mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-24 12:35:55 +08:00
c6fbd98bed
defaults for bi-endian targets. Replace function pointers for floatformat routines with macros. No need for these to be runtime selectable. * findvar.c: Get rid of floatformat function pointers. Use macros in extract_floating and store_floating. * remote-nindy.c (nindy_fetch_registers nindy_store_registers): Use floatformat macros.
1482 lines
38 KiB
C
1482 lines
38 KiB
C
/* Find a variable's value in memory, for GDB, the GNU debugger.
|
||
Copyright 1986, 1987, 1989, 1991, 1994, 1995, 1996 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
||
|
||
#include "defs.h"
|
||
#include "symtab.h"
|
||
#include "gdbtypes.h"
|
||
#include "frame.h"
|
||
#include "value.h"
|
||
#include "gdbcore.h"
|
||
#include "inferior.h"
|
||
#include "target.h"
|
||
#include "gdb_string.h"
|
||
#include "floatformat.h"
|
||
|
||
/* This is used to indicate that we don't know the format of the floating point
|
||
number. Typically, this is useful for native ports, where the actual format
|
||
is irrelevant, since no conversions will be taking place. */
|
||
|
||
const struct floatformat floatformat_unknown;
|
||
|
||
/* Registers we shouldn't try to store. */
|
||
#if !defined (CANNOT_STORE_REGISTER)
|
||
#define CANNOT_STORE_REGISTER(regno) 0
|
||
#endif
|
||
|
||
static void write_register_pid PARAMS ((int regno, LONGEST val, int pid));
|
||
|
||
/* Basic byte-swapping routines. GDB has needed these for a long time...
|
||
All extract a target-format integer at ADDR which is LEN bytes long. */
|
||
|
||
#if TARGET_CHAR_BIT != 8 || HOST_CHAR_BIT != 8
|
||
/* 8 bit characters are a pretty safe assumption these days, so we
|
||
assume it throughout all these swapping routines. If we had to deal with
|
||
9 bit characters, we would need to make len be in bits and would have
|
||
to re-write these routines... */
|
||
you lose
|
||
#endif
|
||
|
||
LONGEST
|
||
extract_signed_integer (addr, len)
|
||
PTR addr;
|
||
int len;
|
||
{
|
||
LONGEST retval;
|
||
unsigned char *p;
|
||
unsigned char *startaddr = (unsigned char *)addr;
|
||
unsigned char *endaddr = startaddr + len;
|
||
|
||
if (len > (int) sizeof (LONGEST))
|
||
error ("\
|
||
That operation is not available on integers of more than %d bytes.",
|
||
sizeof (LONGEST));
|
||
|
||
/* Start at the most significant end of the integer, and work towards
|
||
the least significant. */
|
||
if (TARGET_BYTE_ORDER == BIG_ENDIAN)
|
||
{
|
||
p = startaddr;
|
||
/* Do the sign extension once at the start. */
|
||
retval = ((LONGEST)*p ^ 0x80) - 0x80;
|
||
for (++p; p < endaddr; ++p)
|
||
retval = (retval << 8) | *p;
|
||
}
|
||
else
|
||
{
|
||
p = endaddr - 1;
|
||
/* Do the sign extension once at the start. */
|
||
retval = ((LONGEST)*p ^ 0x80) - 0x80;
|
||
for (--p; p >= startaddr; --p)
|
||
retval = (retval << 8) | *p;
|
||
}
|
||
return retval;
|
||
}
|
||
|
||
unsigned LONGEST
|
||
extract_unsigned_integer (addr, len)
|
||
PTR addr;
|
||
int len;
|
||
{
|
||
unsigned LONGEST retval;
|
||
unsigned char *p;
|
||
unsigned char *startaddr = (unsigned char *)addr;
|
||
unsigned char *endaddr = startaddr + len;
|
||
|
||
if (len > (int) sizeof (unsigned LONGEST))
|
||
error ("\
|
||
That operation is not available on integers of more than %d bytes.",
|
||
sizeof (unsigned LONGEST));
|
||
|
||
/* Start at the most significant end of the integer, and work towards
|
||
the least significant. */
|
||
retval = 0;
|
||
if (TARGET_BYTE_ORDER == BIG_ENDIAN)
|
||
{
|
||
for (p = startaddr; p < endaddr; ++p)
|
||
retval = (retval << 8) | *p;
|
||
}
|
||
else
|
||
{
|
||
for (p = endaddr - 1; p >= startaddr; --p)
|
||
retval = (retval << 8) | *p;
|
||
}
|
||
return retval;
|
||
}
|
||
|
||
/* Sometimes a long long unsigned integer can be extracted as a
|
||
LONGEST value. This is done so that we can print these values
|
||
better. If this integer can be converted to a LONGEST, this
|
||
function returns 1 and sets *PVAL. Otherwise it returns 0. */
|
||
|
||
int
|
||
extract_long_unsigned_integer (addr, orig_len, pval)
|
||
PTR addr;
|
||
int orig_len;
|
||
LONGEST *pval;
|
||
{
|
||
char *p, *first_addr;
|
||
int len;
|
||
|
||
len = orig_len;
|
||
if (TARGET_BYTE_ORDER == BIG_ENDIAN)
|
||
{
|
||
for (p = (char *) addr;
|
||
len > (int) sizeof (LONGEST) && p < (char *) addr + orig_len;
|
||
p++)
|
||
{
|
||
if (*p == 0)
|
||
len--;
|
||
else
|
||
break;
|
||
}
|
||
first_addr = p;
|
||
}
|
||
else
|
||
{
|
||
first_addr = (char *) addr;
|
||
for (p = (char *) addr + orig_len - 1;
|
||
len > (int) sizeof (LONGEST) && p >= (char *) addr;
|
||
p--)
|
||
{
|
||
if (*p == 0)
|
||
len--;
|
||
else
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (len <= (int) sizeof (LONGEST))
|
||
{
|
||
*pval = (LONGEST) extract_unsigned_integer (first_addr,
|
||
sizeof (LONGEST));
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
CORE_ADDR
|
||
extract_address (addr, len)
|
||
PTR addr;
|
||
int len;
|
||
{
|
||
/* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
|
||
whether we want this to be true eventually. */
|
||
return extract_unsigned_integer (addr, len);
