mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-18 12:24:38 +08:00
fa9265e55d
read_memory to get byte order right. * hppah-tdep.c (find_unwind_info): Don't read in unwind info anymore. This is done in paread.c now. We expect unwind info to hang off of objfiles, and search all of the objfiles when until we find a match. * (skip_trampoline_code): Cast arg to target_read_memory. * objfiles.h (struct objfile): Add new field obj_private to hold per object file private data (unwind info in this case). * paread.c (read_unwind_info): New routine to read unwind info for the objfile. This data is hung off of obj_private. * tm-hppa.h: Define struct obj_unwind_info, to hold pointers to the unwind info for this objfile. Also define OBJ_UNWIND_INFO to make this easier to access.
888 lines
21 KiB
C
888 lines
21 KiB
C
/* Machine-dependent code which would otherwise be in inflow.c and core.c,
|
||
for GDB, the GNU debugger. This code is for the HP PA-RISC cpu.
|
||
Copyright 1986, 1987, 1989, 1990, 1991, 1992 Free Software Foundation, Inc.
|
||
|
||
Contributed by the Center for Software Science at the
|
||
University of Utah (pa-gdb-bugs@cs.utah.edu).
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
#include "defs.h"
|
||
#include "frame.h"
|
||
#include "inferior.h"
|
||
#include "value.h"
|
||
|
||
/* For argument passing to the inferior */
|
||
#include "symtab.h"
|
||
|
||
#ifdef USG
|
||
#include <sys/types.h>
|
||
#endif
|
||
|
||
#include <sys/param.h>
|
||
#include <sys/dir.h>
|
||
#include <signal.h>
|
||
#include <sys/ioctl.h>
|
||
|
||
#ifdef COFF_ENCAPSULATE
|
||
#include "a.out.encap.h"
|
||
#else
|
||
#include <a.out.h>
|
||
#endif
|
||
#ifndef N_SET_MAGIC
|
||
#define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
|
||
#endif
|
||
|
||
/*#include <sys/user.h> After a.out.h */
|
||
#include <sys/file.h>
|
||
#include <sys/stat.h>
|
||
#include <machine/psl.h>
|
||
#include "wait.h"
|
||
|
||
#include "gdbcore.h"
|
||
#include "gdbcmd.h"
|
||
#include "target.h"
|
||
#include "symfile.h"
|
||
#include "objfiles.h"
|
||
|
||
|
||
/* Routines to extract various sized constants out of hppa
|
||
instructions. */
|
||
|
||
/* This assumes that no garbage lies outside of the lower bits of
|
||
value. */
|
||
|
||
int
|
||
sign_extend (val, bits)
|
||
unsigned val, bits;
|
||
{
|
||
return (int)(val >> bits - 1 ? (-1 << bits) | val : val);
|
||
}
|
||
|
||
/* For many immediate values the sign bit is the low bit! */
|
||
|
||
int
|
||
low_sign_extend (val, bits)
|
||
unsigned val, bits;
|
||
{
|
||
return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
|
||
}
|
||
/* extract the immediate field from a ld{bhw}s instruction */
|
||
|
||
unsigned
|
||
get_field (val, from, to)
|
||
unsigned val, from, to;
|
||
{
|
||
val = val >> 31 - to;
|
||
return val & ((1 << 32 - from) - 1);
|
||
}
|
||
|
||
unsigned
|
||
