mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-03 04:12:10 +08:00
21260fe16f
* d10v-tdep.c, config/d10v/tm-d10v.h: Major fixes to support inferior function calls and proper stack backtracing on D10V-EVA board.
608 lines
14 KiB
C
608 lines
14 KiB
C
/* Target-dependent code for MItsubishi D10V, for GDB.
|
|
Copyright (C) 1996 Free Software Foundation, Inc.
|
|
This file is part of GDB.
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
|
|
|
/* Contributed by Martin Hunt, hunt@cygnus.com */
|
|
|
|
#include "defs.h"
|
|
#include "frame.h"
|
|
#include "obstack.h"
|
|
#include "symtab.h"
|
|
#include "gdbtypes.h"
|
|
#include "gdbcmd.h"
|
|
#include "gdbcore.h"
|
|
#include "gdb_string.h"
|
|
#include "value.h"
|
|
#include "inferior.h"
|
|
#include "dis-asm.h"
|
|
#include "symfile.h"
|
|
#include "objfiles.h"
|
|
|
|
void d10v_frame_find_saved_regs PARAMS ((struct frame_info *fi, struct frame_saved_regs *fsr));
|
|
static void d10v_pop_dummy_frame PARAMS ((struct frame_info *fi));
|
|
|
|
/* Discard from the stack the innermost frame,
|
|
restoring all saved registers. */
|
|
|
|
void
|
|
d10v_pop_frame ()
|
|
{
|
|
struct frame_info *frame = get_current_frame ();
|
|
CORE_ADDR fp;
|
|
int regnum;
|
|
struct frame_saved_regs fsr;
|
|
char raw_buffer[8];
|
|
|
|
fp = FRAME_FP (frame);
|
|
if (frame->dummy)
|
|
{
|
|
d10v_pop_dummy_frame(frame);
|
|
return;
|
|
}
|
|
|
|
/* fill out fsr with the address of where each */
|
|
/* register was stored in the frame */
|
|
get_frame_saved_regs (frame, &fsr);
|
|
|
|
/* now update the current registers with the old values */
|
|
for (regnum = A0_REGNUM; regnum < A0_REGNUM+2 ; regnum++)
|
|
{
|
|
if (fsr.regs[regnum])
|
|
{
|
|
read_memory (fsr.regs[regnum], raw_buffer, 8);
|
|
write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, 8);
|
|
}
|
|
}
|
|
for (regnum = 0; regnum < SP_REGNUM; regnum++)
|
|
{
|
|
if (fsr.regs[regnum])
|
|
{
|
|
write_register (regnum, read_memory_unsigned_integer (fsr.regs[regnum], 2));
|
|
}
|
|
}
|
|
if (fsr.regs[PSW_REGNUM])
|
|
{
|
|
write_register (PSW_REGNUM, read_memory_unsigned_integer (fsr.regs[PSW_REGNUM], 2));
|
|
}
|
|
|
|
write_register (PC_REGNUM, read_register(13));
|
|
write_register (SP_REGNUM, fp + frame->size);
|
|
target_store_registers (-1);
|
|
flush_cached_frames ();
|
|
}
|
|
|
|
static int
|
|
check_prologue (op)
|
|
unsigned short op;
|
|
{
|
|
/* st rn, @-sp */
|
|
if ((op & 0x7E1F) == 0x6C1F)
|
|
return 1;
|
|
|
|
/* st2w rn, @-sp */
|
|
if ((op & 0x7E3F) == 0x6E1F)
|
|
return 1;
|
|
|
|
/* subi sp, n */
|
|
if ((op & 0x7FE1) == 0x01E1)
|
|
return 1;
|
|
|
|
/* mv r11, sp */
|
|
if (op == 0x417E)
|
|
return 1;
|
|
|
|
/* nop */
|
|
if (op == 0x5E00)
|
|
return 1;
|
|
|
|
/* st rn, @sp */
|
|
if ((op & 0x7E1F) == 0x681E)
|
|
return 1;
|
|
|
|
/* st2w rn, @sp */
|
|
if ((op & 0x7E3F) == 0x3A1E)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
CORE_ADDR
|
|
d10v_skip_prologue (pc)
|
|
CORE_ADDR pc;
|
|
{
|
|
unsigned long op;
|
|
unsigned short op1, op2;
|
|
|
|
if (target_read_memory (pc, (char *)&op, 4))
|
|
return pc; /* Can't access it -- assume no prologue. */