|
||
}
|
||
|
||
void
|
||
store_signed_integer (addr, len, val)
|
||
PTR addr;
|
||
int len;
|
||
LONGEST val;
|
||
{
|
||
unsigned char *p;
|
||
unsigned char *startaddr = (unsigned char *)addr;
|
||
unsigned char *endaddr = startaddr + len;
|
||
|
||
/* Start at the least significant end of the integer, and work towards
|
||
the most significant. */
|
||
if (TARGET_BYTE_ORDER == BIG_ENDIAN)
|
||
{
|
||
for (p = endaddr - 1; p >= startaddr; --p)
|
||
{
|
||
*p = val & 0xff;
|
||
val >>= 8;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
for (p = startaddr; p < endaddr; ++p)
|
||
{
|
||
*p = val & 0xff;
|
||
val >>= 8;
|
||
}
|
||
}
|
||
}
|
||
|
||
void
|
||
store_unsigned_integer (addr, len, val)
|
||
PTR addr;
|
||
int len;
|
||
unsigned LONGEST val;
|
||
{
|
||
unsigned char *p;
|
||
unsigned char *startaddr = (unsigned char *)addr;
|
||
unsigned char *endaddr = startaddr + len;
|
||
|
||
/* Start at the least significant end of the integer, and work towards
|
||
the most significant. */
|
||
if (TARGET_BYTE_ORDER == BIG_ENDIAN)
|
||
{
|
||
for (p = endaddr - 1; p >= startaddr; --p)
|
||
{
|
||
*p = val & 0xff;
|
||
val >>= 8;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
for (p = startaddr; p < endaddr; ++p)
|
||
{
|
||
*p = val & 0xff;
|
||
val >>= 8;
|
||
}
|
||
}
|
||
}
|
||
|
||
void
|
||
store_address (addr, len, val)
|
||
PTR addr;
|
||
int len;
|
||
CORE_ADDR val;
|
||
{
|
||
/* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
|
||
whether we want this to be true eventually. */
|
||
store_unsigned_integer (addr, len, (LONGEST)val);
|
||
}
|
||
|
||
/* Swap LEN bytes at BUFFER between target and host byte-order. */
|
||
#define SWAP_FLOATING(buffer,len) \
|
||
do \
|
||
{ \
|
||
if (TARGET_BYTE_ORDER != HOST_BYTE_ORDER) \
|
||
{ \
|
||
char tmp; \
|
||
char *p = (char *)(buffer); \
|
||
char *q = ((char *)(buffer)) + len - 1; \
|
||
for (; p < q; p++, q--) \
|
||
{ \
|
||
tmp = *q; \
|
||
*q = *p; \
|
||
*p = tmp; \
|
||
} \
|
||
} \
|
||
} \
|
||
while (0)
|
||
|
||
/* There are various problems with the extract_floating and store_floating
|
||
routines.
|
||
|
||
1. These routines only handle byte-swapping, not conversion of
|
||
formats. So if host is IEEE floating and target is VAX floating,
|
||
or vice-versa, it loses. This means that we can't (yet) use these
|
||
routines for extendeds. Extendeds are handled by
|
||
REGISTER_CONVERTIBLE. What we want is to use floatformat.h, but that
|
||
doesn't yet handle VAX floating at all.
|
||
|
||
2. We can't deal with it if there is more than one floating point
|
||
format in use. This has to be fixed at the unpack_double level.
|
||
|
||
3. We probably should have a LONGEST_DOUBLE or DOUBLEST or whatever
|
||
we want to call it which is long double where available. */
|
||
|
||
DOUBLEST
|
||
extract_floating (addr, len)
|
||
PTR addr;
|
||
int len;
|
||
{
|
||
DOUBLEST dretval;
|
||
|
||
if (len == sizeof (float))
|
||
{
|
||
if (HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT)
|
||
{
|
||
float retval;
|
||
|
||
memcpy (&retval, addr, sizeof (retval));
|
||
return retval;
|
||
}
|
||
else
|
||
FLOATFORMAT_TO_DOUBLEST (TARGET_FLOAT_FORMAT, addr, &dretval);
|
||
}
|
||
else if (len == sizeof (double))
|
||
{
|
||
if (HOST_DOUBLE_FORMAT == TARGET_DOUBLE_FORMAT)
|
||
{
|
||
double retval;
|
||
|
||
memcpy (&retval, addr, sizeof (retval));
|
||
return retval;
|
||
}
|
||
else
|
||
FLOATFORMAT_TO_DOUBLEST (TARGET_DOUBLE_FORMAT, addr, &dretval);
|
||
}
|
||
else if (len == sizeof (DOUBLEST))
|
||
{
|
||
if (HOST_LONG_DOUBLE_FORMAT == TARGET_LONG_DOUBLE_FORMAT)
|
||
{
|
||
DOUBLEST retval;
|
||
|
||
memcpy (&retval, addr, sizeof (retval));
|
||
return retval;
|
||
}
|
||
else
|
||
FLOATFORMAT_TO_DOUBLEST (TARGET_LONG_DOUBLE_FORMAT, addr, &dretval);
|
||
}
|
||
else
|
||
{
|
||
error ("Can't deal with a floating point number of %d bytes.", len);
|
||
}
|
||
|
||
return dretval;
|
||
}
|
||
|
||
void
|
||
store_floating (addr, len, val)
|
||
PTR addr;
|
||
int len;
|
||
DOUBLEST val;
|
||
{
|
||
if (len == sizeof (float))
|
||
{
|
||
if (HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT)
|
||
{
|
||
float floatval = val;
|
||
|
||
memcpy (addr, &floatval, sizeof (floatval));
|
||
}
|
||
else
|
||
FLOATFORMAT_FROM_DOUBLEST (TARGET_FLOAT_FORMAT, &val, addr);
|
||
}
|
||
else if (len == sizeof (double))
|
||
{
|
||
if (HOST_DOUBLE_FORMAT == TARGET_DOUBLE_FORMAT)
|
||
{
|
||
double doubleval = val;
|
||
|
||
memcpy (addr, &doubleval, sizeof (doubleval));
|
||
}
|
||
else
|
||
FLOATFORMAT_FROM_DOUBLEST (TARGET_DOUBLE_FORMAT, &val, addr);
|
||
}
|
||
else if (len == sizeof (DOUBLEST))
|
||
{
|
||
if (HOST_LONG_DOUBLE_FORMAT == TARGET_LONG_DOUBLE_FORMAT)
|
||
memcpy (addr, &val, sizeof (val));
|
||
else
|
||
FLOATFORMAT_FROM_DOUBLEST (TARGET_LONG_DOUBLE_FORMAT, &val, addr);
|
||
}
|
||
else
|
||
{
|
||
error ("Can't deal with a floating point number of %d bytes.", len);
|
||
}
|
||
}
|
||
|
||
#if !defined (GET_SAVED_REGISTER)
|
||
|
||
/* Return the address in which frame FRAME's value of register REGNUM
|
||
has been saved in memory. Or return zero if it has not been saved.