set_field (val, from, to, new_val)
|
||
unsigned *val, from, to;
|
||
{
|
||
unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
|
||
return *val = *val & mask | (new_val << (31 - from));
|
||
}
|
||
|
||
/* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
|
||
|
||
extract_3 (word)
|
||
unsigned word;
|
||
{
|
||
return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
|
||
}
|
||
|
||
extract_5_load (word)
|
||
unsigned word;
|
||
{
|
||
return low_sign_extend (word >> 16 & MASK_5, 5);
|
||
}
|
||
|
||
/* extract the immediate field from a st{bhw}s instruction */
|
||
|
||
int
|
||
extract_5_store (word)
|
||
unsigned word;
|
||
{
|
||
return low_sign_extend (word & MASK_5, 5);
|
||
}
|
||
|
||
/* extract an 11 bit immediate field */
|
||
|
||
int
|
||
extract_11 (word)
|
||
unsigned word;
|
||
{
|
||
return low_sign_extend (word & MASK_11, 11);
|
||
}
|
||
|
||
/* extract a 14 bit immediate field */
|
||
|
||
int
|
||
extract_14 (word)
|
||
unsigned word;
|
||
{
|
||
return low_sign_extend (word & MASK_14, 14);
|
||
}
|
||
|
||
/* deposit a 14 bit constant in a word */
|
||
|
||
unsigned
|
||
deposit_14 (opnd, word)
|
||
int opnd;
|
||
unsigned word;
|
||
{
|
||
unsigned sign = (opnd < 0 ? 1 : 0);
|
||
|
||
return word | ((unsigned)opnd << 1 & MASK_14) | sign;
|
||
}
|
||
|
||
/* extract a 21 bit constant */
|
||
|
||
int
|
||
extract_21 (word)
|
||
unsigned word;
|
||
{
|
||
int val;
|
||
|
||
word &= MASK_21;
|
||
word <<= 11;
|
||
val = GET_FIELD (word, 20, 20);
|
||
val <<= 11;
|
||
val |= GET_FIELD (word, 9, 19);
|
||
val <<= 2;
|
||
val |= GET_FIELD (word, 5, 6);
|
||
val <<= 5;
|
||
val |= GET_FIELD (word, 0, 4);
|
||
val <<= 2;
|
||
val |= GET_FIELD (word, 7, 8);
|
||
return sign_extend (val, 21) << 11;
|
||
}
|
||
|
||
/* deposit a 21 bit constant in a word. Although 21 bit constants are
|
||
usually the top 21 bits of a 32 bit constant, we assume that only
|
||
the low 21 bits of opnd are relevant */
|
||
|
||
unsigned
|
||
deposit_21 (opnd, word)
|
||
unsigned opnd, word;
|
||
{
|
||
unsigned val = 0;
|
||
|
||
val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
|
||
val <<= 2;
|
||
val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
|
||
val <<= 2;
|
||
val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
|
||
val <<= 11;
|
||
val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
|
||
val <<= 1;
|
||
val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
|
||
return word | val;
|
||
}
|
||
|
||
/* extract a 12 bit constant from branch instructions */
|
||
|
||
int
|
||
extract_12 (word)
|
||
unsigned word;
|
||
{
|
||
return sign_extend (GET_FIELD (word, 19, 28) |
|
||
GET_FIELD (word, 29, 29) << 10 |
|
||
(word & 0x1) << 11, 12) << 2;
|
||
}
|
||
|
||
/* extract a 17 bit constant from branch instructions, returning the
|
||
19 bit signed value. */
|
||
|
||
int
|
||
extract_17 (word)
|
||
unsigned word;
