mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-18 12:24:38 +08:00
ca3bf3bdbe
* NEWS: New port to Xtensa. * Makefile.in: Add dependencies for Xtensa files. * configure.tgt (xtensa*, xtensa*-*-elf*): New. * configure.host (xtensa*-*-elf*): New. * config/xtensa/xtensa.mt: New file. * xtensa-config.c: New file. * xtensa-tdep.h: New file. * xtensa-tdep.c: New file. 2006-11-14 Maxim Grigoriev <maxim@tensilica.com> * gdb.texinfo (Contributors): Add contributors of Xtensa port.
1740 lines
46 KiB
C
1740 lines
46 KiB
C
/* Target-dependent code for the Xtensa port of GDB, the GNU debugger.
|
|
|
|
Copyright (C) 2003, 2005, 2006 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
|
Boston, MA 02110-1301, USA. */
|
|
|
|
#include "defs.h"
|
|
#include "frame.h"
|
|
#include "symtab.h"
|
|
#include "symfile.h"
|
|
#include "objfiles.h"
|
|
#include "gdbtypes.h"
|
|
#include "gdbcore.h"
|
|
#include "value.h"
|
|
#include "dis-asm.h"
|
|
#include "inferior.h"
|
|
#include "floatformat.h"
|
|
#include "regcache.h"
|
|
#include "reggroups.h"
|
|
#include "regset.h"
|
|
|
|
#include "dummy-frame.h"
|
|
#include "elf/dwarf2.h"
|
|
#include "dwarf2-frame.h"
|
|
#include "dwarf2loc.h"
|
|
#include "frame.h"
|
|
#include "frame-base.h"
|
|
#include "frame-unwind.h"
|
|
|
|
#include "arch-utils.h"
|
|
#include "gdbarch.h"
|
|
#include "remote.h"
|
|
#include "serial.h"
|
|
|
|
#include "command.h"
|
|
#include "gdbcmd.h"
|
|
#include "gdb_assert.h"
|
|
|
|
#include "xtensa-tdep.h"
|
|
|
|
|
|
static int xtensa_debug_level = 0;
|
|
|
|
#define DEBUGWARN(args...) \
|
|
if (xtensa_debug_level > 0) \
|
|
fprintf_unfiltered (gdb_stdlog, "(warn ) " args)
|
|
|
|
#define DEBUGINFO(args...) \
|
|
if (xtensa_debug_level > 1) \
|
|
fprintf_unfiltered (gdb_stdlog, "(info ) " args)
|
|
|
|
#define DEBUGTRACE(args...) \
|
|
if (xtensa_debug_level > 2) \
|
|
fprintf_unfiltered (gdb_stdlog, "(trace) " args)
|
|
|
|
#define DEBUGVERB(args...) \
|
|
if (xtensa_debug_level > 3) \
|
|
fprintf_unfiltered (gdb_stdlog, "(verb ) " args)
|
|
|
|
|
|
/* According to the ABI, the SP must be aligned to 16-byte boundaries. */
|
|
|
|
#define SP_ALIGNMENT 16
|
|
|
|
|
|
/* We use a6 through a11 for passing arguments to a function called by GDB. */
|
|
|
|
#define ARGS_FIRST_REG A6_REGNUM
|
|
#define ARGS_NUM_REGS 6
|
|
#define REGISTER_SIZE 4
|
|
|
|
|
|
/* Extract the call size from the return address or ps register. */
|
|
|
|
#define PS_CALLINC_SHIFT 16
|
|
#define PS_CALLINC_MASK 0x00030000
|
|
#define CALLINC(ps) (((ps) & PS_CALLINC_MASK) >> PS_CALLINC_SHIFT)
|
|
#define WINSIZE(ra) (4 * (( (ra) >> 30) & 0x3))
|
|
|
|
|
|
/* Convert a live Ax register number to the corresponding Areg number. */
|
|
|
|
#define AREG_NUMBER(r, wb) \
|
|
((((r) - A0_REGNUM + (((wb) & WB_MASK)<<WB_SHIFT)) & AREGS_MASK) + AR_BASE)
|
|
|
|
|
|
/* Define prototypes. */
|
|
|
|
extern struct gdbarch_tdep *xtensa_config_tdep (struct gdbarch_info *);
|
|
extern int xtensa_config_byte_order (struct gdbarch_info *);
|
|
|
|
|
|
/* XTENSA_IS_ENTRY tests whether the first byte of an instruction
|
|
indicates that the instruction is an ENTRY instruction. */
|
|
|
|
#define XTENSA_IS_ENTRY(op1) \
|
|
((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) ? ((op1) == 0x6c) : ((op1) == 0x36))
|
|
|
|
#define XTENSA_ENTRY_LENGTH 3
|
|
|
|
|
|
/* windowing_enabled() returns true, if windowing is enabled.
|
|
WOE must be set to 1; EXCM to 0.
|
|
Note: We assume that EXCM is always 0 for XEA1. */
|
|
|
|
static inline int
|
|
windowing_enabled (CORE_ADDR ps)
|
|
{
|
|
return ((ps & (1 << 4)) == 0 && (ps & (1 << 18)) != 0);
|
|
}
|
|
|
|
/* Return the window size of the previous call to the function from which we
|
|
have just returned.
|
|
|
|
This function is used to extract the return value after a called function
|
|
has returned to the callee. On Xtensa, the register that holds the return
|
|
value (from the perspective of the caller) depends on what call
|
|
instruction was used. For now, we are assuming that the call instruction
|
|
precedes the current address, so we simply analyze the call instruction.
|
|
If we are in a dummy frame, we simply return 4 as we used a 'pseudo-call4'
|
|
method to call the inferior function. */
|
|
|
|
static int
|
|
extract_call_winsize (CORE_ADDR pc)
|
|
{
|
|
int winsize = 4; /* Default: No call, e.g. dummy frame. */
|
|
int insn;
|
|
char buf[4];
|
|
|
|
DEBUGTRACE ("extract_call_winsize (pc = 0x%08x)\n", (int) pc);
|
|
|
|
/* Read the previous instruction (should be a call[x]{4|8|12}. */
|
|
read_memory (pc-3, buf, 3);
|
|
insn = extract_unsigned_integer (buf, 3);
|
|
|
|
/* Decode call instruction:
|
|
Little Endian
|
|
call{0,4,8,12} OFFSET || {00,01,10,11} || 0101
|
|
callx{0,4,8,12} OFFSET || 11 || {00,01,10,11} || 0000
|
|
Big Endian
|
|
call{0,4,8,12} 0101 || {00,01,10,11} || OFFSET
|
|
callx{0,4,8,12} 0000 || {00,01,10,11} || 11 || OFFSET. */
|
|
|
|
/* Lookup call insn.
