mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-21 04:42:53 +08:00
224c3ddb89
Most allocation functions (if not all) return a void* pointing to the allocated memory. In C++, we need to add an explicit cast when assigning the result to a pointer to another type (which is the case more often than not). The content of this patch is taken from Pedro's branch, from commit "(mostly) auto-generated patch to insert casts needed for C++". I validated that the changes make sense and manually reflowed the code to make it respect the coding style. I also found multiple places where I could use XNEW/XNEWVEC/XRESIZEVEC/etc. Thanks a lot to whoever did that automated script to insert casts, doing it completely by hand would have taken a ridiculous amount of time. Only files built on x86 with --enable-targets=all are modified. This means that all other -nat.c files are untouched and will have to be dealt with later by using appropiate compilers. Or maybe we can try to build them with a regular g++ just to know where to add casts, I don't know. I built-tested this with --enable-targets=all and reg-tested. Here's the changelog entry, which was not too bad to make despite the size, thanks to David Malcom's script. I fixed some bits by hand, but there might be some wrong parts left (hopefully not). gdb/ChangeLog: * aarch64-linux-tdep.c (aarch64_stap_parse_special_token): Add cast to allocation result assignment. * ada-exp.y (write_object_renaming): Likewise. (write_ambiguous_var): Likewise. (ada_nget_field_index): Likewise. (write_var_or_type): Likewise. * ada-lang.c (ada_decode_symbol): Likewise. (ada_value_assign): Likewise. (value_pointer): Likewise. (cache_symbol): Likewise. (add_nonlocal_symbols): Likewise. (ada_name_for_lookup): Likewise. (symbol_completion_add): Likewise. (ada_to_fixed_type_1): Likewise. (ada_get_next_arg): Likewise. (defns_collected): Likewise. * ada-lex.l (processId): Likewise. (processString): Likewise. * ada-tasks.c (read_known_tasks_array): Likewise. (read_known_tasks_list): Likewise. * ada-typeprint.c (decoded_type_name): Likewise. * addrmap.c (addrmap_mutable_create_fixed): Likewise. * amd64-tdep.c (amd64_push_arguments): Likewise. (amd64_displaced_step_copy_insn): Likewise. (amd64_classify_insn_at): Likewise. (amd64_relocate_instruction): Likewise. * amd64obsd-tdep.c (amd64obsd_sigtramp_p): Likewise. * arch-utils.c (simple_displaced_step_copy_insn): Likewise. (initialize_current_architecture): Likewise. * arm-linux-tdep.c (arm_stap_parse_special_token): Likewise. * arm-symbian-tdep.c (arm_symbian_osabi_sniffer): Likewise. * arm-tdep.c (arm_exidx_new_objfile): Likewise. (arm_push_dummy_call): Likewise. (extend_buffer_earlier): Likewise. (arm_adjust_breakpoint_address): Likewise. (arm_skip_stub): Likewise. * auto-load.c (filename_is_in_pattern): Likewise. (maybe_add_script_file): Likewise. (maybe_add_script_text): Likewise. (auto_load_objfile_script_1): Likewise. * auxv.c (ld_so_xfer_auxv): Likewise. * ax-general.c (new_agent_expr): Likewise. (grow_expr): Likewise. (ax_reg_mask): Likewise. * bcache.c (bcache_full): Likewise. * breakpoint.c (program_breakpoint_here_p): Likewise. * btrace.c (parse_xml_raw): Likewise. * build-id.c (build_id_to_debug_bfd): Likewise. * buildsym.c (end_symtab_with_blockvector): Likewise. * c-exp.y (string_exp): Likewise. (qualified_name): Likewise. (write_destructor_name): Likewise. (operator_stoken): Likewise. (parse_number): Likewise. (scan_macro_expansion): Likewise. (yylex): Likewise. (c_print_token): Likewise. * c-lang.c (c_get_string): Likewise. (emit_numeric_character): Likewise. * charset.c (wchar_iterate): Likewise. * cli/cli-cmds.c (complete_command): Likewise. (make_command): Likewise. * cli/cli-dump.c (restore_section_callback): Likewise. (restore_binary_file): Likewise. * cli/cli-interp.c (cli_interpreter_exec): Likewise. * cli/cli-script.c (execute_control_command): Likewise. * cli/cli-setshow.c (do_set_command): Likewise. * coff-pe-read.c (add_pe_forwarded_sym): Likewise. (read_pe_exported_syms): Likewise. * coffread.c (coff_read_struct_type): Likewise. (coff_read_enum_type): Likewise. * common/btrace-common.c (btrace_data_append): Likewise. * common/buffer.c (buffer_grow): Likewise. * common/filestuff.c (gdb_fopen_cloexec): Likewise. * common/format.c (parse_format_string): Likewise. * common/gdb_vecs.c (delim_string_to_char_ptr_vec_append): Likewise. * common/xml-utils.c (xml_escape_text): Likewise. * compile/compile-object-load.c (copy_sections): Likewise. (compile_object_load): Likewise. * compile/compile-object-run.c (compile_object_run): Likewise. * completer.c (filename_completer): Likewise. * corefile.c (read_memory_typed_address): Likewise. (write_memory_unsigned_integer): Likewise. (write_memory_signed_integer): Likewise. (complete_set_gnutarget): Likewise. * corelow.c (get_core_register_section): Likewise. * cp-name-parser.y (d_grab): Likewise. (allocate_info): Likewise. (cp_new_demangle_parse_info): Likewise. * cp-namespace.c (cp_scan_for_anonymous_namespaces): Likewise. (cp_lookup_symbol_in_namespace): Likewise. (lookup_namespace_scope): Likewise. (find_symbol_in_baseclass): Likewise. (cp_lookup_nested_symbol): Likewise. (cp_lookup_transparent_type_loop): Likewise. * cp-support.c (copy_string_to_obstack): Likewise. (make_symbol_overload_list): Likewise. (make_symbol_overload_list_namespace): Likewise. (make_symbol_overload_list_adl_namespace): Likewise. (first_component_command): Likewise. * cp-valprint.c (cp_print_value): Likewise. * ctf.c (ctf_xfer_partial): Likewise. * d-exp.y (StringExp): Likewise. * d-namespace.c (d_lookup_symbol_in_module): Likewise. (lookup_module_scope): Likewise. (find_symbol_in_baseclass): Likewise. (d_lookup_nested_symbol): Likewise. * dbxread.c (find_stab_function_addr): Likewise. (read_dbx_symtab): Likewise. (dbx_end_psymtab): Likewise. (cp_set_block_scope): Likewise. * dcache.c (dcache_alloc): Likewise. * demangle.c (_initialize_demangler): Likewise. * dicos-tdep.c (dicos_load_module_p): Likewise. * dictionary.c (dict_create_hashed_expandable): Likewise. (dict_create_linear_expandable): Likewise. (expand_hashtable): Likewise. (add_symbol_linear_expandable): Likewise. * dwarf2-frame.c (add_cie): Likewise. (add_fde): Likewise. (dwarf2_build_frame_info): Likewise. * dwarf2expr.c (dwarf_expr_grow_stack): Likewise. (dwarf_expr_fetch_address): Likewise. (add_piece): Likewise. (execute_stack_op): Likewise. * dwarf2loc.c (chain_candidate): Likewise. (dwarf_entry_parameter_to_value): Likewise. (read_pieced_value): Likewise. (write_pieced_value): Likewise. * dwarf2read.c (dwarf2_read_section): Likewise. (add_type_unit): Likewise. (read_comp_units_from_section): Likewise. (fixup_go_packaging): Likewise. (dwarf2_compute_name): Likewise. (dwarf2_physname): Likewise. (create_dwo_unit_in_dwp_v1): Likewise. (create_dwo_unit_in_dwp_v2): Likewise. (read_func_scope): Likewise. (read_call_site_scope): Likewise. (dwarf2_attach_fields_to_type): Likewise. (process_structure_scope): Likewise. (mark_common_block_symbol_computed): Likewise. (read_common_block): Likewise. (abbrev_table_read_table): Likewise. (guess_partial_die_structure_name): Likewise. (fixup_partial_die): Likewise. (add_file_name): Likewise. (dwarf2_const_value_data): Likewise. (dwarf2_const_value_attr): Likewise. (build_error_marker_type): Likewise. (guess_full_die_structure_name): Likewise. (anonymous_struct_prefix): Likewise. (typename_concat): Likewise. (dwarf2_canonicalize_name): Likewise. (dwarf2_name): Likewise. (write_constant_as_bytes): Likewise. (dwarf2_fetch_constant_bytes): Likewise. (copy_string): Likewise. (parse_macro_definition): Likewise. * elfread.c (elf_symfile_segments): Likewise. (elf_rel_plt_read): Likewise. (elf_gnu_ifunc_resolve_by_cache): Likewise. (elf_gnu_ifunc_resolve_by_got): Likewise. (elf_read_minimal_symbols): Likewise. (elf_gnu_ifunc_record_cache): Likewise. * event-top.c (top_level_prompt): Likewise. (command_line_handler): Likewise. * exec.c (resize_section_table): Likewise. * expprint.c (print_subexp_standard): Likewise. * fbsd-tdep.c (fbsd_collect_regset_section_cb): Likewise. * findcmd.c (parse_find_args): Likewise. * findvar.c (address_from_register): Likewise. * frame.c (get_prev_frame_always): Likewise. * gdb_bfd.c (gdb_bfd_ref): Likewise. (get_section_descriptor): Likewise. * gdb_obstack.c (obconcat): Likewise. (obstack_strdup): Likewise. * gdbtypes.c (lookup_function_type_with_arguments): Likewise. (create_set_type): Likewise. (lookup_unsigned_typename): Likewise. (lookup_signed_typename): Likewise. (resolve_dynamic_union): Likewise. (resolve_dynamic_struct): Likewise. (add_dyn_prop): Likewise. (copy_dynamic_prop_list): Likewise. (arch_flags_type): Likewise. (append_composite_type_field_raw): Likewise. * gdbtypes.h (INIT_FUNC_SPECIFIC): Likewise. * gnu-v3-abi.c (gnuv3_rtti_type): Likewise. * go-exp.y (string_exp): Likewise. * go-lang.c (go_demangle): Likewise. * guile/guile.c (compute_scheme_string): Likewise. * guile/scm-cmd.c (gdbscm_parse_command_name): Likewise. (gdbscm_canonicalize_command_name): Likewise. * guile/scm-ports.c (ioscm_init_stdio_buffers): Likewise. (ioscm_init_memory_port): Likewise. (ioscm_reinit_memory_port): Likewise. * guile/scm-utils.c (gdbscm_gc_xstrdup): Likewise. (gdbscm_gc_dup_argv): Likewise. * h8300-tdep.c (h8300_push_dummy_call): Likewise. * hppa-tdep.c (internalize_unwinds): Likewise. (read_unwind_info): Likewise. * i386-cygwin-tdep.c (core_process_module_section): Likewise. (windows_core_xfer_shared_libraries): Likewise. * i386-tdep.c (i386_displaced_step_copy_insn): Likewise. (i386_stap_parse_special_token_triplet): Likewise. (i386_stap_parse_special_token_three_arg_disp): Likewise. * i386obsd-tdep.c (i386obsd_sigtramp_p): Likewise. * inf-child.c (inf_child_fileio_readlink): Likewise. * inf-ptrace.c (inf_ptrace_fetch_register): Likewise. (inf_ptrace_store_register): Likewise. * infrun.c (follow_exec): Likewise. (displaced_step_prepare_throw): Likewise. (save_stop_context): Likewise. (save_infcall_suspend_state): Likewise. * jit.c (jit_read_descriptor): Likewise. (jit_read_code_entry): Likewise. (jit_symtab_line_mapping_add_impl): Likewise. (finalize_symtab): Likewise. (jit_unwind_reg_get_impl): Likewise. * jv-exp.y (QualifiedName): Likewise. * jv-lang.c (get_java_utf8_name): Likewise. (type_from_class): Likewise. (java_demangle_type_signature): Likewise. (java_class_name_from_physname): Likewise. * jv-typeprint.c (java_type_print_base): Likewise. * jv-valprint.c (java_value_print): Likewise. * language.c (add_language): Likewise. * linespec.c (add_sal_to_sals_basic): Likewise. (add_sal_to_sals): Likewise. (decode_objc): Likewise. (find_linespec_symbols): Likewise. * linux-fork.c (fork_save_infrun_state): Likewise. * linux-nat.c (linux_nat_detach): Likewise. (linux_nat_fileio_readlink): Likewise. * linux-record.c (record_linux_sockaddr): Likewise. (record_linux_msghdr): Likewise. (Do): Likewise. * linux-tdep.c (linux_core_info_proc_mappings): Likewise. (linux_collect_regset_section_cb): Likewise. (linux_get_siginfo_data): Likewise. * linux-thread-db.c (try_thread_db_load_from_pdir_1): Likewise. (try_thread_db_load_from_dir): Likewise. (thread_db_load_search): Likewise. (info_auto_load_libthread_db): Likewise. * m32c-tdep.c (m32c_m16c_address_to_pointer): Likewise. (m32c_m16c_pointer_to_address): Likewise. * m68hc11-tdep.c (m68hc11_pseudo_register_write): Likewise. * m68k-tdep.c (m68k_get_longjmp_target): Likewise. * machoread.c (macho_check_dsym): Likewise. * macroexp.c (resize_buffer): Likewise. (gather_arguments): Likewise. (maybe_expand): Likewise. * macrotab.c (new_macro_key): Likewise. (new_source_file): Likewise. (new_macro_definition): Likewise. * mdebugread.c (parse_symbol): Likewise. (parse_type): Likewise. (parse_partial_symbols): Likewise. (psymtab_to_symtab_1): Likewise. * mem-break.c (default_memory_insert_breakpoint): Likewise. * mi/mi-cmd-break.c (mi_argv_to_format): Likewise. * mi/mi-main.c (mi_cmd_data_read_memory): Likewise. (mi_cmd_data_read_memory_bytes): Likewise. (mi_cmd_data_write_memory_bytes): Likewise. (mi_cmd_trace_frame_collected): Likewise. * mi/mi-parse.c (mi_parse_argv): Likewise. (mi_parse): Likewise. * minidebug.c (lzma_open): Likewise. (lzma_pread): Likewise. * mips-tdep.c (mips_read_fp_register_single): Likewise. (mips_print_fp_register): Likewise. * mipsnbsd-tdep.c (mipsnbsd_get_longjmp_target): Likewise. * mipsread.c (read_alphacoff_dynamic_symtab): Likewise. * mt-tdep.c (mt_register_name): Likewise. (mt_registers_info): Likewise. (mt_push_dummy_call): Likewise. * namespace.c (add_using_directive): Likewise. * nat/linux-btrace.c (perf_event_read): Likewise. (linux_enable_bts): Likewise. * nat/linux-osdata.c (linux_common_core_of_thread): Likewise. * nat/linux-ptrace.c (linux_ptrace_test_ret_to_nx): Likewise. * nto-tdep.c (nto_find_and_open_solib): Likewise. (nto_parse_redirection): Likewise. * objc-lang.c (objc_demangle): Likewise. (find_methods): Likewise. * objfiles.c (get_objfile_bfd_data): Likewise. (set_objfile_main_name): Likewise. (allocate_objfile): Likewise. (objfile_relocate): Likewise. (update_section_map): Likewise. * osabi.c (generic_elf_osabi_sniff_abi_tag_sections): Likewise. * p-exp.y (exp): Likewise. (yylex): Likewise. * p-valprint.c (pascal_object_print_value): Likewise. * parse.c (initialize_expout): Likewise. (mark_completion_tag): Likewise. (copy_name): Likewise. (parse_float): Likewise. (type_stack_reserve): Likewise. * ppc-linux-tdep.c (ppc_stap_parse_special_token): Likewise. (ppu2spu_prev_register): Likewise. * ppc-ravenscar-thread.c (supply_register_at_address): Likewise. * printcmd.c (printf_wide_c_string): Likewise. (printf_pointer): Likewise. * probe.c (parse_probes): Likewise. * python/py-cmd.c (gdbpy_parse_command_name): Likewise. (cmdpy_init): Likewise. * python/py-gdb-readline.c (gdbpy_readline_wrapper): Likewise. * python/py-symtab.c (set_sal): Likewise. * python/py-unwind.c (pyuw_sniffer): Likewise. * python/python.c (python_interactive_command): Likewise. (compute_python_string): Likewise. * ravenscar-thread.c (get_running_thread_id): Likewise. * record-full.c (record_full_exec_insn): Likewise. (record_full_core_open_1): Likewise. * regcache.c (regcache_raw_read_signed): Likewise. (regcache_raw_read_unsigned): Likewise. (regcache_cooked_read_signed): Likewise. (regcache_cooked_read_unsigned): Likewise. * remote-fileio.c (remote_fileio_func_open): Likewise. (remote_fileio_func_rename): Likewise. (remote_fileio_func_unlink): Likewise. (remote_fileio_func_stat): Likewise. (remote_fileio_func_system): Likewise. * remote-mips.c (mips_xfer_memory): Likewise. (mips_load_srec): Likewise. (pmon_end_download): Likewise. * remote.c (new_remote_state): Likewise. (map_regcache_remote_table): Likewise. (remote_register_number_and_offset): Likewise. (init_remote_state): Likewise. (get_memory_packet_size): Likewise. (remote_pass_signals): Likewise. (remote_program_signals): Likewise. (remote_start_remote): Likewise. (remote_check_symbols): Likewise. (remote_query_supported): Likewise. (extended_remote_attach): Likewise. (process_g_packet): Likewise. (store_registers_using_G): Likewise. (putpkt_binary): Likewise. (read_frame): Likewise. (compare_sections_command): Likewise. (remote_hostio_pread): Likewise. (remote_hostio_readlink): Likewise. (remote_file_put): Likewise. (remote_file_get): Likewise. (remote_pid_to_exec_file): Likewise. (_initialize_remote): Likewise. * rs6000-aix-tdep.c (rs6000_aix_ld_info_to_xml): Likewise. (rs6000_aix_core_xfer_shared_libraries_aix): Likewise. * rs6000-tdep.c (ppc_displaced_step_copy_insn): Likewise. (bfd_uses_spe_extensions): Likewise. * s390-linux-tdep.c (s390_displaced_step_copy_insn): Likewise. * score-tdep.c (score7_malloc_and_get_memblock): Likewise. * solib-dsbt.c (decode_loadmap): Likewise. (fetch_loadmap): Likewise. (scan_dyntag): Likewise. (enable_break): Likewise. (dsbt_relocate_main_executable): Likewise. * solib-frv.c (fetch_loadmap): Likewise. (enable_break2): Likewise. (frv_relocate_main_executable): Likewise. * solib-spu.c (spu_relocate_main_executable): Likewise. (spu_bfd_open): Likewise. * solib-svr4.c (lm_info_read): Likewise. (read_program_header): Likewise. (find_program_interpreter): Likewise. (scan_dyntag): Likewise. (elf_locate_base): Likewise. (open_symbol_file_object): Likewise. (read_program_headers_from_bfd): Likewise. (svr4_relocate_main_executable): Likewise. * solib-target.c (solib_target_relocate_section_addresses): Likewise. * solib.c (solib_find_1): Likewise. (exec_file_find): Likewise. (solib_find): Likewise. * source.c (openp): Likewise. (print_source_lines_base): Likewise. (forward_search_command): Likewise. * sparc-ravenscar-thread.c (supply_register_at_address): Likewise. * spu-tdep.c (spu2ppu_prev_register): Likewise. (spu_get_overlay_table): Likewise. * stabsread.c (patch_block_stabs): Likewise. (define_symbol): Likewise. (again:): Likewise. (read_member_functions): Likewise. (read_one_struct_field): Likewise. (read_enum_type): Likewise. (common_block_start): Likewise. * stack.c (read_frame_arg): Likewise. (backtrace_command): Likewise. * stap-probe.c (stap_parse_register_operand): Likewise. * symfile.c (syms_from_objfile_1): Likewise. (find_separate_debug_file): Likewise. (load_command): Likewise. (load_progress): Likewise. (load_section_callback): Likewise. (reread_symbols): Likewise. (add_filename_language): Likewise. (allocate_compunit_symtab): Likewise. (read_target_long_array): Likewise. (simple_read_overlay_table): Likewise. * symtab.c (symbol_set_names): Likewise. (resize_symbol_cache): Likewise. (rbreak_command): Likewise. (completion_list_add_name): Likewise. (completion_list_objc_symbol): Likewise. (add_filename_to_list): Likewise. * target-descriptions.c (maint_print_c_tdesc_cmd): Likewise. * target-memory.c (target_write_memory_blocks): Likewise. * target.c (target_read_string): Likewise. (read_whatever_is_readable): Likewise. (target_read_alloc_1): Likewise. (simple_search_memory): Likewise. (target_fileio_read_alloc_1): Likewise. * tilegx-tdep.c (tilegx_push_dummy_call): Likewise. * top.c (command_line_input): Likewise. * tracefile-tfile.c (tfile_fetch_registers): Likewise. * tracefile.c (tracefile_fetch_registers): Likewise. * tracepoint.c (add_memrange): Likewise. (init_collection_list): Likewise. (add_aexpr): Likewise. (trace_dump_actions): Likewise. (parse_trace_status): Likewise. (parse_tracepoint_definition): Likewise. (parse_tsv_definition): Likewise. (parse_static_tracepoint_marker_definition): Likewise. * tui/tui-file.c (tui_sfileopen): Likewise. (tui_file_adjust_strbuf): Likewise. * tui/tui-io.c (tui_expand_tabs): Likewise. * tui/tui-source.c (tui_set_source_content): Likewise. * typeprint.c (find_global_typedef): Likewise. * ui-file.c (do_ui_file_xstrdup): Likewise. (ui_file_obsavestring): Likewise. (mem_file_write): Likewise. * utils.c (make_hex_string): Likewise. (get_regcomp_error): Likewise. (puts_filtered_tabular): Likewise. (gdb_realpath_keepfile): Likewise. (ldirname): Likewise. (gdb_bfd_errmsg): Likewise. (substitute_path_component): Likewise. * valops.c (search_struct_method): Likewise. (find_oload_champ_namespace_loop): Likewise. * valprint.c (print_decimal_chars): Likewise. (read_string): Likewise. (generic_emit_char): Likewise. * varobj.c (varobj_delete): Likewise. (varobj_value_get_print_value): Likewise. * vaxobsd-tdep.c (vaxobsd_sigtramp_sniffer): Likewise. * windows-tdep.c (display_one_tib): Likewise. * xcoffread.c (read_xcoff_symtab): Likewise. (process_xcoff_symbol): Likewise. (swap_sym): Likewise. (scan_xcoff_symtab): Likewise. (xcoff_initial_scan): Likewise. * xml-support.c (gdb_xml_end_element): Likewise. (xml_process_xincludes): Likewise. (xml_fetch_content_from_file): Likewise. * xml-syscall.c (xml_list_of_syscalls): Likewise. * xstormy16-tdep.c (xstormy16_push_dummy_call): Likewise. gdb/gdbserver/ChangeLog: * ax.c (gdb_parse_agent_expr): Add cast to allocation result assignment. (gdb_unparse_agent_expr): Likewise. * hostio.c (require_data): Likewise. (handle_pread): Likewise. * linux-low.c (disable_regset): Likewise. (fetch_register): Likewise. (store_register): Likewise. (get_dynamic): Likewise. (linux_qxfer_libraries_svr4): Likewise. * mem-break.c (delete_fast_tracepoint_jump): Likewise. (set_fast_tracepoint_jump): Likewise. (uninsert_fast_tracepoint_jumps_at): Likewise. (reinsert_fast_tracepoint_jumps_at): Likewise. (validate_inserted_breakpoint): Likewise. (clone_agent_expr): Likewise. * regcache.c (init_register_cache): Likewise. * remote-utils.c (putpkt_binary_1): Likewise. (decode_M_packet): Likewise. (decode_X_packet): Likewise. (look_up_one_symbol): Likewise. (relocate_instruction): Likewise. (monitor_output): Likewise. * server.c (handle_search_memory): Likewise. (handle_qxfer_exec_file): Likewise. (handle_qxfer_libraries): Likewise. (handle_qxfer): Likewise. (handle_query): Likewise. (handle_v_cont): Likewise. (handle_v_run): Likewise. (captured_main): Likewise. * target.c (write_inferior_memory): Likewise. * thread-db.c (try_thread_db_load_from_dir): Likewise. * tracepoint.c (init_trace_buffer): Likewise. (add_tracepoint_action): Likewise. (add_traceframe): Likewise. (add_traceframe_block): Likewise. (cmd_qtdpsrc): Likewise. (cmd_qtdv): Likewise. (cmd_qtstatus): Likewise. (response_source): Likewise. (response_tsv): Likewise. (cmd_qtnotes): Likewise. (gdb_collect): Likewise. (initialize_tracepoint): Likewise.
1412 lines
44 KiB
C
1412 lines
44 KiB
C
/* Abstraction of GNU v3 abi.
|
|
Contributed by Jim Blandy <jimb@redhat.com>
|
|
|
|
Copyright (C) 2001-2015 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#include "defs.h"
|
|
#include "value.h"
|
|
#include "cp-abi.h"
|
|
#include "cp-support.h"
|
|
#include "demangle.h"
|
|
#include "objfiles.h"
|
|
#include "valprint.h"
|
|
#include "c-lang.h"
|
|
#include "typeprint.h"
|
|
|
|
static struct cp_abi_ops gnu_v3_abi_ops;
|
|
|
|
/* A gdbarch key for std::type_info, in the event that it can't be
|
|
found in the debug info. */
|
|
|
|
static struct gdbarch_data *std_type_info_gdbarch_data;
|
|
|
|
|
|
static int
|
|
gnuv3_is_vtable_name (const char *name)
|
|
{
|
|
return startswith (name, "_ZTV");
|
|
}
|
|
|
|
static int
|
|
gnuv3_is_operator_name (const char *name)
|
|
{
|
|
return startswith (name, "operator");
|
|
}
|
|
|
|
|
|
/* To help us find the components of a vtable, we build ourselves a
|
|
GDB type object representing the vtable structure. Following the
|
|
V3 ABI, it goes something like this:
|
|
|
|
struct gdb_gnu_v3_abi_vtable {
|
|
|
|
/ * An array of virtual call and virtual base offsets. The real
|
|
length of this array depends on the class hierarchy; we use
|
|
negative subscripts to access the elements. Yucky, but
|
|
better than the alternatives. * /
|
|
ptrdiff_t vcall_and_vbase_offsets[0];
|
|
|
|
/ * The offset from a virtual pointer referring to this table
|
|
to the top of the complete object. * /
|
|
ptrdiff_t offset_to_top;
|
|
|
|
/ * The type_info pointer for this class. This is really a
|
|
std::type_info *, but GDB doesn't really look at the
|
|
type_info object itself, so we don't bother to get the type
|
|
exactly right. * /
|
|
void *type_info;
|
|
|
|
/ * Virtual table pointers in objects point here. * /
|
|
|
|
/ * Virtual function pointers. Like the vcall/vbase array, the
|
|
real length of this table depends on the class hierarchy. * /
|
|
void (*virtual_functions[0]) ();
|
|
|
|
};
|
|
|
|
The catch, of course, is that the exact layout of this table
|
|
depends on the ABI --- word size, endianness, alignment, etc. So
|
|
the GDB type object is actually a per-architecture kind of thing.
|
|
|
|
vtable_type_gdbarch_data is a gdbarch per-architecture data pointer
|
|
which refers to the struct type * for this structure, laid out
|
|
appropriately for the architecture. */
|
|
static struct gdbarch_data *vtable_type_gdbarch_data;
|
|
|
|
|
|
/* Human-readable names for the numbers of the fields above. */
|
|
enum {
|
|
vtable_field_vcall_and_vbase_offsets,
|
|
vtable_field_offset_to_top,
|
|
vtable_field_type_info,
|
|
vtable_field_virtual_functions
|
|
};
|
|
|
|
|
|
/* Return a GDB type representing `struct gdb_gnu_v3_abi_vtable',
|
|
described above, laid out appropriately for ARCH.
