR;
value -= bfd_section_vma (section);
break;
case N_WARNING:
/* A warning symbol. The next symbol is the one to warn
about. If there is no next symbol, just look away. */
if (p + 1 >= pend)
return true;
++p;
string = name;
/* PR 19629: Corrupt binaries can contain illegal string offsets. */
if (GET_WORD (abfd, p->e_strx) >= obj_aout_external_string_size (abfd))
return false;
name = strings + GET_WORD (abfd, p->e_strx);
section = bfd_und_section_ptr;
flags |= BSF_WARNING;
break;
case N_WEAKU:
section = bfd_und_section_ptr;
flags = BSF_WEAK;
break;
case N_WEAKA:
section = bfd_abs_section_ptr;
flags = BSF_WEAK;
break;
case N_WEAKT:
section = obj_textsec (abfd);
value -= bfd_section_vma (section);
flags = BSF_WEAK;
break;
case N_WEAKD:
section = obj_datasec (abfd);
value -= bfd_section_vma (section);
flags = BSF_WEAK;
break;
case N_WEAKB:
section = obj_bsssec (abfd);
value -= bfd_section_vma (section);
flags = BSF_WEAK;
break;
}
if (! ((*add_one_symbol)
(info, abfd, name, flags, section, value, string, copy, false,
(struct bfd_link_hash_entry **) sym_hash)))
return false;
/* Restrict the maximum alignment of a common symbol based on
the architecture, since a.out has no way to represent
alignment requirements of a section in a .o file. FIXME:
This isn't quite right: it should use the architecture of the
output file, not the input files. */
if ((*sym_hash)->root.type == bfd_link_hash_common
&& ((*sym_hash)->root.u.c.p->alignment_power >
bfd_get_arch_info (abfd)->section_align_power))
(*sym_hash)->root.u.c.p->alignment_power =
bfd_get_arch_info (abfd)->section_align_power;
/* If this is a set symbol, and we are not building sets, then
it is possible for the hash entry to not have been set. In
such a case, treat the symbol as not globally defined. */
if ((*sym_hash)->root.type == bfd_link_hash_new)
{
BFD_ASSERT ((flags & BSF_CONSTRUCTOR) != 0);
*sym_hash = NULL;
}
if (type == (N_INDR | N_EXT) || type == N_WARNING)
++sym_hash;
}
return true;
}
/* Free up the internal symbols read from an a.out file. */
static bool
aout_link_free_symbols (bfd *abfd)
{
if (obj_aout_external_syms (abfd) != NULL)
{
#ifdef USE_MMAP
bfd_free_window (&obj_aout_sym_window (abfd));
#else
free ((void *) obj_aout_external_syms (abfd));
#endif
obj_aout_external_syms (abfd) = NULL;
}
if (obj_aout_external_strings (abfd) != NULL)
{
#ifdef USE_MMAP
bfd_free_window (&obj_aout_string_window (abfd));
#else
free ((void *) obj_aout_external_strings (abfd));
#endif
obj_aout_external_strings (abfd) = NULL;
}
return true;
}
/* Add symbols from an a.out object file. */
static bool
aout_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
{
if (! aout_get_external_symbols (abfd))
return false;
if (! aout_link_add_symbols (abfd, info))
return false;
if (! info->keep_memory)
{
if (! aout_link_free_symbols (abfd))
return false;
}
return true;
}
/* Look through the internal symbols to see if this object file should
be included in the link. We should include this object file if it
defines any symbols which are currently undefined. If this object
file defines a common symbol, then we may adjust the size of the
known symbol but we do not include the object file in the link
(unless there is some other reason to include it). */
static bool
aout_link_check_ar_symbols (bfd *abfd,
struct bfd_link_info *info,
bool *pneeded,
bfd **subsbfd)
{
struct external_nlist *p;
struct external_nlist *pend;
char *strings;
*pneeded = false;
/* Look through all the symbols. */
p = obj_aout_external_syms (abfd);
pend = p + obj_aout_external_sym_count (abfd);
strings = obj_aout_external_strings (abfd);
for (; p < pend; p++)
{
int type = H_GET_8 (abfd, p->e_type);
const char *name;
struct bfd_link_hash_entry *h;
/* Ignore symbols that are not externally visible. This is an
optimization only, as we check the type more thoroughly
below. */
if (((type & N_EXT) == 0
|| (type & N_STAB) != 0
|| type == N_FN)
&& type != N_WEAKA
&& type != N_WEAKT
&& type != N_WEAKD
&& type != N_WEAKB)
{
if (type == N_WARNING
|| type == N_INDR)
++p;
continue;
}
name = strings + GET_WORD (abfd, p->e_strx);
h = bfd_link_hash_lookup (info->hash, name, false, false, true);
/* We are only interested in symbols that are currently
undefined or common. */
if (h == NULL
|| (h->type != bfd_link_hash_undefined
&& h->type != bfd_link_hash_common))
{
if (type == (N_INDR | N_EXT))
++p;
continue;
}
if (type == (N_TEXT | N_EXT)
|| type == (N_DATA | N_EXT)
|| type == (N_BSS | N_EXT)
|| type == (N_ABS | N_EXT)
|| type == (N_INDR | N_EXT))
{
/* This object file defines this symbol. We must link it
in. This is true regardless of whether the current
definition of the symbol is undefined or common.
If the current definition is common, we have a case in
which we have already seen an object file including:
int a;
and this object file from the archive includes:
int a = 5;
In such a case, whether to include this object is target
dependant for backward compatibility.
FIXME: The SunOS 4.1.3 linker will pull in the archive
element if the symbol is defined in the .data section,
but not if it is defined in the .text section. That
seems a bit crazy to me, and it has not been implemented
yet. However, it might be correct. */
if (h->type == bfd_link_hash_common)
{
int skip = 0;
switch (info->common_skip_ar_symbols)
{
case bfd_link_common_skip_none:
break;
case bfd_link_common_skip_text:
skip = (type == (N_TEXT | N_EXT));
break;
case bfd_link_common_skip_data:
skip = (type == (N_DATA | N_EXT));
break;
case bfd_link_common_skip_all:
skip = 1;
break;
}
if (skip)
continue;
}
if (!(*info->callbacks
->add_archive_element) (info, abfd, name, subsbfd))
return false;
*pneeded = true;
return true;
}
if (type == (N_UNDF | N_EXT))
{
bfd_vma value;
value = GET_WORD (abfd, p->e_value);
if (value != 0)
{
/* This symbol is common in the object from the archive
file. */
if (h->type == bfd_link_hash_undefined)
{
bfd *symbfd;
unsigned int power;
symbfd = h->u.undef.abfd;
if (symbfd == NULL)
{
/* This symbol was created as undefined from
outside BFD. We assume that we should link
in the object file. This is done for the -u
option in the linker. */
if (!(*info->callbacks
->add_archive_element) (info, abfd, name, subsbfd))
return false;
*pneeded = true;
return true;
}
/* Turn the current link symbol into a common
symbol. It is already on the undefs list. */
h->type = bfd_link_hash_common;
h->u.c.p = (struct bfd_link_hash_common_entry *)
bfd_hash_allocate (&info->hash->table,
sizeof (struct bfd_link_hash_common_entry));
if (h->u.c.p == NULL)
return false;
h->u.c.size = value;
/* FIXME: This isn't quite right. The maximum
alignment of a common symbol should be set by the
architecture of the output file, not of the input
file. */
power = bfd_log2 (value);
if (power > bfd_get_arch_info (abfd)->section_align_power)
power = bfd_get_arch_info (abfd)->section_align_power;
h->u.c.p->alignment_power = power;
h->u.c.p->section = bfd_make_section_old_way (symbfd,
"COMMON");
}
else
{
/* Adjust the size of the common symbol if
necessary. */
if (value > h->u.c.size)
h->u.c.size = value;
}
}
}
if (type == N_WEAKA
|| type == N_WEAKT
|| type == N_WEAKD
|| type == N_WEAKB)
{
/* This symbol is weak but defined. We must pull it in if
the current link symbol is undefined, but we don't want
it if the current link symbol is common. */
if (h->type == bfd_link_hash_undefined)
{
if (!(*info->callbacks
->add_archive_element) (info, abfd, name, subsbfd))
return false;
*pneeded = true;
return true;
}
}
}
/* We do not need this object file. */
return true;
}
/* Check a single archive element to see if we need to include it in
the link. *PNEEDED is set according to whether this element is
needed in the link or not. This is called from
_bfd_generic_link_add_archive_symbols. */
static bool
aout_link_check_archive_element (bfd *abfd,
struct bfd_link_info *info,
struct bfd_link_hash_entry *h ATTRIBUTE_UNUSED,
const char *name ATTRIBUTE_UNUSED,
bool *pneeded)
{
bfd *oldbfd;
bool needed;
if (!aout_get_external_symbols (abfd))
return false;
oldbfd = abfd;
if (!aout_link_check_ar_symbols (abfd, info, pneeded, &abfd))
return false;
needed = *pneeded;
if (needed)
{
/* Potentially, the add_archive_element hook may have set a
substitute BFD for us. */
if (abfd != oldbfd)
{
if (!info->keep_memory