|
|
|
|
while (1)
|
|
{
|
|
op = (unsigned long)read_memory_integer (pc, 4);
|
|
if ((op & 0xC0000000) == 0xC0000000)
|
|
{
|
|
/* long instruction */
|
|
if ( ((op & 0x3FFF0000) != 0x01FF0000) && /* add3 sp,sp,n */
|
|
((op & 0x3F0F0000) != 0x340F0000) && /* st rn, @(offset,sp) */
|
|
((op & 0x3F1F0000) != 0x350F0000)) /* st2w rn, @(offset,sp) */
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
/* short instructions */
|
|
if ((op & 0xC0000000) == 0x80000000)
|
|
{
|
|
op2 = (op & 0x3FFF8000) >> 15;
|
|
op1 = op & 0x7FFF;
|
|
}
|
|
else
|
|
{
|
|
op1 = (op & 0x3FFF8000) >> 15;
|
|
op2 = op & 0x7FFF;
|
|
}
|
|
if (check_prologue(op1))
|
|
{
|
|
if (!check_prologue(op2))
|
|
{
|
|
/* if the previous opcode was really part of the prologue */
|
|
/* and not just a NOP, then we want to break after both instructions */
|
|
if (op1 != 0x5E00)
|
|
pc += 4;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
pc += 4;
|
|
}
|
|
return pc;
|
|
}
|
|
|
|
/* Given a GDB frame, determine the address of the calling function's frame.
|
|
This will be used to create a new GDB frame struct, and then
|
|
INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
|
|
*/
|
|
|
|
CORE_ADDR
|
|
d10v_frame_chain (frame)
|
|
struct frame_info *frame;
|
|
{
|
|
struct frame_saved_regs fsr;
|
|
|
|
d10v_frame_find_saved_regs (frame, &fsr);
|
|
|
|
if (frame->return_pc == IMEM_START)
|
|
return (CORE_ADDR)0;
|
|
|
|
if (!fsr.regs[FP_REGNUM])
|
|
{
|
|
if (!fsr.regs[SP_REGNUM] || fsr.regs[SP_REGNUM] == STACK_START)
|
|
return (CORE_ADDR)0;
|
|
|
|
return fsr.regs[SP_REGNUM];
|
|
}
|
|
|
|
if (!read_memory_unsigned_integer(fsr.regs[FP_REGNUM],2))
|
|
return (CORE_ADDR)0;
|
|
|
|
return read_memory_unsigned_integer(fsr.regs[FP_REGNUM],2)| DMEM_START;
|
|
}
|
|
|
|
static int next_addr, uses_frame;
|
|
|
|
static int
|
|
prologue_find_regs (op, fsr, addr)
|
|
unsigned short op;
|
|
struct frame_saved_regs *fsr;
|
|
CORE_ADDR addr;
|
|
{
|
|
int n;
|
|
|
|
/* st rn, @-sp */
|
|
if ((op & 0x7E1F) == 0x6C1F)
|
|
{
|
|
n = (op & 0x1E0) >> 5;
|
|
next_addr -= 2;
|
|
fsr->regs[n] = next_addr;
|
|
return 1;
|
|
}
|
|
|
|
/* st2w rn, @-sp */
|
|
else if ((op & 0x7E3F) == 0x6E1F)
|
|
{
|
|
n = (op & 0x1E0) >> 5;
|
|
next_addr -= 4;
|
|
fsr->regs[n] = next_addr;
|
|
fsr->regs[n+1] = next_addr+2;
|
|
return 1;
|
|
}
|
|
|
|
/* subi sp, n */
|
|
if ((op & 0x7FE1) == 0x01E1)
|
|
{
|
|
n = (op & 0x1E) >> 1;
|
|
if (n == 0)
|
|
n = 16;
|
|
next_addr -= n;
|
|
return 1;
|
|
}
|
|
|
|
/* mv r11, sp */
|
|
if (op == 0x417E)
|
|
{
|
|
uses_frame = 1;
|
|
return 1;
|
|
}
|
|
|
|
/* nop */
|
|
if (op == 0x5E00)
|
|
return 1;
|
|
|
|
/* st rn, @sp */
|
|
if ((op & 0x7E1F) == 0x681E)
|
|
{
|
|
n = (op & 0x1E0) >> 5;
|
|
fsr->regs[n] = next_addr;
|
|
return 1;
|
|
}
|
|
|
|
/* st2w rn, @sp */
|
|
if ((op & 0x7E3F) == 0x3A1E)
|
|
{
|
|
n = (op & 0x1E0) >> 5;
|
|
fsr->regs[n] = next_addr;
|
|
fsr->regs[n+1] = next_addr+2;
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Put here the code to store, into a struct frame_saved_regs, the
|
|
addresses of the saved registers of frame described by FRAME_INFO.
