binutils-gdb/sim/rx/rx.c
Joel Brobecker 3666a04883 Update copyright year range in all GDB files
This commits the result of running gdb/copyright.py as per our Start
of New Year procedure...

gdb/ChangeLog

        Update copyright year range in copyright header of all GDB files.
2021-01-01 12:12:21 +04:00

2281 lines
46 KiB
C

/* rx.c --- opcode semantics for stand-alone RX simulator.
Copyright (C) 2008-2021 Free Software Foundation, Inc.
Contributed by Red Hat, Inc.
This file is part of the GNU simulators.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "config.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <signal.h>
#include "libiberty.h"
#include "opcode/rx.h"
#include "cpu.h"
#include "mem.h"
#include "syscalls.h"
#include "fpu.h"
#include "err.h"
#include "misc.h"
#ifdef CYCLE_STATS
static const char * id_names[] = {
"RXO_unknown",
"RXO_mov", /* d = s (signed) */
"RXO_movbi", /* d = [s,s2] (signed) */
"RXO_movbir", /* [s,s2] = d (signed) */
"RXO_pushm", /* s..s2 */
"RXO_popm", /* s..s2 */
"RXO_xchg", /* s <-> d */
"RXO_stcc", /* d = s if cond(s2) */
"RXO_rtsd", /* rtsd, 1=imm, 2-0 = reg if reg type */
/* These are all either d OP= s or, if s2 is set, d = s OP s2. Note
that d may be "None". */
"RXO_and",
"RXO_or",
"RXO_xor",
"RXO_add",
"RXO_sub",
"RXO_mul",
"RXO_div",
"RXO_divu",
"RXO_shll",
"RXO_shar",
"RXO_shlr",
"RXO_adc", /* d = d + s + carry */
"RXO_sbb", /* d = d - s - ~carry */
"RXO_abs", /* d = |s| */
"RXO_max", /* d = max(d,s) */
"RXO_min", /* d = min(d,s) */
"RXO_emul", /* d:64 = d:32 * s */
"RXO_emulu", /* d:64 = d:32 * s (unsigned) */
"RXO_rolc", /* d <<= 1 through carry */
"RXO_rorc", /* d >>= 1 through carry*/
"RXO_rotl", /* d <<= #s without carry */
"RXO_rotr", /* d >>= #s without carry*/
"RXO_revw", /* d = revw(s) */
"RXO_revl", /* d = revl(s) */
"RXO_branch", /* pc = d if cond(s) */
"RXO_branchrel",/* pc += d if cond(s) */
"RXO_jsr", /* pc = d */
"RXO_jsrrel", /* pc += d */
"RXO_rts",
"RXO_nop",
"RXO_nop2",
"RXO_nop3",
"RXO_nop4",
"RXO_nop5",
"RXO_nop6",
"RXO_nop7",
"RXO_scmpu",
"RXO_smovu",
"RXO_smovb",
"RXO_suntil",
"RXO_swhile",
"RXO_smovf",
"RXO_sstr",
"RXO_rmpa",
"RXO_mulhi",
"RXO_mullo",
"RXO_machi",
"RXO_maclo",
"RXO_mvtachi",
"RXO_mvtaclo",
"RXO_mvfachi",
"RXO_mvfacmi",
"RXO_mvfaclo",
"RXO_racw",
"RXO_sat", /* sat(d) */
"RXO_satr",
"RXO_fadd", /* d op= s */
"RXO_fcmp",
"RXO_fsub",
"RXO_ftoi",
"RXO_fmul",
"RXO_fdiv",
"RXO_round",
"RXO_itof",
"RXO_bset", /* d |= (1<<s) */
"RXO_bclr", /* d &= ~(1<<s) */
"RXO_btst", /* s & (1<<s2) */
"RXO_bnot", /* d ^= (1<<s) */
"RXO_bmcc", /* d<s> = cond(s2) */
"RXO_clrpsw", /* flag index in d */
"RXO_setpsw", /* flag index in d */
"RXO_mvtipl", /* new IPL in s */
"RXO_rtfi",
"RXO_rte",
"RXO_rtd", /* undocumented */
"RXO_brk",
"RXO_dbt", /* undocumented */
