mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-21 04:42:53 +08:00
5bc113360c
These are only used by dlx and ns32k. * write.h: Don't include bit_fix.h. (struct fix): Rearrange some fields. Delete fx_im_disp and fx_bit_fixP. Use bitfields for fx_size and fx_pcrel_adjust. * write.c (fix_new_internal): Don't init fx_im_disp and fx_bit_fixP. (fixup_segment): Don't exclude overflow checks on fx_bit_fixP. (print_fixup): Don't print im_disp. * config/tc-cris.c (md_apply_fix): Remove tests of fx_bit_fixP and fx_im_disp. * config/tc-dlx.c (md_apply_fix): Remove wrong debug code. Set fx_no_overflow when fx_bit_fixP. * config/tc-dlx.h: Include bit_fix.h. (TC_FIX_TYPE, tc_fix_data, TC_INIT_FIX_DATA): Define. * config/tc-ns32k.c (fix_new_ns32k, fix_new_ns32k_exp): Set fx_no_overflow when bit_fixP. * config/tc-ns32k.h (TC_FIX_TYPE): Add fx_bit_fixP and fx_im_disp. (fix_im_disp, fix_bit_fixP): Adjust to suit. (TC_INIT_FIX_DATA, TC_FIX_DATA_PRINT): Likewise.
2255 lines
57 KiB
C
2255 lines
57 KiB
C
/* ns32k.c -- Assemble on the National Semiconductor 32k series
|
||
Copyright (C) 1987-2019 Free Software Foundation, Inc.
|
||
|
||
This file is part of GAS, the GNU Assembler.
|
||
|
||
GAS is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3, or (at your option)
|
||
any later version.
|
||
|
||
GAS is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GAS; see the file COPYING. If not, write to the Free
|
||
Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
|
||
02110-1301, USA. */
|
||
|
||
/*#define SHOW_NUM 1*//* Uncomment for debugging. */
|
||
|
||
#include "as.h"
|
||
#include "opcode/ns32k.h"
|
||
|
||
#include "obstack.h"
|
||
|
||
/* Macros. */
|
||
#define IIF_ENTRIES 13 /* Number of entries in iif. */
|
||
#define PRIVATE_SIZE 256 /* Size of my garbage memory. */
|
||
#define MAX_ARGS 4
|
||
#define DEFAULT -1 /* addr_mode returns this value when
|
||
plain constant or label is
|
||
encountered. */
|
||
|
||
#define IIF(ptr,a1,c1,e1,g1,i1,k1,m1,o1,q1,s1,u1) \
|
||
iif.iifP[ptr].type = a1; \
|
||
iif.iifP[ptr].size = c1; \
|
||
iif.iifP[ptr].object = e1; \
|
||
iif.iifP[ptr].object_adjust = g1; \
|
||
iif.iifP[ptr].pcrel = i1; \
|
||
iif.iifP[ptr].pcrel_adjust = k1; \
|
||
iif.iifP[ptr].im_disp = m1; \
|
||
iif.iifP[ptr].relax_substate = o1; \
|
||
iif.iifP[ptr].bit_fixP = q1; \
|
||
iif.iifP[ptr].addr_mode = s1; \
|
||
iif.iifP[ptr].bsr = u1;
|
||
|
||
#ifdef SEQUENT_COMPATABILITY
|
||
#define LINE_COMMENT_CHARS "|"
|
||
#define ABSOLUTE_PREFIX '@'
|
||
#define IMMEDIATE_PREFIX '#'
|
||
#endif
|
||
|
||
#ifndef LINE_COMMENT_CHARS
|
||
#define LINE_COMMENT_CHARS "#"
|
||
#endif
|
||
|
||
const char comment_chars[] = "#";
|
||
const char line_comment_chars[] = LINE_COMMENT_CHARS;
|
||
const char line_separator_chars[] = ";";
|
||
static int default_disp_size = 4; /* Displacement size for external refs. */
|
||
|
||
#if !defined(ABSOLUTE_PREFIX) && !defined(IMMEDIATE_PREFIX)
|
||
#define ABSOLUTE_PREFIX '@' /* One or the other MUST be defined. */
|
||
#endif
|
||
|
||
struct addr_mode
|
||
{
|
||
signed char mode; /* Addressing mode of operand (0-31). */
|
||
signed char scaled_mode; /* Mode combined with scaled mode. */
|
||
char scaled_reg; /* Register used in scaled+1 (1-8). */
|
||
char float_flag; /* Set if R0..R7 was F0..F7 ie a
|
||
floating-point-register. */
|
||
char am_size; /* Estimated max size of general addr-mode
|
||
parts. */
|
||
char im_disp; /* If im_disp==1 we have a displacement. */
|
||
char pcrel; /* 1 if pcrel, this is really redundant info. */
|
||
char disp_suffix[2]; /* Length of displacement(s), 0=undefined. */
|
||
char *disp[2]; /* Pointer(s) at displacement(s)
|
||
or immediates(s) (ascii). */
|
||
char index_byte; /* Index byte. */
|
||
};
|
||
typedef struct addr_mode addr_modeS;
|
||
|
||
char *freeptr, *freeptr_static; /* Points at some number of free bytes. */
|
||
struct hash_control *inst_hash_handle;
|
||
|
||
struct ns32k_opcode *desc; /* Pointer at description of instruction. */
|
||
addr_modeS addr_modeP;
|
||
const char EXP_CHARS[] = "eE";
|
||
const char FLT_CHARS[] = "fd"; /* We don't want to support lowercase,
|
||
do we? */
|
||
|
||
/* UPPERCASE denotes live names when an instruction is built, IIF is
|
||
used as an intermediate form to store the actual parts of the
|
||
instruction. A ns32k machine instruction can be divided into a
|
||
couple of sub PARTs. When an instruction is assembled the
|
||
appropriate PART get an assignment. When an IIF has been completed
|
||
it is converted to a FRAGment as specified in AS.H. */
|
||
|
||
/* Internal structs. */
|
||
struct ns32k_option
|
||
{
|
||
const char *pattern;
|
||
unsigned long or;
|
||
unsigned long and;
|
||
};
|
||
|
||
typedef struct
|
||
{
|
||
int type; /* How to interpret object. */
|
||
int size; /* Estimated max size of object. */
|
||
unsigned long object; /* Binary data. */
|
||
int object_adjust; /* Number added to object. */
|
||
int pcrel; /* True if object is pcrel. */
|
||
int pcrel_adjust; /* Length in bytes from the instruction
|
||
start to the displacement. */
|
||
int im_disp; /* True if the object is a displacement. */
|
||
relax_substateT relax_substate;/*Initial relaxsubstate. */
|
||
bit_fixS *bit_fixP; /* Pointer at bit_fix struct. */
|
||
int addr_mode; /* What addrmode do we associate with this
|
||
iif-entry. */
|
||
char bsr; /* Sequent hack. */
|
||
} iif_entryT; /* Internal Instruction Format. */
|
||
|
||
struct int_ins_form
|
||
{
|
||
int instr_size; /* Max size of instruction in bytes. */
|
||
iif_entryT iifP[IIF_ENTRIES + 1];
|
||
};
|
||
|
||
struct int_ins_form iif;
|
||
expressionS exprP;
|
||
|
||
/* Description of the PARTs in IIF
|
||
object[n]:
|
||
0 total length in bytes of entries in iif
|
||
1 opcode
|
||
2 index_byte_a
|
||
3 index_byte_b
|
||
4 disp_a_1
|
||
5 disp_a_2
|
||
6 disp_b_1
|
||
7 disp_b_2
|
||
8 imm_a
|
||
9 imm_b
|
||
10 implied1
|
||
11 implied2
|
||
|
||
For every entry there is a data length in bytes. This is stored in size[n].
|
||
0, the object length is not explicitly given by the instruction
|
||
and the operand is undefined. This is a case for relaxation.
|
||
Reserve 4 bytes for the final object.
|
||
|
||
1, the entry contains one byte
|
||
2, the entry contains two bytes
|
||
3, the entry contains three bytes
|
||
4, the entry contains four bytes
|
||
etc
|
||
|
||
Furthermore, every entry has a data type identifier in type[n].
|
||
|
||
0, the entry is void, ignore it.
|
||
1, the entry is a binary number.
|
||
2, the entry is a pointer at an expression.
|
||
Where expression may be as simple as a single '1',
|
||
and as complicated as foo-bar+12,
|
||
foo and bar may be undefined but suffixed by :{b|w|d} to
|
||
control the length of the object.
|
||
|
||
3, the entry is a pointer at a bignum struct
|
||
|
||
The low-order-byte corresponds to low physical memory.
|
||
Obviously a FRAGment must be created for each valid disp in PART whose
|
||
data length is undefined (to bad) .
|
||
The case where just the expression is undefined is less severe and is
|
||
handled by fix. Here the number of bytes in the object file is known.