|
|
This includes special registers such as pc and fp saved in special
|
|
ways in the stack frame. sp is even more special: the address we
|
|
return for it IS the sp for the next frame. */
|
|
void
|
|
d10v_frame_find_saved_regs (fi, fsr)
|
|
struct frame_info *fi;
|
|
struct frame_saved_regs *fsr;
|
|
{
|
|
CORE_ADDR fp, pc;
|
|
unsigned long op;
|
|
unsigned short op1, op2;
|
|
int i;
|
|
|
|
fp = fi->frame;
|
|
memset (fsr, 0, sizeof (*fsr));
|
|
next_addr = 0;
|
|
|
|
pc = get_pc_function_start (fi->pc);
|
|
|
|
uses_frame = 0;
|
|
while (1)
|
|
{
|
|
op = (unsigned long)read_memory_integer (pc, 4);
|
|
if ((op & 0xC0000000) == 0xC0000000)
|
|
{
|
|
/* long instruction */
|
|
if ((op & 0x3FFF0000) == 0x01FF0000)
|
|
{
|
|
/* add3 sp,sp,n */
|
|
short n = op & 0xFFFF;
|
|
next_addr += n;
|
|
}
|
|
else if ((op & 0x3F0F0000) == 0x340F0000)
|
|
{
|
|
/* st rn, @(offset,sp) */
|
|
short offset = op & 0xFFFF;
|
|
short n = (op >> 20) & 0xF;
|
|
fsr->regs[n] = next_addr + offset;
|
|
}
|
|
else if ((op & 0x3F1F0000) == 0x350F0000)
|
|
{
|
|
/* st2w rn, @(offset,sp) */
|
|
short offset = op & 0xFFFF;
|
|
short n = (op >> 20) & 0xF;
|
|
fsr->regs[n] = next_addr + offset;
|
|
fsr->regs[n+1] = next_addr + offset + 2;
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
/* short instructions */
|
|
if ((op & 0xC0000000) == 0x80000000)
|
|
{
|
|
op2 = (op & 0x3FFF8000) >> 15;
|
|
op1 = op & 0x7FFF;
|
|
}
|
|
else
|
|
{
|
|
op1 = (op & 0x3FFF8000) >> 15;
|
|
op2 = op & 0x7FFF;
|
|
}
|
|
if (!prologue_find_regs(op1,fsr,pc) || !prologue_find_regs(op2,fsr,pc))
|
|
break;
|
|
}
|
|
pc += 4;
|
|
}
|
|
|
|
fi->size = -next_addr;
|
|
|
|
if (!(fp & 0xffff))
|
|
fp = read_register(SP_REGNUM) | DMEM_START;
|
|
|
|
for (i=0; i<NUM_REGS-1; i++)
|
|
if (fsr->regs[i])
|
|
{
|
|
fsr->regs[i] = fp - (next_addr - fsr->regs[i]);
|
|
}
|
|
|
|
if (fsr->regs[LR_REGNUM])
|
|
fi->return_pc = ((read_memory_unsigned_integer(fsr->regs[LR_REGNUM],2) - 1) << 2) | IMEM_START;
|
|
else
|
|
fi->return_pc = ((read_register(LR_REGNUM) - 1) << 2) | IMEM_START;
|
|
|
|
/* th SP is not normally (ever?) saved, but check anyway */
|
|
if (!fsr->regs[SP_REGNUM])
|
|
{
|
|
/* if the FP was saved, that means the current FP is valid, */
|
|
/* otherwise, it isn't being used, so we use the SP instead */
|
|
if (uses_frame)
|
|
fsr->regs[SP_REGNUM] = read_register(FP_REGNUM) + fi->size;
|
|
else
|
|
{
|
|
fsr->regs[SP_REGNUM] = fp + fi->size;
|
|
fi->frameless = 1;
|
|
fsr->regs[FP_REGNUM] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
d10v_init_extra_frame_info (fromleaf, fi)
|
|
int fromleaf;
|
|
struct frame_info *fi;
|
|
{
|
|
struct frame_saved_regs dummy;
|
|
|
|
if (fi->next && ((fi->pc & 0xffff) == 0))
|
|