|
||
If REGNUM specifies the SP, the value we return is actually
|
||
the SP value, not an address where it was saved. */
|
||
|
||
CORE_ADDR
|
||
find_saved_register (frame, regnum)
|
||
struct frame_info *frame;
|
||
int regnum;
|
||
{
|
||
struct frame_saved_regs saved_regs;
|
||
|
||
register struct frame_info *frame1 = NULL;
|
||
register CORE_ADDR addr = 0;
|
||
|
||
if (frame == NULL) /* No regs saved if want current frame */
|
||
return 0;
|
||
|
||
#ifdef HAVE_REGISTER_WINDOWS
|
||
/* We assume that a register in a register window will only be saved
|
||
in one place (since the name changes and/or disappears as you go
|
||
towards inner frames), so we only call get_frame_saved_regs on
|
||
the current frame. This is directly in contradiction to the
|
||
usage below, which assumes that registers used in a frame must be
|
||
saved in a lower (more interior) frame. This change is a result
|
||
of working on a register window machine; get_frame_saved_regs
|
||
always returns the registers saved within a frame, within the
|
||
context (register namespace) of that frame. */
|
||
|
||
/* However, note that we don't want this to return anything if
|
||
nothing is saved (if there's a frame inside of this one). Also,
|
||
callers to this routine asking for the stack pointer want the
|
||
stack pointer saved for *this* frame; this is returned from the
|
||
next frame. */
|
||
|
||
if (REGISTER_IN_WINDOW_P(regnum))
|
||
{
|
||
frame1 = get_next_frame (frame);
|
||
if (!frame1) return 0; /* Registers of this frame are active. */
|
||
|
||
/* Get the SP from the next frame in; it will be this
|
||
current frame. */
|
||
if (regnum != SP_REGNUM)
|
||
frame1 = frame;
|
||
|
||
get_frame_saved_regs (frame1, &saved_regs);
|
||
return saved_regs.regs[regnum]; /* ... which might be zero */
|
||
}
|
||
#endif /* HAVE_REGISTER_WINDOWS */
|
||
|
||
/* Note that this next routine assumes that registers used in
|
||
frame x will be saved only in the frame that x calls and
|
||
frames interior to it. This is not true on the sparc, but the
|
||
above macro takes care of it, so we should be all right. */
|
||
while (1)
|
||
{
|
||
QUIT;
|
||
frame1 = get_prev_frame (frame1);
|
||
if (frame1 == 0 || frame1 == frame)
|
||
break;
|
||
get_frame_saved_regs (frame1, &saved_regs);
|
||
if (saved_regs.regs[regnum])
|
||
addr = saved_regs.regs[regnum];
|
||
}
|
||
|
||
return addr;
|
||
}
|
||
|
||
/* Find register number REGNUM relative to FRAME and put its (raw,
|
||
target format) contents in *RAW_BUFFER. Set *OPTIMIZED if the
|
||
variable was optimized out (and thus can't be fetched). Set *LVAL
|
||
to lval_memory, lval_register, or not_lval, depending on whether
|
||
the value was fetched from memory, from a register, or in a strange
|
||
and non-modifiable way (e.g. a frame pointer which was calculated
|
||
rather than fetched). Set *ADDRP to the address, either in memory
|
||
on as a REGISTER_BYTE offset into the registers array.
|
||
|
||
Note that this implementation never sets *LVAL to not_lval. But
|
||
it can be replaced by defining GET_SAVED_REGISTER and supplying
|
||
your own.
|
||
|
||
The argument RAW_BUFFER must point to aligned memory. */
|
||
|
||
void
|
||
get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
|
||
char *raw_buffer;
|
||
int *optimized;
|
||
CORE_ADDR *addrp;
|
||
struct frame_info *frame;
|
||
int regnum;
|
||
enum lval_type *lval;
|
||
{
|
||
CORE_ADDR addr;
|
||
|
||
if (!target_has_registers)
|
||
error ("No registers.");
|
||
|
||
/* Normal systems don't optimize out things with register numbers. */
|
||
if (optimized != NULL)
|
||
*optimized = 0;
|
||
addr = find_saved_register (frame, regnum);
|
||
if (addr != 0)
|
||
{
|
||
if (lval != NULL)
|
||
*lval = lval_memory;
|
||
if (regnum == SP_REGNUM)
|
||
{
|
||
if (raw_buffer != NULL)
|
||
{
|
||
/* Put it back in target format. */
|
||
store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), addr);
|
||
}
|
||
if (addrp != NULL)
|
||
*addrp = 0;
|
||
return;
|
||
}
|
||
if (raw_buffer != NULL)
|
||
read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum));
|
||
}
|
||
else
|
||
{
|
||
if (lval != NULL)
|
||
*lval = lval_register;
|
||
addr = REGISTER_BYTE (regnum);
|
||
if (raw_buffer != NULL)
|
||
read_register_gen (regnum, raw_buffer);
|
||
}
|
||
if (addrp != NULL)
|
||
*addrp = addr;
|
||
}
|
||
#endif /* GET_SAVED_REGISTER. */
|
||
|
||
/* Copy the bytes of register REGNUM, relative to the current stack frame,
|
||
into our memory at MYADDR, in target byte order.
|
||
The number of bytes copied is REGISTER_RAW_SIZE (REGNUM).
|
||
|
||
Returns 1 if could not be read, 0 if could. */
|
||
|
||
int
|
||
read_relative_register_raw_bytes (regnum, myaddr)
|
||
int regnum;
|
||
char *myaddr;
|
||
{
|
||
int optim;
|
||
if (regnum == FP_REGNUM && selected_frame)
|
||
{
|
||
/* Put it back in target format. */
|
||
store_address (myaddr, REGISTER_RAW_SIZE(FP_REGNUM),
|
||
FRAME_FP(selected_frame));
|
||
return 0;
|
||
}
|
||
|
||
get_saved_register (myaddr, &optim, (CORE_ADDR *) NULL, selected_frame,
|
||
regnum, (enum lval_type *)NULL);
|
||
return optim;
|
||
}
|
||
|
||
/* Return a `value' with the contents of register REGNUM
|
||
in its virtual format, with the type specified by
|
||
REGISTER_VIRTUAL_TYPE. */
|
||
|
||
value_ptr
|
||
value_of_register (regnum)
|
||
int regnum;
|
||
{
|
||
CORE_ADDR addr;
|
||
int optim;
|
||
register value_ptr reg_val;
|
||
char raw_buffer[MAX_REGISTER_RAW_SIZE];
|
||
enum lval_type lval;
|
||
|
||
get_saved_register (raw_buffer, &optim, &addr,
|
||
selected_frame, regnum, &lval);
|
||
|
||
reg_val = allocate_value (REGISTER_VIRTUAL_TYPE (regnum));
|
||
|
||
/* Convert raw data to virtual format if necessary. */
|
||
|
||
#ifdef REGISTER_CONVERTIBLE
|
||
if (REGISTER_CONVERTIBLE (regnum))
|
||
{
|
||
REGISTER_CONVERT_TO_VIRTUAL (regnum, REGISTER_VIRTUAL_TYPE (regnum),
|
||
raw_buffer, VALUE_CONTENTS_RAW (reg_val));
|
||
}
|
||
else
|
||
#endif
|
||
memcpy (VALUE_CONTENTS_RAW (reg_val), raw_buffer,
|
||
REGISTER_RAW_SIZE (regnum));
|
||
VALUE_LVAL (reg_val) = lval;
|
||
VALUE_ADDRESS (reg_val) = addr;
|
||
VALUE_REGNO (reg_val) = regnum;
|
||
VALUE_OPTIMIZED_OUT (reg_val) = optim;
|
||
return reg_val;
|
||
}
|
||
|
||
/* Low level examining and depositing of registers.