|
|
|
|
We use this function as the gdbarch per-architecture data
|
|
initialization function. */
|
|
static void *
|
|
build_gdb_vtable_type (struct gdbarch *arch)
|
|
{
|
|
struct type *t;
|
|
struct field *field_list, *field;
|
|
int offset;
|
|
|
|
struct type *void_ptr_type
|
|
= builtin_type (arch)->builtin_data_ptr;
|
|
struct type *ptr_to_void_fn_type
|
|
= builtin_type (arch)->builtin_func_ptr;
|
|
|
|
/* ARCH can't give us the true ptrdiff_t type, so we guess. */
|
|
struct type *ptrdiff_type
|
|
= arch_integer_type (arch, gdbarch_ptr_bit (arch), 0, "ptrdiff_t");
|
|
|
|
/* We assume no padding is necessary, since GDB doesn't know
|
|
anything about alignment at the moment. If this assumption bites
|
|
us, we should add a gdbarch method which, given a type, returns
|
|
the alignment that type requires, and then use that here. */
|
|
|
|
/* Build the field list. */
|
|
field_list = XCNEWVEC (struct field, 4);
|
|
field = &field_list[0];
|
|
offset = 0;
|
|
|
|
/* ptrdiff_t vcall_and_vbase_offsets[0]; */
|
|
FIELD_NAME (*field) = "vcall_and_vbase_offsets";
|
|
FIELD_TYPE (*field) = lookup_array_range_type (ptrdiff_type, 0, -1);
|
|
SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
|
|
offset += TYPE_LENGTH (FIELD_TYPE (*field));
|
|
field++;
|
|
|
|
/* ptrdiff_t offset_to_top; */
|
|
FIELD_NAME (*field) = "offset_to_top";
|
|
FIELD_TYPE (*field) = ptrdiff_type;
|
|
SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
|
|
offset += TYPE_LENGTH (FIELD_TYPE (*field));
|
|
field++;
|
|
|
|
/* void *type_info; */
|
|
FIELD_NAME (*field) = "type_info";
|
|
FIELD_TYPE (*field) = void_ptr_type;
|
|
SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
|
|
offset += TYPE_LENGTH (FIELD_TYPE (*field));
|
|
field++;
|
|
|
|
/* void (*virtual_functions[0]) (); */
|
|
FIELD_NAME (*field) = "virtual_functions";
|
|
FIELD_TYPE (*field) = lookup_array_range_type (ptr_to_void_fn_type, 0, -1);
|
|
SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
|
|
offset += TYPE_LENGTH (FIELD_TYPE (*field));
|
|
field++;
|
|
|
|
/* We assumed in the allocation above that there were four fields. */
|
|
gdb_assert (field == (field_list + 4));
|
|
|
|
t = arch_type (arch, TYPE_CODE_STRUCT, offset, NULL);
|
|
TYPE_NFIELDS (t) = field - field_list;
|
|
TYPE_FIELDS (t) = field_list;
|
|
TYPE_TAG_NAME (t) = "gdb_gnu_v3_abi_vtable";
|
|
INIT_CPLUS_SPECIFIC (t);
|
|
|
|
return make_type_with_address_space (t, TYPE_INSTANCE_FLAG_CODE_SPACE);
|
|
}
|
|
|
|
|
|
/* Return the ptrdiff_t type used in the vtable type. */
|
|
static struct type *
|
|
vtable_ptrdiff_type (struct gdbarch *gdbarch)
|
|
{
|
|
struct type *vtable_type = gdbarch_data (gdbarch, vtable_type_gdbarch_data);
|
|
|
|
/* The "offset_to_top" field has the appropriate (ptrdiff_t) type. */
|
|
return TYPE_FIELD_TYPE (vtable_type, vtable_field_offset_to_top);
|
|
}
|
|
|
|
/* Return the offset from the start of the imaginary `struct
|
|
gdb_gnu_v3_abi_vtable' object to the vtable's "address point"
|
|
(i.e., where objects' virtual table pointers point). */
|
|
static int
|
|
vtable_address_point_offset (struct gdbarch *gdbarch)
|
|
{
|
|
struct type *vtable_type = gdbarch_data (gdbarch, vtable_type_gdbarch_data);
|
|
|
|
return (TYPE_FIELD_BITPOS (vtable_type, vtable_field_virtual_functions)
|
|
/ TARGET_CHAR_BIT);
|
|
}
|
|
|
|
|
|
/* Determine whether structure TYPE is a dynamic class. Cache the
|
|
result. */
|
|
|
|
static int
|
|
gnuv3_dynamic_class (struct type *type)
|
|
{
|
|
int fieldnum, fieldelem;
|
|
|
|
type = check_typedef (type);
|
|
gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
|
|
|| TYPE_CODE (type) == TYPE_CODE_UNION);
|
|
|
|
if (TYPE_CODE (type) == TYPE_CODE_UNION)
|
|
return 0;
|
|
|
|
if (TYPE_CPLUS_DYNAMIC (type))
|
|
return TYPE_CPLUS_DYNAMIC (type) == 1;
|
|
|
|
ALLOCATE_CPLUS_STRUCT_TYPE (type);
|
|
|
|
for (fieldnum = 0; fieldnum < TYPE_N_BASECLASSES (type); fieldnum++)
|
|
if (BASETYPE_VIA_VIRTUAL (type, fieldnum)
|
|
|| gnuv3_dynamic_class (TYPE_FIELD_TYPE (type, fieldnum)))
|
|
{
|
|
TYPE_CPLUS_DYNAMIC (type) = 1;
|
|
return 1;
|
|
}
|
|
|
|
for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++)
|
|
for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum);
|
|
fieldelem++)
|
|
{
|
|
struct fn_field *f = TYPE_FN_FIELDLIST1 (type, fieldnum);
|
|
|
|
if (TYPE_FN_FIELD_VIRTUAL_P (f, fieldelem))
|
|
{
|
|
TYPE_CPLUS_DYNAMIC (type) = 1;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
TYPE_CPLUS_DYNAMIC (type) = -1;
|
|
return 0;
|
|
}
|
|
|
|
/* Find the vtable for a value of CONTAINER_TYPE located at
|
|
CONTAINER_ADDR. Return a value of the correct vtable type for this
|
|
architecture, or NULL if CONTAINER does not have a vtable. */
|
|
|
|
static struct value *
|
|
gnuv3_get_vtable (struct gdbarch *gdbarch,
|
|
struct type *container_type, CORE_ADDR container_addr)
|
|
{
|
|
struct type *vtable_type = gdbarch_data (gdbarch,
|
|
vtable_type_gdbarch_data);
|
|
struct type *vtable_pointer_type;
|
|
struct value *vtable_pointer;
|
|
CORE_ADDR vtable_address;
|
|
|
|
container_type = check_typedef (container_type);
|
|
gdb_assert (TYPE_CODE (container_type) == TYPE_CODE_STRUCT);
|
|
|
|
/* If this type does not have a virtual table, don't read the first
|
|
field. */
|
|
if (!gnuv3_dynamic_class (container_type))
|
|
return NULL;
|
|
|
|
/* We do not consult the debug information to find the virtual table.
|
|
The ABI specifies that it is always at offset zero in any class,
|
|
and debug information may not represent it.
|
|
|
|
We avoid using value_contents on principle, because the object might
|
|
be large. */
|
|
|
|
/* Find the type "pointer to virtual table". */
|
|
vtable_pointer_type = lookup_pointer_type (vtable_type);
|
|
|
|
/* Load it from the start of the class. */
|
|
vtable_pointer = value_at (vtable_pointer_type, container_addr);
|
|
vtable_address = value_as_address (vtable_pointer);
|
|
|
|
/* Correct it to point at the start of the virtual table, rather
|
|
than the address point. */
|
|
return value_at_lazy (vtable_type,
|
|
vtable_address
|
|
- vtable_address_point_offset (gdbarch));
|
|
}
|
|
|
|
|
|
static struct type *
|
|
gnuv3_rtti_type (struct value *value,
|
|
int *full_p, int *top_p, int *using_enc_p)
|
|
{
|
|
struct gdbarch *gdbarch;
|
|
struct type *values_type = check_typedef (value_type (value));
|
|
struct value *vtable;
|
|
struct minimal_symbol *vtable_symbol;
|
|
const char *vtable_symbol_name;
|
|
const char *class_name;
|
|
struct type *run_time_type;
|
|
LONGEST offset_to_top;
|
|
char *atsign;
|
|
|
|
/* We only have RTTI for class objects. */
|
|
if (TYPE_CODE (values_type) != TYPE_CODE_STRUCT)
|
|
return NULL;
|
|
|
|
/* Java doesn't have RTTI following the C++ ABI. */
|
|
if (TYPE_CPLUS_REALLY_JAVA (values_type))
|
|
return NULL;
|
|
|
|
/* Determine architecture. */
|
|
gdbarch = get_type_arch (values_type);
|
|
|
|
if (using_enc_p)
|
|
*using_enc_p = 0;
|
|
|
|
vtable = gnuv3_get_vtable (gdbarch, values_type,
|
|
value_as_address (value_addr (value)));
|
|
if (vtable == NULL)
|
|
return NULL;
|
|
|
|
/* Find the linker symbol for this vtable. */
|
|
vtable_symbol
|
|
= lookup_minimal_symbol_by_pc (value_address (vtable)
|
|
+ value_embedded_offset (vtable)).minsym;
|
|
if (! vtable_symbol)
|
|
return NULL;
|
|
|
|
/* The symbol's demangled name should be something like "vtable for
|
|
CLASS", where CLASS is the name of the run-time type of VALUE.
|
|
If we didn't like this approach, we could instead look in the
|
|
type_info object itself to get the class name. But this way
|
|
should work just as well, and doesn't read target memory. */
|
|
vtable_symbol_name = MSYMBOL_DEMANGLED_NAME (vtable_symbol);
|
|
if (vtable_symbol_name == NULL
|
|
|| !startswith (vtable_symbol_name, "vtable for "))
|
|
{
|
|
warning (_("can't find linker symbol for virtual table for `%s' value"),
|
|
TYPE_SAFE_NAME (values_type));
|
|
if (vtable_symbol_name)
|
|
warning (_(" found `%s' instead"), vtable_symbol_name);
|
|
return NULL;
|
|
}
|
|
class_name = vtable_symbol_name + 11;
|
|
|
|
/* Strip off @plt and version suffixes. */
|
|
atsign = strchr (class_name, '@');
|
|
if (atsign != NULL)
|
|
{
|
|
char *copy;
|
|
|
|
copy = (char *) alloca (atsign - class_name + 1);
|
|
memcpy (copy, class_name, atsign - class_name);
|
|
copy[atsign - class_name] = '\0';
|
|
class_name = copy;
|
|
}
|
|
|
|
/* Try to look up the class name as a type name. */
|
|
/* FIXME: chastain/2003-11-26: block=NULL is bogus. See pr gdb/1465. */
|
|
run_time_type = cp_lookup_rtti_type (class_name, NULL);
|
|
if (run_time_type == NULL)
|
|
return NULL;
|
|
|
|
/* Get the offset from VALUE to the top of the complete object.
|
|
NOTE: this is the reverse of the meaning of *TOP_P. */
|
|
offset_to_top
|
|
= value_as_long (value_field (vtable, vtable_field_offset_to_top));
|
|
|
|
if (full_p)
|
|
*full_p = (- offset_to_top == value_embedded_offset (value)
|
|
&& (TYPE_LENGTH (value_enclosing_type (value))
|
|
>= TYPE_LENGTH (run_time_type)));
|
|
if (top_p)
|
|
*top_p = - offset_to_top;
|
|
return run_time_type;
|
|
}
|
|
|
|
/* Return a function pointer for CONTAINER's VTABLE_INDEX'th virtual
|
|
function, of type FNTYPE. */
|
|
|
|
static struct value *
|
|
gnuv3_get_virtual_fn (struct gdbarch *gdbarch, struct value *container,
|
|
struct type *fntype, int vtable_index)
|
|
{
|
|
struct value *vtable, *vfn;
|
|
|
|
/* Every class with virtual functions must have a vtable. */
|
|
vtable = gnuv3_get_vtable (gdbarch, value_type (container),
|
|
value_as_address (value_addr (container)));
|
|
gdb_assert (vtable != NULL);
|
|
|
|
/* Fetch the appropriate function pointer from the vtable. */
|
|
vfn = value_subscript (value_field (vtable, vtable_field_virtual_functions),
|
|
vtable_index);
|
|
|
|
/* If this architecture uses function descriptors directly in the vtable,
|
|
then the address of the vtable entry is actually a "function pointer"
|
|
(i.e. points to the descriptor). We don't need to scale the index
|
|
by the size of a function descriptor; GCC does that before outputing
|
|
debug information. */
|
|
if (gdbarch_vtable_function_descriptors (gdbarch))
|
|
vfn = value_addr (vfn);
|
|
|
|
/* Cast the function pointer to the appropriate type. */
|
|
vfn = value_cast (lookup_pointer_type (fntype), vfn);
|
|
|
|
return vfn;
|
|
}
|
|
|
|
/* GNU v3 implementation of value_virtual_fn_field. See cp-abi.h
|
|
for a description of the arguments. */
|
|
|
|
static struct value *
|
|
gnuv3_virtual_fn_field (struct value **value_p,
|
|
struct fn_field *f, int j,
|
|
struct type *vfn_base, int offset)
|
|
{
|
|
struct type *values_type = check_typedef (value_type (*value_p));
|
|
struct gdbarch *gdbarch;
|
|
|
|
/* Some simple sanity checks. */
|
|
if (TYPE_CODE (values_type) != TYPE_CODE_STRUCT)
|
|
error (_("Only classes can have virtual functions."));
|
|
|
|
/* Determine architecture. */
|
|
gdbarch = get_type_arch (values_type);
|
|
|
|
/* Cast our value to the base class which defines this virtual
|
|
function. This takes care of any necessary `this'
|
|
adjustments. */
|
|
if (vfn_base != values_type)
|
|
*value_p = value_cast (vfn_base, *value_p);
|
|
|
|
return gnuv3_get_virtual_fn (gdbarch, *value_p, TYPE_FN_FIELD_TYPE (f, j),
|
|
TYPE_FN_FIELD_VOFFSET (f, j));
|
|
}
|
|
|
|
/* Compute the offset of the baseclass which is
|
|
the INDEXth baseclass of class TYPE,
|
|
for value at VALADDR (in host) at ADDRESS (in target).