&& !aout_link_free_symbols (oldbfd))
return false;
if (!aout_get_external_symbols (abfd))
return false;
}
if (!aout_link_add_symbols (abfd, info))
return false;
}
if (!info->keep_memory || !needed)
{
if (!aout_link_free_symbols (abfd))
return false;
}
return true;
}
/* Given an a.out BFD, add symbols to the global hash table as
appropriate. */
bool
NAME (aout, link_add_symbols) (bfd *abfd, struct bfd_link_info *info)
{
switch (bfd_get_format (abfd))
{
case bfd_object:
return aout_link_add_object_symbols (abfd, info);
case bfd_archive:
return _bfd_generic_link_add_archive_symbols
(abfd, info, aout_link_check_archive_element);
default:
bfd_set_error (bfd_error_wrong_format);
return false;
}
}
/* A hash table used for header files with N_BINCL entries. */
struct aout_link_includes_table
{
struct bfd_hash_table root;
};
/* A linked list of totals that we have found for a particular header
file. */
struct aout_link_includes_totals
{
struct aout_link_includes_totals *next;
bfd_vma total;
};
/* An entry in the header file hash table. */
struct aout_link_includes_entry
{
struct bfd_hash_entry root;
/* List of totals we have found for this file. */
struct aout_link_includes_totals *totals;
};
/* Look up an entry in an the header file hash table. */
#define aout_link_includes_lookup(table, string, create, copy) \
((struct aout_link_includes_entry *) \
bfd_hash_lookup (&(table)->root, (string), (create), (copy)))
/* During the final link step we need to pass around a bunch of
information, so we do it in an instance of this structure. */
struct aout_final_link_info
{
/* General link information. */
struct bfd_link_info *info;
/* Output bfd. */
bfd *output_bfd;
/* Reloc file positions. */
file_ptr treloff, dreloff;
/* File position of symbols. */
file_ptr symoff;
/* String table. */
struct bfd_strtab_hash *strtab;
/* Header file hash table. */
struct aout_link_includes_table includes;
/* A buffer large enough to hold the contents of any section. */
bfd_byte *contents;
/* A buffer large enough to hold the relocs of any section. */
void * relocs;
/* A buffer large enough to hold the symbol map of any input BFD. */
int *symbol_map;
/* A buffer large enough to hold output symbols of any input BFD. */
struct external_nlist *output_syms;
};
/* The function to create a new entry in the header file hash table. */
static struct bfd_hash_entry *
aout_link_includes_newfunc (struct bfd_hash_entry *entry,
struct bfd_hash_table *table,
const char *string)
{
struct aout_link_includes_entry *ret =
(struct aout_link_includes_entry *) entry;
/* Allocate the structure if it has not already been allocated by a
subclass. */
if (ret == NULL)
ret = (struct aout_link_includes_entry *)
bfd_hash_allocate (table, sizeof (* ret));
if (ret == NULL)
return NULL;
/* Call the allocation method of the superclass. */
ret = ((struct aout_link_includes_entry *)
bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
if (ret)
{
/* Set local fields. */
ret->totals = NULL;
}
return (struct bfd_hash_entry *) ret;
}
/* Write out a symbol that was not associated with an a.out input
object. */
static bool
aout_link_write_other_symbol (struct bfd_hash_entry *bh, void *data)
{
struct aout_link_hash_entry *h = (struct aout_link_hash_entry *) bh;
struct aout_final_link_info *flaginfo = (struct aout_final_link_info *) data;
bfd *output_bfd;
int type;
bfd_vma val;
struct external_nlist outsym;
bfd_size_type indx;
size_t amt;
if (h->root.type == bfd_link_hash_warning)
{
h = (struct aout_link_hash_entry *) h->root.u.i.link;
if (h->root.type == bfd_link_hash_new)
return true;
}
output_bfd = flaginfo->output_bfd;
if (aout_backend_info (output_bfd)->write_dynamic_symbol != NULL)
{
if (! ((*aout_backend_info (output_bfd)->write_dynamic_symbol)
(output_bfd, flaginfo->info, h)))
{
/* FIXME: No way to handle errors. */
abort ();
}
}
if (h->written)
return true;
h->written = true;
/* An indx of -2 means the symbol must be written. */
if (h->indx != -2
&& (flaginfo->info->strip == strip_all
|| (flaginfo->info->strip == strip_some
&& bfd_hash_lookup (flaginfo->info->keep_hash, h->root.root.string,
false, false) == NULL)))
return true;
switch (h->root.type)
{
default:
case bfd_link_hash_warning:
abort ();
/* Avoid variable not initialized warnings. */
return true;
case bfd_link_hash_new:
/* This can happen for set symbols when sets are not being
built. */
return true;
case bfd_link_hash_undefined:
type = N_UNDF | N_EXT;
val = 0;
break;
case bfd_link_hash_defined:
case bfd_link_hash_defweak:
{
asection *sec;
sec = h->root.u.def.section->output_section;
BFD_ASSERT (bfd_is_abs_section (sec)
|| sec->owner == output_bfd);
if (sec == obj_textsec (output_bfd))
type = h->root.type == bfd_link_hash_defined ? N_TEXT : N_WEAKT;
else if (sec == obj_datasec (output_bfd))
type = h->root.type == bfd_link_hash_defined ? N_DATA : N_WEAKD;
else if (sec == obj_bsssec (output_bfd))
type = h->root.type == bfd_link_hash_defined ? N_BSS : N_WEAKB;
else
type = h->root.type == bfd_link_hash_defined ? N_ABS : N_WEAKA;
type |= N_EXT;
val = (h->root.u.def.value
+ sec->vma
+ h->root.u.def.section->output_offset);
}
break;
case bfd_link_hash_common:
type = N_UNDF | N_EXT;
val = h->root.u.c.size;
break;
case bfd_link_hash_undefweak:
type = N_WEAKU;
val = 0;
break;
case bfd_link_hash_indirect:
/* We ignore these symbols, since the indirected symbol is
already in the hash table. */
return true;
}
H_PUT_8 (output_bfd, type, outsym.e_type);
H_PUT_8 (output_bfd, 0, outsym.e_other);
H_PUT_16 (output_bfd, 0, outsym.e_desc);
indx = add_to_stringtab (output_bfd, flaginfo->strtab, h->root.root.string,
false);
if (indx == - (bfd_size_type) 1)
/* FIXME: No way to handle errors. */
abort ();
PUT_WORD (output_bfd, indx, outsym.e_strx);
PUT_WORD (output_bfd, val, outsym.e_value);
amt = EXTERNAL_NLIST_SIZE;
if (bfd_seek (output_bfd, flaginfo->symoff, SEEK_SET) != 0
|| bfd_bwrite ((void *) &outsym, amt, output_bfd) != amt)
/* FIXME: No way to handle errors. */
abort ();
flaginfo->symoff += EXTERNAL_NLIST_SIZE;
h->indx = obj_aout_external_sym_count (output_bfd);
++obj_aout_external_sym_count (output_bfd);
return true;
}
/* Handle a link order which is supposed to generate a reloc. */
static bool
aout_link_reloc_link_order (struct aout_final_link_info *flaginfo,
asection *o,
struct bfd_link_order *p)
{
struct bfd_link_order_reloc *pr;
int r_index;
int r_extern;
reloc_howto_type *howto;
file_ptr *reloff_ptr = NULL;
struct reloc_std_external srel;
struct reloc_ext_external erel;
void * rel_ptr;
size_t amt;
pr = p->u.reloc.p;
if (p->type == bfd_section_reloc_link_order)
{
r_extern = 0;
if (bfd_is_abs_section (pr->u.section))
r_index = N_ABS | N_EXT;
else
{
BFD_ASSERT (pr->u.section->owner == flaginfo->output_bfd);
r_index = pr->u.section->target_index;
}
}
else
{
struct aout_link_hash_entry *h;
BFD_ASSERT (p->type == bfd_symbol_reloc_link_order);
r_extern = 1;
h = ((struct aout_link_hash_entry *)
bfd_wrapped_link_hash_lookup (flaginfo->output_bfd, flaginfo->info,
pr->u.name, false, false, true));
if (h != NULL
&& h->indx >= 0)
r_index = h->indx;
else if (h != NULL)
{
/* We decided to strip this symbol, but it turns out that we
can't. Note that we lose the other and desc information
here. I don't think that will ever matter for a global
symbol. */
h->indx = -2;
h->written = false;
if (!aout_link_write_other_symbol (&h->root.root, flaginfo))
return false;
r_index = h->indx;
}
else
{
(*flaginfo->info->callbacks->unattached_reloc)
(flaginfo->info, pr->u.name, NULL, NULL, (bfd_vma) 0);
r_index = 0;
}
}
howto = bfd_reloc_type_lookup (flaginfo->output_bfd, pr->reloc);
if (howto == 0)
{
bfd_set_error (bfd_error_bad_value);
return false;
}
if (o == obj_textsec (flaginfo->output_bfd))
reloff_ptr = &flaginfo->treloff;
else if (o == obj_datasec (flaginfo->output_bfd))
reloff_ptr = &flaginfo->dreloff;
else
abort ();
if (obj_reloc_entry_size (flaginfo->output_bfd) == RELOC_STD_SIZE)
{
#ifdef MY_put_reloc
MY_put_reloc (flaginfo->output_bfd, r_extern, r_index, p->offset, howto,
&srel);
#else
{
int r_pcrel;
int r_baserel;
int r_jmptable;
int r_relative;
unsigned int r_length;
r_pcrel = (int) howto->pc_relative;
r_baserel = (howto->type & 8) != 0;
r_jmptable = (howto->type & 16) != 0;
r_relative = (howto->type & 32) != 0;