|
|
(Return the default value (4) if we can't find a valid call insn. */
|
|
|
|
if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
|
|
{
|
|
if (((insn & 0xf) == 0x5) || ((insn & 0xcf) == 0xc0))
|
|
winsize = (insn & 0x30) >> 2; /* 0, 4, 8, 12 */
|
|
}
|
|
else
|
|
{
|
|
if (((insn >> 20) == 0x5) || (((insn >> 16) & 0xf3) == 0x03))
|
|
winsize = (insn >> 16) & 0xc; /* 0, 4, 8, 12 */
|
|
}
|
|
return winsize;
|
|
}
|
|
|
|
|
|
/* REGISTER INFORMATION */
|
|
|
|
/* Returns the name of a register. */
|
|
|
|
static const char *
|
|
xtensa_register_name (int regnum)
|
|
{
|
|
/* Return the name stored in the register map. */
|
|
if (regnum >= 0 && regnum < NUM_REGS + NUM_PSEUDO_REGS)
|
|
return REGMAP[regnum].name;
|
|
|
|
/* Invalid register number. */
|
|
internal_error (__FILE__, __LINE__, _("invalid register %d"), regnum);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Return the type of a register. Create a new type, if necessary. */
|
|
|
|
static struct ctype_cache
|
|
{
|
|
struct ctype_cache *next;
|
|
int size;
|
|
struct type *virtual_type;
|
|
} *type_entries = NULL;
|
|
|
|
static struct type *
|
|
xtensa_register_type (struct gdbarch *gdbarch, int regnum)
|
|
{
|
|
/* Return signed integer for ARx and Ax registers. */
|
|
if ((regnum >= AR_BASE && regnum < AR_BASE + NUM_AREGS)
|
|
|| (regnum >= A0_BASE && regnum < A0_BASE + 16))
|
|
return builtin_type_int;
|
|
|
|
if (regnum == PC_REGNUM || regnum == A1_REGNUM)
|
|
return lookup_pointer_type (builtin_type_void);
|
|
|
|
/* Return the stored type for all other registers. */
|
|
else if (regnum >= 0 && regnum < NUM_REGS + NUM_PSEUDO_REGS)
|
|
{
|
|
xtensa_register_t* reg = ®MAP[regnum];
|
|
|
|
/* Set ctype for this register (only the first time we ask for it). */
|
|
|
|
if (reg->ctype == 0)
|
|
{
|
|
struct ctype_cache *tp;
|
|
int size = reg->byte_size;
|
|
|
|
/* We always use the memory representation, even if the register
|
|
width is smaller. */
|
|
switch (size)
|
|
{
|
|
case 1:
|
|
reg->ctype = builtin_type_uint8;
|
|
break;
|
|
|
|
case 2:
|
|
reg->ctype = builtin_type_uint16;
|
|
break;
|
|
|
|
case 4:
|
|
reg->ctype = builtin_type_uint32;
|
|
break;
|
|
|
|
case 8:
|
|
reg->ctype = builtin_type_uint64;
|
|
break;
|
|
|
|
case 16:
|
|
reg->ctype = builtin_type_uint128;
|
|
break;
|
|
|
|
default:
|
|
for (tp = type_entries; tp != NULL; tp = tp->next)
|
|
if (tp->size == size)
|
|
break;
|
|
|
|
if (tp == NULL)
|
|
{
|
|
char *name = xmalloc (16);
|
|
tp = xmalloc (sizeof (struct ctype_cache));
|
|
tp->next = type_entries;
|
|
type_entries = tp;
|
|
tp->size = size;
|
|
|
|
sprintf (name, "int%d", size * 8);
|
|
tp->virtual_type = init_type (TYPE_CODE_INT, size,
|
|
TYPE_FLAG_UNSIGNED, name,
|
|
NULL);
|
|
}
|
|
|
|
reg->ctype = tp->virtual_type;
|
|
}
|
|
}
|
|
return reg->ctype;
|
|
}
|
|
|
|
/* Invalid register number. */
|
|
internal_error (__FILE__, __LINE__, _("invalid register number %d"), regnum);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Returns the 'local' register number for stubs, dwarf2, etc.
|
|
The debugging information enumerates registers starting from 0 for A0
|
|
to n for An. So, we only have to add the base number for A0. */
|
|
|
|
static int
|
|
xtensa_reg_to_regnum (int regnum)
|
|
{
|
|
int i;
|
|
|
|
if (regnum >= 0 && regnum < 16)
|
|
return A0_BASE + regnum;
|
|
|
|
for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
|
|
if (regnum == REGMAP[i].target_number)
|
|
return i;
|
|
|
|
/* Invalid register number. */
|
|
internal_error (__FILE__, __LINE__,
|
|
_("invalid dwarf/stabs register number %d"), regnum);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Handle the special case of masked registers. */
|
|
|
|
/* Write the bits of a masked register to the various registers that
|
|
are combined into this register. Only the masked areas of these
|
|
registers are modified; the other fields are untouched.
|
|
(Note: The size of masked registers is always less or equal 32 bits.) */
|
|
|
|
static void
|
|
xtensa_register_write_masked (xtensa_register_t *reg, unsigned char *buffer)
|
|
{
|
|
unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
|
|
|
|
const xtensa_mask_t *mask = reg->mask;
|
|
|
|
int shift = 0; /* Shift for next mask (mod 32). */
|
|
int start, size; /* Start bit and size of current mask. */
|
|
|
|
unsigned int *ptr = value;
|
|
unsigned int regval, m, mem = 0;
|
|
|
|
int bytesize = reg->byte_size;
|
|
int bitsize = bytesize * 8;
|
|
int i, r;
|
|
|
|
DEBUGTRACE ("xtensa_register_write_masked ()\n");
|
|
|
|
/* Copy the masked register to host byte-order. */
|
|
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
|
for (i = 0; i < bytesize; i++)
|
|
{
|
|
mem >>= 8;
|
|
mem |= (buffer[bytesize - i - 1] << 24);
|
|
if ((i & 3) == 3)
|
|
*ptr++ = mem;
|
|
}
|
|
else
|
|
for (i = 0; i < bytesize; i++)
|
|
{
|
|
mem >>= 8;
|
|
mem |= (buffer[i] << 24);
|
|
if ((i & 3) == 3)
|
|
*ptr++ = mem;
|
|
}
|
|
|
|
/* We might have to shift the final value:
|
|
bytesize & 3 == 0 -> nothing to do, we use the full 32 bits,
|
|
bytesize & 3 == x -> shift (4-x) * 8. */
|
|
|
|
*ptr = mem >> (((0 - bytesize) & 3) * 8);
|
|
ptr = value;
|
|
mem = *ptr;
|
|
|
|
/* Write the bits to the masked areas of the other registers. */
|
|
for (i = 0; i < mask->count; i++)
|
|
{
|
|
start = mask->mask[i].bit_start;
|
|
size = mask->mask[i].bit_size;
|
|
regval = mem >> shift;
|
|
|
|
if ((shift += size) > bitsize)
|
|
error (_("size of all masks is larger than the register"));
|
|
|
|
if (shift >= 32)
|
|
{
|
|
mem = *(++ptr);
|
|
shift -= 32;
|
|
bitsize -= 32;
|
|
|
|
if (shift > 0)
|
|
regval |= mem << (size - shift);
|
|
}
|
|
|
|
/* Make sure we have a valid register. */
|
|
r = mask->mask[i].reg_num;
|
|
if (r >= 0 && size > 0)
|
|
{
|
|
/* Don't overwrite the unmasked areas. */
|
|
m = 0xffffffff >> (32 - size) << start;
|
|
regval <<= start;
|
|
regval = (regval & m) | (read_register (r) & ~m);
|
|
write_register (r, regval);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Read the masked areas of the registers and assemble it into a single
|
|
register. */
|
|
|
|
static void
|
|
xtensa_register_read_masked (xtensa_register_t *reg, unsigned char *buffer)
|
|
{
|
|
unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
|
|
|
|
const xtensa_mask_t *mask = reg->mask;
|
|
|
|
int shift = 0;
|
|
int start, size;
|
|
|
|
unsigned int *ptr = value;
|
|
unsigned int regval, mem = 0;