|
||
|
||
The caller is responsible for making
|
||
sure that the inferior is stopped before calling the fetching routines,
|
||
or it will get garbage. (a change from GDB version 3, in which
|
||
the caller got the value from the last stop). */
|
||
|
||
/* Contents of the registers in target byte order.
|
||
We allocate some extra slop since we do a lot of memcpy's around `registers',
|
||
and failing-soft is better than failing hard. */
|
||
char registers[REGISTER_BYTES + /* SLOP */ 256];
|
||
|
||
/* Nonzero if that register has been fetched. */
|
||
char register_valid[NUM_REGS];
|
||
|
||
/* The thread/process associated with the current set of registers. For now,
|
||
-1 is special, and means `no current process'. */
|
||
int registers_pid = -1;
|
||
|
||
/* Indicate that registers may have changed, so invalidate the cache. */
|
||
|
||
void
|
||
registers_changed ()
|
||
{
|
||
int i;
|
||
int numregs = ARCH_NUM_REGS;
|
||
|
||
registers_pid = -1;
|
||
|
||
for (i = 0; i < numregs; i++)
|
||
register_valid[i] = 0;
|
||
|
||
if (registers_changed_hook)
|
||
registers_changed_hook ();
|
||
}
|
||
|
||
/* Indicate that all registers have been fetched, so mark them all valid. */
|
||
void
|
||
registers_fetched ()
|
||
{
|
||
int i;
|
||
int numregs = ARCH_NUM_REGS;
|
||
for (i = 0; i < numregs; i++)
|
||
register_valid[i] = 1;
|
||
}
|
||
|
||
/* read_register_bytes and write_register_bytes are generally a *BAD* idea.
|
||
They are inefficient because they need to check for partial updates, which
|
||
can only be done by scanning through all of the registers and seeing if the
|
||
bytes that are being read/written fall inside of an invalid register. [The
|
||
main reason this is necessary is that register sizes can vary, so a simple
|
||
index won't suffice.] It is far better to call read_register_gen if you
|
||
want to get at the raw register contents, as it only takes a regno as an
|
||
argument, and therefore can't do a partial register update. It would also
|
||
be good to have a write_register_gen for similar reasons.
|
||
|
||
Prior to the recent fixes to check for partial updates, both read and
|
||
write_register_bytes always checked to see if any registers were stale, and
|
||
then called target_fetch_registers (-1) to update the whole set. This
|
||
caused really slowed things down for remote targets. */
|
||
|
||
/* Copy INLEN bytes of consecutive data from registers
|
||
starting with the INREGBYTE'th byte of register data
|
||
into memory at MYADDR. */
|
||
|
||
void
|
||
read_register_bytes (inregbyte, myaddr, inlen)
|
||
int inregbyte;
|
||
char *myaddr;
|
||
int inlen;
|
||
{
|
||
int inregend = inregbyte + inlen;
|
||
int regno;
|
||
|
||
if (registers_pid != inferior_pid)
|
||
{
|
||
registers_changed ();
|
||
registers_pid = inferior_pid;
|
||
}
|
||
|
||
/* See if we are trying to read bytes from out-of-date registers. If so,
|
||
update just those registers. */
|
||
|
||
for (regno = 0; regno < NUM_REGS; regno++)
|
||
{
|
||
int regstart, regend;
|
||
int startin, endin;
|
||
|
||
if (register_valid[regno])
|
||
continue;
|
||
|
||
regstart = REGISTER_BYTE (regno);
|
||
regend = regstart + REGISTER_RAW_SIZE (regno);
|
||
|
||
startin = regstart >= inregbyte && regstart < inregend;
|
||
endin = regend > inregbyte && regend <= inregend;
|
||
|
||
if (!startin && !endin)
|
||
continue;
|
||
|
||
/* We've found an invalid register where at least one byte will be read.
|
||
Update it from the target. */
|
||
|
||
target_fetch_registers (regno);
|
||
|
||
if (!register_valid[regno])
|
||
error ("read_register_bytes: Couldn't update register %d.", regno);
|
||
}
|
||
|
||
if (myaddr != NULL)
|
||
memcpy (myaddr, ®isters[inregbyte], inlen);
|
||
}
|
||
|
||
/* Read register REGNO into memory at MYADDR, which must be large enough
|
||
for REGISTER_RAW_BYTES (REGNO). Target byte-order.
