mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-27 04:52:05 +08:00
1368b914e9
Now that all port tests live under testsuite/sim/*/, and none live in testsuite/ directly, flatten the structure by moving all of the dirs under testsuite/sim/ to testsuite/ directly. We need to stop passing --tool to dejagnu so that it searches all dirs and not just ones that start with "sim". Since we have no other dirs in this tree, and no plans to add any, should be fine.
208 lines
5.5 KiB
ArmAsm
208 lines
5.5 KiB
ArmAsm
# mach: bfin
|
|
|
|
// GENERIC BIQUAD:
|
|
// ---------------
|
|
// x ---------+---------|---------+-------y
|
|
// | |t1 |
|
|
// | D |
|
|
// | a1 | b1 |
|
|
// +---<-----|---->----+
|
|
// | | |
|
|
// | D | D's are delays
|
|
// | a2 | b2 | ">" represent multiplications
|
|
// +---<-----|---->----+
|
|
// To test this routine, use a biquad with a pole pair at z = (0.7 +- 0.1j),
|
|
// and a double zero at z = -1.0, which is a low-pass. The transfer function is:
|
|
// 1 + 2z^-1 + z^-2
|
|
// H(z) = ----------------------
|
|
// 1 - 1.4z^-1 + 0.5z^-2
|
|
// a1 = 1.4
|
|
// a2 = -0.5
|
|
// b1 = 2
|
|
// b2 = 1
|
|
// This filter conforms to the biquad test in BDT, since it has coefficients
|
|
// larger than 1.0 in magnitude, and b0=1. (Note that the a's have a negative
|
|
// sign.)
|
|
// This filter can be simulated in matlab. To simulate one biquad, use
|
|
// A = [1.0, -1.4, 0.5]
|
|
// B = [1, 2, 1]
|
|
// Y=filter(B,A,X)
|
|
// To simulate two cascaded biquads, use
|
|
// Y=filter(B,A,filter(B,A,X))
|
|
// SCALED COEFFICIENTS:
|
|
// --------------------
|
|
// In order to conform to 1.15 representation, must scale coeffs by 0.5.
|
|
// This requires an additional internal re-scale. The equations for the Type II
|
|
// filter are:
|
|
// t1 = x + a1*t1*z^-1 + a2*t1*z^-2
|
|
// y = b0*t1 + b1*t1*z^-1 + b2*t1*z^-2
|
|
// (Note inclusion of term b0, which in the example is b0 = 1.)
|
|
// If all coeffs are replaced by
|
|
// ai --> ai' = 0.5*a1
|
|
// then the two equations become
|
|
// t1 = x + 2*a1'*t1*z^-1 + 2*a2'*t1*z^-2
|
|
// 0.5*y = b0'*t1 + b1'*t1*z^-1 + b2'*t1*z^-2
|
|
// which can be implemented as:
|
|
// 2.0 b0'=0.5
|
|
// x ---------+--->-----|---->----+-------y
|
|
// | |t1 |
|
|
// | D |
|
|
// | a1' | b1' |
|
|
// +---<-----|---->----+
|
|
// | | |
|
|
// | D |
|
|
// | a2' | b2' |
|
|
// +---<-----|---->----+
|
|
// But, b0' can be eliminated by:
|
|
// x ---------+---------|---------+-------y
|
|
// | | |
|
|
// | V 2.0 |
|
|
// | | |
|
|
// | |t1 |
|
|
// | D |
|
|
// | a1' | b1' |
|
|
// +---<-----|---->----+
|
|
// | | |
|
|
// | D |
|
|
// | a2' | b2' |
|
|
// +---<-----|---->----+
|
|
// Function biquadf() computes this implementation on float data.
|
|
// CASCADED BIQUADS
|
|
// ----------------
|
|
// Cascaded biquads are simulated by simply cascading copies of the
|
|
// filter defined above. However, one must be careful with the resulting
|
|
// filter, as it is not very stable numerically (double poles in the
|
|
// vecinity of +1). It would of course be better to cascade different
|
|
// filters, as that would result in more stable structures.
|
|
// The functions biquadf() and biquadR() have been tested with up to 3
|
|
// stages using this technique, with inputs having small signal amplitude
|
|
// (less than 0.001) and under 300 samples.
|
|
//
|
|
// In order to pipeline, need to maintain two pointers into the state
|
|
// array: one to load (I0) and one to store (I2). This is required since
|
|
// the load of iteration i+1 is hoisted above the store of iteration i.