if (bfd_get_reloc_size (howto) != 8)
r_length = howto->size; /* Size as a power of two. */
else
r_length = 3;
PUT_WORD (flaginfo->output_bfd, p->offset, srel.r_address);
if (bfd_header_big_endian (flaginfo->output_bfd))
{
srel.r_index[0] = r_index >> 16;
srel.r_index[1] = r_index >> 8;
srel.r_index[2] = r_index;
srel.r_type[0] =
((r_extern ? RELOC_STD_BITS_EXTERN_BIG : 0)
| (r_pcrel ? RELOC_STD_BITS_PCREL_BIG : 0)
| (r_baserel ? RELOC_STD_BITS_BASEREL_BIG : 0)
| (r_jmptable ? RELOC_STD_BITS_JMPTABLE_BIG : 0)
| (r_relative ? RELOC_STD_BITS_RELATIVE_BIG : 0)
| (r_length << RELOC_STD_BITS_LENGTH_SH_BIG));
}
else
{
srel.r_index[2] = r_index >> 16;
srel.r_index[1] = r_index >> 8;
srel.r_index[0] = r_index;
srel.r_type[0] =
((r_extern ? RELOC_STD_BITS_EXTERN_LITTLE : 0)
| (r_pcrel ? RELOC_STD_BITS_PCREL_LITTLE : 0)
| (r_baserel ? RELOC_STD_BITS_BASEREL_LITTLE : 0)
| (r_jmptable ? RELOC_STD_BITS_JMPTABLE_LITTLE : 0)
| (r_relative ? RELOC_STD_BITS_RELATIVE_LITTLE : 0)
| (r_length << RELOC_STD_BITS_LENGTH_SH_LITTLE));
}
}
#endif
rel_ptr = (void *) &srel;
/* We have to write the addend into the object file, since
standard a.out relocs are in place. It would be more
reliable if we had the current contents of the file here,
rather than assuming zeroes, but we can't read the file since
it was opened using bfd_openw. */
if (pr->addend != 0)
{
bfd_size_type size;
bfd_reloc_status_type r;
bfd_byte *buf;
bool ok;
size = bfd_get_reloc_size (howto);
buf = (bfd_byte *) bfd_zmalloc (size);
if (buf == NULL && size != 0)
return false;
r = MY_relocate_contents (howto, flaginfo->output_bfd,
(bfd_vma) pr->addend, buf);
switch (r)
{
case bfd_reloc_ok:
break;
default:
case bfd_reloc_outofrange:
abort ();
case bfd_reloc_overflow:
(*flaginfo->info->callbacks->reloc_overflow)
(flaginfo->info, NULL,
(p->type == bfd_section_reloc_link_order
? bfd_section_name (pr->u.section)
: pr->u.name),
howto->name, pr->addend, NULL, NULL, (bfd_vma) 0);
break;
}
ok = bfd_set_section_contents (flaginfo->output_bfd, o, (void *) buf,
(file_ptr) p->offset, size);
free (buf);
if (! ok)
return false;
}
}
else
{
#ifdef MY_put_ext_reloc
MY_put_ext_reloc (flaginfo->output_bfd, r_extern, r_index, p->offset,
howto, &erel, pr->addend);
#else
PUT_WORD (flaginfo->output_bfd, p->offset, erel.r_address);
if (bfd_header_big_endian (flaginfo->output_bfd))
{
erel.r_index[0] = r_index >> 16;
erel.r_index[1] = r_index >> 8;
erel.r_index[2] = r_index;
erel.r_type[0] =
((r_extern ? RELOC_EXT_BITS_EXTERN_BIG : 0)
| (howto->type << RELOC_EXT_BITS_TYPE_SH_BIG));
}
else
{
erel.r_index[2] = r_index >> 16;
erel.r_index[1] = r_index >> 8;
erel.r_index[0] = r_index;
erel.r_type[0] =
(r_extern ? RELOC_EXT_BITS_EXTERN_LITTLE : 0)
| (howto->type << RELOC_EXT_BITS_TYPE_SH_LITTLE);
}
PUT_WORD (flaginfo->output_bfd, (bfd_vma) pr->addend, erel.r_addend);
#endif /* MY_put_ext_reloc */
rel_ptr = (void *) &erel;
}
amt = obj_reloc_entry_size (flaginfo->output_bfd);
if (bfd_seek (flaginfo->output_bfd, *reloff_ptr, SEEK_SET) != 0
|| bfd_bwrite (rel_ptr, amt, flaginfo->output_bfd) != amt)
return false;
*reloff_ptr += obj_reloc_entry_size (flaginfo->output_bfd);
/* Assert that the relocs have not run into the symbols, and that n
the text relocs have not run into the data relocs. */
BFD_ASSERT (*reloff_ptr <= obj_sym_filepos (flaginfo->output_bfd)
&& (reloff_ptr != &flaginfo->treloff
|| (*reloff_ptr
<= obj_datasec (flaginfo->output_bfd)->rel_filepos)));
return true;
}
/* Get the section corresponding to a reloc index. */
static INLINE asection *
aout_reloc_index_to_section (bfd *abfd, int indx)
{
switch (indx & N_TYPE)
{
case N_TEXT: return obj_textsec (abfd);
case N_DATA: return obj_datasec (abfd);
case N_BSS: return obj_bsssec (abfd);
case N_ABS:
case N_UNDF: return bfd_abs_section_ptr;
default: abort ();
}
return NULL;
}
/* Relocate an a.out section using standard a.out relocs. */
static bool
aout_link_input_section_std (struct aout_final_link_info *flaginfo,
bfd *input_bfd,
asection *input_section,
struct reloc_std_external *relocs,
bfd_size_type rel_size,
bfd_byte *contents)
{
bool (*check_dynamic_reloc)
(struct bfd_link_info *, bfd *, asection *,
struct aout_link_hash_entry *, void *, bfd_byte *, bool *, bfd_vma *);
bfd *output_bfd;
bool relocatable;
struct external_nlist *syms;
char *strings;
struct aout_link_hash_entry **sym_hashes;
int *symbol_map;
bfd_size_type reloc_count;
struct reloc_std_external *rel;
struct reloc_std_external *rel_end;
output_bfd = flaginfo->output_bfd;
check_dynamic_reloc = aout_backend_info (output_bfd)->check_dynamic_reloc;
BFD_ASSERT (obj_reloc_entry_size (input_bfd) == RELOC_STD_SIZE);
BFD_ASSERT (input_bfd->xvec->header_byteorder
== output_bfd->xvec->header_byteorder);
relocatable = bfd_link_relocatable (flaginfo->info);
syms = obj_aout_external_syms (input_bfd);
strings = obj_aout_external_strings (input_bfd);
sym_hashes = obj_aout_sym_hashes (input_bfd);
symbol_map = flaginfo->symbol_map;
reloc_count = rel_size / RELOC_STD_SIZE;
rel = relocs;
rel_end = rel + reloc_count;
for (; rel < rel_end; rel++)
{
bfd_vma r_addr;
unsigned int r_index;
int r_extern;
int r_pcrel;
int r_baserel = 0;
reloc_howto_type *howto;
struct aout_link_hash_entry *h = NULL;
bfd_vma relocation;
bfd_reloc_status_type r;
r_addr = GET_SWORD (input_bfd, rel->r_address);
#ifdef MY_reloc_howto
howto = MY_reloc_howto (input_bfd, rel, r_index, r_extern, r_pcrel);
#else
{
int r_jmptable;
int r_relative;
int r_length;
unsigned int howto_idx;
if (bfd_header_big_endian (input_bfd))
{
r_index = (((unsigned int) rel->r_index[0] << 16)
| ((unsigned int) rel->r_index[1] << 8)
| rel->r_index[2]);
r_extern = (0 != (rel->r_type[0] & RELOC_STD_BITS_EXTERN_BIG));
r_pcrel = (0 != (rel->r_type[0] & RELOC_STD_BITS_PCREL_BIG));
r_baserel = (0 != (rel->r_type[0] & RELOC_STD_BITS_BASEREL_BIG));
r_jmptable= (0 != (rel->r_type[0] & RELOC_STD_BITS_JMPTABLE_BIG));
r_relative= (0 != (rel->r_type[0] & RELOC_STD_BITS_RELATIVE_BIG));
r_length = ((rel->r_type[0] & RELOC_STD_BITS_LENGTH_BIG)
>> RELOC_STD_BITS_LENGTH_SH_BIG);
}
else
{
r_index = (((unsigned int) rel->r_index[2] << 16)
| ((unsigned int) rel->r_index[1] << 8)
| rel->r_index[0]);
r_extern = (0 != (rel->r_type[0] & RELOC_STD_BITS_EXTERN_LITTLE));
r_pcrel = (0 != (rel->r_type[0] & RELOC_STD_BITS_PCREL_LITTLE));
r_baserel = (0 != (rel->r_type[0]
& RELOC_STD_BITS_BASEREL_LITTLE));
r_jmptable= (0 != (rel->r_type[0]
& RELOC_STD_BITS_JMPTABLE_LITTLE));
r_relative= (0 != (rel->r_type[0]
& RELOC_STD_BITS_RELATIVE_LITTLE));
r_length = ((rel->r_type[0] & RELOC_STD_BITS_LENGTH_LITTLE)
>> RELOC_STD_BITS_LENGTH_SH_LITTLE);
}
howto_idx = (r_length + 4 * r_pcrel + 8 * r_baserel
+ 16 * r_jmptable + 32 * r_relative);
if (howto_idx < TABLE_SIZE (howto_table_std))
howto = howto_table_std + howto_idx;
else
howto = NULL;
}
#endif
if (howto == NULL)
{
_bfd_error_handler (_("%pB: unsupported relocation type"),
input_bfd);
bfd_set_error (bfd_error_bad_value);
return false;
}
if (relocatable)
{
/* We are generating a relocatable output file, and must
modify the reloc accordingly. */
if (r_extern)
{
/* If we know the symbol this relocation is against,
convert it into a relocation against a section. This
is what the native linker does. */
h = sym_hashes[r_index];
if (h != NULL
&& (h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak))
{
asection *output_section;
/* Change the r_extern value. */
if (bfd_header_big_endian (output_bfd))
rel->r_type[0] &=~ RELOC_STD_BITS_EXTERN_BIG;
else
rel->r_type[0] &=~ RELOC_STD_BITS_EXTERN_LITTLE;
/* Compute a new r_index. */
output_section = h->root.u.def.section->output_section;
if (output_section == obj_textsec (output_bfd))
r_index = N_TEXT;
else if (output_section == obj_datasec (output_bfd))
r_index = N_DATA;
else if (output_section == obj_bsssec (output_bfd))
r_index = N_BSS;
else
r_index = N_ABS;
/* Add the symbol value and the section VMA to the
addend stored in the contents. */
relocation = (h->root.u.def.value
+ output_section->vma
+ h->root.u.def.section->output_offset);
}
else
{
/* We must change r_index according to the symbol
map. */
r_index = symbol_map[r_index];
if (r_index == -1u)
{
if (h != NULL)
{
/* We decided to strip this symbol, but it
turns out that we can't. Note that we
lose the other and desc information here.