|
||
If the register is known to be the size of a CORE_ADDR or smaller,
|
||
read_register can be used instead. */
|
||
void
|
||
read_register_gen (regno, myaddr)
|
||
int regno;
|
||
char *myaddr;
|
||
{
|
||
if (registers_pid != inferior_pid)
|
||
{
|
||
registers_changed ();
|
||
registers_pid = inferior_pid;
|
||
}
|
||
|
||
if (!register_valid[regno])
|
||
target_fetch_registers (regno);
|
||
memcpy (myaddr, ®isters[REGISTER_BYTE (regno)],
|
||
REGISTER_RAW_SIZE (regno));
|
||
}
|
||
|
||
/* Write register REGNO at MYADDR to the target. MYADDR points at
|
||
REGISTER_RAW_BYTES(REGNO), which must be in target byte-order. */
|
||
|
||
void
|
||
write_register_gen (regno, myaddr)
|
||
int regno;
|
||
char *myaddr;
|
||
{
|
||
int size;
|
||
|
||
/* On the sparc, writing %g0 is a no-op, so we don't even want to change
|
||
the registers array if something writes to this register. */
|
||
if (CANNOT_STORE_REGISTER (regno))
|
||
return;
|
||
|
||
if (registers_pid != inferior_pid)
|
||
{
|
||
registers_changed ();
|
||
registers_pid = inferior_pid;
|
||
}
|
||
|
||
size = REGISTER_RAW_SIZE(regno);
|
||
|
||
/* If we have a valid copy of the register, and new value == old value,
|
||
then don't bother doing the actual store. */
|
||
|
||
if (register_valid [regno]
|
||
&& memcmp (®isters[REGISTER_BYTE (regno)], myaddr, size) == 0)
|
||
return;
|
||
|
||
target_prepare_to_store ();
|
||
|
||
memcpy (®isters[REGISTER_BYTE (regno)], myaddr, size);
|
||
|
||
register_valid [regno] = 1;
|
||
|
||
target_store_registers (regno);
|
||
}
|
||
|
||
/* Copy INLEN bytes of consecutive data from memory at MYADDR
|
||
into registers starting with the MYREGSTART'th byte of register data. */
|
||
|
||
void
|
||
write_register_bytes (myregstart, myaddr, inlen)
|
||
int myregstart;
|
||
char *myaddr;
|
||
int inlen;
|
||
{
|
||
int myregend = myregstart + inlen;
|
||
int regno;
|
||
|
||
target_prepare_to_store ();
|
||
|
||
/* Scan through the registers updating any that are covered by the range
|
||
myregstart<=>myregend using write_register_gen, which does nice things
|
||
like handling threads, and avoiding updates when the new and old contents
|
||
are the same. */
|
||
|
||
for (regno = 0; regno < NUM_REGS; regno++)
|
||
{
|
||
int regstart, regend;
|
||
int startin, endin;
|
||
char regbuf[MAX_REGISTER_RAW_SIZE];
|
||
|
||
regstart = REGISTER_BYTE (regno);
|
||
regend = regstart + REGISTER_RAW_SIZE (regno);
|
||
|
||
startin = regstart >= myregstart && regstart < myregend;
|
||
endin = regend > myregstart && regend <= myregend;
|
||
|
||
if (!startin && !endin)
|
||
continue; /* Register is completely out of range */
|
||
|
||
if (startin && endin) /* register is completely in range */
|
||
{
|
||
write_register_gen (regno, myaddr + (regstart - myregstart));
|
||
continue;
|
||
}
|
||
|
||
/* We may be doing a partial update of an invalid register. Update it
|
||
from the target before scribbling on it. */
|
||
read_register_gen (regno, regbuf);
|
||
|
||
if (startin)
|
||
memcpy (registers + regstart,
|
||
myaddr + regstart - myregstart,
|
||
myregend - regstart);
|
||
else /* endin */
|
||
memcpy (registers + myregstart,
|
||
myaddr,
|
||
regend - myregstart);
|
||
target_store_registers (regno);
|
||
}
|
||
}
|
||
|
||
/* Return the raw contents of register REGNO, regarding it as an integer. */
|
||
/* This probably should be returning LONGEST rather than CORE_ADDR. */
|
||
|
||
CORE_ADDR
|
||
read_register (regno)
|
||
int regno;
|
||
{
|
||
if (registers_pid != inferior_pid)
|
||
{
|
||
registers_changed ();
|
||
registers_pid = inferior_pid;
|
||
}
|
||
|
||
if (!register_valid[regno])
|
||
target_fetch_registers (regno);
|
||
|
||
return extract_address (®isters[REGISTER_BYTE (regno)],
|
||
REGISTER_RAW_SIZE(regno));
|
||
}
|
||
|
||
CORE_ADDR
|
||
read_register_pid (regno, pid)
|
||
int regno, pid;
|
||
{
|
||
int save_pid;
|
||
CORE_ADDR retval;
|
||
|
||
if (pid == inferior_pid)
|
||
return read_register (regno);
|
||
|
||
save_pid = inferior_pid;
|
||
|
||
inferior_pid = pid;
|
||
|
||
retval = read_register (regno);
|
||
|
||
inferior_pid = save_pid;
|
||
|
||
return retval;
|
||
}
|
||
|
||
/* Store VALUE, into the raw contents of register number REGNO. */
|
||
|
||
void
|
||
write_register (regno, val)
|
||
int regno;
|
||
LONGEST val;
|
||
{
|
||
PTR buf;
|
||
int size;
|
||
|
||
/* On the sparc, writing %g0 is a no-op, so we don't even want to change
|
||
the registers array if something writes to this register. */
|
||
if (CANNOT_STORE_REGISTER (regno))
|
||
return;
|
||
|
||
if (registers_pid != inferior_pid)
|
||
{
|
||
registers_changed ();
|
||
registers_pid = inferior_pid;
|
||
}
|
||
|
||
size = REGISTER_RAW_SIZE(regno);
|
||
buf = alloca (size);
|
||
store_signed_integer (buf, size, (LONGEST) val);
|
||
|
||
/* If we have a valid copy of the register, and new value == old value,
|
||
then don't bother doing the actual store. */
|
||
|
||
if (register_valid [regno]
|
||
&& memcmp (®isters[REGISTER_BYTE (regno)], buf, size) == 0)
|
||
return;
|
||
|
||
target_prepare_to_store ();
|
||
|
||
memcpy (®isters[REGISTER_BYTE (regno)], buf, size);
|
||
|
||
register_valid [regno] = 1;
|
||
|
||
target_store_registers (regno);
|
||
}
|
||
|
||
static void
|
||
write_register_pid (regno, val, pid)
|
||
int regno;
|
||
LONGEST val;
|
||
int pid;
|
||
{
|
||
int save_pid;
|
||
|
||
if (pid == inferior_pid)
|
||
{
|
||
write_register (regno, val);
|
||
return;
|
||
}
|
||
|
||
save_pid = inferior_pid;
|
||
|
||
inferior_pid = pid;
|
||
|
||
write_register (regno, val);
|
||
|
||
inferior_pid = save_pid;
|
||
}
|
||
|
||
/* Record that register REGNO contains VAL.
|
||
This is used when the value is obtained from the inferior or core dump,
|
||
so there is no need to store the value there. */
|
||
|
||
void
|
||
supply_register (regno, val)
|
||
int regno;
|
||
char *val;
|
||
{
|
||
if (registers_pid != inferior_pid)
|
||
{
|
||
registers_changed ();
|
||
registers_pid = inferior_pid;
|
||
}
|
||
|
||
register_valid[regno] = 1;
|
||
memcpy (®isters[REGISTER_BYTE (regno)], val, REGISTER_RAW_SIZE (regno));
|
||
|
||
/* On some architectures, e.g. HPPA, there are a few stray bits in some
|
||
registers, that the rest of the code would like to ignore. */
|
||
#ifdef CLEAN_UP_REGISTER_VALUE
|
||
CLEAN_UP_REGISTER_VALUE(regno, ®isters[REGISTER_BYTE(regno)]);
|
||
#endif
|
||
}
|
||
|
||
|
||
/* This routine is getting awfully cluttered with #if's. It's probably
|
||
time to turn this into READ_PC and define it in the tm.h file.