|
|
|
|
int bytesize = reg->byte_size;
|
|
int bitsize = bytesize * 8;
|
|
int i;
|
|
|
|
DEBUGTRACE ("xtensa_register_read_masked (reg \"%s\", ...)\n",
|
|
reg->name == 0 ? "" : reg->name);
|
|
|
|
/* Assemble the register from the masked areas of other registers. */
|
|
for (i = 0; i < mask->count; i++)
|
|
{
|
|
int r = mask->mask[i].reg_num;
|
|
regval = (r >= 0) ? read_register (r) : 0;
|
|
start = mask->mask[i].bit_start;
|
|
size = mask->mask[i].bit_size;
|
|
|
|
regval >>= start;
|
|
|
|
if (size < 32)
|
|
regval &= (0xffffffff >> (32 - size));
|
|
|
|
mem |= regval << shift;
|
|
|
|
if ((shift += size) > bitsize)
|
|
error (_("size of all masks is larger than the register"));
|
|
|
|
if (shift >= 32)
|
|
{
|
|
*ptr++ = mem;
|
|
bitsize -= 32;
|
|
shift -= 32;
|
|
|
|
if (shift == 0)
|
|
mem = 0;
|
|
else
|
|
mem = regval >> (size - shift);
|
|
}
|
|
}
|
|
|
|
if (shift > 0)
|
|
*ptr = mem;
|
|
|
|
/* Copy value to target byte order. */
|
|
ptr = value;
|
|
mem = *ptr;
|
|
|
|
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
|
for (i = 0; i < bytesize; i++)
|
|
{
|
|
if ((i & 3) == 0)
|
|
mem = *ptr++;
|
|
buffer[bytesize - i - 1] = mem & 0xff;
|
|
mem >>= 8;
|
|
}
|
|
else
|
|
for (i = 0; i < bytesize; i++)
|
|
{
|
|
if ((i & 3) == 0)
|
|
mem = *ptr++;
|
|
buffer[i] = mem & 0xff;
|
|
mem >>= 8;
|
|
}
|
|
}
|
|
|
|
|
|
/* Read pseudo registers. */
|
|
|
|
static void
|
|
xtensa_pseudo_register_read (struct gdbarch *gdbarch,
|
|
struct regcache *regcache,
|
|
int regnum,
|
|
gdb_byte *buffer)
|
|
{
|
|
DEBUGTRACE ("xtensa_pseudo_register_read (... regnum = %d (%s) ...)\n",
|
|
regnum, xtensa_register_name (regnum));
|
|
|
|
/* Check if it is FP (renumber it in this case -> A0...A15). */
|
|
if (regnum == FP_ALIAS)
|
|
error (_("trying to read FP"));
|
|
|
|
/* Read aliases a0..a15. */
|
|
if (regnum >= A0_REGNUM && regnum <= A15_REGNUM)
|
|
{
|
|
char *buf = (char *) alloca (MAX_REGISTER_SIZE);
|
|
|
|
regcache_raw_read (regcache, WB_REGNUM, buf);
|
|
regnum = AREG_NUMBER (regnum, extract_unsigned_integer (buf, 4));
|
|
}
|
|
|
|
/* We can always read 'regular' registers. */
|
|
if (regnum >= 0 && regnum < NUM_REGS)
|
|
regcache_raw_read (regcache, regnum, buffer);
|
|
|
|
/* Pseudo registers. */
|
|
else if (regnum >= 0 && regnum < NUM_REGS + NUM_PSEUDO_REGS)
|
|
{
|
|
xtensa_register_t *reg = ®MAP[regnum];
|
|
xtensa_register_type_t type = reg->type;
|
|
int flags = XTENSA_TARGET_FLAGS;
|
|
|
|
/* Can we read Unknown or Unmapped registers? */
|
|
if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
|
|
{
|
|
if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
|
|
{
|
|
warning (_("cannot read register %s"),
|
|
xtensa_register_name (regnum));
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Some targets cannot read TIE register files. */
|
|
else if (type == xtRegisterTypeTieRegfile)
|
|
{
|
|
/* Use 'fetch' to get register? */
|
|
if (flags & xtTargetFlagsUseFetchStore)
|
|
{
|
|
warning (_("cannot read register"));
|
|
return;
|
|
}
|
|
|
|
/* On some targets (esp. simulators), we can always read the reg. */
|
|
else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
|
|
{
|
|
warning (_("cannot read register"));
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* We can always read mapped registers. */
|
|
else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
|
|
{
|
|
xtensa_register_read_masked (reg, (unsigned char *) buffer);
|
|
return;
|
|
}
|
|
|
|
/* Assume that we can read the register. */
|
|
regcache_raw_read (regcache, regnum, buffer);
|
|
}
|
|
|
|
else
|
|
internal_error (__FILE__, __LINE__,
|
|
_("invalid register number %d"), regnum);
|
|
}
|
|
|
|
|
|
/* Write pseudo registers. */
|
|
|
|
static void
|
|
xtensa_pseudo_register_write (struct gdbarch *gdbarch,
|
|
struct regcache *regcache,
|
|
int regnum,
|
|
const gdb_byte *buffer)
|
|
{
|
|
DEBUGTRACE ("xtensa_pseudo_register_write (... regnum = %d (%s) ...)\n",
|
|
regnum, xtensa_register_name (regnum));
|
|
|
|
/* Check if this is FP. */
|
|
if (regnum == FP_ALIAS)
|
|
error (_("trying to write FP"));
|
|
|
|
/* Renumber register, if aliase a0..a15. */
|
|
if (regnum >= A0_REGNUM && regnum <= A15_REGNUM)
|
|
{
|
|
char *buf = (char *) alloca (MAX_REGISTER_SIZE);
|
|
unsigned int wb;
|
|
|
|
regcache_raw_read (regcache, WB_REGNUM, buf);
|
|
regnum = AREG_NUMBER (regnum, extract_unsigned_integer (buf, 4));
|
|
}
|
|
|
|
/* We can always write 'core' registers.
|
|
Note: We might have converted Ax->ARy. */
|
|
if (regnum >= 0 && regnum < NUM_REGS)
|
|
regcache_raw_write (regcache, regnum, buffer);
|
|
|
|
/* Pseudo registers. */
|
|
else if (regnum >= 0 && regnum < NUM_REGS + NUM_PSEUDO_REGS)
|
|
{
|
|
xtensa_register_t *reg = ®MAP[regnum];
|
|
xtensa_register_type_t type = reg->type;
|
|
int flags = XTENSA_TARGET_FLAGS;
|
|
|
|
/* On most targets, we can't write registers of type "Unknown"
|
|
or "Unmapped". */
|
|
if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
|
|
{
|
|
if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
|
|
{
|
|
warning (_("cannot write register %s"),
|
|
xtensa_register_name (regnum));
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Some targets cannot read TIE register files. */
|
|
else if (type == xtRegisterTypeTieRegfile)
|
|
{
|
|
/* Use 'store' to get register? */
|
|
if (flags & xtTargetFlagsUseFetchStore)
|
|
{
|
|
warning (_("cannot write register"));
|
|
return;
|
|
}
|
|
|
|
/* On some targets (esp. simulators), we can always write
|
|
the register. */
|
|
|
|
else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
|
|
{
|
|
warning (_("cannot write register"));
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* We can always write mapped registers. */
|
|
else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
|
|
{
|
|
xtensa_register_write_masked (reg, (unsigned char *) buffer);
|
|
return;
|
|
}
|
|
|
|
/* Assume that we can write the register. */
|
|
regcache_raw_write (regcache, regnum, buffer);
|
|
}
|
|
|
|
else
|
|
internal_error (__FILE__, __LINE__,
|
|
_("invalid register number %d"), regnum);
|
|
}
|
|
|
|
|
|
static struct reggroup *xtensa_ar_reggroup;
|
|
static struct reggroup *xtensa_user_reggroup;
|
|
static struct reggroup *xtensa_vectra_reggroup;
|
|
|
|
static void
|
|
xtensa_init_reggroups (void)
|
|
{
|
|
xtensa_ar_reggroup = reggroup_new ("ar", USER_REGGROUP);
|
|
xtensa_user_reggroup = reggroup_new ("user", USER_REGGROUP);