fi->pc = fi->next->return_pc;
|
|
|
|
d10v_frame_find_saved_regs (fi, &dummy);
|
|
}
|
|
|
|
static void
|
|
show_regs (args, from_tty)
|
|
char *args;
|
|
int from_tty;
|
|
{
|
|
long long num1, num2;
|
|
printf_filtered ("PC=%04x (0x%x) PSW=%04x RPT_S=%04x RPT_E=%04x RPT_C=%04x\n",
|
|
read_register (PC_REGNUM), (read_register (PC_REGNUM) << 2) + IMEM_START,
|
|
read_register (PSW_REGNUM),
|
|
read_register (24),
|
|
read_register (25),
|
|
read_register (23));
|
|
printf_filtered ("R0-R7 %04x %04x %04x %04x %04x %04x %04x %04x\n",
|
|
read_register (0),
|
|
read_register (1),
|
|
read_register (2),
|
|
read_register (3),
|
|
read_register (4),
|
|
read_register (5),
|
|
read_register (6),
|
|
read_register (7));
|
|
printf_filtered ("R8-R15 %04x %04x %04x %04x %04x %04x %04x %04x\n",
|
|
read_register (8),
|
|
read_register (9),
|
|
read_register (10),
|
|
read_register (11),
|
|
read_register (12),
|
|
read_register (13),
|
|
read_register (14),
|
|
read_register (15));
|
|
printf_filtered ("IMAP0 %04x IMAP1 %04x DMAP %04x\n",
|
|
read_register (IMAP0_REGNUM),
|
|
read_register (IMAP1_REGNUM),
|
|
read_register (DMAP_REGNUM));
|
|
read_register_gen (A0_REGNUM, (char *)&num1);
|
|
read_register_gen (A0_REGNUM+1, (char *)&num2);
|
|
printf_filtered ("A0-A1 %010llx %010llx\n",num1, num2);
|
|
}
|
|
|
|
void
|
|
_initialize_d10v_tdep ()
|
|
{
|
|
tm_print_insn = print_insn_d10v;
|
|
add_com ("regs", class_vars, show_regs, "Print all registers");
|
|
}
|
|
|
|
static CORE_ADDR
|
|
d10v_xlate_addr (addr)
|
|
int addr;
|
|
{
|
|
int imap;
|
|
|
|
if (addr < 0x20000)
|
|
imap = (int)read_register(IMAP0_REGNUM);
|
|
else
|
|
imap = (int)read_register(IMAP1_REGNUM);
|
|
|
|
if (imap & 0x1000)
|
|
return (CORE_ADDR)(addr + 0x1000000);
|
|
return (CORE_ADDR)(addr + (imap & 0xff)*0x20000);
|
|
}
|
|
|
|
|
|
CORE_ADDR
|
|
d10v_read_pc (pid)
|
|
int pid;
|
|
{
|
|
int save_pid, retval;
|
|
|
|
save_pid = inferior_pid;
|
|
inferior_pid = pid;
|
|
retval = (int)read_register (PC_REGNUM);
|
|
inferior_pid = save_pid;
|
|
return d10v_xlate_addr(retval << 2);
|
|
}
|
|
|
|
void
|
|
d10v_write_pc (val, pid)
|
|
CORE_ADDR val;
|
|
int pid;
|
|
{
|
|
int save_pid;
|
|
|
|
save_pid = inferior_pid;
|
|
inferior_pid = pid;
|
|
write_register (PC_REGNUM, (val & 0x3ffff) >> 2);
|
|
inferior_pid = save_pid;
|
|
}
|
|
|
|
CORE_ADDR
|
|
d10v_read_sp ()
|
|
{
|
|
return (read_register(SP_REGNUM) | DMEM_START);
|
|
}
|
|
|
|
void
|
|
d10v_write_sp (val)
|
|
CORE_ADDR val;
|
|
{
|
|
write_register (SP_REGNUM, (LONGEST)(val & 0xffff));
|
|
}
|
|
|
|
CORE_ADDR
|
|
d10v_fix_call_dummy (dummyname, start_sp, fun, nargs, args, type, gcc_p)
|
|
char *dummyname;
|
|
CORE_ADDR start_sp;
|
|
CORE_ADDR fun;
|
|
int nargs;
|
|
value_ptr *args;