|
||
{
|
||
return sign_extend (GET_FIELD (word, 19, 28) |
|
||
GET_FIELD (word, 29, 29) << 10 |
|
||
GET_FIELD (word, 11, 15) << 11 |
|
||
(word & 0x1) << 16, 17) << 2;
|
||
}
|
||
|
||
static int use_unwind = 0;
|
||
|
||
/* Lookup the unwind (stack backtrace) info for the given PC. We search all
|
||
of the objfiles seeking the unwind table entry for this PC. Each objfile
|
||
contains a sorted list of struct unwind_table_entry. Since we do a binary
|
||
search of the unwind tables, we depend upon them to be sorted. */
|
||
|
||
static struct unwind_table_entry *
|
||
find_unwind_entry(pc)
|
||
CORE_ADDR pc;
|
||
{
|
||
int first, middle, last;
|
||
struct objfile *objfile;
|
||
|
||
ALL_OBJFILES (objfile)
|
||
{
|
||
struct obj_unwind_info *ui;
|
||
|
||
ui = OBJ_UNWIND_INFO (objfile);
|
||
|
||
if (!ui)
|
||
continue;
|
||
|
||
/* First, check the cache */
|
||
|
||
if (ui->cache
|
||
&& pc >= ui->cache->region_start
|
||
&& pc <= ui->cache->region_end)
|
||
return ui->cache;
|
||
|
||
/* Not in the cache, do a binary search */
|
||
|
||
first = 0;
|
||
last = ui->last;
|
||
|
||
while (first <= last)
|
||
{
|
||
middle = (first + last) / 2;
|
||
if (pc >= ui->table[middle].region_start
|
||
&& pc <= ui->table[middle].region_end)
|
||
{
|
||
ui->cache = &ui->table[middle];
|
||
return &ui->table[middle];
|
||
}
|
||
|
||
if (pc < ui->table[middle].region_start)
|
||
last = middle - 1;
|
||
else
|
||
first = middle + 1;
|
||
}
|
||
} /* ALL_OBJFILES() */
|
||
return NULL;
|
||
}
|
||
|
||
static int
|
||
find_return_regnum(pc)
|
||
CORE_ADDR pc;
|
||
{
|
||
struct unwind_table_entry *u;
|
||
|
||
u = find_unwind_entry (pc);
|
||
|
||
if (!u)
|
||
return RP_REGNUM;
|
||
|
||
if (u->Millicode)
|
||
return 31;
|
||
|
||
return RP_REGNUM;
|
||
}
|
||
|
||
int
|
||
find_proc_framesize(pc)
|
||
CORE_ADDR pc;
|
||
{
|
||
struct unwind_table_entry *u;
|
||
|
||
if (!use_unwind)
|
||
return -1;
|
||
|
||
u = find_unwind_entry (pc);
|
||
|
||
if (!u)
|
||
return -1;
|
||
|
||
return u->Total_frame_size << 3;
|
||
}
|
||
|
||
int
|
||
rp_saved(pc)
|
||
{
|
||
struct unwind_table_entry *u;
|
||
|
||
u = find_unwind_entry (pc);
|
||
|
||
if (!u)
|
||
return 0;
|
||
|
||
if (u->Save_RP)
|
||
return 1;
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
CORE_ADDR
|
||
saved_pc_after_call (frame)
|
||
FRAME frame;
|
||
{
|
||
int ret_regnum;
|
||
|
||
ret_regnum = find_return_regnum (get_frame_pc (frame));
|
||
|
||
return read_register (ret_regnum) & ~0x3;
|
||
}
|
||
|
||
CORE_ADDR
|
||
frame_saved_pc (frame)
|
||
FRAME frame;
|
||
{
|
||
CORE_ADDR pc = get_frame_pc (frame);
|
||
|
||
if (frameless_look_for_prologue (frame))
|
||
{
|
||
int ret_regnum;
|
||
|
||
ret_regnum = find_return_regnum (pc);
|
||
|
||
return read_register (ret_regnum) & ~0x3;
|
||
}
|
||
else if (rp_saved (pc))
|
||
return read_memory_integer (frame->frame - 20, 4) & ~0x3;