|
||
With this representation we simplify the assembly and separates the
|
||
machine dependent/independent parts in a more clean way (said OE). */
|
||
|
||
struct ns32k_option opt1[] = /* restore, exit. */
|
||
{
|
||
{"r0", 0x80, 0xff},
|
||
{"r1", 0x40, 0xff},
|
||
{"r2", 0x20, 0xff},
|
||
{"r3", 0x10, 0xff},
|
||
{"r4", 0x08, 0xff},
|
||
{"r5", 0x04, 0xff},
|
||
{"r6", 0x02, 0xff},
|
||
{"r7", 0x01, 0xff},
|
||
{0, 0x00, 0xff}
|
||
};
|
||
struct ns32k_option opt2[] = /* save, enter. */
|
||
{
|
||
{"r0", 0x01, 0xff},
|
||
{"r1", 0x02, 0xff},
|
||
{"r2", 0x04, 0xff},
|
||
{"r3", 0x08, 0xff},
|
||
{"r4", 0x10, 0xff},
|
||
{"r5", 0x20, 0xff},
|
||
{"r6", 0x40, 0xff},
|
||
{"r7", 0x80, 0xff},
|
||
{0, 0x00, 0xff}
|
||
};
|
||
struct ns32k_option opt3[] = /* setcfg. */
|
||
{
|
||
{"c", 0x8, 0xff},
|
||
{"m", 0x4, 0xff},
|
||
{"f", 0x2, 0xff},
|
||
{"i", 0x1, 0xff},
|
||
{0, 0x0, 0xff}
|
||
};
|
||
struct ns32k_option opt4[] = /* cinv. */
|
||
{
|
||
{"a", 0x4, 0xff},
|
||
{"i", 0x2, 0xff},
|
||
{"d", 0x1, 0xff},
|
||
{0, 0x0, 0xff}
|
||
};
|
||
struct ns32k_option opt5[] = /* String inst. */
|
||
{
|
||
{"b", 0x2, 0xff},
|
||
{"u", 0xc, 0xff},
|
||
{"w", 0x4, 0xff},
|
||
{0, 0x0, 0xff}
|
||
};
|
||
struct ns32k_option opt6[] = /* Plain reg ext,cvtp etc. */
|
||
{
|
||
{"r0", 0x00, 0xff},
|
||
{"r1", 0x01, 0xff},
|
||
{"r2", 0x02, 0xff},
|
||
{"r3", 0x03, 0xff},
|
||
{"r4", 0x04, 0xff},
|
||
{"r5", 0x05, 0xff},
|
||
{"r6", 0x06, 0xff},
|
||
{"r7", 0x07, 0xff},
|
||
{0, 0x00, 0xff}
|
||
};
|
||
|
||
#if !defined(NS32032) && !defined(NS32532)
|
||
#define NS32532
|
||
#endif
|
||
|
||
struct ns32k_option cpureg_532[] = /* lpr spr. */
|
||
{
|
||
{"us", 0x0, 0xff},
|
||
{"dcr", 0x1, 0xff},
|
||
{"bpc", 0x2, 0xff},
|
||
{"dsr", 0x3, 0xff},
|
||
{"car", 0x4, 0xff},
|
||
{"fp", 0x8, 0xff},
|
||
{"sp", 0x9, 0xff},
|
||
{"sb", 0xa, 0xff},
|
||
{"usp", 0xb, 0xff},
|
||
{"cfg", 0xc, 0xff},
|
||
{"psr", 0xd, 0xff},
|
||
{"intbase", 0xe, 0xff},
|
||
{"mod", 0xf, 0xff},
|
||
{0, 0x00, 0xff}
|
||
};
|
||
struct ns32k_option mmureg_532[] = /* lmr smr. */
|
||
{
|
||
{"mcr", 0x9, 0xff},
|
||
{"msr", 0xa, 0xff},
|
||
{"tear", 0xb, 0xff},
|
||
{"ptb0", 0xc, 0xff},
|
||
{"ptb1", 0xd, 0xff},
|
||
{"ivar0", 0xe, 0xff},
|
||
{"ivar1", 0xf, 0xff},
|
||
{0, 0x0, 0xff}
|
||
};
|
||
|
||
struct ns32k_option cpureg_032[] = /* lpr spr. */
|
||
{
|
||
{"upsr", 0x0, 0xff},
|
||
{"fp", 0x8, 0xff},
|
||
{"sp", 0x9, 0xff},
|
||
{"sb", 0xa, 0xff},
|
||
{"psr", 0xd, 0xff},
|
||
{"intbase", 0xe, 0xff},
|
||
{"mod", 0xf, 0xff},
|
||
{0, 0x0, 0xff}
|
||
};
|
||
struct ns32k_option mmureg_032[] = /* lmr smr. */
|
||
{
|
||
{"bpr0", 0x0, 0xff},
|
||
{"bpr1", 0x1, 0xff},
|
||
{"pf0", 0x4, 0xff},
|
||
{"pf1", 0x5, 0xff},
|
||
{"sc", 0x8, 0xff},
|
||
{"msr", 0xa, 0xff},
|
||
{"bcnt", 0xb, 0xff},
|
||
{"ptb0", 0xc, 0xff},
|
||
{"ptb1", 0xd, 0xff},
|
||
{"eia", 0xf, 0xff},
|
||
{0, 0x0, 0xff}
|
||
};
|
||
|
||
#if defined(NS32532)
|
||
struct ns32k_option *cpureg = cpureg_532;
|
||
struct ns32k_option *mmureg = mmureg_532;
|
||
#else
|
||
struct ns32k_option *cpureg = cpureg_032;
|
||
struct ns32k_option *mmureg = mmureg_032;
|
||
#endif
|
||
|
||
|
||
const pseudo_typeS md_pseudo_table[] =
|
||
{ /* So far empty. */
|
||
{0, 0, 0}
|
||
};
|
||
|
||
#define IND(x,y) (((x)<<2)+(y))
|
||
|
||
/* Those are index's to relax groups in md_relax_table ie it must be
|
||
multiplied by 4 to point at a group start. Viz IND(x,y) Se function
|
||
relax_segment in write.c for more info. */
|
||
|
||
#define BRANCH 1
|
||
#define PCREL 2
|
||
|
||
/* Those are index's to entries in a relax group. */
|
||
|
||
#define BYTE 0
|
||
#define WORD 1
|
||
#define DOUBLE 2
|
||
#define UNDEF 3
|
||
/* Those limits are calculated from the displacement start in memory.
|
||
The ns32k uses the beginning of the instruction as displacement
|
||
base. This type of displacements could be handled here by moving
|
||
the limit window up or down. I choose to use an internal
|
||
displacement base-adjust as there are other routines that must
|
||
consider this. Also, as we have two various offset-adjusts in the
|
||
ns32k (acb versus br/brs/jsr/bcond), two set of limits would have
|
||
had to be used. Now we don't have to think about that. */
|
||
|
||
const relax_typeS md_relax_table[] =
|
||
{
|
||
{1, 1, 0, 0},
|
||
{1, 1, 0, 0},
|
||
{1, 1, 0, 0},
|
||
{1, 1, 0, 0},
|
||
|
||
{(63), (-64), 1, IND (BRANCH, WORD)},
|
||
{(8192), (-8192), 2, IND (BRANCH, DOUBLE)},
|
||
{0, 0, 4, 0},
|
||
{1, 1, 0, 0}
|
||
};
|
||
|
||
/* Array used to test if mode contains displacements.
|
||
Value is true if mode contains displacement. */
|
||
|
||
char disp_test[] =
|
||
{0, 0, 0, 0, 0, 0, 0, 0,
|
||
1, 1, 1, 1, 1, 1, 1, 1,
|
||
1, 1, 1, 0, 0, 1, 1, 0,
|
||
1, 1, 1, 1, 1, 1, 1, 1};
|
||
|
||
/* Array used to calculate max size of displacements. */
|
||
|
||
char disp_size[] =
|
||
{4, 1, 2, 0, 4};
|
||
|
||
/* Parse a general operand into an addressing mode struct
|
||
|
||
In: pointer at operand in ascii form
|
||
pointer at addr_mode struct for result
|
||
the level of recursion. (always 0 or 1)
|
||
|
||
Out: data in addr_mode struct. */
|
||
|
||
static int
|
||
addr_mode (char *operand,
|
||
addr_modeS *addrmodeP,
|
||
int recursive_level)
|
||
{
|
||
char *str;
|
||
int i;
|
||
int strl;
|
||
int mode;
|
||
int j;
|
||
|
||
mode = DEFAULT; /* Default. */
|
||
addrmodeP->scaled_mode = 0; /* Why not. */
|
||
addrmodeP->scaled_reg = 0; /* If 0, not scaled index. */
|
||
addrmodeP->float_flag = 0;
|
||
addrmodeP->am_size = 0;
|
||
addrmodeP->im_disp = 0;
|
||
addrmodeP->pcrel = 0; /* Not set in this function. */
|
||
addrmodeP->disp_suffix[0] = 0;
|
||
addrmodeP->disp_suffix[1] = 0;
|
||
addrmodeP->disp[0] = NULL;
|
||
addrmodeP->disp[1] = NULL;
|
||
str = operand;
|
||
|
||
if (str[0] == 0)
|
||
return 0;
|
||
|
||
strl = strlen (str);
|
||
|
||
switch (str[0])
|
||
{
|
||
/* The following three case statements controls the mode-chars
|
||
this is the place to ed if you want to change them. */
|
||
#ifdef ABSOLUTE_PREFIX
|
||
case ABSOLUTE_PREFIX:
|
||
if (str[strl - 1] == ']')
|
||
break;
|
||
addrmodeP->mode = 21; /* absolute */
|
||
addrmodeP->disp[0] = str + 1;
|
||
return -1;
|
||
#endif
|
||
#ifdef IMMEDIATE_PREFIX
|
||
case IMMEDIATE_PREFIX:
|
||
if (str[strl - 1] == ']')
|
||
break;
|
||
addrmodeP->mode = 20; /* immediate */
|
||
addrmodeP->disp[0] = str + 1;
|
||
return -1;
|
||
#endif
|
||
case '.':
|
||
if (str[strl - 1] != ']')
|
||
{
|
||
switch (str[1])
|
||
{
|
||
case '-':
|
||
case '+':
|
||
if (str[2] != '\000')
|
||
{
|
||
addrmodeP->mode = 27; /* pc-relative */
|
||
addrmodeP->disp[0] = str + 2;
|
||
return -1;
|
||
}
|
||
/* Fall through. */
|
||
default:
|
||
as_bad (_("Invalid syntax in PC-relative addressing mode"));
|
||
return 0;
|
||
}
|
||
}
|
||
break;
|
||
case 'e':
|
||
if (str[strl - 1] != ']')
|
||
{
|
||
if ((!strncmp (str, "ext(", 4)) && strl > 7)
|
||
{ /* external */
|
||
addrmodeP->disp[0] = str + 4;
|
||
i = 0;
|
||
j = 2;
|
||
do
|
||
{ /* disp[0]'s termination point. */
|
||
j += 1;
|
||
if (str[j] == '(')
|
||
i++;
|
||
if (str[j] == ')')
|
||
i--;
|
||
}
|
||
while (j < strl && i != 0);
|
||
if (i != 0 || !(str[j + 1] == '-' || str[j + 1] == '+'))
|
||
{
|
||
as_bad (_("Invalid syntax in External addressing mode"));
|
||
return (0);
|
||
}
|
||
str[j] = '\000'; /* null terminate disp[0] */
|
||
addrmodeP->disp[1] = str + j + 2;
|
||
addrmodeP->mode = 22;
|
||
return -1;
|
||
}
|
||
}
|
||
break;
|
||
|
||
default:
|
||
;
|
||
}
|
||
|
||
strl = strlen (str);
|
||
|
||
switch (strl)
|
||
{
|
||
case 2:
|
||
switch (str[0])
|
||
{
|
||
case 'f':
|
||
addrmodeP->float_flag = 1;
|
||
/* Fall through. */
|
||
case 'r':
|
||
if (str[1] >= '0' && str[1] < '8')
|
||
{
|
||
addrmodeP->mode = str[1] - '0';
|
||
return -1;
|
||
}
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
/* Fall through. */
|
||
|
||
case 3:
|
||
if (!strncmp (str, "tos", 3))
|
||
{
|
||
addrmodeP->mode = 23; /* TopOfStack */
|
||
return -1;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
if (strl > 4)
|
||
{
|
||
if (str[strl - 1] == ')')
|
||
{
|
||
if (str[strl - 2] == ')')
|
||
{
|
||