|
|
The result is the offset of the baseclass value relative
|
|
to (the address of)(ARG) + OFFSET.
|
|
|
|
-1 is returned on error. */
|
|
|
|
static int
|
|
gnuv3_baseclass_offset (struct type *type, int index,
|
|
const bfd_byte *valaddr, int embedded_offset,
|
|
CORE_ADDR address, const struct value *val)
|
|
{
|
|
struct gdbarch *gdbarch;
|
|
struct type *ptr_type;
|
|
struct value *vtable;
|
|
struct value *vbase_array;
|
|
long int cur_base_offset, base_offset;
|
|
|
|
/* Determine architecture. */
|
|
gdbarch = get_type_arch (type);
|
|
ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
|
|
|
|
/* If it isn't a virtual base, this is easy. The offset is in the
|
|
type definition. Likewise for Java, which doesn't really have
|
|
virtual inheritance in the C++ sense. */
|
|
if (!BASETYPE_VIA_VIRTUAL (type, index) || TYPE_CPLUS_REALLY_JAVA (type))
|
|
return TYPE_BASECLASS_BITPOS (type, index) / 8;
|
|
|
|
/* To access a virtual base, we need to use the vbase offset stored in
|
|
our vtable. Recent GCC versions provide this information. If it isn't
|
|
available, we could get what we needed from RTTI, or from drawing the
|
|
complete inheritance graph based on the debug info. Neither is
|
|
worthwhile. */
|
|
cur_base_offset = TYPE_BASECLASS_BITPOS (type, index) / 8;
|
|
if (cur_base_offset >= - vtable_address_point_offset (gdbarch))
|
|
error (_("Expected a negative vbase offset (old compiler?)"));
|
|
|
|
cur_base_offset = cur_base_offset + vtable_address_point_offset (gdbarch);
|
|
if ((- cur_base_offset) % TYPE_LENGTH (ptr_type) != 0)
|
|
error (_("Misaligned vbase offset."));
|
|
cur_base_offset = cur_base_offset / ((int) TYPE_LENGTH (ptr_type));
|
|
|
|
vtable = gnuv3_get_vtable (gdbarch, type, address + embedded_offset);
|
|
gdb_assert (vtable != NULL);
|
|
vbase_array = value_field (vtable, vtable_field_vcall_and_vbase_offsets);
|
|
base_offset = value_as_long (value_subscript (vbase_array, cur_base_offset));
|
|
return base_offset;
|
|
}
|
|
|
|
/* Locate a virtual method in DOMAIN or its non-virtual base classes
|
|
which has virtual table index VOFFSET. The method has an associated
|
|
"this" adjustment of ADJUSTMENT bytes. */
|
|
|
|
static const char *
|
|
gnuv3_find_method_in (struct type *domain, CORE_ADDR voffset,
|
|
LONGEST adjustment)
|
|
{
|
|
int i;
|
|
|
|
/* Search this class first. */
|
|
if (adjustment == 0)
|
|
{
|
|
int len;
|
|
|
|
len = TYPE_NFN_FIELDS (domain);
|
|
for (i = 0; i < len; i++)
|
|
{
|
|
int len2, j;
|
|
struct fn_field *f;
|
|
|
|
f = TYPE_FN_FIELDLIST1 (domain, i);
|
|
len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);
|
|
|
|
check_stub_method_group (domain, i);
|
|
for (j = 0; j < len2; j++)
|
|
if (TYPE_FN_FIELD_VOFFSET (f, j) == voffset)
|
|
return TYPE_FN_FIELD_PHYSNAME (f, j);
|
|
}
|
|
}
|
|
|
|
/* Next search non-virtual bases. If it's in a virtual base,
|
|
we're out of luck. */
|
|
for (i = 0; i < TYPE_N_BASECLASSES (domain); i++)
|
|
{
|
|
int pos;
|
|
struct type *basetype;
|
|
|
|
if (BASETYPE_VIA_VIRTUAL (domain, i))
|
|
continue;
|
|
|
|
pos = TYPE_BASECLASS_BITPOS (domain, i) / 8;
|
|
basetype = TYPE_FIELD_TYPE (domain, i);
|
|
/* Recurse with a modified adjustment. We don't need to adjust
|
|
voffset. */
|
|
if (adjustment >= pos && adjustment < pos + TYPE_LENGTH (basetype))
|
|
return gnuv3_find_method_in (basetype, voffset, adjustment - pos);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Decode GNU v3 method pointer. */
|
|
|
|
static int
|
|
gnuv3_decode_method_ptr (struct gdbarch *gdbarch,
|
|
const gdb_byte *contents,
|
|
CORE_ADDR *value_p,
|
|
LONGEST *adjustment_p)
|
|
{
|
|
struct type *funcptr_type = builtin_type (gdbarch)->builtin_func_ptr;
|
|
struct type *offset_type = vtable_ptrdiff_type (gdbarch);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
CORE_ADDR ptr_value;
|
|
LONGEST voffset, adjustment;
|
|
int vbit;
|
|
|
|
/* Extract the pointer to member. The first element is either a pointer
|
|
or a vtable offset. For pointers, we need to use extract_typed_address
|
|
to allow the back-end to convert the pointer to a GDB address -- but
|
|
vtable offsets we must handle as integers. At this point, we do not
|
|
yet know which case we have, so we extract the value under both
|
|
interpretations and choose the right one later on. */
|
|
ptr_value = extract_typed_address (contents, funcptr_type);
|
|
voffset = extract_signed_integer (contents,
|
|
TYPE_LENGTH (funcptr_type), byte_order);
|
|
contents += TYPE_LENGTH (funcptr_type);
|
|
adjustment = extract_signed_integer (contents,
|
|
TYPE_LENGTH (offset_type), byte_order);
|
|
|
|
if (!gdbarch_vbit_in_delta (gdbarch))
|
|
{
|
|
vbit = voffset & 1;
|
|
voffset = voffset ^ vbit;
|
|
}
|
|
else
|
|
{
|
|
vbit = adjustment & 1;
|
|
adjustment = adjustment >> 1;
|
|
}
|
|
|
|
*value_p = vbit? voffset : ptr_value;
|
|
*adjustment_p = adjustment;
|
|
return vbit;
|
|
}
|
|
|
|
/* GNU v3 implementation of cplus_print_method_ptr. */
|
|
|
|
static void
|
|
gnuv3_print_method_ptr (const gdb_byte *contents,
|
|
struct type *type,
|
|
struct ui_file *stream)
|
|
{
|
|
struct type *self_type = TYPE_SELF_TYPE (type);
|
|
struct gdbarch *gdbarch = get_type_arch (self_type);
|
|
CORE_ADDR ptr_value;
|
|
LONGEST adjustment;
|
|
int vbit;
|
|
|
|
/* Extract the pointer to member. */
|
|
vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment);
|
|
|
|
/* Check for NULL. */
|
|
if (ptr_value == 0 && vbit == 0)
|
|
{
|
|
fprintf_filtered (stream, "NULL");
|
|
return;
|
|
}
|
|
|
|
/* Search for a virtual method. */
|
|
if (vbit)
|
|
{
|
|
CORE_ADDR voffset;
|
|
const char *physname;
|
|
|
|
/* It's a virtual table offset, maybe in this class. Search
|
|
for a field with the correct vtable offset. First convert it
|
|
to an index, as used in TYPE_FN_FIELD_VOFFSET. */
|
|
voffset = ptr_value / TYPE_LENGTH (vtable_ptrdiff_type (gdbarch));
|
|
|
|
physname = gnuv3_find_method_in (self_type, voffset, adjustment);
|
|
|
|
/* If we found a method, print that. We don't bother to disambiguate
|
|
possible paths to the method based on the adjustment. */
|
|
if (physname)
|
|
{
|
|
char *demangled_name = gdb_demangle (physname,
|
|
DMGL_ANSI | DMGL_PARAMS);
|
|
|
|
fprintf_filtered (stream, "&virtual ");
|
|
if (demangled_name == NULL)
|
|
fputs_filtered (physname, stream);
|
|
else
|
|
{
|
|
fputs_filtered (demangled_name, stream);
|
|
xfree (demangled_name);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
else if (ptr_value != 0)
|
|
{
|
|
/* Found a non-virtual function: print out the type. */
|
|
fputs_filtered ("(", stream);
|
|
c_print_type (type, "", stream, -1, 0, &type_print_raw_options);
|
|
fputs_filtered (") ", stream);
|
|
}
|
|
|
|
/* We didn't find it; print the raw data. */
|
|
if (vbit)
|
|
{
|
|
fprintf_filtered (stream, "&virtual table offset ");
|
|
print_longest (stream, 'd', 1, ptr_value);
|
|
}
|
|
else
|
|
{
|
|
struct value_print_options opts;
|
|
|
|
get_user_print_options (&opts);
|
|
print_address_demangle (&opts, gdbarch, ptr_value, stream, demangle);
|
|
}
|
|
|
|
if (adjustment)
|
|
{
|
|
fprintf_filtered (stream, ", this adjustment ");
|
|
print_longest (stream, 'd', 1, adjustment);
|
|
}
|
|
}
|
|
|
|
/* GNU v3 implementation of cplus_method_ptr_size. */
|
|
|
|
static int
|
|
gnuv3_method_ptr_size (struct type *type)
|
|
{
|
|
struct gdbarch *gdbarch = get_type_arch (type);
|
|
|
|
return 2 * TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
|
|
}
|
|
|
|
/* GNU v3 implementation of cplus_make_method_ptr. */
|
|
|
|
static void
|
|
gnuv3_make_method_ptr (struct type *type, gdb_byte *contents,
|
|
CORE_ADDR value, int is_virtual)
|
|
{
|
|
struct gdbarch *gdbarch = get_type_arch (type);
|
|
int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
|
|
/* FIXME drow/2006-12-24: The adjustment of "this" is currently
|
|
always zero, since the method pointer is of the correct type.