|
||
else
|
||
return read_register (RP_REGNUM) & ~0x3;
|
||
}
|
||
|
||
/* We need to correct the PC and the FP for the outermost frame when we are
|
||
in a system call. */
|
||
|
||
void
|
||
init_extra_frame_info (fromleaf, frame)
|
||
int fromleaf;
|
||
struct frame_info *frame;
|
||
{
|
||
int flags;
|
||
int framesize;
|
||
|
||
if (frame->next) /* Only do this for outermost frame */
|
||
return;
|
||
|
||
flags = read_register (FLAGS_REGNUM);
|
||
if (flags & 2) /* In system call? */
|
||
frame->pc = read_register (31) & ~0x3;
|
||
|
||
/* The outermost frame is always derived from PC-framesize */
|
||
framesize = find_proc_framesize(frame->pc);
|
||
if (framesize == -1)
|
||
frame->frame = read_register (FP_REGNUM);
|
||
else
|
||
frame->frame = read_register (SP_REGNUM) - framesize;
|
||
|
||
if (!frameless_look_for_prologue (frame)) /* Frameless? */
|
||
return; /* No, quit now */
|
||
|
||
/* For frameless functions, we need to look at the caller's frame */
|
||
framesize = find_proc_framesize(FRAME_SAVED_PC(frame));
|
||
if (framesize != -1)
|
||
frame->frame -= framesize;
|
||
}
|
||
|
||
FRAME_ADDR
|
||
frame_chain (frame)
|
||
struct frame_info *frame;
|
||
{
|
||
int framesize;
|
||
|
||
framesize = find_proc_framesize(FRAME_SAVED_PC(frame));
|
||
|
||
if (framesize != -1)
|
||
return frame->frame - framesize;
|
||
|
||
return read_memory_integer (frame->frame, 4);
|
||
}
|
||
|
||
/* To see if a frame chain is valid, see if the caller looks like it
|
||
was compiled with gcc. */
|
||
|
||
int
|
||
frame_chain_valid (chain, thisframe)
|
||
FRAME_ADDR chain;
|
||
FRAME thisframe;
|
||
{
|
||
struct minimal_symbol *msym;
|
||
|
||
if (!chain)
|
||
return 0;
|
||
|
||
msym = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
|
||
|
||
if (msym
|
||
&& (strcmp (SYMBOL_NAME (msym), "_start") == 0))
|
||
return 0;
|
||
else
|
||
return 1;
|
||
}
|
||
|
||
#if 0
|
||
/* Some helper functions. gcc_p returns 1 if the function beginning at
|
||
pc appears to have been compiled with gcc. hpux_cc_p returns 1 if
|
||
fn was compiled with hpux cc. gcc functions look like :
|
||
|
||
stw rp,-0x14(sp) ; optional
|
||
or r4,r0,r1
|
||
or sp,r0,r4
|
||
stwm r1,framesize(sp)
|
||
|
||
hpux cc functions look like:
|
||
|
||
stw rp,-0x14(sp) ; optional.
|
||
stwm r3,framesiz(sp)
|
||
*/
|
||
|
||
gcc_p (pc)
|
||
CORE_ADDR pc;
|
||
{
|
||
if (read_memory_integer (pc, 4) == 0x6BC23FD9)
|
||
pc = pc + 4;
|
||
|
||
if (read_memory_integer (pc, 4) == 0x8040241
|
||
&& read_memory_integer (pc + 4, 4) == 0x81E0244)
|
||
return 1;
|
||
return 0;
|
||
}
|
||
#endif
|
||
|
||
/*
|
||
* These functions deal with saving and restoring register state
|
||
* around a function call in the inferior. They keep the stack
|
||
* double-word aligned; eventually, on an hp700, the stack will have
|
||
* to be aligned to a 64-byte boundary.