|
||
Ditto for write_pc. */
|
||
|
||
CORE_ADDR
|
||
read_pc ()
|
||
{
|
||
#ifdef TARGET_READ_PC
|
||
return TARGET_READ_PC (inferior_pid);
|
||
#else
|
||
return ADDR_BITS_REMOVE ((CORE_ADDR) read_register_pid (PC_REGNUM, inferior_pid));
|
||
#endif
|
||
}
|
||
|
||
CORE_ADDR
|
||
read_pc_pid (pid)
|
||
int pid;
|
||
{
|
||
#ifdef TARGET_READ_PC
|
||
return TARGET_READ_PC (pid);
|
||
#else
|
||
return ADDR_BITS_REMOVE ((CORE_ADDR) read_register_pid (PC_REGNUM, pid));
|
||
#endif
|
||
}
|
||
|
||
void
|
||
write_pc (val)
|
||
CORE_ADDR val;
|
||
{
|
||
#ifdef TARGET_WRITE_PC
|
||
TARGET_WRITE_PC (val, inferior_pid);
|
||
#else
|
||
write_register_pid (PC_REGNUM, val, inferior_pid);
|
||
#ifdef NPC_REGNUM
|
||
write_register_pid (NPC_REGNUM, val + 4, inferior_pid);
|
||
#ifdef NNPC_REGNUM
|
||
write_register_pid (NNPC_REGNUM, val + 8, inferior_pid);
|
||
#endif
|
||
#endif
|
||
#endif
|
||
}
|
||
|
||
void
|
||
write_pc_pid (val, pid)
|
||
CORE_ADDR val;
|
||
int pid;
|
||
{
|
||
#ifdef TARGET_WRITE_PC
|
||
TARGET_WRITE_PC (val, pid);
|
||
#else
|
||
write_register_pid (PC_REGNUM, val, pid);
|
||
#ifdef NPC_REGNUM
|
||
write_register_pid (NPC_REGNUM, val + 4, pid);
|
||
#ifdef NNPC_REGNUM
|
||
write_register_pid (NNPC_REGNUM, val + 8, pid);
|
||
#endif
|
||
#endif
|
||
#endif
|
||
}
|
||
|
||
/* Cope with strage ways of getting to the stack and frame pointers */
|
||
|
||
CORE_ADDR
|
||
read_sp ()
|
||
{
|
||
#ifdef TARGET_READ_SP
|
||
return TARGET_READ_SP ();
|
||
#else
|
||
return read_register (SP_REGNUM);
|
||
#endif
|
||
}
|
||
|
||
void
|
||
write_sp (val)
|
||
CORE_ADDR val;
|
||
{
|
||
#ifdef TARGET_WRITE_SP
|
||
TARGET_WRITE_SP (val);
|
||
#else
|
||
write_register (SP_REGNUM, val);
|
||
#endif
|
||
}
|
||
|
||
CORE_ADDR
|
||
read_fp ()
|
||
{
|
||
#ifdef TARGET_READ_FP
|
||
return TARGET_READ_FP ();
|
||
#else
|
||
return read_register (FP_REGNUM);
|
||
#endif
|
||
}
|
||
|
||
void
|
||
write_fp (val)
|
||
CORE_ADDR val;
|
||
{
|
||
#ifdef TARGET_WRITE_FP
|
||
TARGET_WRITE_FP (val);
|
||
#else
|
||
write_register (FP_REGNUM, val);
|
||
#endif
|
||
}
|
||
|
||
/* Will calling read_var_value or locate_var_value on SYM end
|
||
up caring what frame it is being evaluated relative to? SYM must
|
||
be non-NULL. */
|
||
int
|
||
symbol_read_needs_frame (sym)
|
||
struct symbol *sym;
|
||
{
|
||
switch (SYMBOL_CLASS (sym))
|
||
{
|
||
/* All cases listed explicitly so that gcc -Wall will detect it if
|
||
we failed to consider one. */
|
||
case LOC_REGISTER:
|
||
case LOC_ARG:
|
||
case LOC_REF_ARG:
|
||
case LOC_REGPARM:
|
||
case LOC_REGPARM_ADDR:
|
||
case LOC_LOCAL:
|
||
case LOC_LOCAL_ARG:
|
||
case LOC_BASEREG:
|
||
case LOC_BASEREG_ARG:
|
||
return 1;
|
||
|
||
case LOC_UNDEF:
|
||
case LOC_CONST:
|
||
case LOC_STATIC:
|
||
case LOC_TYPEDEF:
|
||
|
||
case LOC_LABEL:
|
||
/* Getting the address of a label can be done independently of the block,
|
||
even if some *uses* of that address wouldn't work so well without
|
||
the right frame. */
|
||
|
||
case LOC_BLOCK:
|
||
case LOC_CONST_BYTES:
|
||
case LOC_UNRESOLVED:
|
||
case LOC_OPTIMIZED_OUT:
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* Given a struct symbol for a variable,
|
||
and a stack frame id, read the value of the variable
|
||
and return a (pointer to a) struct value containing the value.
|
||
If the variable cannot be found, return a zero pointer.