I don't think that will ever matter for a
global symbol. */
if (h->indx < 0)
{
h->indx = -2;
h->written = false;
if (!aout_link_write_other_symbol (&h->root.root,
flaginfo))
return false;
}
r_index = h->indx;
}
else
{
const char *name;
name = strings + GET_WORD (input_bfd,
syms[r_index].e_strx);
(*flaginfo->info->callbacks->unattached_reloc)
(flaginfo->info, name,
input_bfd, input_section, r_addr);
r_index = 0;
}
}
relocation = 0;
}
/* Write out the new r_index value. */
if (bfd_header_big_endian (output_bfd))
{
rel->r_index[0] = r_index >> 16;
rel->r_index[1] = r_index >> 8;
rel->r_index[2] = r_index;
}
else
{
rel->r_index[2] = r_index >> 16;
rel->r_index[1] = r_index >> 8;
rel->r_index[0] = r_index;
}
}
else
{
asection *section;
/* This is a relocation against a section. We must
adjust by the amount that the section moved. */
section = aout_reloc_index_to_section (input_bfd, r_index);
relocation = (section->output_section->vma
+ section->output_offset
- section->vma);
}
/* Change the address of the relocation. */
PUT_WORD (output_bfd,
r_addr + input_section->output_offset,
rel->r_address);
/* Adjust a PC relative relocation by removing the reference
to the original address in the section and including the
reference to the new address. */
if (r_pcrel)
relocation -= (input_section->output_section->vma
+ input_section->output_offset
- input_section->vma);
#ifdef MY_relocatable_reloc
MY_relocatable_reloc (howto, output_bfd, rel, relocation, r_addr);
#endif
if (relocation == 0)
r = bfd_reloc_ok;
else
r = MY_relocate_contents (howto,
input_bfd, relocation,
contents + r_addr);
}
else
{
bool hundef;
/* We are generating an executable, and must do a full
relocation. */
hundef = false;
if (r_extern)
{
h = sym_hashes[r_index];
if (h != NULL
&& (h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak))
{
relocation = (h->root.u.def.value
+ h->root.u.def.section->output_section->vma
+ h->root.u.def.section->output_offset);
}
else if (h != NULL
&& h->root.type == bfd_link_hash_undefweak)
relocation = 0;
else
{
hundef = true;
relocation = 0;
}
}
else
{
asection *section;
section = aout_reloc_index_to_section (input_bfd, r_index);
relocation = (section->output_section->vma
+ section->output_offset
- section->vma);
if (r_pcrel)
relocation += input_section->vma;
}
if (check_dynamic_reloc != NULL)
{
bool skip;
if (! ((*check_dynamic_reloc)
(flaginfo->info, input_bfd, input_section, h,
(void *) rel, contents, &skip, &relocation)))
return false;
if (skip)
continue;
}
/* Now warn if a global symbol is undefined. We could not
do this earlier, because check_dynamic_reloc might want
to skip this reloc. */
if (hundef && ! bfd_link_pic (flaginfo->info) && ! r_baserel)
{
const char *name;
if (h != NULL)
name = h->root.root.string;
else
name = strings + GET_WORD (input_bfd, syms[r_index].e_strx);
(*flaginfo->info->callbacks->undefined_symbol)
(flaginfo->info, name, input_bfd, input_section, r_addr, true);
}
r = MY_final_link_relocate (howto,
input_bfd, input_section,
contents, r_addr, relocation,
(bfd_vma) 0);
}
if (r != bfd_reloc_ok)
{
switch (r)
{
default:
case bfd_reloc_outofrange:
abort ();
case bfd_reloc_overflow:
{
const char *name;
if (h != NULL)
name = NULL;
else if (r_extern)
name = strings + GET_WORD (input_bfd,
syms[r_index].e_strx);
else
{
asection *s;
s = aout_reloc_index_to_section (input_bfd, r_index);
name = bfd_section_name (s);
}
(*flaginfo->info->callbacks->reloc_overflow)
(flaginfo->info, (h ? &h->root : NULL), name, howto->name,
(bfd_vma) 0, input_bfd, input_section, r_addr);
}
break;
}
}
}
return true;
}
/* Relocate an a.out section using extended a.out relocs. */
static bool
aout_link_input_section_ext (struct aout_final_link_info *flaginfo,
bfd *input_bfd,
asection *input_section,
struct reloc_ext_external *relocs,
bfd_size_type rel_size,
bfd_byte *contents)
{
bool (*check_dynamic_reloc)
(struct bfd_link_info *, bfd *, asection *,
struct aout_link_hash_entry *, void *, bfd_byte *, bool *, bfd_vma *);
bfd *output_bfd;
bool relocatable;
struct external_nlist *syms;
char *strings;
struct aout_link_hash_entry **sym_hashes;
int *symbol_map;
bfd_size_type reloc_count;
struct reloc_ext_external *rel;
struct reloc_ext_external *rel_end;
output_bfd = flaginfo->output_bfd;
check_dynamic_reloc = aout_backend_info (output_bfd)->check_dynamic_reloc;
BFD_ASSERT (obj_reloc_entry_size (input_bfd) == RELOC_EXT_SIZE);
BFD_ASSERT (input_bfd->xvec->header_byteorder
== output_bfd->xvec->header_byteorder);
relocatable = bfd_link_relocatable (flaginfo->info);
syms = obj_aout_external_syms (input_bfd);
strings = obj_aout_external_strings (input_bfd);
sym_hashes = obj_aout_sym_hashes (input_bfd);
symbol_map = flaginfo->symbol_map;
reloc_count = rel_size / RELOC_EXT_SIZE;
rel = relocs;
rel_end = rel + reloc_count;
for (; rel < rel_end; rel++)
{
bfd_vma r_addr;
unsigned int r_index;
int r_extern;
unsigned int r_type;
bfd_vma r_addend;
struct aout_link_hash_entry *h = NULL;
asection *r_section = NULL;
bfd_vma relocation;
r_addr = GET_SWORD (input_bfd, rel->r_address);
if (bfd_header_big_endian (input_bfd))
{
r_index = (((unsigned int) rel->r_index[0] << 16)
| ((unsigned int) rel->r_index[1] << 8)
| rel->r_index[2]);
r_extern = (0 != (rel->r_type[0] & RELOC_EXT_BITS_EXTERN_BIG));
r_type = ((rel->r_type[0] & RELOC_EXT_BITS_TYPE_BIG)
>> RELOC_EXT_BITS_TYPE_SH_BIG);
}
else
{
r_index = (((unsigned int) rel->r_index[2] << 16)
| ((unsigned int) rel->r_index[1] << 8)
| rel->r_index[0]);
r_extern = (0 != (rel->r_type[0] & RELOC_EXT_BITS_EXTERN_LITTLE));
r_type = ((rel->r_type[0] & RELOC_EXT_BITS_TYPE_LITTLE)
>> RELOC_EXT_BITS_TYPE_SH_LITTLE);
}
r_addend = GET_SWORD (input_bfd, rel->r_addend);
if (r_type >= TABLE_SIZE (howto_table_ext))
{
_bfd_error_handler (_("%pB: unsupported relocation type %#x"),
input_bfd, r_type);
bfd_set_error (bfd_error_bad_value);
return false;
}
if (relocatable)
{
/* We are generating a relocatable output file, and must
modify the reloc accordingly. */
if (r_extern
|| r_type == (unsigned int) RELOC_BASE10
|| r_type == (unsigned int) RELOC_BASE13
|| r_type == (unsigned int) RELOC_BASE22)
{
/* If we know the symbol this relocation is against,
convert it into a relocation against a section. This
is what the native linker does. */
if (r_type == (unsigned int) RELOC_BASE10
|| r_type == (unsigned int) RELOC_BASE13
|| r_type == (unsigned int) RELOC_BASE22)
h = NULL;
else
h = sym_hashes[r_index];
if (h != NULL
&& (h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak))
{
asection *output_section;
/* Change the r_extern value. */
if (bfd_header_big_endian (output_bfd))
rel->r_type[0] &=~ RELOC_EXT_BITS_EXTERN_BIG;
else
rel->r_type[0] &=~ RELOC_EXT_BITS_EXTERN_LITTLE;
/* Compute a new r_index. */
output_section = h->root.u.def.section->output_section;
if (output_section == obj_textsec (output_bfd))
r_index = N_TEXT;
else if (output_section == obj_datasec (output_bfd))
r_index = N_DATA;
else if (output_section == obj_bsssec (output_bfd))
r_index = N_BSS;
else
r_index = N_ABS;
/* Add the symbol value and the section VMA to the
addend. */
relocation = (h->root.u.def.value
+ output_section->vma
+ h->root.u.def.section->output_offset);
/* Now RELOCATION is the VMA of the final
destination. If this is a PC relative reloc,
then ADDEND is the negative of the source VMA.