if (!strncmp (&str[strl - 5], "(fp", 3))
|
||
mode = 16; /* Memory Relative. */
|
||
else if (!strncmp (&str[strl - 5], "(sp", 3))
|
||
mode = 17;
|
||
else if (!strncmp (&str[strl - 5], "(sb", 3))
|
||
mode = 18;
|
||
|
||
if (mode != DEFAULT)
|
||
{
|
||
/* Memory relative. */
|
||
addrmodeP->mode = mode;
|
||
j = strl - 5; /* Temp for end of disp[0]. */
|
||
i = 0;
|
||
|
||
do
|
||
{
|
||
strl -= 1;
|
||
if (str[strl] == ')')
|
||
i++;
|
||
if (str[strl] == '(')
|
||
i--;
|
||
}
|
||
while (strl > -1 && i != 0);
|
||
|
||
if (i != 0)
|
||
{
|
||
as_bad (_("Invalid syntax in Memory Relative addressing mode"));
|
||
return (0);
|
||
}
|
||
|
||
addrmodeP->disp[1] = str;
|
||
addrmodeP->disp[0] = str + strl + 1;
|
||
str[j] = '\000'; /* Null terminate disp[0] . */
|
||
str[strl] = '\000'; /* Null terminate disp[1]. */
|
||
|
||
return -1;
|
||
}
|
||
}
|
||
|
||
switch (str[strl - 3])
|
||
{
|
||
case 'r':
|
||
case 'R':
|
||
if (str[strl - 2] >= '0'
|
||
&& str[strl - 2] < '8'
|
||
&& str[strl - 4] == '(')
|
||
{
|
||
addrmodeP->mode = str[strl - 2] - '0' + 8;
|
||
addrmodeP->disp[0] = str;
|
||
str[strl - 4] = 0;
|
||
return -1; /* reg rel */
|
||
}
|
||
/* Fall through. */
|
||
|
||
default:
|
||
if (!strncmp (&str[strl - 4], "(fp", 3))
|
||
mode = 24;
|
||
else if (!strncmp (&str[strl - 4], "(sp", 3))
|
||
mode = 25;
|
||
else if (!strncmp (&str[strl - 4], "(sb", 3))
|
||
mode = 26;
|
||
else if (!strncmp (&str[strl - 4], "(pc", 3))
|
||
mode = 27;
|
||
|
||
if (mode != DEFAULT)
|
||
{
|
||
addrmodeP->mode = mode;
|
||
addrmodeP->disp[0] = str;
|
||
str[strl - 4] = '\0';
|
||
|
||
return -1; /* Memory space. */
|
||
}
|
||
}
|
||
}
|
||
|
||
/* No trailing ')' do we have a ']' ? */
|
||
if (str[strl - 1] == ']')
|
||
{
|
||
switch (str[strl - 2])
|
||
{
|
||
case 'b':
|
||
mode = 28;
|
||
break;
|
||
case 'w':
|
||
mode = 29;
|
||
break;
|
||
case 'd':
|
||
mode = 30;
|
||
break;
|
||
case 'q':
|
||
mode = 31;
|
||
break;
|
||
default:
|
||
as_bad (_("Invalid scaled-indexed mode, use (b,w,d,q)"));
|
||
|
||
if (str[strl - 3] != ':' || str[strl - 6] != '['
|
||
|| str[strl - 5] == 'r' || str[strl - 4] < '0'
|
||
|| str[strl - 4] > '7')
|
||
as_bad (_("Syntax in scaled-indexed mode, use [Rn:m] where n=[0..7] m={b,w,d,q}"));
|
||
} /* Scaled index. */
|
||
|
||
if (recursive_level > 0)
|
||
{
|
||
as_bad (_("Scaled-indexed addressing mode combined with scaled-index"));
|
||
return 0;
|
||
}
|
||
|
||
addrmodeP->am_size += 1; /* scaled index byte. */
|
||
j = str[strl - 4] - '0'; /* store temporary. */
|
||
str[strl - 6] = '\000'; /* null terminate for recursive call. */
|
||
i = addr_mode (str, addrmodeP, 1);
|
||
|
||
if (!i || addrmodeP->mode == 20)
|
||
{
|
||
as_bad (_("Invalid or illegal addressing mode combined with scaled-index"));
|
||
return 0;
|
||
}
|
||
|
||
addrmodeP->scaled_mode = addrmodeP->mode; /* Store the inferior mode. */
|
||
addrmodeP->mode = mode;
|
||
addrmodeP->scaled_reg = j + 1;
|
||
|
||
return -1;
|
||
}
|
||
}
|
||
|
||
addrmodeP->mode = DEFAULT; /* Default to whatever. */
|
||
addrmodeP->disp[0] = str;
|
||
|
||
return -1;
|
||
}
|
||
|
||
static void
|
||
evaluate_expr (expressionS *resultP, char *ptr)
|
||
{
|
||
char *tmp_line;
|
||
|
||
tmp_line = input_line_pointer;
|
||
input_line_pointer = ptr;
|
||
expression (resultP);
|
||
input_line_pointer = tmp_line;
|
||
}
|
||
|
||
/* ptr points at string addr_modeP points at struct with result This
|
||
routine calls addr_mode to determine the general addr.mode of the
|
||
operand. When this is ready it parses the displacements for size
|
||
specifying suffixes and determines size of immediate mode via
|
||
ns32k-opcode. Also builds index bytes if needed. */
|
||
|
||
static int
|
||
get_addr_mode (char *ptr, addr_modeS *addrmodeP)
|
||
{
|
||
int tmp;
|
||
|
||
addr_mode (ptr, addrmodeP, 0);
|
||
|
||
if (addrmodeP->mode == DEFAULT || addrmodeP->scaled_mode == -1)
|
||
{
|
||
/* Resolve ambiguous operands, this shouldn't be necessary if
|
||
one uses standard NSC operand syntax. But the sequent
|
||
compiler doesn't!!! This finds a proper addressing mode
|
||
if it is implicitly stated. See ns32k-opcode.h. */
|
||
(void) evaluate_expr (&exprP, ptr); /* This call takes time Sigh! */
|
||
|
||
if (addrmodeP->mode == DEFAULT)
|
||
{
|
||
if (exprP.X_add_symbol || exprP.X_op_symbol)
|
||
addrmodeP->mode = desc->default_model; /* We have a label. */
|
||
else
|
||
addrmodeP->mode = desc->default_modec; /* We have a constant. */
|
||
}
|
||
else
|
||
{
|
||
if (exprP.X_add_symbol || exprP.X_op_symbol)
|
||
addrmodeP->scaled_mode = desc->default_model;
|
||
else
|
||
addrmodeP->scaled_mode = desc->default_modec;
|
||
}
|
||
|
||
/* Must put this mess down in addr_mode to handle the scaled
|
||
case better. */
|
||
}
|
||
|
||
/* It appears as the sequent compiler wants an absolute when we have
|
||
a label without @. Constants becomes immediates besides the addr
|
||
case. Think it does so with local labels too, not optimum, pcrel
|
||
is better. When I have time I will make gas check this and
|
||
select pcrel when possible Actually that is trivial. */
|
||
if ((tmp = addrmodeP->scaled_reg))
|
||
{ /* Build indexbyte. */
|
||
tmp--; /* Remember regnumber comes incremented for
|
||
flag purpose. */
|
||
tmp |= addrmodeP->scaled_mode << 3;
|
||
addrmodeP->index_byte = (char) tmp;
|
||
addrmodeP->am_size += 1;
|
||
}
|
||
|
||
gas_assert (addrmodeP->mode >= 0);
|
||
if (disp_test[(unsigned int) addrmodeP->mode])
|
||
{
|
||
char c;
|
||
char suffix;
|
||
char suffix_sub;
|
||
int i;
|
||
char *toP;
|
||
char *fromP;
|
||
|
||
/* There was a displacement, probe for length specifying suffix. */
|
||
addrmodeP->pcrel = 0;
|
||
|
||
gas_assert (addrmodeP->mode >= 0);
|
||
if (disp_test[(unsigned int) addrmodeP->mode])
|
||
{
|
||
/* There is a displacement. */
|
||
if (addrmodeP->mode == 27 || addrmodeP->scaled_mode == 27)
|
||
/* Do we have pcrel. mode. */
|
||
addrmodeP->pcrel = 1;
|
||
|
||
addrmodeP->im_disp = 1;
|
||
|
||
for (i = 0; i < 2; i++)
|
||
{
|
||
suffix_sub = suffix = 0;
|
||
|
||
if ((toP = addrmodeP->disp[i]))
|
||
{
|
||
/* Suffix of expression, the largest size rules. */
|
||
fromP = toP;
|
||
|
||
while ((c = *fromP++))
|
||
{
|
||
*toP++ = c;
|
||
if (c == ':')
|
||
{
|
||
switch (*fromP)
|
||
{
|
||
case '\0':
|
||
as_warn (_("Premature end of suffix -- Defaulting to d"));
|
||
suffix = 4;
|
||
continue;
|
||
case 'b':
|
||
suffix_sub = 1;
|
||
break;
|
||
case 'w':
|
||
suffix_sub = 2;
|
||
break;
|
||
case 'd':
|
||
suffix_sub = 4;
|
||
break;
|
||
default:
|
||
as_warn (_("Bad suffix after ':' use {b|w|d} Defaulting to d"));
|
||
suffix = 4;
|
||
}
|
||
|
||
fromP ++;
|
||
toP --; /* So we write over the ':' */
|
||
|
||
if (suffix < suffix_sub)
|
||
suffix = suffix_sub;
|
||
}
|
||
}
|
||
|
||
*toP = '\0'; /* Terminate properly. */
|
||
addrmodeP->disp_suffix[i] = suffix;
|
||
addrmodeP->am_size += suffix ? suffix : 4;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (addrmodeP->mode == 20)
|
||
{
|
||
/* Look in ns32k_opcode for size. */
|
||
addrmodeP->disp_suffix[0] = addrmodeP->am_size = desc->im_size;
|
||
addrmodeP->im_disp = 0;
|
||
}
|
||
}
|
||
|
||
return addrmodeP->mode;
|
||
}
|
||
|
||
/* Read an option list. */
|
||
|
||
static void
|
||
optlist (char *str, /* The string to extract options from. */
|
||
struct ns32k_option *optionP, /* How to search the string. */
|
||
unsigned long *default_map) /* Default pattern and output. */
|
||
{
|
||
int i, j, k, strlen1, strlen2;
|
||
const char *patternP, *strP;
|
||
|
||
strlen1 = strlen (str);
|
||
|
||
if (strlen1 < 1)
|
||
as_fatal (_("Very short instr to option, ie you can't do it on a NULLstr"));
|
||
|
||
for (i = 0; optionP[i].pattern != 0; i++)
|
||
{
|
||
strlen2 = strlen (optionP[i].pattern);
|
||
|
||
for (j = 0; j < strlen1; j++)
|
||
{
|
||
patternP = optionP[i].pattern;
|
||
strP = &str[j];
|
||
|
||
for (k = 0; k < strlen2; k++)
|
||
{
|
||
if (*(strP++) != *(patternP++))
|
||
break;
|
||
}
|
||
|
||
if (k == strlen2)
|
||
{ /* match */
|
||
*default_map |= optionP[i].or;
|
||
*default_map &= optionP[i].and;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Search struct for symbols.