|
|
|
|
.include "testutils.inc"
|
|
start
|
|
|
|
|
|
// I3 points to input buffer
|
|
loadsym I3, input;
|
|
|
|
// P1 points to output buffer
|
|
loadsym P1, output;
|
|
|
|
R0 = 0; R7 = 0;
|
|
|
|
P2 = 10;
|
|
LSETUP ( L$0 , L$0end ) LC0 = P2;
|
|
L$0:
|
|
|
|
// I0 and I2 are pointers to state
|
|
loadsym I0, state;
|
|
I2 = I0;
|
|
|
|
// pointer to coeffs
|
|
loadsym I1, Coeff;
|
|
|
|
R0.H = W [ I3 ++ ]; // load input value into RH0
|
|
A0.w = R0; // A0 holds x
|
|
|
|
P2 = 2;
|
|
LSETUP ( L$1 , L$1end ) LC1 = P2;
|
|
|
|
// load 2 coeffs into R1 and R2
|
|
// load state into R3
|
|
R1 = [ I1 ++ ];
|
|
MNOP || R2 = [ I1 ++ ] || R3 = [ I0 ++ ];
|
|
|
|
L$1:
|
|
|
|
// A1=b1*s0 A0=a1*s0+x
|
|
A1 = R1.L * R3.L, A0 += R1.H * R3.L || R1 = [ I1 ++ ] || NOP;
|
|
|
|
// A1+=b2*s1 A0+=a2*s1
|
|
// and move scaled value in A0 (t1) into RL4
|
|
A1 += R2.L * R3.H, R4.L = ( A0 += R2.H * R3.H ) (S2RND) || R2 = [ I1 ++ ] || NOP;
|
|
|
|
// Advance state. before:
|
|
// R4 = uuuu t1
|
|
// R3 = stat[1] stat[0]
|
|
// after PACKLL:
|
|
// R3 = stat[0] t1
|
|
R5 = PACK( R3.L , R4.L ) || R3 = [ I0 ++ ] || NOP;
|
|
|
|
// collect output into A0, and move to RL0.
|
|
// Keep output value in A0, since it is also
|
|
// the accumulator used to store the input to
|
|
// the next stage. Also, store updated state
|
|
L$1end:
|
|
R0.L = ( A0 += A1 ) || [ I2 ++ ] = R5 || NOP;
|
|
|
|
// store output
|
|
L$0end:
|
|
W [ P1 ++ ] = R0;
|
|
|
|
// Check results
|
|
loadsym I2, output;
|
|
R0.L = W [ I2 ++ ]; DBGA ( R0.L , 0x0028 );
|
|
R0.L = W [ I2 ++ ]; DBGA ( R0.L , 0x0110 );
|
|
R0.L = W [ I2 ++ ]; DBGA ( R0.L , 0x0373 );
|
|
R0.L = W [ I2 ++ ]; DBGA ( R0.L , 0x075b );
|
|
R0.L = W [ I2 ++ ]; DBGA ( R0.L , 0x0c00 );
|
|
R0.L = W [ I2 ++ ]; DBGA ( R0.L , 0x1064 );
|
|
R0.L = W [ I2 ++ ]; DBGA ( R0.L , 0x13d3 );
|
|
R0.L = W [ I2 ++ ]; DBGA ( R0.L , 0x15f2 );
|
|
R0.L = W [ I2 ++ ]; DBGA ( R0.L , 0x16b9 );
|
|
R0.L = W [ I2 ++ ]; DBGA ( R0.L , 0x1650 );
|
|
|
|
pass
|
|
|
|
.data
|
|
state:
|
|
.dw 0x0000
|
|
.dw 0x0000
|
|
.dw 0x0000
|
|
.dw 0x0000
|
|
.dw 0x0000
|
|
.dw 0x0000
|
|
.dw 0x0000
|
|
.dw 0x0000
|
|
|
|
.data
|
|
Coeff:
|
|
.dw 0x7fff
|
|
.dw 0x5999
|
|
.dw 0x4000
|
|
.dw 0xe000
|
|
.dw 0x7fff
|
|
.dw 0x5999
|
|
.dw 0x4000
|
|
.dw 0xe000
|
|
input:
|
|
.dw 0x0028
|
|
.dw 0x0000
|
|
.dw 0x0000
|
|
.dw 0x0000
|
|
.dw 0x0000
|
|
.dw 0x0000
|
|
.dw 0x0000
|
|
.dw 0x0000
|
|
.dw 0x0000
|
|
.dw 0x0000
|
|
.dw 0x0000
|
|
output:
|
|
.dw 0x0000
|
|
.dw 0x0000
|
|
.dw 0x0000
|
|
.dw 0x0000
|
|
.dw 0x0000
|
|
.dw 0x0000
|
|
.dw 0x0000
|
|
.dw 0x0000
|
|
.dw 0x0000
|
|
.dw 0x0000
|
|
.dw 0x0000
|
|
.dw 0x0000
|
|
.dw 0x0000
|