|
||
If FRAME is NULL, use the selected_frame. */
|
||
|
||
value_ptr
|
||
read_var_value (var, frame)
|
||
register struct symbol *var;
|
||
struct frame_info *frame;
|
||
{
|
||
register value_ptr v;
|
||
struct type *type = SYMBOL_TYPE (var);
|
||
CORE_ADDR addr;
|
||
register int len;
|
||
|
||
v = allocate_value (type);
|
||
VALUE_LVAL (v) = lval_memory; /* The most likely possibility. */
|
||
len = TYPE_LENGTH (type);
|
||
|
||
if (frame == NULL) frame = selected_frame;
|
||
|
||
switch (SYMBOL_CLASS (var))
|
||
{
|
||
case LOC_CONST:
|
||
/* Put the constant back in target format. */
|
||
store_signed_integer (VALUE_CONTENTS_RAW (v), len,
|
||
(LONGEST) SYMBOL_VALUE (var));
|
||
VALUE_LVAL (v) = not_lval;
|
||
return v;
|
||
|
||
case LOC_LABEL:
|
||
/* Put the constant back in target format. */
|
||
store_address (VALUE_CONTENTS_RAW (v), len, SYMBOL_VALUE_ADDRESS (var));
|
||
VALUE_LVAL (v) = not_lval;
|
||
return v;
|
||
|
||
case LOC_CONST_BYTES:
|
||
{
|
||
char *bytes_addr;
|
||
bytes_addr = SYMBOL_VALUE_BYTES (var);
|
||
memcpy (VALUE_CONTENTS_RAW (v), bytes_addr, len);
|
||
VALUE_LVAL (v) = not_lval;
|
||
return v;
|
||
}
|
||
|
||
case LOC_STATIC:
|
||
addr = SYMBOL_VALUE_ADDRESS (var);
|
||
break;
|
||
|
||
case LOC_ARG:
|
||
if (frame == NULL)
|
||
return 0;
|
||
addr = FRAME_ARGS_ADDRESS (frame);
|
||
if (!addr)
|
||
return 0;
|
||
addr += SYMBOL_VALUE (var);
|
||
break;
|
||
|
||
case LOC_REF_ARG:
|
||
if (frame == NULL)
|
||
return 0;
|
||
addr = FRAME_ARGS_ADDRESS (frame);
|
||
if (!addr)
|
||
return 0;
|
||
addr += SYMBOL_VALUE (var);
|
||
addr = read_memory_unsigned_integer
|
||
(addr, TARGET_PTR_BIT / TARGET_CHAR_BIT);
|
||
break;
|
||
|
||
case LOC_LOCAL:
|
||
case LOC_LOCAL_ARG:
|
||
if (frame == NULL)
|
||
return 0;
|
||
addr = FRAME_LOCALS_ADDRESS (frame);
|
||
addr += SYMBOL_VALUE (var);
|
||
break;
|
||
|
||
case LOC_BASEREG:
|
||
case LOC_BASEREG_ARG:
|
||
{
|
||
char buf[MAX_REGISTER_RAW_SIZE];
|
||
get_saved_register (buf, NULL, NULL, frame, SYMBOL_BASEREG (var),
|
||
NULL);
|
||
addr = extract_address (buf, REGISTER_RAW_SIZE (SYMBOL_BASEREG (var)));
|
||
addr += SYMBOL_VALUE (var);
|
||
break;
|
||
}
|
||
|
||
case LOC_TYPEDEF:
|
||
error ("Cannot look up value of a typedef");
|
||
break;
|
||
|
||
case LOC_BLOCK:
|
||
VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (var));
|
||
return v;
|
||
|
||
case LOC_REGISTER:
|
||
case LOC_REGPARM:
|
||
case LOC_REGPARM_ADDR:
|
||
{
|
||
struct block *b;
|
||
|
||
if (frame == NULL)
|
||
return 0;
|
||
b = get_frame_block (frame);
|
||
|
||
|
||
if (SYMBOL_CLASS (var) == LOC_REGPARM_ADDR)
|
||
{
|
||
addr =
|
||
value_as_pointer (value_from_register (lookup_pointer_type (type),
|
||
SYMBOL_VALUE (var),
|
||
frame));
|
||
VALUE_LVAL (v) = lval_memory;
|
||
}
|
||
else
|
||
return value_from_register (type, SYMBOL_VALUE (var), frame);
|
||
}
|
||
break;
|
||
|
||
case LOC_UNRESOLVED:
|
||
{
|
||
struct minimal_symbol *msym;
|
||
|
||
msym = lookup_minimal_symbol (SYMBOL_NAME (var), NULL, NULL);
|
||
if (msym == NULL)
|
||
return 0;
|
||
addr = SYMBOL_VALUE_ADDRESS (msym);
|
||
}
|
||
break;
|
||
|
||
case LOC_OPTIMIZED_OUT:
|
||
VALUE_LVAL (v) = not_lval;
|
||
VALUE_OPTIMIZED_OUT (v) = 1;
|
||
return v;
|
||
|
||
default:
|
||
error ("Cannot look up value of a botched symbol.");
|
||
break;
|
||
}
|
||
|
||
VALUE_ADDRESS (v) = addr;
|
||
VALUE_LAZY (v) = 1;
|
||
return v;
|
||
}
|
||
|
||
/* Return a value of type TYPE, stored in register REGNUM, in frame
|
||
FRAME. */
|
||
|
||
value_ptr
|
||
value_from_register (type, regnum, frame)
|
||
struct type *type;
|
||
int regnum;
|
||
struct frame_info *frame;
|
||
{
|
||
char raw_buffer [MAX_REGISTER_RAW_SIZE];
|
||
CORE_ADDR addr;
|
||
int optim;
|
||
value_ptr v = allocate_value (type);
|
||
char *value_bytes = 0;
|
||
int value_bytes_copied = 0;
|
||
int num_storage_locs;
|
||
enum lval_type lval;
|
||
int len;
|
||
|
||
CHECK_TYPEDEF (type);
|
||
len = TYPE_LENGTH (type);
|
||
|
||
VALUE_REGNO (v) = regnum;
|
||
|
||
num_storage_locs = (len > REGISTER_VIRTUAL_SIZE (regnum) ?
|
||
((len - 1) / REGISTER_RAW_SIZE (regnum)) + 1 :
|
||
1);
|
||
|
||
if (num_storage_locs > 1
|
||
#ifdef GDB_TARGET_IS_H8500
|
||
|| TYPE_CODE (type) == TYPE_CODE_PTR
|
||
#endif
|
||
)
|
||
{
|
||
/* Value spread across multiple storage locations. */
|
||
|
||
int local_regnum;
|
||
int mem_stor = 0, reg_stor = 0;
|
||
int mem_tracking = 1;
|
||
CORE_ADDR last_addr = 0;
|
||
CORE_ADDR first_addr = 0;
|
||
|
||
value_bytes = (char *) alloca (len + MAX_REGISTER_RAW_SIZE);
|
||
|
||
/* Copy all of the data out, whereever it may be. */
|
||
|
||
#ifdef GDB_TARGET_IS_H8500
|
||
/* This piece of hideosity is required because the H8500 treats registers
|
||
differently depending upon whether they are used as pointers or not. As a
|
||
pointer, a register needs to have a page register tacked onto the front.