|
||
*/
|
||
|
||
int
|
||
push_dummy_frame ()
|
||
{
|
||
register CORE_ADDR sp;
|
||
register int regnum;
|
||
int int_buffer;
|
||
double freg_buffer;
|
||
|
||
/* Space for "arguments"; the RP goes in here. */
|
||
sp = read_register (SP_REGNUM) + 48;
|
||
int_buffer = read_register (RP_REGNUM) | 0x3;
|
||
write_memory (sp - 20, (char *)&int_buffer, 4);
|
||
|
||
int_buffer = read_register (FP_REGNUM);
|
||
write_memory (sp, (char *)&int_buffer, 4);
|
||
|
||
write_register (FP_REGNUM, sp);
|
||
|
||
sp += 8;
|
||
|
||
for (regnum = 1; regnum < 32; regnum++)
|
||
if (regnum != RP_REGNUM && regnum != FP_REGNUM)
|
||
sp = push_word (sp, read_register (regnum));
|
||
|
||
sp += 4;
|
||
|
||
for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
|
||
{
|
||
read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
|
||
sp = push_bytes (sp, (char *)&freg_buffer, 8);
|
||
}
|
||
sp = push_word (sp, read_register (IPSW_REGNUM));
|
||
sp = push_word (sp, read_register (SAR_REGNUM));
|
||
sp = push_word (sp, read_register (PCOQ_HEAD_REGNUM));
|
||
sp = push_word (sp, read_register (PCSQ_HEAD_REGNUM));
|
||
sp = push_word (sp, read_register (PCOQ_TAIL_REGNUM));
|
||
sp = push_word (sp, read_register (PCSQ_TAIL_REGNUM));
|
||
write_register (SP_REGNUM, sp);
|
||
}
|
||
|
||
find_dummy_frame_regs (frame, frame_saved_regs)
|
||
struct frame_info *frame;
|
||
struct frame_saved_regs *frame_saved_regs;
|
||
{
|
||
CORE_ADDR fp = frame->frame;
|
||
int i;
|
||
|
||
frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3;
|
||
frame_saved_regs->regs[FP_REGNUM] = fp;
|
||
frame_saved_regs->regs[1] = fp + 8;
|
||
frame_saved_regs->regs[3] = fp + 12;
|
||
|
||
for (fp += 16, i = 5; i < 32; fp += 4, i++)
|
||
frame_saved_regs->regs[i] = fp;
|
||
|
||
fp += 4;
|
||
for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
|
||
frame_saved_regs->regs[i] = fp;
|
||
|
||
frame_saved_regs->regs[IPSW_REGNUM] = fp;
|
||
fp += 4;
|
||
frame_saved_regs->regs[SAR_REGNUM] = fp;
|
||
fp += 4;
|
||
frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp;
|
||
fp +=4;
|
||
frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp;
|
||
fp +=4;
|
||
frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp;
|
||
fp +=4;
|
||
frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp;
|
||
}
|
||
|
||
int
|
||
hp_pop_frame ()
|
||
{
|
||
register FRAME frame = get_current_frame ();
|
||
register CORE_ADDR fp;
|
||
register int regnum;
|
||
struct frame_saved_regs fsr;
|
||
struct frame_info *fi;
|
||
double freg_buffer;
|
||
|
||
fi = get_frame_info (frame);
|
||
fp = fi->frame;
|
||
get_frame_saved_regs (fi, &fsr);
|
||
|
||
if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
|
||
hp_restore_pc_queue (&fsr);
|
||
|
||
for (regnum = 31; regnum > 0; regnum--)
|
||
if (fsr.regs[regnum])
|
||
write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
|
||
|
||
for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
|
||
if (fsr.regs[regnum])
|
||
{
|
||
read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
|
||
write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
|
||
}
|
||
|
||
if (fsr.regs[IPSW_REGNUM])
|
||
write_register (IPSW_REGNUM,
|
||
read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
|
||
|
||
if (fsr.regs[SAR_REGNUM])
|
||
write_register (SAR_REGNUM,
|
||
read_memory_integer (fsr.regs[SAR_REGNUM], 4));
|
||
|
||
if (fsr.regs[PCOQ_TAIL_REGNUM])
|
||
write_register (PCOQ_TAIL_REGNUM,
|
||
read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4));
|
||
|
||
write_register (FP_REGNUM, read_memory_integer (fp, 4));
|
||
|
||
if (fsr.regs[IPSW_REGNUM]) /* call dummy */
|
||
write_register (SP_REGNUM, fp - 48);
|
||
else
|
||
write_register (SP_REGNUM, fp);
|
||
|
||
flush_cached_frames ();
|
||
set_current_frame (create_new_frame (read_register (FP_REGNUM),
|
||
read_pc ()));
|
||
}
|
||
|
||
/*
|
||
* After returning to a dummy on the stack, restore the instruction
|
||
* queue space registers. */
|
||
|
||
int
|
||
hp_restore_pc_queue (fsr)
|
||
struct frame_saved_regs *fsr;
|
||
{
|
||
CORE_ADDR pc = read_pc ();
|
||
CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
|
||
int pid;
|
||
WAITTYPE w;
|
||
int insn_count;
|
||
|
||
/* Advance past break instruction in the call dummy. */
|
||
write_register (PCOQ_HEAD_REGNUM, pc + 4);
|
||
write_register (PCOQ_TAIL_REGNUM, pc + 8);
|
||
|
||
/*
|
||
* HPUX doesn't let us set the space registers or the space
|
||
* registers of the PC queue through ptrace. Boo, hiss.