|
|
But if the method pointer came from a base class, this is
|
|
incorrect - it should be the offset to the base. The best
|
|
fix might be to create the pointer to member pointing at the
|
|
base class and cast it to the derived class, but that requires
|
|
support for adjusting pointers to members when casting them -
|
|
not currently supported by GDB. */
|
|
|
|
if (!gdbarch_vbit_in_delta (gdbarch))
|
|
{
|
|
store_unsigned_integer (contents, size, byte_order, value | is_virtual);
|
|
store_unsigned_integer (contents + size, size, byte_order, 0);
|
|
}
|
|
else
|
|
{
|
|
store_unsigned_integer (contents, size, byte_order, value);
|
|
store_unsigned_integer (contents + size, size, byte_order, is_virtual);
|
|
}
|
|
}
|
|
|
|
/* GNU v3 implementation of cplus_method_ptr_to_value. */
|
|
|
|
static struct value *
|
|
gnuv3_method_ptr_to_value (struct value **this_p, struct value *method_ptr)
|
|
{
|
|
struct gdbarch *gdbarch;
|
|
const gdb_byte *contents = value_contents (method_ptr);
|
|
CORE_ADDR ptr_value;
|
|
struct type *self_type, *final_type, *method_type;
|
|
LONGEST adjustment;
|
|
int vbit;
|
|
|
|
self_type = TYPE_SELF_TYPE (check_typedef (value_type (method_ptr)));
|
|
final_type = lookup_pointer_type (self_type);
|
|
|
|
method_type = TYPE_TARGET_TYPE (check_typedef (value_type (method_ptr)));
|
|
|
|
/* Extract the pointer to member. */
|
|
gdbarch = get_type_arch (self_type);
|
|
vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment);
|
|
|
|
/* First convert THIS to match the containing type of the pointer to
|
|
member. This cast may adjust the value of THIS. */
|
|
*this_p = value_cast (final_type, *this_p);
|
|
|
|
/* Then apply whatever adjustment is necessary. This creates a somewhat
|
|
strange pointer: it claims to have type FINAL_TYPE, but in fact it
|
|
might not be a valid FINAL_TYPE. For instance, it might be a
|
|
base class of FINAL_TYPE. And if it's not the primary base class,
|
|
then printing it out as a FINAL_TYPE object would produce some pretty
|
|
garbage.
|
|
|
|
But we don't really know the type of the first argument in
|
|
METHOD_TYPE either, which is why this happens. We can't
|
|
dereference this later as a FINAL_TYPE, but once we arrive in the
|
|
called method we'll have debugging information for the type of
|
|
"this" - and that'll match the value we produce here.
|
|
|
|
You can provoke this case by casting a Base::* to a Derived::*, for
|
|
instance. */
|
|
*this_p = value_cast (builtin_type (gdbarch)->builtin_data_ptr, *this_p);
|
|
*this_p = value_ptradd (*this_p, adjustment);
|
|
*this_p = value_cast (final_type, *this_p);
|
|
|
|
if (vbit)
|
|
{
|
|
LONGEST voffset;
|
|
|
|
voffset = ptr_value / TYPE_LENGTH (vtable_ptrdiff_type (gdbarch));
|
|
return gnuv3_get_virtual_fn (gdbarch, value_ind (*this_p),
|
|
method_type, voffset);
|
|
}
|
|
else
|
|
return value_from_pointer (lookup_pointer_type (method_type), ptr_value);
|
|
}
|
|
|
|
/* Objects of this type are stored in a hash table and a vector when
|
|
printing the vtables for a class. */
|
|
|
|
struct value_and_voffset
|
|
{
|
|
/* The value representing the object. */
|
|
struct value *value;
|
|
|
|
/* The maximum vtable offset we've found for any object at this
|
|
offset in the outermost object. */
|
|
int max_voffset;
|
|
};
|
|
|
|
typedef struct value_and_voffset *value_and_voffset_p;
|
|
DEF_VEC_P (value_and_voffset_p);
|
|
|
|
/* Hash function for value_and_voffset. */
|
|
|
|
static hashval_t
|
|
hash_value_and_voffset (const void *p)
|
|
{
|
|
const struct value_and_voffset *o = p;
|
|
|
|
return value_address (o->value) + value_embedded_offset (o->value);
|
|
}
|
|
|
|
/* Equality function for value_and_voffset. */
|
|
|
|
static int
|
|
eq_value_and_voffset (const void *a, const void *b)
|
|
{
|
|
const struct value_and_voffset *ova = a;
|
|
const struct value_and_voffset *ovb = b;
|
|
|
|
return (value_address (ova->value) + value_embedded_offset (ova->value)
|
|
== value_address (ovb->value) + value_embedded_offset (ovb->value));
|
|
}
|
|
|
|
/* qsort comparison function for value_and_voffset. */
|
|
|
|
static int
|
|
compare_value_and_voffset (const void *a, const void *b)
|
|
{
|
|
const struct value_and_voffset * const *ova = a;
|
|
CORE_ADDR addra = (value_address ((*ova)->value)
|
|
+ value_embedded_offset ((*ova)->value));
|
|
const struct value_and_voffset * const *ovb = b;
|
|
CORE_ADDR addrb = (value_address ((*ovb)->value)
|
|
+ value_embedded_offset ((*ovb)->value));
|
|
|
|
if (addra < addrb)
|
|
return -1;
|
|
if (addra > addrb)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/* A helper function used when printing vtables. This determines the
|
|
key (most derived) sub-object at each address and also computes the
|
|
maximum vtable offset seen for the corresponding vtable. Updates
|
|
OFFSET_HASH and OFFSET_VEC with a new value_and_voffset object, if
|
|
needed. VALUE is the object to examine. */
|
|
|
|
static void
|
|
compute_vtable_size (htab_t offset_hash,
|
|
VEC (value_and_voffset_p) **offset_vec,
|
|
struct value *value)
|
|
{
|
|
int i;
|
|
struct type *type = check_typedef (value_type (value));
|
|
void **slot;
|
|
struct value_and_voffset search_vo, *current_vo;
|
|
|
|
gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
|
|
|
|
/* If the object is not dynamic, then we are done; as it cannot have
|
|
dynamic base types either. */
|
|
if (!gnuv3_dynamic_class (type))
|
|
return;
|
|
|
|
/* Update the hash and the vec, if needed. */
|
|
search_vo.value = value;
|
|
slot = htab_find_slot (offset_hash, &search_vo, INSERT);
|
|
if (*slot)
|
|
current_vo = *slot;
|
|
else
|
|
{
|
|
current_vo = XNEW (struct value_and_voffset);
|
|
current_vo->value = value;
|
|
current_vo->max_voffset = -1;
|
|
*slot = current_vo;
|
|
VEC_safe_push (value_and_voffset_p, *offset_vec, current_vo);
|
|
}
|
|
|
|
/* Update the value_and_voffset object with the highest vtable
|
|
offset from this class. */
|
|
for (i = 0; i < TYPE_NFN_FIELDS (type); ++i)
|
|
{
|
|
int j;
|
|
struct fn_field *fn = TYPE_FN_FIELDLIST1 (type, i);
|
|
|
|
for (j = 0; j < TYPE_FN_FIELDLIST_LENGTH (type, i); ++j)
|
|
{
|
|
if (TYPE_FN_FIELD_VIRTUAL_P (fn, j))
|
|
{
|
|
int voffset = TYPE_FN_FIELD_VOFFSET (fn, j);
|
|
|
|
if (voffset > current_vo->max_voffset)
|
|
current_vo->max_voffset = voffset;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Recurse into base classes. */
|
|
for (i = 0; i < TYPE_N_BASECLASSES (type); ++i)
|
|
compute_vtable_size (offset_hash, offset_vec, value_field (value, i));
|
|
}
|
|
|
|
/* Helper for gnuv3_print_vtable that prints a single vtable. */
|
|
|
|
static void
|
|
print_one_vtable (struct gdbarch *gdbarch, struct value *value,
|
|
int max_voffset,
|
|
struct value_print_options *opts)
|
|
{
|
|
int i;
|
|
struct type *type = check_typedef (value_type (value));
|
|
struct value *vtable;
|
|
CORE_ADDR vt_addr;
|
|
|
|
vtable = gnuv3_get_vtable (gdbarch, type,
|
|
value_address (value)
|
|
+ value_embedded_offset (value));
|
|
vt_addr = value_address (value_field (vtable,
|
|
vtable_field_virtual_functions));
|
|
|
|
printf_filtered (_("vtable for '%s' @ %s (subobject @ %s):\n"),
|
|
TYPE_SAFE_NAME (type),
|
|
paddress (gdbarch, vt_addr),
|
|
paddress (gdbarch, (value_address (value)
|
|
+ value_embedded_offset (value))));
|
|
|
|
for (i = 0; i <= max_voffset; ++i)
|
|
{
|
|
/* Initialize it just to avoid a GCC false warning. */
|
|
CORE_ADDR addr = 0;
|
|
int got_error = 0;
|
|
struct value *vfn;
|
|
|
|
printf_filtered ("[%d]: ", i);
|
|
|
|
vfn = value_subscript (value_field (vtable,
|
|
vtable_field_virtual_functions),
|
|
i);
|
|
|
|
if (gdbarch_vtable_function_descriptors (gdbarch))
|
|
vfn = value_addr (vfn);
|
|
|
|
TRY
|
|
{
|
|
addr = value_as_address (vfn);
|
|
}
|
|
CATCH (ex, RETURN_MASK_ERROR)
|
|
{
|
|
printf_filtered (_("<error: %s>"), ex.message);
|
|
got_error = 1;
|
|
}
|
|
END_CATCH
|
|
|
|
if (!got_error)
|
|
print_function_pointer_address (opts, gdbarch, addr, gdb_stdout);
|
|
printf_filtered ("\n");
|
|
}
|
|
}
|
|
|
|
/* Implementation of the print_vtable method. */
|
|
|
|
static void
|
|
gnuv3_print_vtable (struct value *value)
|
|
{
|
|
struct gdbarch *gdbarch;
|
|
struct type *type;
|
|
struct value *vtable;
|
|
struct value_print_options opts;
|
|
htab_t offset_hash;
|
|
struct cleanup *cleanup;
|
|
VEC (value_and_voffset_p) *result_vec = NULL;
|
|
struct value_and_voffset *iter;
|
|
int i, count;
|
|
|
|
value = coerce_ref (value);
|
|
type = check_typedef (value_type (value));
|
|
if (TYPE_CODE (type) == TYPE_CODE_PTR)
|
|
{
|
|
value = value_ind (value);
|
|
type = check_typedef (value_type (value));
|
|
}
|
|
|
|
get_user_print_options (&opts);
|
|
|
|
/* Respect 'set print object'. */
|
|
if (opts.objectprint)
|
|
{
|
|
value = value_full_object (value, NULL, 0, 0, 0);
|
|
type = check_typedef (value_type (value));
|
|
}
|
|
|
|
gdbarch = get_type_arch (type);
|
|
|
|
vtable = NULL;
|
|
if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
|
|
vtable = gnuv3_get_vtable (gdbarch, type,
|
|
value_as_address (value_addr (value)));
|
|
|
|
if (!vtable)
|
|
{
|
|
printf_filtered (_("This object does not have a virtual function table\n"));
|
|
return;
|
|
}
|
|
|
|
offset_hash = htab_create_alloc (1, hash_value_and_voffset,
|
|
eq_value_and_voffset,
|
|
xfree, xcalloc, xfree);
|
|
cleanup = make_cleanup_htab_delete (offset_hash);
|
|
make_cleanup (VEC_cleanup (value_and_voffset_p), &result_vec);
|
|
|
|
compute_vtable_size (offset_hash, &result_vec, value);
|
|
|
|
qsort (VEC_address (value_and_voffset_p, result_vec),
|
|
VEC_length (value_and_voffset_p, result_vec),
|
|
sizeof (value_and_voffset_p),
|
|
compare_value_and_voffset);
|
|
|
|
count = 0;
|
|
for (i = 0; VEC_iterate (value_and_voffset_p, result_vec, i, iter); ++i)
|
|
{
|
|
if (iter->max_voffset >= 0)
|
|
{
|
|
if (count > 0)
|
|
printf_filtered ("\n");
|
|
print_one_vtable (gdbarch, iter->value, iter->max_voffset, &opts);
|
|
++count;
|
|
}
|
|
}
|
|
|
|
do_cleanups (cleanup);
|
|
}
|
|
|
|
/* Return a GDB type representing `struct std::type_info', laid out
|
|
appropriately for ARCH.