|
|
xtensa_vectra_reggroup = reggroup_new ("vectra", USER_REGGROUP);
|
|
}
|
|
|
|
|
|
static void
|
|
xtensa_add_reggroups (struct gdbarch *gdbarch)
|
|
{
|
|
reggroup_add (gdbarch, all_reggroup);
|
|
reggroup_add (gdbarch, save_reggroup);
|
|
reggroup_add (gdbarch, restore_reggroup);
|
|
reggroup_add (gdbarch, system_reggroup);
|
|
reggroup_add (gdbarch, vector_reggroup); /* vectra */
|
|
reggroup_add (gdbarch, general_reggroup); /* core */
|
|
reggroup_add (gdbarch, float_reggroup); /* float */
|
|
|
|
reggroup_add (gdbarch, xtensa_ar_reggroup); /* ar */
|
|
reggroup_add (gdbarch, xtensa_user_reggroup); /* user */
|
|
reggroup_add (gdbarch, xtensa_vectra_reggroup); /* vectra */
|
|
}
|
|
|
|
|
|
#define SAVE_REST_FLAGS (XTENSA_REGISTER_FLAGS_READABLE \
|
|
| XTENSA_REGISTER_FLAGS_WRITABLE \
|
|
| XTENSA_REGISTER_FLAGS_VOLATILE)
|
|
|
|
#define SAVE_REST_VALID (XTENSA_REGISTER_FLAGS_READABLE \
|
|
| XTENSA_REGISTER_FLAGS_WRITABLE)
|
|
|
|
static int
|
|
xtensa_register_reggroup_p (struct gdbarch *gdbarch,
|
|
int regnum,
|
|
struct reggroup *group)
|
|
{
|
|
xtensa_register_t* reg = ®MAP[regnum];
|
|
xtensa_register_type_t type = reg->type;
|
|
xtensa_register_group_t rg = reg->group;
|
|
|
|
/* First, skip registers that are not visible to this target
|
|
(unknown and unmapped registers when not using ISS). */
|
|
|
|
if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
|
|
return 0;
|
|
if (group == all_reggroup)
|
|
return 1;
|
|
if (group == xtensa_ar_reggroup)
|
|
return rg & xtRegisterGroupAddrReg;
|
|
if (group == xtensa_user_reggroup)
|
|
return rg & xtRegisterGroupUser;
|
|
if (group == float_reggroup)
|
|
return rg & xtRegisterGroupFloat;
|
|
if (group == general_reggroup)
|
|
return rg & xtRegisterGroupGeneral;
|
|
if (group == float_reggroup)
|
|
return rg & xtRegisterGroupFloat;
|
|
if (group == system_reggroup)
|
|
return rg & xtRegisterGroupState;
|
|
if (group == vector_reggroup || group == xtensa_vectra_reggroup)
|
|
return rg & xtRegisterGroupVectra;
|
|
if (group == save_reggroup || group == restore_reggroup)
|
|
return (regnum < NUM_REGS
|
|
&& (reg->flags & SAVE_REST_FLAGS) == SAVE_REST_VALID);
|
|
else
|
|
return 1;
|
|
}
|
|
|
|
|
|
/* CORE FILE SUPPORT */
|
|
|
|
/* Supply register REGNUM from the buffer specified by GREGS and LEN
|
|
in the general-purpose register set REGSET to register cache
|
|
REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
|
|
|
|
static void
|
|
xtensa_supply_gregset (const struct regset *regset,
|
|
struct regcache *rc,
|
|
int regnum,
|
|
const void *gregs,
|
|
size_t len)
|
|
{
|
|
const xtensa_elf_gregset_t *regs = gregs;
|
|
int i;
|
|
|
|
DEBUGTRACE ("xtensa_supply_gregset (..., regnum==%d, ...) \n", regnum);
|
|
|
|
if (regnum == PC_REGNUM || regnum == -1)
|
|
regcache_raw_supply (rc, PC_REGNUM, (char *) ®s->pc);
|
|
if (regnum == PS_REGNUM || regnum == -1)
|
|
regcache_raw_supply (rc, PS_REGNUM, (char *) ®s->ps);
|
|
if (regnum == WB_REGNUM || regnum == -1)
|
|
regcache_raw_supply (rc, WB_REGNUM, (char *) ®s->windowbase);
|
|
if (regnum == WS_REGNUM || regnum == -1)
|
|
regcache_raw_supply (rc, WS_REGNUM, (char *) ®s->windowstart);
|
|
if (regnum == LBEG_REGNUM || regnum == -1)
|
|
regcache_raw_supply (rc, LBEG_REGNUM, (char *) ®s->lbeg);
|
|
if (regnum == LEND_REGNUM || regnum == -1)
|
|
regcache_raw_supply (rc, LEND_REGNUM, (char *) ®s->lend);
|
|
if (regnum == LCOUNT_REGNUM || regnum == -1)
|
|
regcache_raw_supply (rc, LCOUNT_REGNUM, (char *) ®s->lcount);
|
|
if (regnum == SAR_REGNUM || regnum == -1)
|
|
regcache_raw_supply (rc, SAR_REGNUM, (char *) ®s->sar);
|
|
if (regnum == EXCCAUSE_REGNUM || regnum == -1)
|
|
regcache_raw_supply (rc, EXCCAUSE_REGNUM, (char *) ®s->exccause);
|
|
if (regnum == EXCVADDR_REGNUM || regnum == -1)
|
|
regcache_raw_supply (rc, EXCVADDR_REGNUM, (char *) ®s->excvaddr);
|
|
if (regnum >= AR_BASE && regnum < AR_BASE + NUM_AREGS)
|
|
regcache_raw_supply (rc, regnum, (char *) ®s->ar[regnum - AR_BASE]);
|
|
else if (regnum == -1)
|
|
{
|
|
for (i = 0; i < NUM_AREGS; ++i)
|
|
regcache_raw_supply (rc, AR_BASE + i, (char *) ®s->ar[i]);
|
|
}
|
|
}
|
|
|
|
|
|
/* Xtensa register set. */
|
|
|
|
static struct regset
|
|
xtensa_gregset =
|
|
{
|
|
NULL,
|
|
xtensa_supply_gregset
|
|
};
|
|
|
|
|
|
/* Return the appropriate register set for the core section identified
|
|
by SECT_NAME and SECT_SIZE. */
|
|
|
|
static const struct regset *
|
|
xtensa_regset_from_core_section (struct gdbarch *core_arch,
|
|
const char *sect_name,
|
|
size_t sect_size)
|
|
{
|
|
DEBUGTRACE ("xtensa_regset_from_core_section "
|
|
"(..., sect_name==\"%s\", sect_size==%x) \n",
|
|
sect_name, sect_size);
|
|
|
|
if (strcmp (sect_name, ".reg") == 0
|
|
&& sect_size >= sizeof(xtensa_elf_gregset_t))
|
|
return &xtensa_gregset;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/* F R A M E */
|
|
|
|
/* We currently don't support the call0-abi, so we have at max. 12 registers
|
|
saved on the stack. */
|
|
|
|
#define XTENSA_NUM_SAVED_AREGS 12
|
|
|
|
typedef struct xtensa_frame_cache
|
|
{
|
|
CORE_ADDR base;
|
|
CORE_ADDR pc;
|
|
CORE_ADDR ra; /* The raw return address; use to compute call_inc. */
|
|
CORE_ADDR ps;
|
|
int wb; /* Base for this frame; -1 if not in regfile. */
|
|
int callsize; /* Call size to next frame. */
|
|
int ws;
|
|
CORE_ADDR aregs[XTENSA_NUM_SAVED_AREGS];
|
|
CORE_ADDR prev_sp;
|
|
} xtensa_frame_cache_t;
|
|
|
|
|
|
static struct xtensa_frame_cache *
|
|
xtensa_alloc_frame_cache (void)
|
|
{
|
|
xtensa_frame_cache_t *cache;
|
|
int i;
|
|
|
|
DEBUGTRACE ("xtensa_alloc_frame_cache ()\n");
|
|
|
|
cache = FRAME_OBSTACK_ZALLOC (xtensa_frame_cache_t);
|
|
|
|
cache->base = 0;
|
|
cache->pc = 0;
|
|
cache->ra = 0;
|
|
cache->wb = 0;
|
|
cache->ps = 0;
|
|
cache->callsize = -1;
|
|
cache->prev_sp = 0;
|
|
|
|
for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
|
|
cache->aregs[i] = -1;
|
|
|
|
return cache;
|
|
}
|
|
|
|
|
|
static CORE_ADDR
|
|
xtensa_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
|
|
{
|
|
return address & ~15;
|
|
}
|
|
|
|
|
|
static CORE_ADDR
|
|
xtensa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
|
{
|
|
char buf[8];
|
|
|
|
DEBUGTRACE ("xtensa_unwind_pc (next_frame = %p)\n", next_frame);
|
|
|
|
frame_unwind_register (next_frame, PC_REGNUM, buf);
|
|
|
|
DEBUGINFO ("[xtensa_unwind_pc] pc = 0x%08x\n", (unsigned int)
|
|
extract_typed_address (buf, builtin_type_void_func_ptr));