|
||
* Conveniently, the call dummy has this sequence of instructions
|
||
* after the break:
|
||
* mtsp r21, sr0
|
||
* ble,n 0(sr0, r22)
|
||
*
|
||
* So, load up the registers and single step until we are in the
|
||
* right place.
|
||
*/
|
||
|
||
write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
|
||
write_register (22, new_pc);
|
||
|
||
for (insn_count = 0; insn_count < 3; insn_count++)
|
||
{
|
||
resume (1, 0);
|
||
target_wait(&w);
|
||
|
||
if (!WIFSTOPPED (w))
|
||
{
|
||
stop_signal = WTERMSIG (w);
|
||
terminal_ours_for_output ();
|
||
printf ("\nProgram terminated with signal %d, %s\n",
|
||
stop_signal, safe_strsignal (stop_signal));
|
||
fflush (stdout);
|
||
return 0;
|
||
}
|
||
}
|
||
fetch_inferior_registers (-1);
|
||
return 1;
|
||
}
|
||
|
||
CORE_ADDR
|
||
hp_push_arguments (nargs, args, sp, struct_return, struct_addr)
|
||
int nargs;
|
||
value *args;
|
||
CORE_ADDR sp;
|
||
int struct_return;
|
||
CORE_ADDR struct_addr;
|
||
{
|
||
/* array of arguments' offsets */
|
||
int *offset = (int *)alloca(nargs);
|
||
int cum = 0;
|
||
int i, alignment;
|
||
|
||
for (i = 0; i < nargs; i++)
|
||
{
|
||
cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
|
||
|
||
/* value must go at proper alignment. Assume alignment is a
|
||
power of two.*/
|
||
alignment = hp_alignof (VALUE_TYPE (args[i]));
|
||
if (cum % alignment)
|
||
cum = (cum + alignment) & -alignment;
|
||
offset[i] = -cum;
|
||
}
|
||
sp += min ((cum + 7) & -8, 16);
|
||
|
||
for (i = 0; i < nargs; i++)
|
||
write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
|
||
TYPE_LENGTH (VALUE_TYPE (args[i])));
|
||
|
||
if (struct_return)
|
||
write_register (28, struct_addr);
|
||
return sp + 32;
|
||
}
|
||
|
||
/* return the alignment of a type in bytes. Structures have the maximum
|
||
alignment required by their fields. */
|
||
|
||
int
|
||
hp_alignof (arg)
|
||
struct type *arg;
|
||
{
|
||
int max_align, align, i;
|
||
switch (TYPE_CODE (arg))
|
||
{
|
||
case TYPE_CODE_PTR:
|
||
case TYPE_CODE_INT:
|
||
case TYPE_CODE_FLT:
|
||
return TYPE_LENGTH (arg);
|
||
case TYPE_CODE_ARRAY:
|
||
return hp_alignof (TYPE_FIELD_TYPE (arg, 0));
|
||
case TYPE_CODE_STRUCT:
|
||
case TYPE_CODE_UNION:
|
||
max_align = 2;
|
||
for (i = 0; i < TYPE_NFIELDS (arg); i++)
|
||
{
|
||
/* Bit fields have no real alignment. */
|
||
if (!TYPE_FIELD_BITPOS (arg, i))