|
||
This function is used to get the short integer form of reg names in
|
||
the instructions lmr, smr, lpr, spr return true if str is found in
|
||
list. */
|
||
|
||
static int
|
||
list_search (char *str, /* The string to match. */
|
||
struct ns32k_option *optionP, /* List to search. */
|
||
unsigned long *default_map) /* Default pattern and output. */
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; optionP[i].pattern != 0; i++)
|
||
{
|
||
if (!strncmp (optionP[i].pattern, str, 20))
|
||
{
|
||
/* Use strncmp to be safe. */
|
||
*default_map |= optionP[i].or;
|
||
*default_map &= optionP[i].and;
|
||
|
||
return -1;
|
||
}
|
||
}
|
||
|
||
as_bad (_("No such entry in list. (cpu/mmu register)"));
|
||
return 0;
|
||
}
|
||
|
||
/* Create a bit_fixS in obstack 'notes'.
|
||
This struct is used to profile the normal fix. If the bit_fixP is a
|
||
valid pointer (not NULL) the bit_fix data will be used to format
|
||
the fix. */
|
||
|
||
static bit_fixS *
|
||
bit_fix_new (int size, /* Length of bitfield. */
|
||
int offset, /* Bit offset to bitfield. */
|
||
long min, /* Signextended min for bitfield. */
|
||
long max, /* Signextended max for bitfield. */
|
||
long add, /* Add mask, used for huffman prefix. */
|
||
long base_type, /* 0 or 1, if 1 it's exploded to opcode ptr. */
|
||
long base_adj)
|
||
{
|
||
bit_fixS *bit_fixP;
|
||
|
||
bit_fixP = XOBNEW (¬es, bit_fixS);
|
||
|
||
bit_fixP->fx_bit_size = size;
|
||
bit_fixP->fx_bit_offset = offset;
|
||
bit_fixP->fx_bit_base = base_type;
|
||
bit_fixP->fx_bit_base_adj = base_adj;
|
||
bit_fixP->fx_bit_max = max;
|
||
bit_fixP->fx_bit_min = min;
|
||
bit_fixP->fx_bit_add = add;
|
||
|
||
return bit_fixP;
|
||
}
|
||
|
||
/* Convert operands to iif-format and adds bitfields to the opcode.
|
||
Operands are parsed in such an order that the opcode is updated from
|
||
its most significant bit, that is when the operand need to alter the
|
||
opcode.
|
||
Be careful not to put to objects in the same iif-slot. */
|
||
|
||
static void
|
||
encode_operand (int argc,
|
||
char **argv,
|
||
const char *operandsP,
|
||
const char *suffixP,
|
||
char im_size ATTRIBUTE_UNUSED,
|
||
char opcode_bit_ptr)
|
||
{
|
||
int i, j;
|
||
char d;
|
||
int pcrel, b, loop, pcrel_adjust;
|
||
unsigned long tmp;
|
||
|
||
for (loop = 0; loop < argc; loop++)
|
||
{
|
||
/* What operand are we supposed to work on. */
|
||
i = operandsP[loop << 1] - '1';
|
||
if (i > 3)
|
||
as_fatal (_("Internal consistency error. check ns32k-opcode.h"));
|
||
|
||
pcrel = 0;
|
||
pcrel_adjust = 0;
|
||
tmp = 0;
|
||
|
||
switch ((d = operandsP[(loop << 1) + 1]))
|
||
{
|
||
case 'f': /* Operand of sfsr turns out to be a nasty
|
||
special-case. */
|
||
opcode_bit_ptr -= 5;
|
||
/* Fall through. */
|
||
case 'Z': /* Float not immediate. */
|
||
case 'F': /* 32 bit float general form. */
|
||
case 'L': /* 64 bit float. */
|
||
case 'I': /* Integer not immediate. */
|
||
case 'B': /* Byte */
|
||
case 'W': /* Word */
|
||
case 'D': /* Double-word. */
|
||
case 'A': /* Double-word gen-address-form ie no regs
|
||
allowed. */
|
||
get_addr_mode (argv[i], &addr_modeP);
|
||
|
||
if ((addr_modeP.mode == 20) &&
|
||
(d == 'I' || d == 'Z' || d == 'A'))
|
||
as_fatal (d == 'A'? _("Address of immediate operand"):
|
||
_("Invalid immediate write operand."));
|
||
|
||
if (opcode_bit_ptr == desc->opcode_size)
|
||
b = 4;
|
||
else
|
||
b = 6;
|
||
|
||
for (j = b; j < (b + 2); j++)
|
||
{
|
||
if (addr_modeP.disp[j - b])
|
||
{
|
||
IIF (j,
|
||
2,
|
||
addr_modeP.disp_suffix[j - b],
|
||
(unsigned long) addr_modeP.disp[j - b],
|
||
0,
|
||
addr_modeP.pcrel,
|
||
iif.instr_size,
|
||
addr_modeP.im_disp,
|
||
IND (BRANCH, BYTE),
|
||
NULL,
|
||
(addr_modeP.scaled_reg ? addr_modeP.scaled_mode
|
||
: addr_modeP.mode),
|
||
0);
|
||
}
|
||
}
|
||
|
||
opcode_bit_ptr -= 5;
|
||
iif.iifP[1].object |= ((long) addr_modeP.mode) << opcode_bit_ptr;
|
||
|
||
if (addr_modeP.scaled_reg)
|
||
{
|
||
j = b / 2;
|
||
IIF (j, 1, 1, (unsigned long) addr_modeP.index_byte,
|
||
0, 0, 0, 0, 0, NULL, -1, 0);
|
||
}
|
||
break;
|
||
|
||
case 'b': /* Multiple instruction disp. */
|
||
freeptr++; /* OVE:this is an useful hack. */
|
||
sprintf (freeptr, "((%s-1)*%d)", argv[i], desc->im_size);
|
||
argv[i] = freeptr;
|
||
pcrel -= 1; /* Make pcrel 0 in spite of what case 'p':
|
||
wants. */
|
||
/* fallthru */
|
||
case 'p': /* Displacement - pc relative addressing. */
|
||
pcrel += 1;
|
||
/* fallthru */
|
||
case 'd': /* Displacement. */
|
||
iif.instr_size += suffixP[i] ? suffixP[i] : 4;
|
||
IIF (12, 2, suffixP[i], (unsigned long) argv[i], 0,
|
||
pcrel, pcrel_adjust, 1, IND (BRANCH, BYTE), NULL, -1, 0);
|
||
break;
|
||
case 'H': /* Sequent-hack: the linker wants a bit set
|
||
when bsr. */
|
||
pcrel = 1;
|
||
iif.instr_size += suffixP[i] ? suffixP[i] : 4;
|
||
IIF (12, 2, suffixP[i], (unsigned long) argv[i], 0,
|
||
pcrel, pcrel_adjust, 1, IND (BRANCH, BYTE), NULL, -1, 1);
|
||
break;
|
||
case 'q': /* quick */
|
||
opcode_bit_ptr -= 4;
|
||
IIF (11, 2, 42, (unsigned long) argv[i], 0, 0, 0, 0, 0,
|
||
bit_fix_new (4, opcode_bit_ptr, -8, 7, 0, 1, 0), -1, 0);
|
||
break;
|
||
case 'r': /* Register number (3 bits). */
|
||
list_search (argv[i], opt6, &tmp);
|
||
opcode_bit_ptr -= 3;
|
||
iif.iifP[1].object |= tmp << opcode_bit_ptr;
|
||
break;
|
||
case 'O': /* Setcfg instruction options list. */
|
||
optlist (argv[i], opt3, &tmp);
|
||
opcode_bit_ptr -= 4;
|
||
iif.iifP[1].object |= tmp << 15;
|
||
break;
|
||
case 'C': /* Cinv instruction options list. */
|
||
optlist (argv[i], opt4, &tmp);
|
||
opcode_bit_ptr -= 4;
|
||
iif.iifP[1].object |= tmp << 15; /* Insert the regtype in opcode. */
|
||
break;
|
||
case 'S': /* String instruction options list. */
|
||
optlist (argv[i], opt5, &tmp);
|
||
opcode_bit_ptr -= 4;
|
||
iif.iifP[1].object |= tmp << 15;
|
||
break;
|
||
case 'u':
|
||
case 'U': /* Register list. */
|
||
IIF (10, 1, 1, 0, 0, 0, 0, 0, 0, NULL, -1, 0);
|
||
switch (operandsP[(i << 1) + 1])
|
||
{
|
||
case 'u': /* Restore, exit. */
|
||
optlist (argv[i], opt1, &iif.iifP[10].object);
|
||
break;
|
||
case 'U': /* Save, enter. */
|
||
optlist (argv[i], opt2, &iif.iifP[10].object);
|
||
break;
|
||
}
|
||
iif.instr_size += 1;
|
||
break;
|
||
case 'M': /* MMU register. */
|
||
list_search (argv[i], mmureg, &tmp);
|
||
opcode_bit_ptr -= 4;
|
||
iif.iifP[1].object |= tmp << opcode_bit_ptr;
|
||
break;
|
||
case 'P': /* CPU register. */
|
||
list_search (argv[i], cpureg, &tmp);
|
||
opcode_bit_ptr -= 4;
|
||
iif.iifP[1].object |= tmp << opcode_bit_ptr;
|
||
break;
|
||
case 'g': /* Inss exts. */
|
||
iif.instr_size += 1; /* 1 byte is allocated after the opcode. */
|
||
IIF (10, 2, 1,
|
||
(unsigned long) argv[i], /* i always 2 here. */
|
||
0, 0, 0, 0, 0,
|
||
bit_fix_new (3, 5, 0, 7, 0, 0, 0), /* A bit_fix is targeted to
|
||
the byte. */
|
||
-1, 0);
|
||
break;
|
||
case 'G':
|
||
IIF (11, 2, 42,
|
||
(unsigned long) argv[i], /* i always 3 here. */
|
||
0, 0, 0, 0, 0,
|
||
bit_fix_new (5, 0, 1, 32, -1, 0, -1), -1, 0);
|
||
break;
|
||
case 'i':
|
||
iif.instr_size += 1;
|
||
b = 2 + i; /* Put the extension byte after opcode. */
|
||
IIF (b, 2, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0);
|
||
break;
|
||
default:
|
||
as_fatal (_("Bad opcode-table-option, check in file ns32k-opcode.h"));
|
||
}
|
||
}
|
||
}
|
||
|
||
/* in: instruction line
|
||
out: internal structure of instruction
|
||
that has been prepared for direct conversion to fragment(s) and
|
||