|
|
struct type *type;
|
|
int gcc_p;
|
|
{
|
|
int regnum;
|
|
CORE_ADDR sp;
|
|
char buffer[MAX_REGISTER_RAW_SIZE];
|
|
struct frame_info *frame = get_current_frame ();
|
|
frame->dummy = 1;
|
|
start_sp |= DMEM_START;
|
|
|
|
sp = start_sp;
|
|
for (regnum = 0; regnum < NUM_REGS; regnum++)
|
|
{
|
|
sp -= REGISTER_RAW_SIZE(regnum);
|
|
store_address (buffer, REGISTER_RAW_SIZE(regnum), read_register(regnum));
|
|
write_memory (sp, buffer, REGISTER_RAW_SIZE(regnum));
|
|
}
|
|
write_register (SP_REGNUM, (LONGEST)(sp & 0xffff));
|
|
/* now we need to load LR with the return address */
|
|
write_register (LR_REGNUM, (LONGEST)(d10v_call_dummy_address() & 0xffff) >> 2);
|
|
return sp;
|
|
}
|
|
|
|
static void
|
|
d10v_pop_dummy_frame (fi)
|
|
struct frame_info *fi;
|
|
{
|
|
CORE_ADDR sp = fi->frame;
|
|
int regnum;
|
|
|
|
for (regnum = NUM_REGS-1; regnum >= 0; regnum--)
|
|
{
|
|
write_register(regnum, read_memory_unsigned_integer (sp, REGISTER_RAW_SIZE(regnum)));
|
|
sp += REGISTER_RAW_SIZE(regnum);
|
|
}
|
|
target_store_registers (-1);
|
|
flush_cached_frames ();
|
|
|
|
write_register(SP_REGNUM, sp & 0xffff);
|
|
}
|
|
|
|
|
|
CORE_ADDR
|
|
d10v_push_arguments (nargs, args, sp, struct_return, struct_addr)
|
|
int nargs;
|
|
value_ptr *args;
|
|
CORE_ADDR sp;
|
|
int struct_return;
|
|
CORE_ADDR struct_addr;
|
|
{
|
|
int i, len, regnum=2;
|
|
char *contents;
|
|
LONGEST val;
|
|
|
|
for (i = 0; i < nargs; i++)
|
|
{
|
|
value_ptr arg = args[i];
|
|
struct type *arg_type = check_typedef (VALUE_TYPE (arg));
|
|
switch (TYPE_CODE (arg_type))
|
|
{
|
|
case TYPE_CODE_INT:
|
|
case TYPE_CODE_BOOL:
|
|
case TYPE_CODE_CHAR:
|
|
case TYPE_CODE_RANGE:
|
|
case TYPE_CODE_ENUM:
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
len = TYPE_LENGTH (arg_type);
|
|
contents = VALUE_CONTENTS(arg);
|
|
val = extract_signed_integer (contents, len);
|
|
if (len == 4)
|
|
write_register (regnum++, val>>16);
|
|
write_register (regnum++, val & 0xffff);
|
|
}
|
|
return sp;
|
|
}
|
|
|
|
|
|
CORE_ADDR
|
|
d10v_call_dummy_address ()
|
|
{
|
|
CORE_ADDR entry;
|
|
struct minimal_symbol *sym;
|
|
|
|
entry = entry_point_address ();
|
|
|
|
if (entry != 0)
|
|
return entry;
|
|
|
|
sym = lookup_minimal_symbol ("_start", NULL, symfile_objfile);
|
|
|
|
if (!sym || MSYMBOL_TYPE (sym) != mst_text)
|
|
return 0;
|
|
else
|
|
return SYMBOL_VALUE_ADDRESS (sym);
|
|
}
|
|
|
|
/* Given a return value in `regbuf' with a type `valtype',
|
|
extract and copy its value into `valbuf'. */
|
|
|
|
void
|
|
d10v_extract_return_value (valtype, regbuf, valbuf)
|
|
struct type *valtype;
|
|
char regbuf[REGISTER_BYTES];
|
|
char *valbuf;
|
|
{
|
|
memcpy (valbuf, regbuf + REGISTER_BYTE (2), TYPE_LENGTH (valtype));
|
|
}
|