|
||
{
|
||
align = hp_alignof (TYPE_FIELD_TYPE (arg, i));
|
||
max_align = max (max_align, align);
|
||
}
|
||
}
|
||
return max_align;
|
||
default:
|
||
return 4;
|
||
}
|
||
}
|
||
|
||
/* Print the register regnum, or all registers if regnum is -1 */
|
||
|
||
pa_do_registers_info (regnum, fpregs)
|
||
int regnum;
|
||
int fpregs;
|
||
{
|
||
char raw_regs [REGISTER_BYTES];
|
||
int i;
|
||
|
||
for (i = 0; i < NUM_REGS; i++)
|
||
read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
|
||
if (regnum == -1)
|
||
pa_print_registers (raw_regs, regnum, fpregs);
|
||
else if (regnum < FP0_REGNUM)
|
||
printf ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
|
||
REGISTER_BYTE (regnum)));
|
||
else
|
||
pa_print_fp_reg (regnum);
|
||
}
|
||
|
||
pa_print_registers (raw_regs, regnum, fpregs)
|
||
char *raw_regs;
|
||
int regnum;
|
||
int fpregs;
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < 18; i++)
|
||
printf ("%8.8s: %8x %8.8s: %8x %8.8s: %8x %8.8s: %8x\n",
|
||
reg_names[i],
|
||
*(int *)(raw_regs + REGISTER_BYTE (i)),
|
||
reg_names[i + 18],
|
||
*(int *)(raw_regs + REGISTER_BYTE (i + 18)),
|
||
reg_names[i + 36],
|
||
*(int *)(raw_regs + REGISTER_BYTE (i + 36)),
|
||
reg_names[i + 54],
|
||
*(int *)(raw_regs + REGISTER_BYTE (i + 54)));
|
||
|
||
if (fpregs)
|
||
for (i = 72; i < NUM_REGS; i++)
|
||
pa_print_fp_reg (i);
|
||
}
|
||
|
||
pa_print_fp_reg (i)
|
||
int i;
|
||
{
|
||
unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
|
||
unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
|
||
REGISTER_TYPE val;
|
||
|
||
/* Get the data in raw format, then convert also to virtual format. */
|
||
read_relative_register_raw_bytes (i, raw_buffer);
|
||
REGISTER_CONVERT_TO_VIRTUAL (i, raw_buffer, virtual_buffer);
|
||
|
||
fputs_filtered (reg_names[i], stdout);
|
||
print_spaces_filtered (15 - strlen (reg_names[i]), stdout);
|
||
|
||
val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, stdout, 0,
|
||
1, 0, Val_pretty_default);
|
||
printf_filtered ("\n");
|
||
}
|
||
|
||
/* Function calls that pass into a new compilation unit must pass through a
|
||
small piece of code that does long format (`external' in HPPA parlance)
|
||
jumps. We figure out where the trampoline is going to end up, and return
|
||
the PC of the final destination. If we aren't in a trampoline, we just
|
||
return NULL.