|
|
|
|
return extract_typed_address (buf, builtin_type_void_func_ptr);
|
|
}
|
|
|
|
|
|
static struct frame_id
|
|
xtensa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
|
{
|
|
CORE_ADDR pc, fp;
|
|
char buf[4];
|
|
|
|
/* next_frame->prev is a dummy frame. Return a frame ID of that frame. */
|
|
|
|
DEBUGTRACE ("xtensa_unwind_dummy_id ()\n");
|
|
|
|
pc = frame_pc_unwind (next_frame);
|
|
frame_unwind_register (next_frame, A1_REGNUM, buf);
|
|
fp = extract_unsigned_integer (buf, 4);
|
|
|
|
/* Make dummy frame ID unique by adding a constant. */
|
|
return frame_id_build (fp+SP_ALIGNMENT, pc);
|
|
}
|
|
|
|
|
|
static struct xtensa_frame_cache *
|
|
xtensa_frame_cache (struct frame_info *next_frame, void **this_cache)
|
|
{
|
|
xtensa_frame_cache_t *cache;
|
|
char buf[4];
|
|
CORE_ADDR ra, wb, ws, pc, sp, ps;
|
|
char op1;
|
|
|
|
DEBUGTRACE ("xtensa_frame_cache (next_frame %p, *this_cache %p)\n",
|
|
next_frame, this_cache ? *this_cache : (void*)0xdeadbeef);
|
|
|
|
/* Already cached? */
|
|
if (*this_cache)
|
|
return *this_cache;
|
|
|
|
/* Get pristine xtensa-frame. */
|
|
cache = xtensa_alloc_frame_cache ();
|
|
*this_cache = cache;
|
|
|
|
/* Get windowbase, windowstart, ps, and pc. */
|
|
wb = frame_unwind_register_unsigned (next_frame, WB_REGNUM);
|
|
ws = frame_unwind_register_unsigned (next_frame, WS_REGNUM);
|
|
ps = frame_unwind_register_unsigned (next_frame, PS_REGNUM);
|
|
pc = frame_unwind_register_unsigned (next_frame, PC_REGNUM);
|
|
|
|
op1 = read_memory_integer (pc, 1);
|
|
if (XTENSA_IS_ENTRY (op1) || !windowing_enabled (read_register (PS_REGNUM)))
|
|
{
|
|
int callinc = CALLINC (frame_unwind_register_unsigned (next_frame,
|
|
PS_REGNUM));
|
|
ra = frame_unwind_register_unsigned (next_frame,
|
|
A0_REGNUM + callinc * 4);
|
|
|
|
DEBUGINFO("[xtensa_frame_cache] 'entry' at 0x%08x\n (callinc = %d)",
|
|
(int)pc, callinc);
|
|
|
|
/* ENTRY hasn't been executed yet, therefore callsize is still 0. */
|
|
cache->callsize = 0;
|
|
cache->wb = wb;
|
|
cache->ws = ws;
|
|
cache->prev_sp = read_register (A1_REGNUM);
|
|
}
|
|
else
|
|
{
|
|
ra = frame_unwind_register_unsigned (next_frame, A0_REGNUM);
|
|
cache->callsize = WINSIZE (ra);
|
|
cache->wb = (wb - (cache->callsize / 4)) & ((NUM_AREGS / 4) - 1);
|
|
cache->ws = ws & ~(1 << wb);
|
|
}
|
|
|
|
cache->pc = ((frame_func_unwind (next_frame) & 0xc0000000)
|
|
| (ra & 0x3fffffff));
|
|
cache->ps = (ps & ~PS_CALLINC_MASK) | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
|
|
|
|
|
|
/* Note: We could also calculate the location on stack when we actually
|
|
access the register. However, this approach, saving the location
|
|
in the cache frame, is probably easier to support the call0 ABI. */
|
|
|
|
if (cache->ws == 0)
|
|
{
|
|
int i;
|
|
|
|
/* Set A0...A3. */
|
|
sp = frame_unwind_register_unsigned (next_frame, A1_REGNUM) - 16;
|
|
|
|
for (i = 0; i < 4; i++, sp += 4)
|
|
{
|
|
cache->aregs[i] = sp;
|
|
}
|
|
|
|
if (cache->callsize > 4)
|
|
{
|
|
/* Set A4...A7/A11. */
|
|
|
|
sp = (CORE_ADDR) read_memory_integer (sp - 12, 4);
|
|
sp = (CORE_ADDR) read_memory_integer (sp - 12, 4);
|
|
sp -= cache->callsize * 4;
|
|
|
|
for ( /* i=4 */ ; i < cache->callsize; i++, sp += 4)
|
|
{
|
|
cache->aregs[i] = sp;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (cache->prev_sp == 0)
|
|
{
|
|
if (cache->ws == 0)
|
|
{
|
|
/* Register window overflow already happened.
|
|
We can read caller's frame SP from the proper spill loction. */
|
|
cache->prev_sp =
|
|
read_memory_integer (cache->aregs[1],
|
|
register_size (current_gdbarch,
|
|
A1_REGNUM));
|
|
}
|
|
else
|
|
{
|
|
/* Read caller's frame SP directly from the previous window. */
|
|
|
|
int regnum = AREG_NUMBER (A1_REGNUM, cache->wb);
|
|
|
|
cache->prev_sp = read_register (regnum);
|
|
}
|
|
}
|
|
|
|
cache->base = frame_unwind_register_unsigned (next_frame,A1_REGNUM);
|
|
|
|
DEBUGINFO ("[xtensa_frame_cache] base 0x%08x, wb %d, "
|
|
"ws 0x%08x, callsize %d, pc 0x%08x, ps 0x%08x, prev_sp 0x%08x\n",
|
|
(unsigned int) cache->base, (unsigned int) cache->wb,
|
|
cache->ws, cache->callsize, (unsigned int) cache->pc,
|
|
(unsigned int) cache->ps, (unsigned int) cache->prev_sp);
|
|
|
|
return cache;
|
|
}
|
|
|
|
|
|
static void
|
|
xtensa_frame_this_id (struct frame_info *next_frame,
|
|
void **this_cache,
|
|
struct frame_id *this_id)
|
|
{
|
|
struct xtensa_frame_cache *cache =
|
|
xtensa_frame_cache (next_frame, this_cache);
|
|
|
|
DEBUGTRACE ("xtensa_frame_this_id (next 0x%08x, *this 0x%08x)\n",
|
|
(unsigned int) next_frame, (unsigned int) *this_cache);
|
|
|
|
if (cache->prev_sp == 0)
|
|
return;
|
|
|
|
(*this_id) = frame_id_build (cache->prev_sp, cache->pc);
|
|
}
|
|
|
|
|
|
static void
|
|
xtensa_frame_prev_register (struct frame_info *next_frame,
|
|
void **this_cache,
|
|
int regnum,
|
|
int *optimizedp,
|
|
enum lval_type *lvalp,
|
|
CORE_ADDR *addrp,
|
|
int *realnump,
|
|
gdb_byte *valuep)
|
|
{
|
|
struct xtensa_frame_cache *cache =
|
|
xtensa_frame_cache (next_frame, this_cache);
|
|
CORE_ADDR saved_reg = 0;
|
|
int done = 1;
|
|
|
|
DEBUGTRACE ("xtensa_frame_prev_register (next 0x%08x, "
|
|
"*this 0x%08x, regnum %d (%s), ...)\n",
|
|
(unsigned int) next_frame,
|
|
*this_cache? (unsigned int) *this_cache : 0, regnum,
|
|
xtensa_register_name (regnum));
|
|
|
|
if (regnum == WS_REGNUM)
|
|
{
|
|
if (cache->ws != 0)
|
|
saved_reg = cache->ws;
|
|
else
|
|
saved_reg = 1 << cache->wb;
|
|
}
|
|
else if (regnum == WB_REGNUM)
|
|
saved_reg = cache->wb;
|
|
else if (regnum == PC_REGNUM)
|
|
saved_reg = cache->pc;
|
|
else if (regnum == PS_REGNUM)
|
|
saved_reg = cache->ps;
|
|
else
|
|
done = 0;
|
|
|
|
if (done)
|
|
{
|
|
*optimizedp = 0;
|
|
*lvalp = not_lval;
|
|
*addrp = 0;
|
|
*realnump = -1;
|
|
if (valuep)
|
|
store_unsigned_integer (valuep, 4, saved_reg);
|
|
|
|
return;
|
|
}
|
|
|
|
/* Convert Ax register numbers to ARx register numbers. */
|
|
if (regnum >= A0_REGNUM && regnum <= A15_REGNUM)
|
|
regnum = AREG_NUMBER (regnum, cache->wb);
|
|
|
|
/* Check if ARx register has been saved to stack. */
|
|
if (regnum >= AR_BASE && regnum <= (AR_BASE + NUM_AREGS))
|
|
{
|
|
int areg = regnum - AR_BASE - (cache->wb * 4);
|
|
|
|
if (areg >= 0
|
|
&& areg < XTENSA_NUM_SAVED_AREGS
|
|
&& cache->aregs[areg] != -1)
|
|
{
|
|
*optimizedp = 0;
|
|
*lvalp = lval_memory;
|
|
*addrp = cache->aregs[areg];
|
|
*realnump = -1;
|
|
|
|
if (valuep)
|
|
read_memory (*addrp, valuep,