"RXO_int", /* vector id in s */
"RXO_stop",
"RXO_wait",
"RXO_sccnd", /* d = cond(s) ? 1 : 0 */
};
static const char * optype_names[] = {
" - ",
"#Imm", /* #addend */
" Rn ", /* Rn */
"[Rn]", /* [Rn + addend] */
"Ps++", /* [Rn+] */
"--Pr", /* [-Rn] */
" cc ", /* eq, gtu, etc */
"Flag", /* [UIOSZC] */
"RbRi" /* [Rb + scale * Ri] */
};
#define N_RXO ARRAY_SIZE (id_names)
#define N_RXT ARRAY_SIZE (optype_names)
#define N_MAP 90
static unsigned long long benchmark_start_cycle;
static unsigned long long benchmark_end_cycle;
static int op_cache[N_RXT][N_RXT][N_RXT];
static int op_cache_rev[N_MAP];
static int op_cache_idx = 0;
static int
op_lookup (int a, int b, int c)
{
if (op_cache[a][b][c])
return op_cache[a][b][c];
op_cache_idx ++;
if (op_cache_idx >= N_MAP)
{
printf("op_cache_idx exceeds %d\n", N_MAP);
exit(1);
}
op_cache[a][b][c] = op_cache_idx;
op_cache_rev[op_cache_idx] = (a<<8) | (b<<4) | c;
return op_cache_idx;
}
static char *
op_cache_string (int map)
{
static int ci;
static char cb[5][20];
int a, b, c;
map = op_cache_rev[map];
a = (map >> 8) & 15;
b = (map >> 4) & 15;
c = (map >> 0) & 15;
ci = (ci + 1) % 5;
sprintf(cb[ci], "%s %s %s", optype_names[a], optype_names[b], optype_names[c]);
return cb[ci];
}
static unsigned long long cycles_per_id[N_RXO][N_MAP];
static unsigned long long times_per_id[N_RXO][N_MAP];
static unsigned long long memory_stalls;
static unsigned long long register_stalls;
static unsigned long long branch_stalls;
static unsigned long long branch_alignment_stalls;
static unsigned long long fast_returns;
static unsigned long times_per_pair[N_RXO][N_MAP][N_RXO][N_MAP];
static int prev_opcode_id = RXO_unknown;
static int po0;
#define STATS(x) x
#else
#define STATS(x)
#endif /* CYCLE_STATS */
#ifdef CYCLE_ACCURATE
static int new_rt = -1;
/* Number of cycles to add if an insn spans an 8-byte boundary. */
static int branch_alignment_penalty = 0;
#endif
static int running_benchmark = 1;
#define tprintf if (trace && running_benchmark) printf
jmp_buf decode_jmp_buf;
unsigned int rx_cycles = 0;
#ifdef CYCLE_ACCURATE
/* If nonzero, memory was read at some point and cycle latency might
take effect. */
static int memory_source = 0;
/* If nonzero, memory was written and extra cycles might be
needed. */
static int memory_dest = 0;
static void
cycles (int throughput)
{
tprintf("%d cycles\n", throughput);
regs.cycle_count += throughput;
}
/* Number of execution (E) cycles the op uses. For memory sources, we
include the load micro-op stall as two extra E cycles. */
#define E(c) cycles (memory_source ? c + 2 : c)
#define E1 cycles (1)
#define E2 cycles (2)
#define EBIT cycles (memory_source ? 2 : 1)
/* Check to see if a read latency must be applied for a given register. */
#define RL(r) \
if (regs.rt == r ) \
{ \
tprintf("register %d load stall\n", r); \