We want to set ADDEND to the difference between
the destination VMA and the source VMA, which
means we must adjust RELOCATION by the change in
the source VMA. This is done below. */
}
else
{
/* We must change r_index according to the symbol
map. */
r_index = symbol_map[r_index];
if (r_index == -1u)
{
if (h != NULL)
{
/* We decided to strip this symbol, but it
turns out that we can't. Note that we
lose the other and desc information here.
I don't think that will ever matter for a
global symbol. */
if (h->indx < 0)
{
h->indx = -2;
h->written = false;
if (!aout_link_write_other_symbol (&h->root.root,
flaginfo))
return false;
}
r_index = h->indx;
}
else
{
const char *name;
name = strings + GET_WORD (input_bfd,
syms[r_index].e_strx);
(*flaginfo->info->callbacks->unattached_reloc)
(flaginfo->info, name,
input_bfd, input_section, r_addr);
r_index = 0;
}
}
relocation = 0;
/* If this is a PC relative reloc, then the addend
is the negative of the source VMA. We must
adjust it by the change in the source VMA. This
is done below. */
}
/* Write out the new r_index value. */
if (bfd_header_big_endian (output_bfd))
{
rel->r_index[0] = r_index >> 16;
rel->r_index[1] = r_index >> 8;
rel->r_index[2] = r_index;
}
else
{
rel->r_index[2] = r_index >> 16;
rel->r_index[1] = r_index >> 8;
rel->r_index[0] = r_index;
}
}
else
{
/* This is a relocation against a section. We must
adjust by the amount that the section moved. */
r_section = aout_reloc_index_to_section (input_bfd, r_index);
relocation = (r_section->output_section->vma
+ r_section->output_offset
- r_section->vma);
/* If this is a PC relative reloc, then the addend is
the difference in VMA between the destination and the
source. We have just adjusted for the change in VMA
of the destination, so we must also adjust by the
change in VMA of the source. This is done below. */
}
/* As described above, we must always adjust a PC relative
reloc by the change in VMA of the source. However, if
pcrel_offset is set, then the addend does not include the
location within the section, in which case we don't need
to adjust anything. */
if (howto_table_ext[r_type].pc_relative
&& ! howto_table_ext[r_type].pcrel_offset)
relocation -= (input_section->output_section->vma
+ input_section->output_offset
- input_section->vma);
/* Change the addend if necessary. */
if (relocation != 0)
PUT_WORD (output_bfd, r_addend + relocation, rel->r_addend);
/* Change the address of the relocation. */
PUT_WORD (output_bfd,
r_addr + input_section->output_offset,
rel->r_address);
}
else
{
bool hundef;
bfd_reloc_status_type r;
/* We are generating an executable, and must do a full
relocation. */
hundef = false;
if (r_extern)
{
h = sym_hashes[r_index];
if (h != NULL
&& (h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak))
{
relocation = (h->root.u.def.value
+ h->root.u.def.section->output_section->vma
+ h->root.u.def.section->output_offset);
}
else if (h != NULL
&& h->root.type == bfd_link_hash_undefweak)
relocation = 0;
else
{
hundef = true;
relocation = 0;
}
}
else if (r_type == (unsigned int) RELOC_BASE10
|| r_type == (unsigned int) RELOC_BASE13
|| r_type == (unsigned int) RELOC_BASE22)
{
struct external_nlist *sym;
int type;
/* For base relative relocs, r_index is always an index
into the symbol table, even if r_extern is 0. */
sym = syms + r_index;
type = H_GET_8 (input_bfd, sym->e_type);
if ((type & N_TYPE) == N_TEXT
|| type == N_WEAKT)
r_section = obj_textsec (input_bfd);
else if ((type & N_TYPE) == N_DATA
|| type == N_WEAKD)
r_section = obj_datasec (input_bfd);
else if ((type & N_TYPE) == N_BSS
|| type == N_WEAKB)
r_section = obj_bsssec (input_bfd);
else if ((type & N_TYPE) == N_ABS
|| type == N_WEAKA)
r_section = bfd_abs_section_ptr;
else
abort ();
relocation = (r_section->output_section->vma
+ r_section->output_offset
+ (GET_WORD (input_bfd, sym->e_value)
- r_section->vma));
}
else
{
r_section = aout_reloc_index_to_section (input_bfd, r_index);
/* If this is a PC relative reloc, then R_ADDEND is the
difference between the two vmas, or
old_dest_sec + old_dest_off - (old_src_sec + old_src_off)
where
old_dest_sec == section->vma
and
old_src_sec == input_section->vma
and
old_src_off == r_addr
_bfd_final_link_relocate expects RELOCATION +
R_ADDEND to be the VMA of the destination minus
r_addr (the minus r_addr is because this relocation
is not pcrel_offset, which is a bit confusing and
should, perhaps, be changed), or
new_dest_sec
where
new_dest_sec == output_section->vma + output_offset
We arrange for this to happen by setting RELOCATION to
new_dest_sec + old_src_sec - old_dest_sec
If this is not a PC relative reloc, then R_ADDEND is
simply the VMA of the destination, so we set
RELOCATION to the change in the destination VMA, or
new_dest_sec - old_dest_sec
*/
relocation = (r_section->output_section->vma
+ r_section->output_offset
- r_section->vma);
if (howto_table_ext[r_type].pc_relative)
relocation += input_section->vma;
}
if (check_dynamic_reloc != NULL)
{
bool skip;
if (! ((*check_dynamic_reloc)
(flaginfo->info, input_bfd, input_section, h,
(void *) rel, contents, &skip, &relocation)))
return false;
if (skip)
continue;
}
/* Now warn if a global symbol is undefined. We could not
do this earlier, because check_dynamic_reloc might want
to skip this reloc. */
if (hundef
&& ! bfd_link_pic (flaginfo->info)
&& r_type != (unsigned int) RELOC_BASE10
&& r_type != (unsigned int) RELOC_BASE13
&& r_type != (unsigned int) RELOC_BASE22)
{
const char *name;
if (h != NULL)
name = h->root.root.string;
else
name = strings + GET_WORD (input_bfd, syms[r_index].e_strx);
(*flaginfo->info->callbacks->undefined_symbol)
(flaginfo->info, name, input_bfd, input_section, r_addr, true);
}
if (r_type != (unsigned int) RELOC_SPARC_REV32)
r = MY_final_link_relocate (howto_table_ext + r_type,
input_bfd, input_section,
contents, r_addr, relocation,
r_addend);
else
{
bfd_vma x;
x = bfd_get_32 (input_bfd, contents + r_addr);
x = x + relocation + r_addend;
bfd_putl32 (/*input_bfd,*/ x, contents + r_addr);
r = bfd_reloc_ok;
}
if (r != bfd_reloc_ok)
{
switch (r)
{
default:
case bfd_reloc_outofrange:
abort ();
case bfd_reloc_overflow:
{
const char *name;
if (h != NULL)
name = NULL;
else if (r_extern
|| r_type == (unsigned int) RELOC_BASE10
|| r_type == (unsigned int) RELOC_BASE13
|| r_type == (unsigned int) RELOC_BASE22)
name = strings + GET_WORD (input_bfd,
syms[r_index].e_strx);
else
{
asection *s;
s = aout_reloc_index_to_section (input_bfd, r_index);
name = bfd_section_name (s);
}
(*flaginfo->info->callbacks->reloc_overflow)
(flaginfo->info, (h ? &h->root : NULL), name,
howto_table_ext[r_type].name,
r_addend, input_bfd, input_section, r_addr);
}
break;
}
}
}
}
return true;
}
/* Link an a.out section into the output file. */
static bool
aout_link_input_section (struct aout_final_link_info *flaginfo,
bfd *input_bfd,
asection *input_section,
file_ptr *reloff_ptr,
bfd_size_type rel_size)
{
bfd_size_type input_size;
void * relocs;
/* Get the section contents. */
input_size = input_section->size;
if (! bfd_get_section_contents (input_bfd, input_section,
(void *) flaginfo->contents,
(file_ptr) 0, input_size))
return false;
/* Read in the relocs if we haven't already done it. */
if (aout_section_data (input_section) != NULL
&& aout_section_data (input_section)->relocs != NULL)
relocs = aout_section_data (input_section)->relocs;
else
{
relocs = flaginfo->relocs;
if (rel_size > 0)
{
if (bfd_seek (input_bfd, input_section->rel_filepos, SEEK_SET) != 0
|| bfd_bread (relocs, rel_size, input_bfd) != rel_size)
return false;
}
}
/* Relocate the section contents. */
if (obj_reloc_entry_size (input_bfd) == RELOC_STD_SIZE)
{
if (! aout_link_input_section_std (flaginfo, input_bfd, input_section,
(struct reloc_std_external *) relocs,
rel_size, flaginfo->contents))
return false;
}
else
{
if (! aout_link_input_section_ext (flaginfo, input_bfd, input_section,
(struct reloc_ext_external *) relocs,
rel_size, flaginfo->contents))
return false;
}
/* Write out the section contents. */
if (! bfd_set_section_contents (flaginfo->output_bfd,
input_section->output_section,
(void *) flaginfo->contents,
(file_ptr) input_section->output_offset,
input_size))
return false;
/* If we are producing relocatable output, the relocs were
modified, and we now write them out. */
if (bfd_link_relocatable (flaginfo->info) && rel_size > 0)
{
if (bfd_seek (flaginfo->output_bfd, *reloff_ptr, SEEK_SET) != 0)