fixes in a systematical fashion
|
||
Return-value = recursive_level. */
|
||
/* Build iif of one assembly text line. */
|
||
|
||
static int
|
||
parse (const char *line, int recursive_level)
|
||
{
|
||
const char *lineptr;
|
||
char c, suffix_separator;
|
||
int i;
|
||
unsigned int argc;
|
||
int arg_type;
|
||
char sqr, sep;
|
||
char suffix[MAX_ARGS], *argv[MAX_ARGS]; /* No more than 4 operands. */
|
||
|
||
if (recursive_level <= 0)
|
||
{
|
||
/* Called from md_assemble. */
|
||
for (lineptr = line; (*lineptr) != '\0' && (*lineptr) != ' '; lineptr++)
|
||
continue;
|
||
|
||
c = *lineptr;
|
||
*(char *) lineptr = '\0';
|
||
|
||
if (!(desc = (struct ns32k_opcode *) hash_find (inst_hash_handle, line)))
|
||
as_fatal (_("No such opcode"));
|
||
|
||
*(char *) lineptr = c;
|
||
}
|
||
else
|
||
lineptr = line;
|
||
|
||
argc = 0;
|
||
|
||
if (*desc->operands)
|
||
{
|
||
if (*lineptr++ != '\0')
|
||
{
|
||
sqr = '[';
|
||
sep = ',';
|
||
|
||
while (*lineptr != '\0')
|
||
{
|
||
if (desc->operands[argc << 1])
|
||
{
|
||
suffix[argc] = 0;
|
||
arg_type = desc->operands[(argc << 1) + 1];
|
||
|
||
switch (arg_type)
|
||
{
|
||
case 'd':
|
||
case 'b':
|
||
case 'p':
|
||
case 'H':
|
||
/* The operand is supposed to be a displacement. */
|
||
/* Hackwarning: do not forget to update the 4
|
||
cases above when editing ns32k-opcode.h. */
|
||
suffix_separator = ':';
|
||
break;
|
||
default:
|
||
/* If this char occurs we loose. */
|
||
suffix_separator = '\255';
|
||
break;
|
||
}
|
||
|
||
suffix[argc] = 0; /* 0 when no ':' is encountered. */
|
||
argv[argc] = freeptr;
|
||
*freeptr = '\0';
|
||
|
||
while ((c = *lineptr) != '\0' && c != sep)
|
||
{
|
||
if (c == sqr)
|
||
{
|
||
if (sqr == '[')
|
||
{
|
||
sqr = ']';
|
||
sep = '\0';
|
||
}
|
||
else
|
||
{
|
||
sqr = '[';
|
||
sep = ',';
|
||
}
|
||
}
|
||
|
||
if (c == suffix_separator)
|
||
{
|
||
/* ':' - label/suffix separator. */
|
||
switch (lineptr[1])
|
||
{
|
||
case 'b':
|
||
suffix[argc] = 1;
|
||
break;
|
||
case 'w':
|
||
suffix[argc] = 2;
|
||
break;
|
||
case 'd':
|
||
suffix[argc] = 4;
|
||
break;
|
||
default:
|
||
as_warn (_("Bad suffix, defaulting to d"));
|
||
suffix[argc] = 4;
|
||
if (lineptr[1] == '\0' || lineptr[1] == sep)
|
||
{
|
||
lineptr += 1;
|
||
continue;
|
||
}
|
||
break;
|
||
}
|
||
|
||
lineptr += 2;
|
||
continue;
|
||
}
|
||
|
||
*freeptr++ = c;
|
||
lineptr++;
|
||
}
|
||
|
||
*freeptr++ = '\0';
|
||
argc += 1;
|
||
|
||
if (*lineptr == '\0')
|
||
continue;
|
||
|
||
lineptr += 1;
|
||
}
|
||
else
|
||
as_fatal (_("Too many operands passed to instruction"));
|
||
}
|
||
}
|
||
}
|
||
|
||
if (argc != strlen (desc->operands) / 2)
|
||
{
|
||
if (strlen (desc->default_args))
|
||
{
|
||
/* We can apply default, don't goof. */
|
||
if (parse (desc->default_args, 1) != 1)
|
||
/* Check error in default. */
|
||
as_fatal (_("Wrong numbers of operands in default, check ns32k-opcodes.h"));
|
||
}
|
||
else
|
||
as_fatal (_("Wrong number of operands"));
|
||
}
|
||
|
||
for (i = 0; i < IIF_ENTRIES; i++)
|
||
/* Mark all entries as void. */
|
||
iif.iifP[i].type = 0;
|
||
|
||
/* Build opcode iif-entry. */
|
||
iif.instr_size = desc->opcode_size / 8;
|
||
IIF (1, 1, iif.instr_size, desc->opcode_seed, 0, 0, 0, 0, 0, 0, -1, 0);
|
||
|
||
/* This call encodes operands to iif format. */
|
||
if (argc)
|
||
encode_operand (argc, argv, &desc->operands[0],
|
||
&suffix[0], desc->im_size, desc->opcode_size);
|
||
|
||
return recursive_level;
|
||
}
|
||
|
||
/* This functionality should really be in the bfd library. */
|
||
|
||
static bfd_reloc_code_real_type
|
||
reloc (int size, int pcrel, int type)
|
||
{
|
||
int length, rel_index;
|
||
bfd_reloc_code_real_type relocs[] =
|
||
{
|
||
BFD_RELOC_NS32K_IMM_8,
|
||
BFD_RELOC_NS32K_IMM_16,
|
||
BFD_RELOC_NS32K_IMM_32,
|
||
BFD_RELOC_NS32K_IMM_8_PCREL,
|
||
BFD_RELOC_NS32K_IMM_16_PCREL,
|
||
BFD_RELOC_NS32K_IMM_32_PCREL,
|
||
|
||
/* ns32k displacements. */
|
||
BFD_RELOC_NS32K_DISP_8,
|
||
BFD_RELOC_NS32K_DISP_16,
|
||
BFD_RELOC_NS32K_DISP_32,
|
||
BFD_RELOC_NS32K_DISP_8_PCREL,
|
||
BFD_RELOC_NS32K_DISP_16_PCREL,
|
||
BFD_RELOC_NS32K_DISP_32_PCREL,
|
||
|
||
/* Normal 2's complement. */
|
||
BFD_RELOC_8,
|
||
BFD_RELOC_16,
|
||
BFD_RELOC_32,
|
||
BFD_RELOC_8_PCREL,
|
||
BFD_RELOC_16_PCREL,
|
||
BFD_RELOC_32_PCREL
|
||
};
|
||
|
||
switch (size)
|
||
{
|
||
case 1:
|
||
length = 0;
|
||
break;
|
||
case 2:
|
||
length = 1;
|
||
break;
|
||
case 4:
|
||
length = 2;
|
||
break;
|
||
default:
|
||
length = -1;
|
||
break;
|
||
}
|
||
|
||
rel_index = length + 3 * pcrel + 6 * type;
|
||
|
||
if (rel_index >= 0 && (unsigned int) rel_index < sizeof (relocs) / sizeof (relocs[0]))
|
||
return relocs[rel_index];
|
||
|
||
if (pcrel)
|
||
as_bad (_("Can not do %d byte pc-relative relocation for storage type %d"),
|
||
size, type);
|
||
else
|
||
as_bad (_("Can not do %d byte relocation for storage type %d"),
|
||
size, type);
|
||
|
||
return BFD_RELOC_NONE;
|
||
|
||
}
|
||
|
||
static void
|
||
fix_new_ns32k (fragS *frag, /* Which frag? */
|
||
int where, /* Where in that frag? */
|
||
int size, /* 1, 2 or 4 usually. */
|
||
symbolS *add_symbol, /* X_add_symbol. */
|
||
long offset, /* X_add_number. */
|
||
int pcrel, /* True if PC-relative relocation. */
|
||
char im_disp, /* True if the value to write is a
|
||
displacement. */
|
||
bit_fixS *bit_fixP, /* Pointer at struct of bit_fix's, ignored if
|
||
NULL. */
|
||
char bsr, /* Sequent-linker-hack: 1 when relocobject is
|
||
a bsr. */
|
||
fragS *opcode_frag,
|
||
unsigned int opcode_offset)
|
||
{
|
||
fixS *fixP = fix_new (frag, where, size, add_symbol,
|
||
offset, pcrel,
|
||
bit_fixP ? NO_RELOC : reloc (size, pcrel, im_disp)
|
||
);
|
||
|
||
fix_opcode_frag (fixP) = opcode_frag;
|
||
fix_opcode_offset (fixP) = opcode_offset;
|
||
fix_im_disp (fixP) = im_disp;
|
||
fix_bsr (fixP) = bsr;
|
||
fix_bit_fixP (fixP) = bit_fixP;
|
||
/* We have a MD overflow check for displacements. */
|
||
fixP->fx_no_overflow = im_disp != 0 || bit_fixP != NULL;
|
||
}
|
||
|
||
static void
|
||
fix_new_ns32k_exp (fragS *frag, /* Which frag? */
|
||
int where, /* Where in that frag? */
|
||
int size, /* 1, 2 or 4 usually. */
|
||
expressionS *exp, /* Expression. */
|
||
int pcrel, /* True if PC-relative relocation. */
|
||
char im_disp, /* True if the value to write is a
|
||
displacement. */
|
||
bit_fixS *bit_fixP, /* Pointer at struct of bit_fix's, ignored if
|
||
NULL. */
|
||
char bsr, /* Sequent-linker-hack: 1 when relocobject is
|
||
a bsr. */
|
||
fragS *opcode_frag,
|
||
unsigned int opcode_offset)
|
||
{
|
||
fixS *fixP = fix_new_exp (frag, where, size, exp, pcrel,
|
||
bit_fixP ? NO_RELOC : reloc (size, pcrel, im_disp)
|
||
);
|
||
|
||
fix_opcode_frag (fixP) = opcode_frag;
|
||
fix_opcode_offset (fixP) = opcode_offset;
|
||
fix_im_disp (fixP) = im_disp;
|
||
fix_bsr (fixP) = bsr;
|
||
fix_bit_fixP (fixP) = bit_fixP;
|
||
/* We have a MD overflow check for displacements. */
|
||
fixP->fx_no_overflow = im_disp != 0 || bit_fixP != NULL;
|
||
}
|
||
|
||
/* Convert number to chars in correct order. */
|
||
|
||
void
|
||
md_number_to_chars (char *buf, valueT value, int nbytes)
|
||
{
|
||
number_to_chars_littleendian (buf, value, nbytes);
|
||
}
|
||
|
||
/* This is a variant of md_numbers_to_chars. The reason for its
|
||
existence is the fact that ns32k uses Huffman coded
|
||
displacements. This implies that the bit order is reversed in
|
||
displacements and that they are prefixed with a size-tag.