regs.cycle_count ++; \
STATS(register_stalls ++); \
regs.rt = -1; \
}
#define RLD(r) \
if (memory_source) \
{ \
tprintf ("Rt now %d\n", r); \
new_rt = r; \
}
static int
lsb_count (unsigned long v, int is_signed)
{
int i, lsb;
if (is_signed && (v & 0x80000000U))
v = (unsigned long)(long)(-v);
for (i=31; i>=0; i--)
if (v & (1 << i))
{
/* v is 0..31, we want 1=1-2, 2=3-4, 3=5-6, etc. */
lsb = (i + 2) / 2;
return lsb;
}
return 0;
}
static int
divu_cycles(unsigned long num, unsigned long den)
{
int nb = lsb_count (num, 0);
int db = lsb_count (den, 0);
int rv;
if (nb < db)
rv = 2;
else
rv = 3 + nb - db;
E (rv);
return rv;
}
static int
div_cycles(long num, long den)
{
int nb = lsb_count ((unsigned long)num, 1);
int db = lsb_count ((unsigned long)den, 1);
int rv;
if (nb < db)
rv = 3;
else
rv = 5 + nb - db;
E (rv);
return rv;
}
#else /* !CYCLE_ACCURATE */
#define cycles(t)
#define E(c)
#define E1
#define E2
#define EBIT
#define RL(r)
#define RLD(r)
#define divu_cycles(n,d)
#define div_cycles(n,d)
#endif /* else CYCLE_ACCURATE */
static int size2bytes[] = {
4, 1, 1, 1, 2, 2, 2, 3, 4
};
typedef struct {
unsigned long dpc;
} RX_Data;
#define rx_abort() _rx_abort(__FILE__, __LINE__)
static void
_rx_abort (const char *file, int line)
{
if (strrchr (file, '/'))
file = strrchr (file, '/') + 1;
fprintf(stderr, "abort at %s:%d\n", file, line);
abort();
}
static unsigned char *get_byte_base;
static RX_Opcode_Decoded **decode_cache_base;
static SI get_byte_page;
void
reset_decoder (void)
{
get_byte_base = 0;
decode_cache_base = 0;
get_byte_page = 0;
}
static inline void
maybe_get_mem_page (SI tpc)
{
if (((tpc ^ get_byte_page) & NONPAGE_MASK) || enable_counting)
{
get_byte_page = tpc & NONPAGE_MASK;
get_byte_base = rx_mem_ptr (get_byte_page, MPA_READING) - get_byte_page;
decode_cache_base = rx_mem_decode_cache (get_byte_page) - get_byte_page;
}
}
/* This gets called a *lot* so optimize it. */
static int
rx_get_byte (void *vdata)
{
RX_Data *rx_data = (RX_Data *)vdata;
SI tpc = rx_data->dpc;
/* See load.c for an explanation of this. */
if (rx_big_endian)
tpc ^= 3;
maybe_get_mem_page (tpc);
rx_data->dpc ++;
return get_byte_base [tpc];
}
static int
get_op (const RX_Opcode_Decoded *rd, int i)
{
const RX_Opcode_Operand *o = rd->op + i;
int addr, rv = 0;
switch (o->type)
{
case RX_Operand_None:
rx_abort ();
case RX_Operand_Immediate: /* #addend */
return o->addend;
case RX_Operand_Register: /* Rn */
RL (o->reg);
rv = get_reg (o->reg);
break;
case RX_Operand_Predec: /* [-Rn] */
put_reg (o->reg, get_reg (o->reg) - size2bytes[o->size]);
/* fall through */
case RX_Operand_Postinc: /* [Rn+] */
case RX_Operand_Zero_Indirect: /* [Rn + 0] */
case RX_Operand_Indirect: /* [Rn + addend] */
case RX_Operand_TwoReg: /* [Rn + scale * R2] */
#ifdef CYCLE_ACCURATE