return false;
if (bfd_bwrite (relocs, rel_size, flaginfo->output_bfd) != rel_size)
return false;
*reloff_ptr += rel_size;
/* Assert that the relocs have not run into the symbols, and
that if these are the text relocs they have not run into the
data relocs. */
BFD_ASSERT (*reloff_ptr <= obj_sym_filepos (flaginfo->output_bfd)
&& (reloff_ptr != &flaginfo->treloff
|| (*reloff_ptr
<= obj_datasec (flaginfo->output_bfd)->rel_filepos)));
}
return true;
}
/* Adjust and write out the symbols for an a.out file. Set the new
symbol indices into a symbol_map. */
static bool
aout_link_write_symbols (struct aout_final_link_info *flaginfo, bfd *input_bfd)
{
bfd *output_bfd;
bfd_size_type sym_count;
char *strings;
enum bfd_link_strip strip;
enum bfd_link_discard discard;
struct external_nlist *outsym;
bfd_size_type strtab_index;
struct external_nlist *sym;
struct external_nlist *sym_end;
struct aout_link_hash_entry **sym_hash;
int *symbol_map;
bool pass;
bool skip_next;
output_bfd = flaginfo->output_bfd;
sym_count = obj_aout_external_sym_count (input_bfd);
strings = obj_aout_external_strings (input_bfd);
strip = flaginfo->info->strip;
discard = flaginfo->info->discard;
outsym = flaginfo->output_syms;
/* First write out a symbol for this object file, unless we are
discarding such symbols. */
if (strip != strip_all
&& (strip != strip_some
|| bfd_hash_lookup (flaginfo->info->keep_hash,
bfd_get_filename (input_bfd),
false, false) != NULL)
&& discard != discard_all)
{
H_PUT_8 (output_bfd, N_TEXT, outsym->e_type);
H_PUT_8 (output_bfd, 0, outsym->e_other);
H_PUT_16 (output_bfd, 0, outsym->e_desc);
strtab_index = add_to_stringtab (output_bfd, flaginfo->strtab,
bfd_get_filename (input_bfd), false);
if (strtab_index == (bfd_size_type) -1)
return false;
PUT_WORD (output_bfd, strtab_index, outsym->e_strx);
PUT_WORD (output_bfd,
(bfd_section_vma (obj_textsec (input_bfd)->output_section)
+ obj_textsec (input_bfd)->output_offset),
outsym->e_value);
++obj_aout_external_sym_count (output_bfd);
++outsym;
}
pass = false;
skip_next = false;
sym = obj_aout_external_syms (input_bfd);
sym_end = sym + sym_count;
sym_hash = obj_aout_sym_hashes (input_bfd);
symbol_map = flaginfo->symbol_map;
memset (symbol_map, 0, (size_t) sym_count * sizeof *symbol_map);
for (; sym < sym_end; sym++, sym_hash++, symbol_map++)
{
const char *name;
int type;
struct aout_link_hash_entry *h;
bool skip;
asection *symsec;
bfd_vma val = 0;
bool copy;
/* We set *symbol_map to 0 above for all symbols. If it has
already been set to -1 for this symbol, it means that we are
discarding it because it appears in a duplicate header file.
See the N_BINCL code below. */
if (*symbol_map == -1)
continue;
/* Initialize *symbol_map to -1, which means that the symbol was
not copied into the output file. We will change it later if
we do copy the symbol over. */
*symbol_map = -1;
type = H_GET_8 (input_bfd, sym->e_type);
name = strings + GET_WORD (input_bfd, sym->e_strx);
h = NULL;
if (pass)
{
/* Pass this symbol through. It is the target of an
indirect or warning symbol. */
val = GET_WORD (input_bfd, sym->e_value);
pass = false;
}
else if (skip_next)
{
/* Skip this symbol, which is the target of an indirect
symbol that we have changed to no longer be an indirect
symbol. */
skip_next = false;
continue;
}
else
{
struct aout_link_hash_entry *hresolve;
/* We have saved the hash table entry for this symbol, if
there is one. Note that we could just look it up again
in the hash table, provided we first check that it is an
external symbol. */
h = *sym_hash;
/* Use the name from the hash table, in case the symbol was
wrapped. */
if (h != NULL
&& h->root.type != bfd_link_hash_warning)
name = h->root.root.string;
/* If this is an indirect or warning symbol, then change
hresolve to the base symbol. We also change *sym_hash so
that the relocation routines relocate against the real
symbol. */
hresolve = h;
if (h != (struct aout_link_hash_entry *) NULL
&& (h->root.type == bfd_link_hash_indirect
|| h->root.type == bfd_link_hash_warning))
{
hresolve = (struct aout_link_hash_entry *) h->root.u.i.link;
while (hresolve->root.type == bfd_link_hash_indirect
|| hresolve->root.type == bfd_link_hash_warning)
hresolve = ((struct aout_link_hash_entry *)
hresolve->root.u.i.link);
*sym_hash = hresolve;
}
/* If the symbol has already been written out, skip it. */
if (h != NULL
&& h->written)
{
if ((type & N_TYPE) == N_INDR
|| type == N_WARNING)
skip_next = true;
*symbol_map = h->indx;
continue;
}
/* See if we are stripping this symbol. */
skip = false;
switch (strip)
{
case strip_none:
break;
case strip_debugger:
if ((type & N_STAB) != 0)
skip = true;
break;
case strip_some:
if (bfd_hash_lookup (flaginfo->info->keep_hash, name, false, false)
== NULL)
skip = true;
break;
case strip_all:
skip = true;
break;
}
if (skip)
{
if (h != NULL)
h->written = true;
continue;
}
/* Get the value of the symbol. */
if ((type & N_TYPE) == N_TEXT
|| type == N_WEAKT)
symsec = obj_textsec (input_bfd);
else if ((type & N_TYPE) == N_DATA
|| type == N_WEAKD)
symsec = obj_datasec (input_bfd);
else if ((type & N_TYPE) == N_BSS
|| type == N_WEAKB)
symsec = obj_bsssec (input_bfd);
else if ((type & N_TYPE) == N_ABS
|| type == N_WEAKA)
symsec = bfd_abs_section_ptr;
else if (((type & N_TYPE) == N_INDR
&& (hresolve == NULL
|| (hresolve->root.type != bfd_link_hash_defined
&& hresolve->root.type != bfd_link_hash_defweak
&& hresolve->root.type != bfd_link_hash_common)))
|| type == N_WARNING)
{
/* Pass the next symbol through unchanged. The
condition above for indirect symbols is so that if
the indirect symbol was defined, we output it with
the correct definition so the debugger will
understand it. */
pass = true;
val = GET_WORD (input_bfd, sym->e_value);
symsec = NULL;
}
else if ((type & N_STAB) != 0)
{
val = GET_WORD (input_bfd, sym->e_value);
symsec = NULL;
}
else
{
/* If we get here with an indirect symbol, it means that
we are outputting it with a real definition. In such
a case we do not want to output the next symbol,
which is the target of the indirection. */
if ((type & N_TYPE) == N_INDR)
skip_next = true;
symsec = NULL;
/* We need to get the value from the hash table. We use
hresolve so that if we have defined an indirect
symbol we output the final definition. */
if (h == NULL)
{
switch (type & N_TYPE)
{
case N_SETT:
symsec = obj_textsec (input_bfd);
break;
case N_SETD:
symsec = obj_datasec (input_bfd);
break;
case N_SETB:
symsec = obj_bsssec (input_bfd);
break;
case N_SETA:
symsec = bfd_abs_section_ptr;
break;
default:
val = 0;
break;
}
}
else if (hresolve->root.type == bfd_link_hash_defined
|| hresolve->root.type == bfd_link_hash_defweak)
{
asection *input_section;
asection *output_section;
/* This case usually means a common symbol which was
turned into a defined symbol. */
input_section = hresolve->root.u.def.section;
output_section = input_section->output_section;
BFD_ASSERT (bfd_is_abs_section (output_section)
|| output_section->owner == output_bfd);
val = (hresolve->root.u.def.value
+ bfd_section_vma (output_section)
+ input_section->output_offset);
/* Get the correct type based on the section. If
this is a constructed set, force it to be
globally visible. */
if (type == N_SETT
|| type == N_SETD
|| type == N_SETB
|| type == N_SETA)
type |= N_EXT;
type &=~ N_TYPE;
if (output_section == obj_textsec (output_bfd))
type |= (hresolve->root.type == bfd_link_hash_defined
? N_TEXT
: N_WEAKT);
else if (output_section == obj_datasec (output_bfd))
type |= (hresolve->root.type == bfd_link_hash_defined
? N_DATA
: N_WEAKD);
else if (output_section == obj_bsssec (output_bfd))
type |= (hresolve->root.type == bfd_link_hash_defined
? N_BSS
: N_WEAKB);
else
type |= (hresolve->root.type == bfd_link_hash_defined
? N_ABS
: N_WEAKA);
}
else if (hresolve->root.type == bfd_link_hash_common)
val = hresolve->root.u.c.size;
else if (hresolve->root.type == bfd_link_hash_undefweak)
{
val = 0;
type = N_WEAKU;
}
else
val = 0;
}
if (symsec != NULL)
val = (symsec->output_section->vma
+ symsec->output_offset
+ (GET_WORD (input_bfd, sym->e_value)
- symsec->vma));
/* If this is a global symbol set the written flag, and if
it is a local symbol see if we should discard it. */
if (h != NULL)
{
h->written = true;
h->indx = obj_aout_external_sym_count (output_bfd);
}
else if ((type & N_TYPE) != N_SETT
&& (type & N_TYPE) != N_SETD
&& (type & N_TYPE) != N_SETB