|
|
register_size (current_gdbarch, regnum));
|
|
|
|
DEBUGINFO ("[xtensa_frame_prev_register] register on stack\n");
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Note: All other registers have been either saved to the dummy stack
|
|
or are still alive in the processor. */
|
|
|
|
*optimizedp = 0;
|
|
*lvalp = lval_register;
|
|
*addrp = 0;
|
|
*realnump = regnum;
|
|
if (valuep)
|
|
frame_unwind_register (next_frame, (*realnump), valuep);
|
|
}
|
|
|
|
|
|
static const struct frame_unwind
|
|
xtensa_frame_unwind =
|
|
{
|
|
NORMAL_FRAME,
|
|
xtensa_frame_this_id,
|
|
xtensa_frame_prev_register
|
|
};
|
|
|
|
static const struct frame_unwind *
|
|
xtensa_frame_sniffer (struct frame_info *next_frame)
|
|
{
|
|
return &xtensa_frame_unwind;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
xtensa_frame_base_address (struct frame_info *next_frame, void **this_cache)
|
|
{
|
|
struct xtensa_frame_cache *cache =
|
|
xtensa_frame_cache (next_frame, this_cache);
|
|
|
|
return cache->base;
|
|
}
|
|
|
|
static const struct frame_base
|
|
xtensa_frame_base =
|
|
{
|
|
&xtensa_frame_unwind,
|
|
xtensa_frame_base_address,
|
|
xtensa_frame_base_address,
|
|
xtensa_frame_base_address
|
|
};
|
|
|
|
|
|
static void
|
|
xtensa_extract_return_value (struct type *type,
|
|
struct regcache *regcache,
|
|
void *dst)
|
|
{
|
|
bfd_byte *valbuf = dst;
|
|
int len = TYPE_LENGTH (type);
|
|
ULONGEST pc, wb;
|
|
int callsize, areg;
|
|
int offset = 0;
|
|
|
|
DEBUGTRACE ("xtensa_extract_return_value (...)\n");
|
|
|
|
gdb_assert(len > 0);
|
|
|
|
/* First, we have to find the caller window in the register file. */
|
|
regcache_raw_read_unsigned (regcache, PC_REGNUM, &pc);
|
|
callsize = extract_call_winsize (pc);
|
|
|
|
/* On Xtensa, we can return up to 4 words (or 2 when called by call12). */
|
|
if (len > (callsize > 8 ? 8 : 16))
|
|
internal_error (__FILE__, __LINE__,
|
|
_("cannot extract return value of %d bytes long"), len);
|
|
|
|
/* Get the register offset of the return register (A2) in the caller
|
|
window. */
|
|
regcache_raw_read_unsigned (regcache, WB_REGNUM, &wb);
|
|
areg = AREG_NUMBER(A2_REGNUM + callsize, wb);
|
|
|
|
DEBUGINFO ("[xtensa_extract_return_value] areg %d len %d\n", areg, len);
|
|
|
|
if (len < 4 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
|
offset = 4 - len;
|
|
|
|
for (; len > 0; len -= 4, areg++, valbuf += 4)
|
|
{
|
|
if (len < 4)
|
|
regcache_raw_read_part (regcache, areg, offset, len, valbuf);
|
|
else
|
|
regcache_raw_read (regcache, areg, valbuf);
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
xtensa_store_return_value (struct type *type,
|
|
struct regcache *regcache,
|
|
const void *dst)
|
|
{
|
|
const bfd_byte *valbuf = dst;
|
|
unsigned int areg;
|
|
ULONGEST pc, wb;
|
|
int callsize;
|
|
int len = TYPE_LENGTH (type);
|
|
int offset = 0;
|
|
|
|
DEBUGTRACE ("xtensa_store_return_value (...)\n");
|
|
|
|
regcache_raw_read_unsigned (regcache, WB_REGNUM, &wb);
|
|
regcache_raw_read_unsigned (regcache, PC_REGNUM, &pc);
|
|
callsize = extract_call_winsize (pc);
|
|
|
|
if (len > (callsize > 8 ? 8 : 16))
|
|
internal_error (__FILE__, __LINE__,
|
|
_("unimplemented for this length: %d"),
|
|
TYPE_LENGTH (type));
|
|
|
|
DEBUGTRACE ("[xtensa_store_return_value] callsize %d wb %d\n",
|
|
callsize, (int) wb);
|
|
|
|
if (len < 4 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
|
offset = 4 - len;
|
|
|
|
areg = AREG_NUMBER (A2_REGNUM + callsize, wb);
|
|
|
|
for (; len > 0; len -= 4, areg++, valbuf += 4)
|
|
{
|
|
if (len < 4)
|
|
regcache_raw_write_part (regcache, areg, offset, len, valbuf);
|
|
else
|
|
regcache_raw_write (regcache, areg, valbuf);
|
|
}
|
|
}
|
|
|
|
|
|
enum return_value_convention
|
|
xtensa_return_value (struct gdbarch *gdbarch,
|
|
struct type *valtype,
|
|
struct regcache *regcache,
|
|
gdb_byte *readbuf,
|
|
const gdb_byte *writebuf)
|
|
{
|
|
/* Note: Structures up to 16 bytes are returned in registers. */
|
|
|
|
int struct_return = ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
|
|
|| TYPE_CODE (valtype) == TYPE_CODE_UNION
|
|
|| TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
|
|
&& TYPE_LENGTH (valtype) > 16);
|
|
|
|
if (struct_return)
|
|
return RETURN_VALUE_STRUCT_CONVENTION;
|
|
|
|
DEBUGTRACE ("xtensa_return_value(...)\n");
|
|
|
|
if (writebuf != NULL)
|
|
{
|
|
xtensa_store_return_value (valtype, regcache, writebuf);
|
|
}
|
|
|
|
if (readbuf != NULL)
|
|
{
|
|
gdb_assert (!struct_return);
|
|
xtensa_extract_return_value (valtype, regcache, readbuf);
|
|
}
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
|
|
|
|
/* DUMMY FRAME */
|
|
|
|
static CORE_ADDR
|
|
xtensa_push_dummy_call (struct gdbarch *gdbarch,
|
|
struct value *function,
|
|
struct regcache *regcache,
|
|
CORE_ADDR bp_addr,
|
|
int nargs,
|
|
struct value **args,
|
|
CORE_ADDR sp,
|
|
int struct_return,
|
|
CORE_ADDR struct_addr)
|
|
{
|
|
int i;
|
|
int size, onstack_size;
|
|
char *buf = (char *) alloca (16);
|
|
CORE_ADDR ra, ps;
|
|
struct argument_info
|
|
{
|
|
const bfd_byte *contents;
|
|
int length;
|
|
int onstack; /* onstack == 0 => in reg */
|
|
int align; /* alignment */
|
|
union
|
|
{
|
|
int offset; /* stack offset if on stack */
|
|
int regno; /* regno if in register */
|
|
} u;
|
|
};
|
|
|
|
struct argument_info *arg_info =
|
|
(struct argument_info *) alloca (nargs * sizeof (struct argument_info));
|
|
|
|
CORE_ADDR osp = sp;
|
|
|
|
DEBUGTRACE ("xtensa_push_dummy_call (...)\n");
|
|
|
|
if (xtensa_debug_level > 3)
|
|
{
|
|
int i;
|
|
DEBUGINFO ("[xtensa_push_dummy_call] nargs = %d\n", nargs);
|
|
DEBUGINFO ("[xtensa_push_dummy_call] sp=0x%x, struct_return=%d, "
|
|
"struct_addr=0x%x\n",
|
|
(int) sp, (int) struct_return, (int) struct_addr);
|
|
|
|
for (i = 0; i < nargs; i++)
|
|
{
|
|
struct value *arg = args[i];
|
|
struct type *arg_type = check_typedef (value_type (arg));
|
|
fprintf_unfiltered (gdb_stdlog, "%2d: 0x%08x %3d ",
|
|
i, (int) arg, TYPE_LENGTH (arg_type));
|
|
switch (TYPE_CODE (arg_type))
|
|
{
|
|
case TYPE_CODE_INT:
|
|
fprintf_unfiltered (gdb_stdlog, "int");
|
|
break;
|
|
case TYPE_CODE_STRUCT:
|
|
fprintf_unfiltered (gdb_stdlog, "struct");
|
|
break;
|
|
default:
|
|
fprintf_unfiltered (gdb_stdlog, "%3d", TYPE_CODE (arg_type));
|
|
break;
|
|
}
|
|
fprintf_unfiltered (gdb_stdlog, " 0x%08x\n",
|
|
(unsigned int) value_contents (arg));
|
|
}
|
|
}
|
|
|
|
/* First loop: collect information.