RL (o->reg);
if (o->type == RX_Operand_TwoReg)
RL (rd->op[2].reg);
regs.rt = -1;
if (regs.m2m == M2M_BOTH)
{
tprintf("src memory stall\n");
#ifdef CYCLE_STATS
memory_stalls ++;
#endif
regs.cycle_count ++;
regs.m2m = 0;
}
memory_source = 1;
#endif
if (o->type == RX_Operand_TwoReg)
addr = get_reg (o->reg) * size2bytes[rd->size] + get_reg (rd->op[2].reg);
else
addr = get_reg (o->reg) + o->addend;
switch (o->size)
{
default:
case RX_AnySize:
rx_abort ();
case RX_Byte: /* undefined extension */
case RX_UByte:
case RX_SByte:
rv = mem_get_qi (addr);
break;
case RX_Word: /* undefined extension */
case RX_UWord:
case RX_SWord:
rv = mem_get_hi (addr);
break;
case RX_3Byte:
rv = mem_get_psi (addr);
break;
case RX_Long:
rv = mem_get_si (addr);
break;
}
if (o->type == RX_Operand_Postinc)
put_reg (o->reg, get_reg (o->reg) + size2bytes[o->size]);
break;
case RX_Operand_Condition: /* eq, gtu, etc */
return condition_true (o->reg);
case RX_Operand_Flag: /* [UIOSZC] */
return (regs.r_psw & (1 << o->reg)) ? 1 : 0;
}
/* if we've gotten here, we need to clip/extend the value according
to the size. */
switch (o->size)
{
default:
case RX_AnySize:
rx_abort ();
case RX_Byte: /* undefined extension */
rv |= 0xdeadbe00; /* keep them honest */
break;
case RX_UByte:
rv &= 0xff;
break;
case RX_SByte:
rv = sign_ext (rv, 8);
break;
case RX_Word: /* undefined extension */
rv |= 0xdead0000; /* keep them honest */
break;
case RX_UWord:
rv &= 0xffff;
break;
case RX_SWord:
rv = sign_ext (rv, 16);
break;
case RX_3Byte:
rv &= 0xffffff;
break;
case RX_Long:
break;
}
return rv;
}
static void
put_op (const RX_Opcode_Decoded *rd, int i, int v)
{
const RX_Opcode_Operand *o = rd->op + i;
int addr;
switch (o->size)
{
default:
case RX_AnySize:
if (o->type != RX_Operand_Register)
rx_abort ();
break;
case RX_Byte: /* undefined extension */
v |= 0xdeadbe00; /* keep them honest */
break;
case RX_UByte:
v &= 0xff;
break;
case RX_SByte:
v = sign_ext (v, 8);
break;
case RX_Word: /* undefined extension */
v |= 0xdead0000; /* keep them honest */
break;
case RX_UWord:
v &= 0xffff;
break;
case RX_SWord:
v = sign_ext (v, 16);
break;
case RX_3Byte:
v &= 0xffffff;
break;
case RX_Long:
break;
}
switch (o->type)
{
case RX_Operand_None:
/* Opcodes like TST and CMP use this. */
break;
case RX_Operand_Immediate: /* #addend */
case RX_Operand_Condition: /* eq, gtu, etc */
rx_abort ();
case RX_Operand_Register: /* Rn */
put_reg (o->reg, v);
RLD (o->reg);
break;
case RX_Operand_Predec: /* [-Rn] */
put_reg (o->reg, get_reg (o->reg) - size2bytes[o->size]);
/* fall through */
case RX_Operand_Postinc: /* [Rn+] */
case RX_Operand_Zero_Indirect: /* [Rn + 0] */
case RX_Operand_Indirect: /* [Rn + addend] */
case RX_Operand_TwoReg: /* [Rn + scale * R2] */
#ifdef CYCLE_ACCURATE
if (regs.m2m == M2M_BOTH)