|
||
|
||
binary: msb -> lsb
|
||
0xxxxxxx byte
|
||
10xxxxxx xxxxxxxx word
|
||
11xxxxxx xxxxxxxx xxxxxxxx xxxxxxxx double word
|
||
|
||
This must be taken care of and we do it here! */
|
||
|
||
static void
|
||
md_number_to_disp (char *buf, long val, int n)
|
||
{
|
||
switch (n)
|
||
{
|
||
case 1:
|
||
if (val < -64 || val > 63)
|
||
as_bad (_("value of %ld out of byte displacement range."), val);
|
||
val &= 0x7f;
|
||
#ifdef SHOW_NUM
|
||
printf ("%x ", val & 0xff);
|
||
#endif
|
||
*buf++ = val;
|
||
break;
|
||
|
||
case 2:
|
||
if (val < -8192 || val > 8191)
|
||
as_bad (_("value of %ld out of word displacement range."), val);
|
||
val &= 0x3fff;
|
||
val |= 0x8000;
|
||
#ifdef SHOW_NUM
|
||
printf ("%x ", val >> 8 & 0xff);
|
||
#endif
|
||
*buf++ = (val >> 8);
|
||
#ifdef SHOW_NUM
|
||
printf ("%x ", val & 0xff);
|
||
#endif
|
||
*buf++ = val;
|
||
break;
|
||
|
||
case 4:
|
||
if (val < -0x20000000 || val >= 0x20000000)
|
||
as_bad (_("value of %ld out of double word displacement range."), val);
|
||
val |= 0xc0000000;
|
||
#ifdef SHOW_NUM
|
||
printf ("%x ", val >> 24 & 0xff);
|
||
#endif
|
||
*buf++ = (val >> 24);
|
||
#ifdef SHOW_NUM
|
||
printf ("%x ", val >> 16 & 0xff);
|
||
#endif
|
||
*buf++ = (val >> 16);
|
||
#ifdef SHOW_NUM
|
||
printf ("%x ", val >> 8 & 0xff);
|
||
#endif
|
||
*buf++ = (val >> 8);
|
||
#ifdef SHOW_NUM
|
||
printf ("%x ", val & 0xff);
|
||
#endif
|
||
*buf++ = val;
|
||
break;
|
||
|
||
default:
|
||
as_fatal (_("Internal logic error. Line %d, file: \"%s\""),
|
||
__LINE__, __FILE__);
|
||
}
|
||
}
|
||
|
||
static void
|
||
md_number_to_imm (char *buf, long val, int n)
|
||
{
|
||
switch (n)
|
||
{
|
||
case 1:
|
||
#ifdef SHOW_NUM
|
||
printf ("%x ", val & 0xff);
|
||
#endif
|
||
*buf++ = val;
|
||
break;
|
||
|
||
case 2:
|
||
#ifdef SHOW_NUM
|
||
printf ("%x ", val >> 8 & 0xff);
|
||
#endif
|
||
*buf++ = (val >> 8);
|
||
#ifdef SHOW_NUM
|
||
printf ("%x ", val & 0xff);
|
||
#endif
|
||
*buf++ = val;
|
||
break;
|
||
|
||
case 4:
|
||
#ifdef SHOW_NUM
|
||
printf ("%x ", val >> 24 & 0xff);
|
||
#endif
|
||
*buf++ = (val >> 24);
|
||
#ifdef SHOW_NUM
|
||
printf ("%x ", val >> 16 & 0xff);
|
||
#endif
|
||
*buf++ = (val >> 16);
|
||
#ifdef SHOW_NUM
|
||
printf ("%x ", val >> 8 & 0xff);
|
||
#endif
|
||
*buf++ = (val >> 8);
|
||
#ifdef SHOW_NUM
|
||
printf ("%x ", val & 0xff);
|
||
#endif
|
||
*buf++ = val;
|
||
break;
|
||
|
||
default:
|
||
as_fatal (_("Internal logic error. line %d, file \"%s\""),
|
||
__LINE__, __FILE__);
|
||
}
|
||
}
|
||
|
||
/* Fast bitfiddling support. */
|
||
/* Mask used to zero bitfield before oring in the true field. */
|
||
|
||
static unsigned long l_mask[] =
|
||
{
|
||
0xffffffff, 0xfffffffe, 0xfffffffc, 0xfffffff8,
|
||
0xfffffff0, 0xffffffe0, 0xffffffc0, 0xffffff80,
|
||
0xffffff00, 0xfffffe00, 0xfffffc00, 0xfffff800,
|
||
0xfffff000, 0xffffe000, 0xffffc000, 0xffff8000,
|
||
0xffff0000, 0xfffe0000, 0xfffc0000, 0xfff80000,
|
||
0xfff00000, 0xffe00000, 0xffc00000, 0xff800000,
|
||
0xff000000, 0xfe000000, 0xfc000000, 0xf8000000,
|
||
0xf0000000, 0xe0000000, 0xc0000000, 0x80000000,
|
||
};
|
||
static unsigned long r_mask[] =
|
||
{
|
||
0x00000000, 0x00000001, 0x00000003, 0x00000007,
|
||
0x0000000f, 0x0000001f, 0x0000003f, 0x0000007f,
|
||
0x000000ff, 0x000001ff, 0x000003ff, 0x000007ff,
|
||
0x00000fff, 0x00001fff, 0x00003fff, 0x00007fff,
|
||
0x0000ffff, 0x0001ffff, 0x0003ffff, 0x0007ffff,
|
||
0x000fffff, 0x001fffff, 0x003fffff, 0x007fffff,
|
||
0x00ffffff, 0x01ffffff, 0x03ffffff, 0x07ffffff,
|
||
0x0fffffff, 0x1fffffff, 0x3fffffff, 0x7fffffff,
|
||
};
|
||
#define MASK_BITS 31
|
||
/* Insert bitfield described by field_ptr and val at buf
|
||
This routine is written for modification of the first 4 bytes pointed
|
||
to by buf, to yield speed.
|
||
The ifdef stuff is for selection between a ns32k-dependent routine
|
||
and a general version. (My advice: use the general version!). */
|
||
|
||
static void
|
||
md_number_to_field (char *buf, long val, bit_fixS *field_ptr)
|
||
{
|
||
unsigned long object;
|
||
unsigned long mask;
|
||
/* Define ENDIAN on a ns32k machine. */
|
||
#ifdef ENDIAN
|
||
unsigned long *mem_ptr;
|
||
#else
|
||
char *mem_ptr;
|
||
#endif
|
||
|
||
if (field_ptr->fx_bit_min <= val && val <= field_ptr->fx_bit_max)
|
||
{
|
||
#ifdef ENDIAN
|
||
if (field_ptr->fx_bit_base)
|
||
/* Override buf. */
|
||
mem_ptr = (unsigned long *) field_ptr->fx_bit_base;
|
||
else
|
||
mem_ptr = (unsigned long *) buf;
|
||
|
||
mem_ptr = ((unsigned long *)
|
||
((char *) mem_ptr + field_ptr->fx_bit_base_adj));
|
||
#else
|
||
if (field_ptr->fx_bit_base)
|
||
mem_ptr = (char *) field_ptr->fx_bit_base;
|
||
else
|
||
mem_ptr = buf;
|
||
|
||
mem_ptr += field_ptr->fx_bit_base_adj;
|
||
#endif
|
||
#ifdef ENDIAN
|
||
/* We have a nice ns32k machine with lowbyte at low-physical mem. */
|
||
object = *mem_ptr; /* get some bytes */
|
||
#else /* OVE Goof! the machine is a m68k or dito. */
|
||
/* That takes more byte fiddling. */
|
||
object = 0;
|
||
object |= mem_ptr[3] & 0xff;
|
||
object <<= 8;
|
||
object |= mem_ptr[2] & 0xff;
|
||
object <<= 8;
|
||
object |= mem_ptr[1] & 0xff;
|
||
object <<= 8;
|
||
object |= mem_ptr[0] & 0xff;
|
||
#endif
|
||
mask = 0;
|
||
mask |= (r_mask[field_ptr->fx_bit_offset]);
|
||
mask |= (l_mask[field_ptr->fx_bit_offset + field_ptr->fx_bit_size]);
|
||
object &= mask;
|
||
val += field_ptr->fx_bit_add;
|
||
object |= ((val << field_ptr->fx_bit_offset) & (mask ^ 0xffffffff));
|
||
#ifdef ENDIAN
|
||
*mem_ptr = object;
|
||
#else
|
||
mem_ptr[0] = (char) object;
|
||
object >>= 8;
|
||
mem_ptr[1] = (char) object;
|
||
object >>= 8;
|
||
mem_ptr[2] = (char) object;
|
||
object >>= 8;
|
||
mem_ptr[3] = (char) object;
|
||
#endif
|
||
}
|
||
else
|
||
as_bad (_("Bit field out of range"));
|
||
}
|
||
|
||
/* Convert iif to fragments. From this point we start to dribble with
|
||
functions in other files than this one.(Except hash.c) So, if it's
|
||
possible to make an iif for an other CPU, you don't need to know
|
||
what frags, relax, obstacks, etc is in order to port this
|
||
assembler. You only need to know if it's possible to reduce your
|
||
cpu-instruction to iif-format (takes some work) and adopt the other
|
||
md_? parts according to given instructions Note that iif was
|
||
invented for the clean ns32k`s architecture. */
|
||
|
||
/* GAS for the ns32k has a problem. PC relative displacements are
|
||
relative to the address of the opcode, not the address of the
|
||
operand. We used to keep track of the offset between the operand
|
||
and the opcode in pcrel_adjust for each frag and each fix. However,
|
||
we get into trouble where there are two or more pc-relative
|
||
operands and the size of the first one can't be determined. Then in
|
||
the relax phase, the size of the first operand will change and
|
||
pcrel_adjust will no longer be correct. The current solution is
|
||
keep a pointer to the frag with the opcode in it and the offset in
|
||
that frag for each frag and each fix. Then, when needed, we can
|
||
always figure out how far it is between the opcode and the pcrel
|
||
object. See also md_pcrel_adjust and md_fix_pcrel_adjust. For
|
||
objects not part of an instruction, the pointer to the opcode frag
|
||
is always zero. */
|
||
|
||
static void
|
||
convert_iif (void)
|
||
{
|
||
int i;
|
||
bit_fixS *j;
|
||
fragS *inst_frag;
|
||
unsigned int inst_offset;
|
||
char *inst_opcode;
|
||
char *memP;
|
||
int l;
|
||
int k;
|
||
char type;
|
||
char size = 0;
|
||
|
||
frag_grow (iif.instr_size); /* This is important. */
|
||
memP = frag_more (0);
|
||
inst_opcode = memP;
|
||
inst_offset = (memP - frag_now->fr_literal);
|
||
inst_frag = frag_now;
|
||
|
||
for (i = 0; i < IIF_ENTRIES; i++)
|
||
{
|
||
if ((type = iif.iifP[i].type))
|
||
{
|
||
/* The object exist, so handle it. */
|
||
switch (size = iif.iifP[i].size)
|
||
{
|
||
case 42:
|
||
size = 0;
|
||
/* It's a bitfix that operates on an existing object. */
|
||
if (iif.iifP[i].bit_fixP->fx_bit_base)
|
||
/* Expand fx_bit_base to point at opcode. */
|
||
iif.iifP[i].bit_fixP->fx_bit_base = (long) inst_opcode;
|
||
/* Fall through. */
|
||
|
||