|
|
|
|
We use this function as the gdbarch per-architecture data
|
|
initialization function. */
|
|
|
|
static void *
|
|
build_std_type_info_type (struct gdbarch *arch)
|
|
{
|
|
struct type *t;
|
|
struct field *field_list, *field;
|
|
int offset;
|
|
struct type *void_ptr_type
|
|
= builtin_type (arch)->builtin_data_ptr;
|
|
struct type *char_type
|
|
= builtin_type (arch)->builtin_char;
|
|
struct type *char_ptr_type
|
|
= make_pointer_type (make_cv_type (1, 0, char_type, NULL), NULL);
|
|
|
|
field_list = XCNEWVEC (struct field, 2);
|
|
field = &field_list[0];
|
|
offset = 0;
|
|
|
|
/* The vtable. */
|
|
FIELD_NAME (*field) = "_vptr.type_info";
|
|
FIELD_TYPE (*field) = void_ptr_type;
|
|
SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
|
|
offset += TYPE_LENGTH (FIELD_TYPE (*field));
|
|
field++;
|
|
|
|
/* The name. */
|
|
FIELD_NAME (*field) = "__name";
|
|
FIELD_TYPE (*field) = char_ptr_type;
|
|
SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
|
|
offset += TYPE_LENGTH (FIELD_TYPE (*field));
|
|
field++;
|
|
|
|
gdb_assert (field == (field_list + 2));
|
|
|
|
t = arch_type (arch, TYPE_CODE_STRUCT, offset, NULL);
|
|
TYPE_NFIELDS (t) = field - field_list;
|
|
TYPE_FIELDS (t) = field_list;
|
|
TYPE_TAG_NAME (t) = "gdb_gnu_v3_type_info";
|
|
INIT_CPLUS_SPECIFIC (t);
|
|
|
|
return t;
|
|
}
|
|
|
|
/* Implement the 'get_typeid_type' method. */
|
|
|
|
static struct type *
|
|
gnuv3_get_typeid_type (struct gdbarch *gdbarch)
|
|
{
|
|
struct symbol *typeinfo;
|
|
struct type *typeinfo_type;
|
|
|
|
typeinfo = lookup_symbol ("std::type_info", NULL, STRUCT_DOMAIN,
|
|
NULL).symbol;
|
|
if (typeinfo == NULL)
|
|
typeinfo_type = gdbarch_data (gdbarch, std_type_info_gdbarch_data);
|
|
else
|
|
typeinfo_type = SYMBOL_TYPE (typeinfo);
|
|
|
|
return typeinfo_type;
|
|
}
|
|
|
|
/* Implement the 'get_typeid' method. */
|
|
|
|
static struct value *
|
|
gnuv3_get_typeid (struct value *value)
|
|
{
|
|
struct type *typeinfo_type;
|
|
struct type *type;
|
|
struct gdbarch *gdbarch;
|
|
struct cleanup *cleanup;
|
|
struct value *result;
|
|
char *type_name, *canonical;
|
|
|
|
/* We have to handle values a bit trickily here, to allow this code
|
|
to work properly with non_lvalue values that are really just
|
|
disguised types. */
|
|
if (value_lval_const (value) == lval_memory)
|
|
value = coerce_ref (value);
|
|
|
|
type = check_typedef (value_type (value));
|
|
|
|
/* In the non_lvalue case, a reference might have slipped through
|
|
here. */
|
|
if (TYPE_CODE (type) == TYPE_CODE_REF)
|
|
type = check_typedef (TYPE_TARGET_TYPE (type));
|
|
|
|
/* Ignore top-level cv-qualifiers. */
|
|
type = make_cv_type (0, 0, type, NULL);
|
|
gdbarch = get_type_arch (type);
|
|
|
|
type_name = type_to_string (type);
|
|
if (type_name == NULL)
|
|
error (_("cannot find typeinfo for unnamed type"));
|
|
cleanup = make_cleanup (xfree, type_name);
|
|
|
|
/* We need to canonicalize the type name here, because we do lookups
|
|
using the demangled name, and so we must match the format it
|
|
uses. E.g., GDB tends to use "const char *" as a type name, but
|
|
the demangler uses "char const *". */
|
|
canonical = cp_canonicalize_string (type_name);
|
|
if (canonical != NULL)
|
|
{
|
|
make_cleanup (xfree, canonical);
|
|
type_name = canonical;
|
|
}
|
|
|
|
typeinfo_type = gnuv3_get_typeid_type (gdbarch);
|
|
|
|
/* We check for lval_memory because in the "typeid (type-id)" case,
|
|
the type is passed via a not_lval value object. */
|
|
if (TYPE_CODE (type) == TYPE_CODE_STRUCT
|
|
&& value_lval_const (value) == lval_memory
|
|
&& gnuv3_dynamic_class (type))
|
|
{
|
|
struct value *vtable, *typeinfo_value;
|
|
CORE_ADDR address = value_address (value) + value_embedded_offset (value);
|
|
|
|
vtable = gnuv3_get_vtable (gdbarch, type, address);
|
|
if (vtable == NULL)
|
|
error (_("cannot find typeinfo for object of type '%s'"), type_name);
|
|
typeinfo_value = value_field (vtable, vtable_field_type_info);
|
|
result = value_ind (value_cast (make_pointer_type (typeinfo_type, NULL),
|
|
typeinfo_value));
|
|
}
|
|
else
|
|
{
|
|
char *sym_name;
|
|
struct bound_minimal_symbol minsym;
|
|
|
|
sym_name = concat ("typeinfo for ", type_name, (char *) NULL);
|
|
make_cleanup (xfree, sym_name);
|
|
minsym = lookup_minimal_symbol (sym_name, NULL, NULL);
|
|
|
|
if (minsym.minsym == NULL)
|
|
error (_("could not find typeinfo symbol for '%s'"), type_name);
|
|
|
|
result = value_at_lazy (typeinfo_type, BMSYMBOL_VALUE_ADDRESS (minsym));
|
|
}
|
|
|
|
do_cleanups (cleanup);
|
|
return result;
|
|
}
|
|
|
|
/* Implement the 'get_typename_from_type_info' method. */
|
|
|
|
static char *
|
|
gnuv3_get_typename_from_type_info (struct value *type_info_ptr)
|
|
{
|
|
struct gdbarch *gdbarch = get_type_arch (value_type (type_info_ptr));
|
|
struct bound_minimal_symbol typeinfo_sym;
|
|
CORE_ADDR addr;
|
|
const char *symname;
|
|
const char *class_name;
|
|
const char *atsign;
|
|
|
|
addr = value_as_address (type_info_ptr);
|
|
typeinfo_sym = lookup_minimal_symbol_by_pc (addr);
|
|
if (typeinfo_sym.minsym == NULL)
|
|
error (_("could not find minimal symbol for typeinfo address %s"),
|
|
paddress (gdbarch, addr));
|
|
|
|
#define TYPEINFO_PREFIX "typeinfo for "
|
|
#define TYPEINFO_PREFIX_LEN (sizeof (TYPEINFO_PREFIX) - 1)
|
|
symname = MSYMBOL_DEMANGLED_NAME (typeinfo_sym.minsym);
|
|
if (symname == NULL || strncmp (symname, TYPEINFO_PREFIX,
|
|
TYPEINFO_PREFIX_LEN))
|
|
error (_("typeinfo symbol '%s' has unexpected name"),
|
|
MSYMBOL_LINKAGE_NAME (typeinfo_sym.minsym));
|
|
class_name = symname + TYPEINFO_PREFIX_LEN;
|
|
|
|
/* Strip off @plt and version suffixes. */
|
|
atsign = strchr (class_name, '@');
|
|
if (atsign != NULL)
|
|
return savestring (class_name, atsign - class_name);
|
|
return xstrdup (class_name);
|
|
}
|
|
|
|
/* Implement the 'get_type_from_type_info' method. */
|
|
|
|
static struct type *
|
|
gnuv3_get_type_from_type_info (struct value *type_info_ptr)
|
|
{
|
|
char *type_name;
|
|
struct cleanup *cleanup;
|
|
struct value *type_val;
|
|
struct expression *expr;
|
|
struct type *result;
|
|
|
|
type_name = gnuv3_get_typename_from_type_info (type_info_ptr);
|
|
cleanup = make_cleanup (xfree, type_name);
|
|
|
|
/* We have to parse the type name, since in general there is not a
|
|
symbol for a type. This is somewhat bogus since there may be a
|
|
mis-parse. Another approach might be to re-use the demangler's
|
|
internal form to reconstruct the type somehow. */
|
|
|
|
expr = parse_expression (type_name);
|
|
make_cleanup (xfree, expr);
|
|
|
|
type_val = evaluate_type (expr);
|
|
result = value_type (type_val);
|
|
|
|
do_cleanups (cleanup);
|
|
return result;
|
|
}
|
|
|
|
/* Determine if we are currently in a C++ thunk. If so, get the address
|
|
of the routine we are thunking to and continue to there instead. */
|
|
|
|
static CORE_ADDR
|
|
gnuv3_skip_trampoline (struct frame_info *frame, CORE_ADDR stop_pc)
|
|
{
|
|
CORE_ADDR real_stop_pc, method_stop_pc, func_addr;
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
|
struct bound_minimal_symbol thunk_sym, fn_sym;
|
|
struct obj_section *section;
|
|
const char *thunk_name, *fn_name;