&& (type & N_TYPE) != N_SETA)
{
switch (discard)
{
case discard_none:
case discard_sec_merge:
break;
case discard_l:
if ((type & N_STAB) == 0
&& bfd_is_local_label_name (input_bfd, name))
skip = true;
break;
case discard_all:
skip = true;
break;
}
if (skip)
{
pass = false;
continue;
}
}
/* An N_BINCL symbol indicates the start of the stabs
entries for a header file. We need to scan ahead to the
next N_EINCL symbol, ignoring nesting, adding up all the
characters in the symbol names, not including the file
numbers in types (the first number after an open
parenthesis). */
if (type == (int) N_BINCL)
{
struct external_nlist *incl_sym;
int nest;
struct aout_link_includes_entry *incl_entry;
struct aout_link_includes_totals *t;
val = 0;
nest = 0;
for (incl_sym = sym + 1; incl_sym < sym_end; incl_sym++)
{
int incl_type;
incl_type = H_GET_8 (input_bfd, incl_sym->e_type);
if (incl_type == (int) N_EINCL)
{
if (nest == 0)
break;
--nest;
}
else if (incl_type == (int) N_BINCL)
++nest;
else if (nest == 0)
{
const char *s;
s = strings + GET_WORD (input_bfd, incl_sym->e_strx);
for (; *s != '\0'; s++)
{
val += *s;
if (*s == '(')
{
/* Skip the file number. */
++s;
while (ISDIGIT (*s))
++s;
--s;
}
}
}
}
/* If we have already included a header file with the
same value, then replace this one with an N_EXCL
symbol. */
copy = !flaginfo->info->keep_memory;
incl_entry = aout_link_includes_lookup (&flaginfo->includes,
name, true, copy);
if (incl_entry == NULL)
return false;
for (t = incl_entry->totals; t != NULL; t = t->next)
if (t->total == val)
break;
if (t == NULL)
{
/* This is the first time we have seen this header
file with this set of stabs strings. */
t = (struct aout_link_includes_totals *)
bfd_hash_allocate (&flaginfo->includes.root,
sizeof *t);
if (t == NULL)
return false;
t->total = val;
t->next = incl_entry->totals;
incl_entry->totals = t;
}
else
{
int *incl_map;
/* This is a duplicate header file. We must change
it to be an N_EXCL entry, and mark all the
included symbols to prevent outputting them. */
type = (int) N_EXCL;
nest = 0;
for (incl_sym = sym + 1, incl_map = symbol_map + 1;
incl_sym < sym_end;
incl_sym++, incl_map++)
{
int incl_type;
incl_type = H_GET_8 (input_bfd, incl_sym->e_type);
if (incl_type == (int) N_EINCL)
{
if (nest == 0)
{
*incl_map = -1;
break;
}
--nest;
}
else if (incl_type == (int) N_BINCL)
++nest;
else if (nest == 0)
*incl_map = -1;
}
}
}
}
/* Copy this symbol into the list of symbols we are going to
write out. */
H_PUT_8 (output_bfd, type, outsym->e_type);
H_PUT_8 (output_bfd, H_GET_8 (input_bfd, sym->e_other), outsym->e_other);
H_PUT_16 (output_bfd, H_GET_16 (input_bfd, sym->e_desc), outsym->e_desc);
copy = false;
if (! flaginfo->info->keep_memory)
{
/* name points into a string table which we are going to
free. If there is a hash table entry, use that string.
Otherwise, copy name into memory. */
if (h != NULL)
name = h->root.root.string;
else
copy = true;
}
strtab_index = add_to_stringtab (output_bfd, flaginfo->strtab,
name, copy);
if (strtab_index == (bfd_size_type) -1)
return false;
PUT_WORD (output_bfd, strtab_index, outsym->e_strx);
PUT_WORD (output_bfd, val, outsym->e_value);
*symbol_map = obj_aout_external_sym_count (output_bfd);
++obj_aout_external_sym_count (output_bfd);
++outsym;
}
/* Write out the output symbols we have just constructed. */
if (outsym > flaginfo->output_syms)
{
bfd_size_type outsym_size;
if (bfd_seek (output_bfd, flaginfo->symoff, SEEK_SET) != 0)
return false;
outsym_size = outsym - flaginfo->output_syms;
outsym_size *= EXTERNAL_NLIST_SIZE;
if (bfd_bwrite ((void *) flaginfo->output_syms, outsym_size, output_bfd)
!= outsym_size)
return false;
flaginfo->symoff += outsym_size;
}
return true;
}
/* Link an a.out input BFD into the output file. */
static bool
aout_link_input_bfd (struct aout_final_link_info *flaginfo, bfd *input_bfd)
{
BFD_ASSERT (bfd_get_format (input_bfd) == bfd_object);
/* If this is a dynamic object, it may need special handling. */
if ((input_bfd->flags & DYNAMIC) != 0
&& aout_backend_info (input_bfd)->link_dynamic_object != NULL)
return ((*aout_backend_info (input_bfd)->link_dynamic_object)
(flaginfo->info, input_bfd));
/* Get the symbols. We probably have them already, unless
flaginfo->info->keep_memory is FALSE. */
if (! aout_get_external_symbols (input_bfd))
return false;
/* Write out the symbols and get a map of the new indices. The map
is placed into flaginfo->symbol_map. */
if (! aout_link_write_symbols (flaginfo, input_bfd))
return false;
/* Relocate and write out the sections. These functions use the
symbol map created by aout_link_write_symbols. The linker_mark
field will be set if these sections are to be included in the
link, which will normally be the case. */
if (obj_textsec (input_bfd)->linker_mark)
{
if (! aout_link_input_section (flaginfo, input_bfd,
obj_textsec (input_bfd),
&flaginfo->treloff,
exec_hdr (input_bfd)->a_trsize))
return false;
}
if (obj_datasec (input_bfd)->linker_mark)
{
if (! aout_link_input_section (flaginfo, input_bfd,
obj_datasec (input_bfd),
&flaginfo->dreloff,
exec_hdr (input_bfd)->a_drsize))
return false;
}
/* If we are not keeping memory, we don't need the symbols any
longer. We still need them if we are keeping memory, because the
strings in the hash table point into them. */
if (! flaginfo->info->keep_memory)
{
if (! aout_link_free_symbols (input_bfd))
return false;
}
return true;
}
/* Do the final link step. This is called on the output BFD. The
INFO structure should point to a list of BFDs linked through the
link.next field which can be used to find each BFD which takes part
in the output. Also, each section in ABFD should point to a list
of bfd_link_order structures which list all the input sections for
the output section. */
bool
NAME (aout, final_link) (bfd *abfd,
struct bfd_link_info *info,
void (*callback) (bfd *, file_ptr *, file_ptr *, file_ptr *))
{
struct aout_final_link_info aout_info;
bool includes_hash_initialized = false;
bfd *sub;
bfd_size_type trsize, drsize;
bfd_size_type max_contents_size;
bfd_size_type max_relocs_size;
bfd_size_type max_sym_count;
struct bfd_link_order *p;
asection *o;
bool have_link_order_relocs;
if (bfd_link_pic (info))
abfd->flags |= DYNAMIC;
aout_info.info = info;
aout_info.output_bfd = abfd;
aout_info.contents = NULL;
aout_info.relocs = NULL;
aout_info.symbol_map = NULL;
aout_info.output_syms = NULL;
if (!bfd_hash_table_init_n (&aout_info.includes.root,
aout_link_includes_newfunc,
sizeof (struct aout_link_includes_entry),
251))
goto error_return;
includes_hash_initialized = true;
/* Figure out the largest section size. Also, if generating
relocatable output, count the relocs. */
trsize = 0;
drsize = 0;
max_contents_size = 0;
max_relocs_size = 0;
max_sym_count = 0;
for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
{
bfd_size_type sz;
if (bfd_link_relocatable (info))
{
if (bfd_get_flavour (sub) == bfd_target_aout_flavour)
{
trsize += exec_hdr (sub)->a_trsize;
drsize += exec_hdr (sub)->a_drsize;
}
else
{
/* FIXME: We need to identify the .text and .data sections
and call get_reloc_upper_bound and canonicalize_reloc to
work out the number of relocs needed, and then multiply
by the reloc size. */
_bfd_error_handler
/* xgettext:c-format */
(_("%pB: relocatable link from %s to %s not supported"),
abfd, sub->xvec->name, abfd->xvec->name);
bfd_set_error (bfd_error_invalid_operation);
goto error_return;
}
}
if (bfd_get_flavour (sub) == bfd_target_aout_flavour)
{
sz = obj_textsec (sub)->size;
if (sz > max_contents_size)
max_contents_size = sz;
sz = obj_datasec (sub)->size;
if (sz > max_contents_size)
max_contents_size = sz;
sz = exec_hdr (sub)->a_trsize;
if (sz > max_relocs_size)
max_relocs_size = sz;
sz = exec_hdr (sub)->a_drsize;
if (sz > max_relocs_size)
max_relocs_size = sz;
sz = obj_aout_external_sym_count (sub);
if (sz > max_sym_count)
max_sym_count = sz;
}
}
if (bfd_link_relocatable (info))
{
if (obj_textsec (abfd) != NULL)
trsize += (_bfd_count_link_order_relocs (obj_textsec (abfd)
->map_head.link_order)
* obj_reloc_entry_size (abfd));
if (obj_datasec (abfd) != NULL)
drsize += (_bfd_count_link_order_relocs (obj_datasec (abfd)
->map_head.link_order)
* obj_reloc_entry_size (abfd));
}
exec_hdr (abfd)->a_trsize = trsize;
exec_hdr (abfd)->a_drsize = drsize;
exec_hdr (abfd)->a_entry = bfd_get_start_address (abfd);
/* Adjust the section sizes and vmas according to the magic number.