|
||
|
||
For computed calls, we just extract the new PC from r22. */
|
||
|
||
CORE_ADDR
|
||
skip_trampoline_code (pc, name)
|
||
CORE_ADDR pc;
|
||
char *name;
|
||
{
|
||
long inst0, inst1;
|
||
static CORE_ADDR dyncall = 0;
|
||
struct minimal_symbol *msym;
|
||
|
||
/* FIXME XXX - dyncall must be initialized whenever we get a new exec file */
|
||
|
||
if (!dyncall)
|
||
{
|
||
msym = lookup_minimal_symbol ("$$dyncall", NULL);
|
||
if (msym)
|
||
dyncall = SYMBOL_VALUE_ADDRESS (msym);
|
||
else
|
||
dyncall = -1;
|
||
}
|
||
|
||
if (pc == dyncall)
|
||
return (CORE_ADDR)(read_register (22) & ~0x3);
|
||
|
||
inst0 = read_memory_integer (pc, 4);
|
||
inst1 = read_memory_integer (pc+4, 4);
|
||
|
||
if ( (inst0 & 0xffe00000) == 0x20200000 /* ldil xxx, r1 */
|
||
&& (inst1 & 0xffe0e002) == 0xe0202002) /* be,n yyy(sr4, r1) */
|
||
pc = extract_21 (inst0) + extract_17 (inst1);
|
||
else
|
||
pc = (CORE_ADDR)NULL;
|
||
|
||
return pc;
|
||
}
|
||
|
||
/* Advance PC across any function entry prologue instructions
|
||
to reach some "real" code. */
|
||
|
||
/* skip (stw rp, -20(0,sp)); copy 4,1; copy sp, 4; stwm 1,framesize(sp)
|
||
for gcc, or (stw rp, -20(0,sp); stwm 1, framesize(sp) for hcc */
|
||
|
||
CORE_ADDR
|
||
skip_prologue(pc)
|
||
CORE_ADDR pc;
|
||
{
|
||
int inst;
|
||
int status;
|
||
|
||
status = target_read_memory (pc, (char *)&inst, 4);
|
||
SWAP_TARGET_AND_HOST (&inst, sizeof (inst));
|
||
if (status != 0)
|
||
return pc;
|
||
|
||
if (inst == 0x6BC23FD9) /* stw rp,-20(sp) */
|
||
{
|
||
if (read_memory_integer (pc + 4, 4) == 0x8040241) /* copy r4,r1 */
|
||
pc += 16;
|
||
else if ((read_memory_integer (pc + 4, 4) & ~MASK_14) == 0x68810000) /* stw r1,(r4) */
|
||
pc += 8;
|
||
}
|
||
else if (read_memory_integer (pc, 4) == 0x8040241) /* copy r4,r1 */
|
||
pc += 12;
|
||
else if ((read_memory_integer (pc, 4) & ~MASK_14) == 0x68810000) /* stw r1,(r4) */
|
||
pc += 4;
|
||
|
||
return pc;
|
||
}
|
||
|
||
static void
|
||
unwind_command (exp, from_tty)
|
||
char *exp;
|
||
int from_tty;
|
||
{
|
||
CORE_ADDR address;
|
||
union
|
||
{
|
||
int *foo;
|
||
struct unwind_table_entry *u;
|
||
} xxx;
|
||
|
||
/* If we have an expression, evaluate it and use it as the address. */
|
||
|
||
if (exp != 0 && *exp != 0)
|
||
address = parse_and_eval_address (exp);
|
||
else
|
||
return;
|
||
|
||
xxx.u = find_unwind_entry (address);
|
||
|
||
if (!xxx.u)
|
||
{
|
||
printf ("Can't find unwind table entry for PC 0x%x\n", address);
|
||
return;
|
||
}
|
||
|
||
printf ("%08x\n%08X\n%08X\n%08X\n", xxx.foo[0], xxx.foo[1], xxx.foo[2],
|
||
xxx.foo[3]);
|
||
}
|
||
|
||
void
|
||
_initialize_hppah_tdep ()
|
||
{
|
||
add_com ("unwind", class_obscure, unwind_command, "Print unwind info\n");
|
||
add_show_from_set
|
||
(add_set_cmd ("use_unwind", class_obscure, var_boolean,
|
||
(char *)&use_unwind,
|
||
"Set the usage of unwind info", &setlist),
|
||
&showlist);
|
||
}
|