|
|
Cast into type_long. (This shouldn't happen often for C because
|
|
GDB already does this earlier.) It's possible that GDB could
|
|
do it all the time but it's harmless to leave this code here. */
|
|
|
|
size = 0;
|
|
onstack_size = 0;
|
|
i = 0;
|
|
|
|
if (struct_return)
|
|
size = REGISTER_SIZE;
|
|
|
|
for (i = 0; i < nargs; i++)
|
|
{
|
|
struct argument_info *info = &arg_info[i];
|
|
struct value *arg = args[i];
|
|
struct type *arg_type = check_typedef (value_type (arg));
|
|
|
|
switch (TYPE_CODE (arg_type))
|
|
{
|
|
case TYPE_CODE_INT:
|
|
case TYPE_CODE_BOOL:
|
|
case TYPE_CODE_CHAR:
|
|
case TYPE_CODE_RANGE:
|
|
case TYPE_CODE_ENUM:
|
|
|
|
/* Cast argument to long if necessary as the mask does it too. */
|
|
if (TYPE_LENGTH (arg_type) < TYPE_LENGTH (builtin_type_long))
|
|
{
|
|
arg_type = builtin_type_long;
|
|
arg = value_cast (arg_type, arg);
|
|
}
|
|
info->align = TYPE_LENGTH (builtin_type_long);
|
|
break;
|
|
|
|
case TYPE_CODE_FLT:
|
|
|
|
/* Align doubles correctly. */
|
|
if (TYPE_LENGTH (arg_type) == TYPE_LENGTH (builtin_type_double))
|
|
info->align = TYPE_LENGTH (builtin_type_double);
|
|
else
|
|
info->align = TYPE_LENGTH (builtin_type_long);
|
|
break;
|
|
|
|
case TYPE_CODE_STRUCT:
|
|
default:
|
|
info->align = TYPE_LENGTH (builtin_type_long);
|
|
break;
|
|
}
|
|
info->length = TYPE_LENGTH (arg_type);
|
|
info->contents = value_contents (arg);
|
|
|
|
/* Align size and onstack_size. */
|
|
size = (size + info->align - 1) & ~(info->align - 1);
|
|
onstack_size = (onstack_size + info->align - 1) & ~(info->align - 1);
|
|
|
|
if (size + info->length > REGISTER_SIZE * ARGS_NUM_REGS)
|
|
{
|
|
info->onstack = 1;
|
|
info->u.offset = onstack_size;
|
|
onstack_size += info->length;
|
|
}
|
|
else
|
|
{
|
|
info->onstack = 0;
|
|
info->u.regno = ARGS_FIRST_REG + size / REGISTER_SIZE;
|
|
}
|
|
size += info->length;
|
|
}
|
|
|
|
/* Adjust the stack pointer and align it. */
|
|
sp = align_down (sp - onstack_size, SP_ALIGNMENT);
|
|
|
|
/* Simulate MOVSP. */
|
|
if (sp != osp)
|
|
{
|
|
read_memory (osp - 16, buf, 16);
|
|
write_memory (sp - 16, buf, 16);
|
|
}
|
|
|
|
/* Second Loop: Load arguments. */
|
|
|
|
if (struct_return)
|
|
{
|
|
store_unsigned_integer (buf, REGISTER_SIZE, struct_addr);
|
|
regcache_cooked_write (regcache, ARGS_FIRST_REG, buf);
|
|
}
|
|
|
|
for (i = 0; i < nargs; i++)
|
|
{
|
|
struct argument_info *info = &arg_info[i];
|
|
|
|
if (info->onstack)
|
|
{
|
|
int n = info->length;
|
|
CORE_ADDR offset = sp + info->u.offset;
|
|
|
|
/* Odd-sized structs are aligned to the lower side of a memory
|
|
word in big-endian mode and require a shift. This only
|
|
applies for structures smaller than one word. */
|
|
|
|
if (n < REGISTER_SIZE && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
|
offset += (REGISTER_SIZE - n);
|
|
|
|
write_memory (offset, info->contents, info->length);
|
|
|
|
}
|
|
else
|
|
{
|
|
int n = info->length;
|
|
const bfd_byte *cp = info->contents;
|
|
int r = info->u.regno;
|
|
|
|
/* Odd-sized structs are aligned to the lower side of registers in
|
|
big-endian mode and require a shift. The odd-sized leftover will
|
|
be at the end. Note that this is only true for structures smaller
|
|
than REGISTER_SIZE; for larger odd-sized structures the excess
|
|
will be left-aligned in the register on both endiannesses. */
|
|
|
|
if (n < REGISTER_SIZE && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
|
{
|
|
ULONGEST v = extract_unsigned_integer (cp, REGISTER_SIZE);
|
|
v = v >> ((REGISTER_SIZE - n) * TARGET_CHAR_BIT);
|
|
|
|
store_unsigned_integer (buf, REGISTER_SIZE, v);
|
|
regcache_cooked_write (regcache, r, buf);
|
|
|
|
cp += REGISTER_SIZE;
|
|
n -= REGISTER_SIZE;
|
|
r++;
|
|
}
|
|
else
|
|
while (n > 0)
|
|
{
|
|
/* ULONGEST v = extract_unsigned_integer (cp, REGISTER_SIZE);*/
|
|
regcache_cooked_write (regcache, r, cp);
|
|
|
|
/* write_register (r, v); */
|
|
cp += REGISTER_SIZE;
|
|
n -= REGISTER_SIZE;
|
|
r++;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Set the return address of dummy frame to the dummy address.
|
|
Note: The return address for the current function (in A0) is
|
|
saved in the dummy frame, so we can savely overwrite A0 here. */
|
|
|
|
ra = (bp_addr & 0x3fffffff) | 0x40000000;
|
|
regcache_raw_read (regcache, PS_REGNUM, buf);
|
|
ps = extract_unsigned_integer (buf, 4) & ~0x00030000;
|
|
regcache_cooked_write_unsigned (regcache, A4_REGNUM, ra);
|
|
regcache_cooked_write_unsigned (regcache, PS_REGNUM, ps | 0x00010000);
|
|
|
|
/* Set new stack pointer and return it. */
|
|
regcache_cooked_write_unsigned (regcache, A1_REGNUM, sp);
|
|
/* Make dummy frame ID unique by adding a constant. */
|
|
return sp + SP_ALIGNMENT;
|
|
}
|
|
|
|
|
|
/* Return a breakpoint for the current location of PC. We always use
|
|
the density version if we have density instructions (regardless of the
|
|
current instruction at PC), and use regular instructions otherwise. */
|
|
|
|
#define BIG_BREAKPOINT { 0x00, 0x04, 0x00 }
|
|
#define LITTLE_BREAKPOINT { 0x00, 0x40, 0x00 }
|
|
#define DENSITY_BIG_BREAKPOINT { 0xd2, 0x0f }
|
|
#define DENSITY_LITTLE_BREAKPOINT { 0x2d, 0xf0 }
|
|
|
|
const unsigned char *
|
|
xtensa_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
|
|
{
|
|
static char big_breakpoint[] = BIG_BREAKPOINT;
|
|
static char little_breakpoint[] = LITTLE_BREAKPOINT;
|
|
static char density_big_breakpoint[] = DENSITY_BIG_BREAKPOINT;
|
|
static char density_little_breakpoint[] = DENSITY_LITTLE_BREAKPOINT;
|
|
|
|
DEBUGTRACE ("xtensa_breakpoint_from_pc (pc = 0x%08x)\n", (int) *pcptr);
|
|
|
|
if (ISA_USE_DENSITY_INSTRUCTIONS)
|
|
{
|
|
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
|
{
|
|
*lenptr = sizeof (density_big_breakpoint);
|
|
return density_big_breakpoint;
|
|
}
|
|
else
|
|
{
|
|
*lenptr = sizeof (density_little_breakpoint);
|
|
return density_little_breakpoint;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
|
{
|
|
*lenptr = sizeof (big_breakpoint);
|
|
return big_breakpoint;
|
|
}
|
|
else
|
|
{
|
|
*lenptr = sizeof (little_breakpoint);
|
|
return little_breakpoint;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Return the pc of the first real instruction. We assume that this
|
|
machine uses register windows.
|
|
|
|
If we have debug info ( line-number info, in particular ) we simply skip
|
|
the code associated with the first function line effectively skipping
|
|
the prologue code. It works even in cases like
|
|
|
|
int main()
|
|
{ int local_var = 1;
|
|
....