|
||
An alternate way to do this would be to have gcc output different register
|
||
numbers for the pointer & non-pointer form of the register. But, it
|
||
doesn't, so we're stuck with this. */
|
||
|
||
if (TYPE_CODE (type) == TYPE_CODE_PTR
|
||
&& len > 2)
|
||
{
|
||
int page_regnum;
|
||
|
||
switch (regnum)
|
||
{
|
||
case R0_REGNUM: case R1_REGNUM: case R2_REGNUM: case R3_REGNUM:
|
||
page_regnum = SEG_D_REGNUM;
|
||
break;
|
||
case R4_REGNUM: case R5_REGNUM:
|
||
page_regnum = SEG_E_REGNUM;
|
||
break;
|
||
case R6_REGNUM: case R7_REGNUM:
|
||
page_regnum = SEG_T_REGNUM;
|
||
break;
|
||
}
|
||
|
||
value_bytes[0] = 0;
|
||
get_saved_register (value_bytes + 1,
|
||
&optim,
|
||
&addr,
|
||
frame,
|
||
page_regnum,
|
||
&lval);
|
||
|
||
if (lval == lval_register)
|
||
reg_stor++;
|
||
else
|
||
mem_stor++;
|
||
first_addr = addr;
|
||
last_addr = addr;
|
||
|
||
get_saved_register (value_bytes + 2,
|
||
&optim,
|
||
&addr,
|
||
frame,
|
||
regnum,
|
||
&lval);
|
||
|
||
if (lval == lval_register)
|
||
reg_stor++;
|
||
else
|
||
{
|
||
mem_stor++;
|
||
mem_tracking = mem_tracking && (addr == last_addr);
|
||
}
|
||
last_addr = addr;
|
||
}
|
||
else
|
||
#endif /* GDB_TARGET_IS_H8500 */
|
||
for (local_regnum = regnum;
|
||
value_bytes_copied < len;
|
||
(value_bytes_copied += REGISTER_RAW_SIZE (local_regnum),
|
||
++local_regnum))
|
||
{
|
||
get_saved_register (value_bytes + value_bytes_copied,
|
||
&optim,
|
||
&addr,
|
||
frame,
|
||
local_regnum,
|
||
&lval);
|
||
|
||
if (regnum == local_regnum)
|
||
first_addr = addr;
|
||
if (lval == lval_register)
|
||
reg_stor++;
|
||
else
|
||
{
|
||
mem_stor++;
|
||
|
||
mem_tracking =
|
||
(mem_tracking
|
||
&& (regnum == local_regnum
|
||
|| addr == last_addr));
|
||
}
|
||
last_addr = addr;
|
||
}
|
||
|
||
if ((reg_stor && mem_stor)
|
||
|| (mem_stor && !mem_tracking))
|
||
/* Mixed storage; all of the hassle we just went through was
|
||
for some good purpose. */
|
||
{
|
||
VALUE_LVAL (v) = lval_reg_frame_relative;
|
||
VALUE_FRAME (v) = FRAME_FP (frame);
|
||
VALUE_FRAME_REGNUM (v) = regnum;
|
||
}
|
||
else if (mem_stor)
|
||
{
|
||
VALUE_LVAL (v) = lval_memory;
|
||
VALUE_ADDRESS (v) = first_addr;
|
||
}
|
||
else if (reg_stor)
|
||
{
|
||
VALUE_LVAL (v) = lval_register;
|
||
VALUE_ADDRESS (v) = first_addr;
|
||
}
|
||
else
|
||
fatal ("value_from_register: Value not stored anywhere!");
|
||
|
||
VALUE_OPTIMIZED_OUT (v) = optim;
|
||
|
||
/* Any structure stored in more than one register will always be
|
||
an integral number of registers. Otherwise, you'd need to do
|
||
some fiddling with the last register copied here for little
|
||
endian machines. */
|
||
|
||
/* Copy into the contents section of the value. */
|
||
memcpy (VALUE_CONTENTS_RAW (v), value_bytes, len);
|
||
|
||
/* Finally do any conversion necessary when extracting this
|
||
type from more than one register. */
|
||
#ifdef REGISTER_CONVERT_TO_TYPE
|
||
REGISTER_CONVERT_TO_TYPE(regnum, type, VALUE_CONTENTS_RAW(v));
|
||
#endif
|
||
return v;
|
||
}
|
||
|
||
/* Data is completely contained within a single register. Locate the
|
||
register's contents in a real register or in core;
|
||
read the data in raw format. */
|
||
|
||
get_saved_register (raw_buffer, &optim, &addr, frame, regnum, &lval);
|
||
VALUE_OPTIMIZED_OUT (v) = optim;
|
||
VALUE_LVAL (v) = lval;
|
||
VALUE_ADDRESS (v) = addr;
|
||
|
||
/* Convert raw data to virtual format if necessary. */
|
||
|
||
#ifdef REGISTER_CONVERTIBLE
|
||
if (REGISTER_CONVERTIBLE (regnum))
|
||
{
|
||
REGISTER_CONVERT_TO_VIRTUAL (regnum, type,
|
||
raw_buffer, VALUE_CONTENTS_RAW (v));
|
||
}
|
||
else
|
||
#endif
|
||
{
|
||
/* Raw and virtual formats are the same for this register. */
|
||
|
||
if (TARGET_BYTE_ORDER == BIG_ENDIAN && len < REGISTER_RAW_SIZE (regnum))
|
||
{
|
||
/* Big-endian, and we want less than full size. */
|
||
VALUE_OFFSET (v) = REGISTER_RAW_SIZE (regnum) - len;
|
||
}
|
||
|
||
memcpy (VALUE_CONTENTS_RAW (v), raw_buffer + VALUE_OFFSET (v), len);
|
||
}
|
||
|
||
return v;
|
||
}
|
||
|
||
/* Given a struct symbol for a variable or function,
|
||
and a stack frame id,
|
||
return a (pointer to a) struct value containing the properly typed
|
||
address. */
|
||
|
||
value_ptr
|
||
locate_var_value (var, frame)
|
||
register struct symbol *var;
|
||
struct frame_info *frame;
|
||
{
|
||
CORE_ADDR addr = 0;
|
||
struct type *type = SYMBOL_TYPE (var);
|
||
value_ptr lazy_value;
|
||
|
||
/* Evaluate it first; if the result is a memory address, we're fine.
|
||
Lazy evaluation pays off here. */
|
||
|
||
lazy_value = read_var_value (var, frame);
|
||
if (lazy_value == 0)
|
||
error ("Address of \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
|
||
|
||
if (VALUE_LAZY (lazy_value)
|
||
|| TYPE_CODE (type) == TYPE_CODE_FUNC)
|
||
{
|
||
addr = VALUE_ADDRESS (lazy_value);
|
||
return value_from_longest (lookup_pointer_type (type), (LONGEST) addr);
|
||
}
|
||
|
||
/* Not a memory address; check what the problem was. */
|
||
switch (VALUE_LVAL (lazy_value))
|
||
{
|
||
case lval_register:
|
||
case lval_reg_frame_relative:
|
||
error ("Address requested for identifier \"%s\" which is in a register.",
|
||
SYMBOL_SOURCE_NAME (var));
|
||
break;
|
||
|
||
default:
|
||
error ("Can't take address of \"%s\" which isn't an lvalue.",
|
||
SYMBOL_SOURCE_NAME (var));
|
||
break;
|
||
}
|
||
return 0; /* For lint -- never reached */
|
||
}
|