case 8: /* bignum or doublefloat. */
|
||
case 1:
|
||
case 2:
|
||
case 3:
|
||
case 4:
|
||
/* The final size in objectmemory is known. */
|
||
memP = frag_more (size);
|
||
j = iif.iifP[i].bit_fixP;
|
||
|
||
switch (type)
|
||
{
|
||
case 1: /* The object is pure binary. */
|
||
if (j)
|
||
md_number_to_field (memP, exprP.X_add_number, j);
|
||
|
||
else if (iif.iifP[i].pcrel)
|
||
fix_new_ns32k (frag_now,
|
||
(long) (memP - frag_now->fr_literal),
|
||
size,
|
||
0,
|
||
iif.iifP[i].object,
|
||
iif.iifP[i].pcrel,
|
||
iif.iifP[i].im_disp,
|
||
0,
|
||
iif.iifP[i].bsr, /* Sequent hack. */
|
||
inst_frag, inst_offset);
|
||
else
|
||
{
|
||
/* Good, just put them bytes out. */
|
||
switch (iif.iifP[i].im_disp)
|
||
{
|
||
case 0:
|
||
md_number_to_chars (memP, iif.iifP[i].object, size);
|
||
break;
|
||
case 1:
|
||
md_number_to_disp (memP, iif.iifP[i].object, size);
|
||
break;
|
||
default:
|
||
as_fatal (_("iif convert internal pcrel/binary"));
|
||
}
|
||
}
|
||
break;
|
||
|
||
case 2:
|
||
/* The object is a pointer at an expression, so
|
||
unpack it, note that bignums may result from the
|
||
expression. */
|
||
evaluate_expr (&exprP, (char *) iif.iifP[i].object);
|
||
if (exprP.X_op == O_big || size == 8)
|
||
{
|
||
if ((k = exprP.X_add_number) > 0)
|
||
{
|
||
/* We have a bignum ie a quad. This can only
|
||
happens in a long suffixed instruction. */
|
||
if (k * 2 > size)
|
||
as_bad (_("Bignum too big for long"));
|
||
|
||
if (k == 3)
|
||
memP += 2;
|
||
|
||
for (l = 0; k > 0; k--, l += 2)
|
||
md_number_to_chars (memP + l,
|
||
generic_bignum[l >> 1],
|
||
sizeof (LITTLENUM_TYPE));
|
||
}
|
||
else
|
||
{
|
||
/* flonum. */
|
||
LITTLENUM_TYPE words[4];
|
||
|
||
switch (size)
|
||
{
|
||
case 4:
|
||
gen_to_words (words, 2, 8);
|
||
md_number_to_imm (memP, (long) words[0],
|
||
sizeof (LITTLENUM_TYPE));
|
||
md_number_to_imm (memP + sizeof (LITTLENUM_TYPE),
|
||
(long) words[1],
|
||
sizeof (LITTLENUM_TYPE));
|
||
break;
|
||
case 8:
|
||
gen_to_words (words, 4, 11);
|
||
md_number_to_imm (memP, (long) words[0],
|
||
sizeof (LITTLENUM_TYPE));
|
||
md_number_to_imm (memP + sizeof (LITTLENUM_TYPE),
|
||
(long) words[1],
|
||
sizeof (LITTLENUM_TYPE));
|
||
md_number_to_imm ((memP + 2
|
||
* sizeof (LITTLENUM_TYPE)),
|
||
(long) words[2],
|
||
sizeof (LITTLENUM_TYPE));
|
||
md_number_to_imm ((memP + 3
|
||
* sizeof (LITTLENUM_TYPE)),
|
||
(long) words[3],
|
||
sizeof (LITTLENUM_TYPE));
|
||
break;
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
if (exprP.X_add_symbol ||
|
||
exprP.X_op_symbol ||
|
||
iif.iifP[i].pcrel)
|
||
{
|
||
/* The expression was undefined due to an
|
||
undefined label. Create a fix so we can fix
|
||
the object later. */
|
||
exprP.X_add_number += iif.iifP[i].object_adjust;
|
||
fix_new_ns32k_exp (frag_now,
|
||
(long) (memP - frag_now->fr_literal),
|
||
size,
|
||
&exprP,
|
||
iif.iifP[i].pcrel,
|
||
iif.iifP[i].im_disp,
|
||
j,
|
||
iif.iifP[i].bsr,
|
||
inst_frag, inst_offset);
|
||
}
|
||
else if (j)
|
||
md_number_to_field (memP, exprP.X_add_number, j);
|
||
else
|
||
{
|
||
/* Good, just put them bytes out. */
|
||
switch (iif.iifP[i].im_disp)
|
||
{
|
||
case 0:
|
||
md_number_to_imm (memP, exprP.X_add_number, size);
|
||
break;
|
||
case 1:
|
||
md_number_to_disp (memP, exprP.X_add_number, size);
|
||
break;
|
||
default:
|
||
as_fatal (_("iif convert internal pcrel/pointer"));
|
||
}
|
||
}
|
||
break;
|
||
default:
|
||
as_fatal (_("Internal logic error in iif.iifP[n].type"));
|
||
}
|
||
break;
|
||
|
||
case 0:
|
||
/* Too bad, the object may be undefined as far as its
|
||
final nsize in object memory is concerned. The size
|
||
of the object in objectmemory is not explicitly
|
||
given. If the object is defined its length can be
|
||
determined and a fix can replace the frag. */
|
||
{
|
||
evaluate_expr (&exprP, (char *) iif.iifP[i].object);
|
||
|
||
if ((exprP.X_add_symbol || exprP.X_op_symbol) &&
|
||
!iif.iifP[i].pcrel)
|
||
{
|
||
/* Size is unknown until link time so have to default. */
|
||
size = default_disp_size; /* Normally 4 bytes. */
|
||
memP = frag_more (size);
|
||
fix_new_ns32k_exp (frag_now,
|
||
(long) (memP - frag_now->fr_literal),
|
||
size,
|
||
&exprP,
|
||
0, /* never iif.iifP[i].pcrel, */
|
||
1, /* always iif.iifP[i].im_disp */
|
||
(bit_fixS *) 0, 0,
|
||
inst_frag,
|
||
inst_offset);
|
||
break; /* Exit this absolute hack. */
|
||
}
|
||
|
||
if (exprP.X_add_symbol || exprP.X_op_symbol)
|
||
{
|
||
/* Frag it. */
|
||
if (exprP.X_op_symbol)
|
||
/* We can't relax this case. */
|
||
as_fatal (_("Can't relax difference"));
|
||
else
|
||
{
|
||
/* Size is not important. This gets fixed by
|
||
relax, but we assume 0 in what follows. */
|
||
memP = frag_more (4); /* Max size. */
|
||
size = 0;
|
||
|
||
{
|
||
fragS *old_frag = frag_now;
|
||
frag_variant (rs_machine_dependent,
|
||
4, /* Max size. */
|
||
0, /* Size. */
|
||
IND (BRANCH, UNDEF), /* Expecting
|
||
the worst. */
|
||
exprP.X_add_symbol,
|
||
exprP.X_add_number,
|
||
inst_opcode);
|
||
frag_opcode_frag (old_frag) = inst_frag;
|
||
frag_opcode_offset (old_frag) = inst_offset;
|
||
frag_bsr (old_frag) = iif.iifP[i].bsr;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* This duplicates code in md_number_to_disp. */
|
||
if (-64 <= exprP.X_add_number && exprP.X_add_number <= 63)
|
||
size = 1;
|
||
else
|
||
{
|
||
if (-8192 <= exprP.X_add_number
|
||
&& exprP.X_add_number <= 8191)
|
||
size = 2;
|
||
else
|
||
{
|
||
if (-0x20000000 <= exprP.X_add_number
|
||
&& exprP.X_add_number<=0x1fffffff)
|
||
size = 4;
|
||
else
|
||
{
|
||
as_bad (_("Displacement too large for :d"));
|
||
size = 4;
|
||
}
|
||
}
|
||
}
|
||
|
||
memP = frag_more (size);
|
||
md_number_to_disp (memP, exprP.X_add_number, size);
|
||
}
|
||
}
|
||
break;
|
||
|
||
default:
|
||
as_fatal (_("Internal logic error in iif.iifP[].type"));
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
void
|
||
md_assemble (char *line)
|
||
{
|
||
freeptr = freeptr_static;
|
||
parse (line, 0); /* Explode line to more fix form in iif. */
|
||
convert_iif (); /* Convert iif to frags, fix's etc. */
|
||
#ifdef SHOW_NUM
|
||
printf (" \t\t\t%s\n", line);
|
||
#endif
|
||
}
|
||
|
||
void
|
||
md_begin (void)
|
||
{
|
||
/* Build a hashtable of the instructions. */
|
||
const struct ns32k_opcode *ptr;
|
||
const char *status;
|
||
const struct ns32k_opcode *endop;
|
||
|
||
inst_hash_handle = hash_new ();
|
||
|
||
endop = ns32k_opcodes + sizeof (ns32k_opcodes) / sizeof (ns32k_opcodes[0]);
|
||
for (ptr = ns32k_opcodes; ptr < endop; ptr++)
|
||
{
|
||
if ((status = hash_insert (inst_hash_handle, ptr->name, (char *) ptr)))
|
||
/* Fatal. */
|
||
as_fatal (_("Can't hash %s: %s"), ptr->name, status);
|
||
}
|
||
|
||
/* Some private space please! */
|
||
freeptr_static = XNEWVEC (char, PRIVATE_SIZE);
|
||
}
|
||
|
||
/* Turn the string pointed to by litP into a floating point constant
|
||
of type TYPE, and emit the appropriate bytes. The number of
|
||
LITTLENUMS emitted is stored in *SIZEP. An error message is
|
||
returned, or NULL on OK. */
|
||
|
||
const char *
|
||
md_atof (int type, char *litP, int *sizeP)
|
||
{
|
||
return ieee_md_atof (type, litP, sizeP, FALSE);
|
||
}
|
||
|
||
int
|
||
md_pcrel_adjust (fragS *fragP)
|
||
{
|
||
fragS *opcode_frag;
|
||
addressT opcode_address;
|
||
unsigned int offset;
|
||
|
||
opcode_frag = frag_opcode_frag (fragP);
|
||
if (opcode_frag == 0)
|
||
return 0;
|
||
|
||
offset = frag_opcode_offset (fragP);
|
||
opcode_address = offset + opcode_frag->fr_address;
|
||
|
||
return fragP->fr_address + fragP->fr_fix - opcode_address;
|
||
}
|
||
|
||
static int
|
||
md_fix_pcrel_adjust (fixS *fixP)
|
||
{
|
||
fragS *opcode_frag;
|
||
addressT opcode_address;
|
||
unsigned int offset;
|
||
|
||
opcode_frag = fix_opcode_frag (fixP);
|
||
if (opcode_frag == 0)
|
||
return 0;
|
||
|
||
offset = fix_opcode_offset (fixP);
|
||
opcode_address = offset + opcode_frag->fr_address;
|
||
|
||
return fixP->fx_where + fixP->fx_frag->fr_address - opcode_address;
|
||
}
|
||
|
||
/* Apply a fixS (fixup of an instruction or data that we didn't have
|
||
enough info to complete immediately) to the data in a frag.