|
|
}
|
|
|
|
because, for this source code, both Xtensa compilers will generate two
|
|
separate entries ( with the same line number ) in dwarf line-number
|
|
section to make sure there is a boundary between the prologue code and
|
|
the rest of the function.
|
|
|
|
If there is no debug info, we need to analyze the code. */
|
|
|
|
CORE_ADDR
|
|
xtensa_skip_prologue (CORE_ADDR start_pc)
|
|
{
|
|
DEBUGTRACE ("xtensa_skip_prologue (start_pc = 0x%08x)\n", (int) start_pc);
|
|
|
|
if (ISA_USE_WINDOWED_REGISTERS)
|
|
{
|
|
unsigned char op1;
|
|
struct symtab_and_line prologue_sal;
|
|
|
|
op1 = read_memory_integer (start_pc, 1);
|
|
if (!XTENSA_IS_ENTRY (op1))
|
|
return start_pc;
|
|
|
|
prologue_sal = find_pc_line (start_pc, 0);
|
|
if (prologue_sal.line != 0)
|
|
return prologue_sal.end;
|
|
else
|
|
return start_pc + XTENSA_ENTRY_LENGTH;
|
|
}
|
|
else
|
|
{
|
|
internal_error (__FILE__, __LINE__,
|
|
_("non-windowed configurations are not supported"));
|
|
return start_pc;
|
|
}
|
|
}
|
|
|
|
|
|
/* CONFIGURATION CHECK */
|
|
|
|
/* Verify the current configuration. */
|
|
|
|
static void
|
|
xtensa_verify_config (struct gdbarch *gdbarch)
|
|
{
|
|
struct ui_file *log;
|
|
struct cleanup *cleanups;
|
|
struct gdbarch_tdep *tdep;
|
|
long dummy;
|
|
char *buf;
|
|
|
|
tdep = gdbarch_tdep (gdbarch);
|
|
log = mem_fileopen ();
|
|
cleanups = make_cleanup_ui_file_delete (log);
|
|
|
|
/* Verify that we got a reasonable number of AREGS. */
|
|
if ((tdep->num_aregs & -tdep->num_aregs) != tdep->num_aregs)
|
|
fprintf_unfiltered (log, "\n\tnum_aregs: Number of AR registers (%d) "
|
|
"is not a power of two!", tdep->num_aregs);
|
|
|
|
/* Verify that certain registers exist. */
|
|
if (tdep->pc_regnum == -1)
|
|
fprintf_unfiltered (log, "\n\tpc_regnum: No PC register");
|
|
if (tdep->ps_regnum == -1)
|
|
fprintf_unfiltered (log, "\n\tps_regnum: No PS register");
|
|
if (tdep->wb_regnum == -1)
|
|
fprintf_unfiltered (log, "\n\twb_regnum: No WB register");
|
|
if (tdep->ws_regnum == -1)
|
|
fprintf_unfiltered (log, "\n\tws_regnum: No WS register");
|
|
if (tdep->ar_base == -1)
|
|
fprintf_unfiltered (log, "\n\tar_base: No AR registers");
|
|
if (tdep->a0_base == -1)
|
|
fprintf_unfiltered (log, "\n\ta0_base: No Ax registers");
|
|
|
|
buf = ui_file_xstrdup (log, &dummy);
|
|
make_cleanup (xfree, buf);
|
|
if (strlen (buf) > 0)
|
|
internal_error (__FILE__, __LINE__,
|
|
_("the following are invalid: %s"), buf);
|
|
do_cleanups (cleanups);
|
|
}
|
|
|
|
|
|
/* Module "constructor" function. */
|
|
|
|
static struct gdbarch *
|
|
xtensa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
|
{
|
|
struct gdbarch_tdep *tdep;
|
|
struct gdbarch *gdbarch;
|
|
struct xtensa_abi_handler *abi_handler;
|
|
|
|
DEBUGTRACE ("gdbarch_init()\n");
|
|
|
|
/* We have to set the byte order before we call gdbarch_alloc. */
|
|
info.byte_order = xtensa_config_byte_order (&info);
|
|
|
|
tdep = xtensa_config_tdep (&info);
|
|
gdbarch = gdbarch_alloc (&info, tdep);
|
|
|
|
/* Verify our configuration. */
|
|
xtensa_verify_config (gdbarch);
|
|
|
|
/* Pseudo-Register read/write */
|
|
set_gdbarch_pseudo_register_read (gdbarch, xtensa_pseudo_register_read);
|
|
set_gdbarch_pseudo_register_write (gdbarch, xtensa_pseudo_register_write);
|
|
|
|
/* Set target information. */
|
|
set_gdbarch_num_regs (gdbarch, tdep->num_regs);
|
|
set_gdbarch_num_pseudo_regs (gdbarch, tdep->num_pseudo_regs);
|
|
set_gdbarch_sp_regnum (gdbarch, tdep->a0_base + 1);
|
|
set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
|
|
set_gdbarch_ps_regnum (gdbarch, tdep->ps_regnum);
|
|
|
|
/* Renumber registers for known formats (stab, dwarf, and dwarf2). */
|
|
set_gdbarch_stab_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
|
|
set_gdbarch_dwarf_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
|
|
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
|
|
|
|
/* We provide our own function to get register information. */
|
|
set_gdbarch_register_name (gdbarch, xtensa_register_name);
|
|
set_gdbarch_register_type (gdbarch, xtensa_register_type);
|
|
|
|
/* To call functions from GDB using dummy frame */
|
|
set_gdbarch_push_dummy_call (gdbarch, xtensa_push_dummy_call);
|
|
|
|
set_gdbarch_believe_pcc_promotion (gdbarch, 1);
|
|
|
|
set_gdbarch_return_value (gdbarch, xtensa_return_value);
|
|
|
|
/* Advance PC across any prologue instructions to reach "real" code. */
|
|
set_gdbarch_skip_prologue (gdbarch, xtensa_skip_prologue);
|
|
|
|
/* Stack grows downward. */
|
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
|
|
|
/* Set breakpoints. */
|
|
set_gdbarch_breakpoint_from_pc (gdbarch, xtensa_breakpoint_from_pc);
|
|
|
|
/* After breakpoint instruction or illegal instruction, pc still
|
|
points at break instruction, so don't decrement. */
|
|
set_gdbarch_decr_pc_after_break (gdbarch, 0);
|
|
|
|
/* We don't skip args. */
|
|
set_gdbarch_frame_args_skip (gdbarch, 0);
|
|
|
|
set_gdbarch_unwind_pc (gdbarch, xtensa_unwind_pc);
|
|
|
|
set_gdbarch_frame_align (gdbarch, xtensa_frame_align);
|
|
|
|
set_gdbarch_unwind_dummy_id (gdbarch, xtensa_unwind_dummy_id);
|
|
|
|
/* Frame handling. */
|
|
frame_base_set_default (gdbarch, &xtensa_frame_base);
|
|
frame_unwind_append_sniffer (gdbarch, xtensa_frame_sniffer);
|
|
|
|
set_gdbarch_print_insn (gdbarch, print_insn_xtensa);
|
|
|
|
set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
|
|
|
|
xtensa_add_reggroups (gdbarch);
|
|
set_gdbarch_register_reggroup_p (gdbarch, xtensa_register_reggroup_p);
|
|
|
|
set_gdbarch_regset_from_core_section (gdbarch,
|
|
xtensa_regset_from_core_section);
|
|
|
|
return gdbarch;
|
|
}
|
|
|
|
|
|
/* Dump xtensa tdep structure. */
|
|
|
|
static void
|
|
xtensa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
|
|
{
|
|
error (_("xtensa_dump_tdep(): not implemented"));
|
|
}
|
|
|
|
|
|
void
|
|
_initialize_xtensa_tdep (void)
|
|
{
|
|
struct cmd_list_element *c;
|
|
|
|
gdbarch_register (bfd_arch_xtensa, xtensa_gdbarch_init, xtensa_dump_tdep);
|
|
xtensa_init_reggroups ();
|
|
|
|
add_setshow_zinteger_cmd ("xtensa",
|
|
class_maintenance,
|
|
&xtensa_debug_level, _("\
|
|
Set Xtensa debugging."), _("\
|
|
Show Xtensa debugging."), _("\
|
|
When non-zero, Xtensa-specific debugging is enabled. \
|
|
Can be 1, 2, 3, or 4 indicating the level of debugging."),
|
|
NULL,
|
|
NULL,
|
|
&setdebuglist, &showdebuglist);
|
|
}
|