{
tprintf("dst memory stall\n");
regs.cycle_count ++;
#ifdef CYCLE_STATS
memory_stalls ++;
#endif
regs.m2m = 0;
}
memory_dest = 1;
#endif
if (o->type == RX_Operand_TwoReg)
addr = get_reg (o->reg) * size2bytes[rd->size] + get_reg (rd->op[2].reg);
else
addr = get_reg (o->reg) + o->addend;
switch (o->size)
{
default:
case RX_AnySize:
rx_abort ();
case RX_Byte: /* undefined extension */
case RX_UByte:
case RX_SByte:
mem_put_qi (addr, v);
break;
case RX_Word: /* undefined extension */
case RX_UWord:
case RX_SWord:
mem_put_hi (addr, v);
break;
case RX_3Byte:
mem_put_psi (addr, v);
break;
case RX_Long:
mem_put_si (addr, v);
break;
}
if (o->type == RX_Operand_Postinc)
put_reg (o->reg, get_reg (o->reg) + size2bytes[o->size]);
break;
case RX_Operand_Flag: /* [UIOSZC] */
if (v)
regs.r_psw |= (1 << o->reg);
else
regs.r_psw &= ~(1 << o->reg);
break;
}
}
#define PD(x) put_op (opcode, 0, x)
#define PS(x) put_op (opcode, 1, x)
#define PS2(x) put_op (opcode, 2, x)
#define GD() get_op (opcode, 0)
#define GS() get_op (opcode, 1)
#define GS2() get_op (opcode, 2)
#define DSZ() size2bytes[opcode->op[0].size]
#define SSZ() size2bytes[opcode->op[0].size]
#define S2SZ() size2bytes[opcode->op[0].size]
/* "Universal" sources. */
#define US1() ((opcode->op[2].type == RX_Operand_None) ? GD() : GS())
#define US2() ((opcode->op[2].type == RX_Operand_None) ? GS() : GS2())
static void
push(int val)
{
int rsp = get_reg (sp);
rsp -= 4;
put_reg (sp, rsp);
mem_put_si (rsp, val);
}
/* Just like the above, but tag the memory as "pushed pc" so if anyone
tries to write to it, it will cause an error. */
static void
pushpc(int val)
{
int rsp = get_reg (sp);
rsp -= 4;
put_reg (sp, rsp);
mem_put_si (rsp, val);
mem_set_content_range (rsp, rsp+3, MC_PUSHED_PC);
}
static int
pop()
{
int rv;
int rsp = get_reg (sp);
rv = mem_get_si (rsp);
rsp += 4;
put_reg (sp, rsp);
return rv;
}
static int
poppc()
{
int rv;
int rsp = get_reg (sp);
if (mem_get_content_type (rsp) != MC_PUSHED_PC)
execution_error (SIM_ERR_CORRUPT_STACK, rsp);
rv = mem_get_si (rsp);
mem_set_content_range (rsp, rsp+3, MC_UNINIT);
rsp += 4;
put_reg (sp, rsp);
return rv;
}
#define MATH_OP(vop,c) \
{ \
umb = US2(); \
uma = US1(); \
ll = (unsigned long long) uma vop (unsigned long long) umb vop c; \
tprintf ("0x%x " #vop " 0x%x " #vop " 0x%x = 0x%llx\n", uma, umb, c, ll); \
ma = sign_ext (uma, DSZ() * 8); \
mb = sign_ext (umb, DSZ() * 8); \
sll = (long long) ma vop (long long) mb vop c; \
tprintf ("%d " #vop " %d " #vop " %d = %lld\n", ma, mb, c, sll); \
set_oszc (sll, DSZ(), (long long) ll > ((1 vop 1) ? (long long) b2mask[DSZ()] : (long long) -1)); \
PD (sll); \
E (1); \
}
#define LOGIC_OP(vop) \
{ \
mb = US2(); \
ma = US1(); \
v = ma vop mb; \
tprintf("0x%x " #vop " 0x%x = 0x%x\n", ma, mb, v); \
set_sz (v, DSZ()); \