|
||
|
||
On the ns32k, everything is in a different format, so we have broken
|
||
out separate functions for each kind of thing we could be fixing.
|
||
They all get called from here. */
|
||
|
||
void
|
||
md_apply_fix (fixS *fixP, valueT * valP, segT seg ATTRIBUTE_UNUSED)
|
||
{
|
||
long val = * (long *) valP;
|
||
char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
|
||
|
||
if (fix_bit_fixP (fixP))
|
||
/* Bitfields to fix, sigh. */
|
||
md_number_to_field (buf, val, fix_bit_fixP (fixP));
|
||
else switch (fix_im_disp (fixP))
|
||
{
|
||
case 0:
|
||
/* Immediate field. */
|
||
md_number_to_imm (buf, val, fixP->fx_size);
|
||
break;
|
||
|
||
case 1:
|
||
/* Displacement field. */
|
||
/* Calculate offset. */
|
||
md_number_to_disp (buf,
|
||
(fixP->fx_pcrel ? val + md_fix_pcrel_adjust (fixP)
|
||
: val), fixP->fx_size);
|
||
break;
|
||
|
||
case 2:
|
||
/* Pointer in a data object. */
|
||
md_number_to_chars (buf, val, fixP->fx_size);
|
||
break;
|
||
}
|
||
|
||
if (fixP->fx_addsy == NULL && fixP->fx_pcrel == 0)
|
||
fixP->fx_done = 1;
|
||
}
|
||
|
||
/* Convert a relaxed displacement to ditto in final output. */
|
||
|
||
void
|
||
md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED,
|
||
segT sec ATTRIBUTE_UNUSED,
|
||
fragS *fragP)
|
||
{
|
||
long disp;
|
||
long ext = 0;
|
||
/* Address in gas core of the place to store the displacement. */
|
||
char *buffer_address = fragP->fr_fix + fragP->fr_literal;
|
||
/* Address in object code of the displacement. */
|
||
int object_address;
|
||
|
||
switch (fragP->fr_subtype)
|
||
{
|
||
case IND (BRANCH, BYTE):
|
||
ext = 1;
|
||
break;
|
||
case IND (BRANCH, WORD):
|
||
ext = 2;
|
||
break;
|
||
case IND (BRANCH, DOUBLE):
|
||
ext = 4;
|
||
break;
|
||
}
|
||
|
||
if (ext == 0)
|
||
return;
|
||
|
||
know (fragP->fr_symbol);
|
||
|
||
object_address = fragP->fr_fix + fragP->fr_address;
|
||
|
||
/* The displacement of the address, from current location. */
|
||
disp = (S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset) - object_address;
|
||
disp += md_pcrel_adjust (fragP);
|
||
|
||
md_number_to_disp (buffer_address, (long) disp, (int) ext);
|
||
fragP->fr_fix += ext;
|
||
}
|
||
|
||
/* This function returns the estimated size a variable object will occupy,
|
||
one can say that we tries to guess the size of the objects before we
|
||
actually know it. */
|
||
|
||
int
|
||
md_estimate_size_before_relax (fragS *fragP, segT segment)
|
||
{
|
||
if (fragP->fr_subtype == IND (BRANCH, UNDEF))
|
||
{
|
||
if (S_GET_SEGMENT (fragP->fr_symbol) != segment)
|
||
{
|
||
/* We don't relax symbols defined in another segment. The
|
||
thing to do is to assume the object will occupy 4 bytes. */
|
||
fix_new_ns32k (fragP,
|
||
(int) (fragP->fr_fix),
|
||
4,
|
||
fragP->fr_symbol,
|
||
fragP->fr_offset,
|
||
1,
|
||
1,
|
||
0,
|
||
frag_bsr(fragP), /* Sequent hack. */
|
||
frag_opcode_frag (fragP),
|
||
frag_opcode_offset (fragP));
|
||
fragP->fr_fix += 4;
|
||
frag_wane (fragP);
|
||
return 4;
|
||
}
|
||
|
||
/* Relaxable case. Set up the initial guess for the variable
|
||
part of the frag. */
|
||
fragP->fr_subtype = IND (BRANCH, BYTE);
|
||
}
|
||
|
||
if (fragP->fr_subtype >= sizeof (md_relax_table) / sizeof (md_relax_table[0]))
|
||
abort ();
|
||
|
||
/* Return the size of the variable part of the frag. */
|
||
return md_relax_table[fragP->fr_subtype].rlx_length;
|
||
}
|
||
|
||
int md_short_jump_size = 3;
|
||
int md_long_jump_size = 5;
|
||
|
||
void
|
||
md_create_short_jump (char *ptr,
|
||
addressT from_addr,
|
||
addressT to_addr,
|
||
fragS *frag ATTRIBUTE_UNUSED,
|
||
symbolS *to_symbol ATTRIBUTE_UNUSED)
|
||
{
|
||
valueT offset;
|
||
|
||
offset = to_addr - from_addr;
|
||
md_number_to_chars (ptr, (valueT) 0xEA, 1);
|
||
md_number_to_disp (ptr + 1, (valueT) offset, 2);
|
||
}
|
||
|
||
void
|
||
md_create_long_jump (char *ptr,
|
||
addressT from_addr,
|
||
addressT to_addr,
|
||
fragS *frag ATTRIBUTE_UNUSED,
|
||
symbolS *to_symbol ATTRIBUTE_UNUSED)
|
||
{
|
||
valueT offset;
|
||
|
||
offset = to_addr - from_addr;
|
||
md_number_to_chars (ptr, (valueT) 0xEA, 1);
|
||
md_number_to_disp (ptr + 1, (valueT) offset, 4);
|
||
}
|
||
|
||
const char *md_shortopts = "m:";
|
||
|
||
struct option md_longopts[] =
|
||
{
|
||
#define OPTION_DISP_SIZE (OPTION_MD_BASE)
|
||
{"disp-size-default", required_argument , NULL, OPTION_DISP_SIZE},
|
||
{NULL, no_argument, NULL, 0}
|
||
};
|
||
|
||
size_t md_longopts_size = sizeof (md_longopts);
|
||
|
||
int
|
||
md_parse_option (int c, const char *arg)
|
||
{
|
||
switch (c)
|
||
{
|
||
case 'm':
|
||
if (!strcmp (arg, "32032"))
|
||
{
|
||
cpureg = cpureg_032;
|
||
mmureg = mmureg_032;
|
||
}
|
||
else if (!strcmp (arg, "32532"))
|
||
{
|
||
cpureg = cpureg_532;
|
||
mmureg = mmureg_532;
|
||
}
|
||
else
|
||
{
|
||
as_warn (_("invalid architecture option -m%s, ignored"), arg);
|
||
return 0;
|
||
}
|
||
break;
|
||
case OPTION_DISP_SIZE:
|
||
{
|
||
int size = atoi(arg);
|
||
switch (size)
|
||
{
|
||
case 1: case 2: case 4:
|
||
default_disp_size = size;
|
||
break;
|
||
default:
|
||
as_warn (_("invalid default displacement size \"%s\". Defaulting to %d."),
|
||
arg, default_disp_size);
|
||
}
|
||
break;
|
||
}
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
void
|
||
md_show_usage (FILE *stream)
|
||
{
|
||
fprintf (stream, _("\
|
||
NS32K options:\n\
|
||
-m32032 | -m32532 select variant of NS32K architecture\n\
|
||
--disp-size-default=<1|2|4>\n"));
|
||
}
|
||
|
||
/* This is TC_CONS_FIX_NEW, called by emit_expr in read.c. */
|
||
|
||
void
|
||
cons_fix_new_ns32k (fragS *frag, /* Which frag? */
|
||
int where, /* Where in that frag? */
|
||
int size, /* 1, 2 or 4 usually. */
|
||
expressionS *exp, /* Expression. */
|
||
bfd_reloc_code_real_type r ATTRIBUTE_UNUSED)
|
||
{
|
||
fix_new_ns32k_exp (frag, where, size, exp,
|
||
0, 2, 0, 0, 0, 0);
|
||
}
|
||
|
||
/* We have no need to default values of symbols. */
|
||
|
||
symbolS *
|
||
md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
/* Round up a section size to the appropriate boundary. */
|
||
|
||
valueT
|
||
md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
|
||
{
|
||
return size; /* Byte alignment is fine. */
|
||
}
|
||
|
||
/* Exactly what point is a PC-relative offset relative TO? On the
|
||
ns32k, they're relative to the start of the instruction. */
|
||
|
||
long
|
||
md_pcrel_from (fixS *fixP)
|
||
{
|
||
long res;
|
||
|
||
res = fixP->fx_where + fixP->fx_frag->fr_address;
|
||
#ifdef SEQUENT_COMPATABILITY
|
||
if (frag_bsr (fixP->fx_frag))
|
||
res += 0x12 /* FOO Kludge alert! */
|
||
#endif
|
||
return res;
|
||
}
|
||
|
||
arelent *
|
||
tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
|
||
{
|
||
arelent *rel;
|
||
bfd_reloc_code_real_type code;
|
||
|
||
code = reloc (fixp->fx_size, fixp->fx_pcrel, fix_im_disp (fixp));
|
||
|
||
rel = XNEW (arelent);
|
||
rel->sym_ptr_ptr = XNEW (asymbol *);
|
||
*rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
|
||
rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
|
||
if (fixp->fx_pcrel)
|
||
rel->addend = fixp->fx_addnumber;
|
||
else
|
||
rel->addend = 0;
|
||
|
||
rel->howto = bfd_reloc_type_lookup (stdoutput, code);
|
||
if (!rel->howto)
|
||
{
|
||
const char *name;
|
||
|
||
name = S_GET_NAME (fixp->fx_addsy);
|
||
if (name == NULL)
|
||
name = _("<unknown>");
|
||
as_fatal (_("Cannot find relocation type for symbol %s, code %d"),
|
||
name, (int) code);
|
||
}
|
||
|
||
return rel;
|
||
}
|