|
|
|
|
real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
|
|
if (real_stop_pc == 0)
|
|
real_stop_pc = stop_pc;
|
|
|
|
/* Find the linker symbol for this potential thunk. */
|
|
thunk_sym = lookup_minimal_symbol_by_pc (real_stop_pc);
|
|
section = find_pc_section (real_stop_pc);
|
|
if (thunk_sym.minsym == NULL || section == NULL)
|
|
return 0;
|
|
|
|
/* The symbol's demangled name should be something like "virtual
|
|
thunk to FUNCTION", where FUNCTION is the name of the function
|
|
being thunked to. */
|
|
thunk_name = MSYMBOL_DEMANGLED_NAME (thunk_sym.minsym);
|
|
if (thunk_name == NULL || strstr (thunk_name, " thunk to ") == NULL)
|
|
return 0;
|
|
|
|
fn_name = strstr (thunk_name, " thunk to ") + strlen (" thunk to ");
|
|
fn_sym = lookup_minimal_symbol (fn_name, NULL, section->objfile);
|
|
if (fn_sym.minsym == NULL)
|
|
return 0;
|
|
|
|
method_stop_pc = BMSYMBOL_VALUE_ADDRESS (fn_sym);
|
|
|
|
/* Some targets have minimal symbols pointing to function descriptors
|
|
(powerpc 64 for example). Make sure to retrieve the address
|
|
of the real function from the function descriptor before passing on
|
|
the address to other layers of GDB. */
|
|
func_addr = gdbarch_convert_from_func_ptr_addr (gdbarch, method_stop_pc,
|
|
¤t_target);
|
|
if (func_addr != 0)
|
|
method_stop_pc = func_addr;
|
|
|
|
real_stop_pc = gdbarch_skip_trampoline_code
|
|
(gdbarch, frame, method_stop_pc);
|
|
if (real_stop_pc == 0)
|
|
real_stop_pc = method_stop_pc;
|
|
|
|
return real_stop_pc;
|
|
}
|
|
|
|
/* Return nonzero if a type should be passed by reference.
|
|
|
|
The rule in the v3 ABI document comes from section 3.1.1. If the
|
|
type has a non-trivial copy constructor or destructor, then the
|
|
caller must make a copy (by calling the copy constructor if there
|
|
is one or perform the copy itself otherwise), pass the address of
|
|
the copy, and then destroy the temporary (if necessary).
|
|
|
|
For return values with non-trivial copy constructors or
|
|
destructors, space will be allocated in the caller, and a pointer
|
|
will be passed as the first argument (preceding "this").
|
|
|
|
We don't have a bulletproof mechanism for determining whether a
|
|
constructor or destructor is trivial. For GCC and DWARF2 debug
|
|
information, we can check the artificial flag.
|
|
|
|
We don't do anything with the constructors or destructors,
|
|
but we have to get the argument passing right anyway. */
|
|
static int
|
|
gnuv3_pass_by_reference (struct type *type)
|
|
{
|
|
int fieldnum, fieldelem;
|
|
|
|
type = check_typedef (type);
|
|
|
|
/* We're only interested in things that can have methods. */
|
|
if (TYPE_CODE (type) != TYPE_CODE_STRUCT
|
|
&& TYPE_CODE (type) != TYPE_CODE_UNION)
|
|
return 0;
|
|
|
|
/* A dynamic class has a non-trivial copy constructor.
|
|
See c++98 section 12.8 Copying class objects [class.copy]. */
|
|
if (gnuv3_dynamic_class (type))
|
|
return 1;
|
|
|
|
for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++)
|
|
for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum);
|
|
fieldelem++)
|
|
{
|
|
struct fn_field *fn = TYPE_FN_FIELDLIST1 (type, fieldnum);
|
|
const char *name = TYPE_FN_FIELDLIST_NAME (type, fieldnum);
|
|
struct type *fieldtype = TYPE_FN_FIELD_TYPE (fn, fieldelem);
|
|
|
|
/* If this function is marked as artificial, it is compiler-generated,
|
|
and we assume it is trivial. */
|
|
if (TYPE_FN_FIELD_ARTIFICIAL (fn, fieldelem))
|
|
continue;
|
|
|
|
/* If we've found a destructor, we must pass this by reference. */
|
|
if (name[0] == '~')
|
|
return 1;
|
|
|
|
/* If the mangled name of this method doesn't indicate that it
|
|
is a constructor, we're not interested.
|
|
|
|
FIXME drow/2007-09-23: We could do this using the name of
|
|
the method and the name of the class instead of dealing
|
|
with the mangled name. We don't have a convenient function
|
|
to strip off both leading scope qualifiers and trailing
|
|
template arguments yet. */
|
|
if (!is_constructor_name (TYPE_FN_FIELD_PHYSNAME (fn, fieldelem))
|
|
&& !TYPE_FN_FIELD_CONSTRUCTOR (fn, fieldelem))
|
|
continue;
|
|
|
|
/* If this method takes two arguments, and the second argument is
|
|
a reference to this class, then it is a copy constructor. */
|
|
if (TYPE_NFIELDS (fieldtype) == 2)
|
|
{
|
|
struct type *arg_type = TYPE_FIELD_TYPE (fieldtype, 1);
|
|
|
|
if (TYPE_CODE (arg_type) == TYPE_CODE_REF)
|
|
{
|
|
struct type *arg_target_type;
|
|
|
|
arg_target_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
|
|
if (class_types_same_p (arg_target_type, type))
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Even if all the constructors and destructors were artificial, one
|
|
of them may have invoked a non-artificial constructor or
|
|
destructor in a base class. If any base class needs to be passed
|
|
by reference, so does this class. Similarly for members, which
|
|
are constructed whenever this class is. We do not need to worry
|
|
about recursive loops here, since we are only looking at members
|
|
of complete class type. Also ignore any static members. */
|
|
for (fieldnum = 0; fieldnum < TYPE_NFIELDS (type); fieldnum++)
|
|
if (! field_is_static (&TYPE_FIELD (type, fieldnum))
|
|
&& gnuv3_pass_by_reference (TYPE_FIELD_TYPE (type, fieldnum)))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
init_gnuv3_ops (void)
|
|
{
|
|
vtable_type_gdbarch_data
|
|
= gdbarch_data_register_post_init (build_gdb_vtable_type);
|
|
std_type_info_gdbarch_data
|
|
= gdbarch_data_register_post_init (build_std_type_info_type);
|
|
|
|
gnu_v3_abi_ops.shortname = "gnu-v3";
|
|
gnu_v3_abi_ops.longname = "GNU G++ Version 3 ABI";
|
|
gnu_v3_abi_ops.doc = "G++ Version 3 ABI";
|
|
gnu_v3_abi_ops.is_destructor_name =
|
|
(enum dtor_kinds (*) (const char *))is_gnu_v3_mangled_dtor;
|
|
gnu_v3_abi_ops.is_constructor_name =
|
|
(enum ctor_kinds (*) (const char *))is_gnu_v3_mangled_ctor;
|
|
gnu_v3_abi_ops.is_vtable_name = gnuv3_is_vtable_name;
|
|
gnu_v3_abi_ops.is_operator_name = gnuv3_is_operator_name;
|
|
gnu_v3_abi_ops.rtti_type = gnuv3_rtti_type;
|
|
gnu_v3_abi_ops.virtual_fn_field = gnuv3_virtual_fn_field;
|
|
gnu_v3_abi_ops.baseclass_offset = gnuv3_baseclass_offset;
|
|
gnu_v3_abi_ops.print_method_ptr = gnuv3_print_method_ptr;
|
|
gnu_v3_abi_ops.method_ptr_size = gnuv3_method_ptr_size;
|
|
gnu_v3_abi_ops.make_method_ptr = gnuv3_make_method_ptr;
|
|
gnu_v3_abi_ops.method_ptr_to_value = gnuv3_method_ptr_to_value;
|
|
gnu_v3_abi_ops.print_vtable = gnuv3_print_vtable;
|
|
gnu_v3_abi_ops.get_typeid = gnuv3_get_typeid;
|
|
gnu_v3_abi_ops.get_typeid_type = gnuv3_get_typeid_type;
|
|
gnu_v3_abi_ops.get_type_from_type_info = gnuv3_get_type_from_type_info;
|
|
gnu_v3_abi_ops.get_typename_from_type_info
|
|
= gnuv3_get_typename_from_type_info;
|
|
gnu_v3_abi_ops.skip_trampoline = gnuv3_skip_trampoline;
|
|
gnu_v3_abi_ops.pass_by_reference = gnuv3_pass_by_reference;
|
|
}
|
|
|
|
extern initialize_file_ftype _initialize_gnu_v3_abi; /* -Wmissing-prototypes */
|
|
|
|
void
|
|
_initialize_gnu_v3_abi (void)
|
|
{
|
|
init_gnuv3_ops ();
|
|
|
|
register_cp_abi (&gnu_v3_abi_ops);
|
|
set_cp_abi_as_auto_default (gnu_v3_abi_ops.shortname);
|
|
}
|