PD(v); \
E (1); \
}
#define SHIFT_OP(val, type, count, OP, carry_mask) \
{ \
int i, c=0; \
count = US2(); \
val = (type)US1(); \
tprintf("%lld " #OP " %d\n", val, count); \
for (i = 0; i < count; i ++) \
{ \
c = val & carry_mask; \
val OP 1; \
} \
set_oszc (val, 4, c); \
PD (val); \
}
typedef union {
int i;
float f;
} FloatInt;
static inline int
float2int (float f)
{
FloatInt fi;
fi.f = f;
return fi.i;
}
static inline float
int2float (int i)
{
FloatInt fi;
fi.i = i;
return fi.f;
}
static int
fop_fadd (fp_t s1, fp_t s2, fp_t *d)
{
*d = rxfp_add (s1, s2);
return 1;
}
static int
fop_fmul (fp_t s1, fp_t s2, fp_t *d)
{
*d = rxfp_mul (s1, s2);
return 1;
}
static int
fop_fdiv (fp_t s1, fp_t s2, fp_t *d)
{
*d = rxfp_div (s1, s2);
return 1;
}
static int
fop_fsub (fp_t s1, fp_t s2, fp_t *d)
{
*d = rxfp_sub (s1, s2);
return 1;
}
#define FPPENDING() (regs.r_fpsw & (FPSWBITS_CE | (FPSWBITS_FMASK & (regs.r_fpsw << FPSW_EFSH))))
#define FPCLEAR() regs.r_fpsw &= FPSWBITS_CLEAR
#define FPCHECK() \
if (FPPENDING()) \
return do_fp_exception (opcode_pc)
#define FLOAT_OP(func) \
{ \
int do_store; \
fp_t fa, fb, fc; \
FPCLEAR(); \
fb = GS (); \
fa = GD (); \
do_store = fop_##func (fa, fb, &fc); \
tprintf("%g " #func " %g = %g %08x\n", int2float(fa), int2float(fb), int2float(fc), fc); \
FPCHECK(); \
if (do_store) \
PD (fc); \
mb = 0; \
if ((fc & 0x80000000UL) != 0) \
mb |= FLAGBIT_S; \
if ((fc & 0x7fffffffUL) == 0) \
mb |= FLAGBIT_Z; \
set_flags (FLAGBIT_S | FLAGBIT_Z, mb); \
}
#define carry (FLAG_C ? 1 : 0)
static struct {
unsigned long vaddr;
const char *str;
int signal;
} exception_info[] = {
{ 0xFFFFFFD0UL, "priviledged opcode", SIGILL },
{ 0xFFFFFFD4UL, "access violation", SIGSEGV },
{ 0xFFFFFFDCUL, "undefined opcode", SIGILL },
{ 0xFFFFFFE4UL, "floating point", SIGFPE }
};
#define EX_PRIVILEDGED 0
#define EX_ACCESS 1
#define EX_UNDEFINED 2
#define EX_FLOATING 3
#define EXCEPTION(n) \
return generate_exception (n, opcode_pc)
#define PRIVILEDGED() \
if (FLAG_PM) \
EXCEPTION (EX_PRIVILEDGED)
static int
generate_exception (unsigned long type, SI opcode_pc)
{
SI old_psw, old_pc, new_pc;
new_pc = mem_get_si (exception_info[type].vaddr);
/* 0x00020000 is the value used to initialise the known
exception vectors (see rx.ld), but it is a reserved
area of memory so do not try to access it, and if the
value has not been changed by the program then the
vector has not been installed. */
if (new_pc == 0 || new_pc == 0x00020000)
{
if (rx_in_gdb)
return RX_MAKE_STOPPED (exception_info[type].signal);
fprintf(stderr, "Unhandled %s exception at pc = %#lx\n",
exception_info[type].str, (unsigned long) opcode_pc);
if (type == EX_FLOATING)
{
int mask = FPPENDING ();
fprintf (stderr, "Pending FP exceptions:");
if (mask & FPSWBITS_FV)
fprintf(stderr, " Invalid");