This sets a_text, a_data and a_bss in the exec_hdr and sets the
filepos for each section. */
if (! NAME (aout, adjust_sizes_and_vmas) (abfd))
goto error_return;
/* The relocation and symbol file positions differ among a.out
targets. We are passed a callback routine from the backend
specific code to handle this.
FIXME: At this point we do not know how much space the symbol
table will require. This will not work for any (nonstandard)
a.out target that needs to know the symbol table size before it
can compute the relocation file positions. */
(*callback) (abfd, &aout_info.treloff, &aout_info.dreloff,
&aout_info.symoff);
obj_textsec (abfd)->rel_filepos = aout_info.treloff;
obj_datasec (abfd)->rel_filepos = aout_info.dreloff;
obj_sym_filepos (abfd) = aout_info.symoff;
/* We keep a count of the symbols as we output them. */
obj_aout_external_sym_count (abfd) = 0;
/* We accumulate the string table as we write out the symbols. */
aout_info.strtab = _bfd_stringtab_init ();
if (aout_info.strtab == NULL)
goto error_return;
/* Allocate buffers to hold section contents and relocs. */
aout_info.contents = (bfd_byte *) bfd_malloc (max_contents_size);
aout_info.relocs = bfd_malloc (max_relocs_size);
aout_info.symbol_map = (int *) bfd_malloc (max_sym_count * sizeof (int));
aout_info.output_syms = (struct external_nlist *)
bfd_malloc ((max_sym_count + 1) * sizeof (struct external_nlist));
if ((aout_info.contents == NULL && max_contents_size != 0)
|| (aout_info.relocs == NULL && max_relocs_size != 0)
|| (aout_info.symbol_map == NULL && max_sym_count != 0)
|| aout_info.output_syms == NULL)
goto error_return;
/* If we have a symbol named __DYNAMIC, force it out now. This is
required by SunOS. Doing this here rather than in sunos.c is a
hack, but it's easier than exporting everything which would be
needed. */
{
struct aout_link_hash_entry *h;
h = aout_link_hash_lookup (aout_hash_table (info), "__DYNAMIC",
false, false, false);
if (h != NULL)
aout_link_write_other_symbol (&h->root.root, &aout_info);
}
/* The most time efficient way to do the link would be to read all
the input object files into memory and then sort out the
information into the output file. Unfortunately, that will
probably use too much memory. Another method would be to step
through everything that composes the text section and write it
out, and then everything that composes the data section and write
it out, and then write out the relocs, and then write out the
symbols. Unfortunately, that requires reading stuff from each
input file several times, and we will not be able to keep all the
input files open simultaneously, and reopening them will be slow.
What we do is basically process one input file at a time. We do
everything we need to do with an input file once--copy over the
section contents, handle the relocation information, and write
out the symbols--and then we throw away the information we read
from it. This approach requires a lot of lseeks of the output
file, which is unfortunate but still faster than reopening a lot
of files.
We use the output_has_begun field of the input BFDs to see
whether we have already handled it. */
for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
sub->output_has_begun = false;
/* Mark all sections which are to be included in the link. This
will normally be every section. We need to do this so that we
can identify any sections which the linker has decided to not
include. */
for (o = abfd->sections; o != NULL; o = o->next)
{
for (p = o->map_head.link_order; p != NULL; p = p->next)
if (p->type == bfd_indirect_link_order)
p->u.indirect.section->linker_mark = true;
}
have_link_order_relocs = false;
for (o = abfd->sections; o != NULL; o = o->next)
{
for (p = o->map_head.link_order;
p != NULL;
p = p->next)
{
if (p->type == bfd_indirect_link_order
&& (bfd_get_flavour (p->u.indirect.section->owner)
== bfd_target_aout_flavour))
{
bfd *input_bfd;
input_bfd = p->u.indirect.section->owner;
if (! input_bfd->output_has_begun)
{
if (! aout_link_input_bfd (&aout_info, input_bfd))
goto error_return;
input_bfd->output_has_begun = true;
}
}
else if (p->type == bfd_section_reloc_link_order
|| p->type == bfd_symbol_reloc_link_order)
{
/* These are handled below. */
have_link_order_relocs = true;
}
else
{
if (! _bfd_default_link_order (abfd, info, o, p))
goto error_return;
}
}
}
/* Write out any symbols that we have not already written out. */
bfd_hash_traverse (&info->hash->table,
aout_link_write_other_symbol,
&aout_info);
/* Now handle any relocs we were asked to create by the linker.
These did not come from any input file. We must do these after
we have written out all the symbols, so that we know the symbol
indices to use. */
if (have_link_order_relocs)
{
for (o = abfd->sections; o != NULL; o = o->next)
{
for (p = o->map_head.link_order;
p != NULL;
p = p->next)
{
if (p->type == bfd_section_reloc_link_order
|| p->type == bfd_symbol_reloc_link_order)
{
if (! aout_link_reloc_link_order (&aout_info, o, p))
goto error_return;
}
}
}
}
free (aout_info.contents);
aout_info.contents = NULL;
free (aout_info.relocs);
aout_info.relocs = NULL;
free (aout_info.symbol_map);
aout_info.symbol_map = NULL;
free (aout_info.output_syms);
aout_info.output_syms = NULL;
if (includes_hash_initialized)
{
bfd_hash_table_free (&aout_info.includes.root);
includes_hash_initialized = false;
}
/* Finish up any dynamic linking we may be doing. */
if (aout_backend_info (abfd)->finish_dynamic_link != NULL)
{
if (! (*aout_backend_info (abfd)->finish_dynamic_link) (abfd, info))
goto error_return;
}
/* Update the header information. */
abfd->symcount = obj_aout_external_sym_count (abfd);
exec_hdr (abfd)->a_syms = abfd->symcount * EXTERNAL_NLIST_SIZE;
obj_str_filepos (abfd) = obj_sym_filepos (abfd) + exec_hdr (abfd)->a_syms;
obj_textsec (abfd)->reloc_count =
exec_hdr (abfd)->a_trsize / obj_reloc_entry_size (abfd);
obj_datasec (abfd)->reloc_count =
exec_hdr (abfd)->a_drsize / obj_reloc_entry_size (abfd);
/* Write out the string table, unless there are no symbols. */
if (bfd_seek (abfd, obj_str_filepos (abfd), SEEK_SET) != 0)
goto error_return;
if (abfd->symcount > 0)
{
if (!emit_stringtab (abfd, aout_info.strtab))
goto error_return;
}
else
{
bfd_byte b[BYTES_IN_WORD];
memset (b, 0, BYTES_IN_WORD);
if (bfd_bwrite (b, (bfd_size_type) BYTES_IN_WORD, abfd) != BYTES_IN_WORD)
goto error_return;
}
return true;
error_return:
free (aout_info.contents);
free (aout_info.relocs);
free (aout_info.symbol_map);
free (aout_info.output_syms);
if (includes_hash_initialized)
bfd_hash_table_free (&aout_info.includes.root);
return false;
}