if (mask & FPSWBITS_FO)
fprintf(stderr, " Overflow");
if (mask & FPSWBITS_FZ)
fprintf(stderr, " Division-by-zero");
if (mask & FPSWBITS_FU)
fprintf(stderr, " Underflow");
if (mask & FPSWBITS_FX)
fprintf(stderr, " Inexact");
if (mask & FPSWBITS_CE)
fprintf(stderr, " Unimplemented");
fprintf(stderr, "\n");
}
return RX_MAKE_EXITED (1);
}
tprintf ("Triggering %s exception\n", exception_info[type].str);
old_psw = regs.r_psw;
regs.r_psw &= ~ (FLAGBIT_I | FLAGBIT_U | FLAGBIT_PM);
old_pc = opcode_pc;
regs.r_pc = new_pc;
pushpc (old_psw);
pushpc (old_pc);
return RX_MAKE_STEPPED ();
}
void
generate_access_exception (void)
{
int rv;
rv = generate_exception (EX_ACCESS, regs.r_pc);
if (RX_EXITED (rv))
longjmp (decode_jmp_buf, rv);
}
static int
do_fp_exception (unsigned long opcode_pc)
{
while (FPPENDING())
EXCEPTION (EX_FLOATING);
return RX_MAKE_STEPPED ();
}
static int
op_is_memory (const RX_Opcode_Decoded *rd, int i)
{
switch (rd->op[i].type)
{
case RX_Operand_Predec:
case RX_Operand_Postinc:
case RX_Operand_Indirect:
return 1;
default:
return 0;
}
}
#define OM(i) op_is_memory (opcode, i)
#define DO_RETURN(x) { longjmp (decode_jmp_buf, x); }
int
decode_opcode ()
{
unsigned int uma=0, umb=0;
int ma=0, mb=0;
int opcode_size, v;
unsigned long long ll;
long long sll;
unsigned long opcode_pc;
RX_Data rx_data;
const RX_Opcode_Decoded *opcode;
#ifdef CYCLE_STATS
unsigned long long prev_cycle_count;
#endif
#ifdef CYCLE_ACCURATE
unsigned int tx;
#endif
#ifdef CYCLE_STATS
prev_cycle_count = regs.cycle_count;
#endif
#ifdef CYCLE_ACCURATE
memory_source = 0;
memory_dest = 0;
#endif
rx_cycles ++;
maybe_get_mem_page (regs.r_pc);
opcode_pc = regs.r_pc;
/* Note that we don't word-swap this point, there's no point. */
if (decode_cache_base[opcode_pc] == NULL)
{
RX_Opcode_Decoded *opcode_w;
rx_data.dpc = opcode_pc;
opcode_w = decode_cache_base[opcode_pc] = calloc (1, sizeof (RX_Opcode_Decoded));
opcode_size = rx_decode_opcode (opcode_pc, opcode_w,
rx_get_byte, &rx_data);
opcode = opcode_w;
}
else
{
opcode = decode_cache_base[opcode_pc];
opcode_size = opcode->n_bytes;
}
#ifdef CYCLE_ACCURATE
if (branch_alignment_penalty)
{
if ((regs.r_pc ^ (regs.r_pc + opcode_size - 1)) & ~7)
{
tprintf("1 cycle branch alignment penalty\n");
cycles (branch_alignment_penalty);
#ifdef CYCLE_STATS
branch_alignment_stalls ++;
#endif
}
branch_alignment_penalty = 0;
}
#endif
regs.r_pc += opcode_size;
rx_flagmask = opcode->flags_s;
rx_flagand = ~(int)opcode->flags_0;
rx_flagor = opcode->flags_1;
switch (opcode->id)
{
case RXO_abs:
sll = GS ();
tprintf("|%lld| = ", sll);
if (sll < 0)
sll = -sll;
tprintf("%lld\n", sll);
PD (sll);
set_osz (sll, 4);
E (1);
break;
case RXO_adc:
MATH_OP (+,carry);
break;
case RXO_add:
MATH_OP (+,0);
break;
case RXO_and:
LOGIC_OP (&);
break;
case RXO_bclr:
ma = GD ();
mb = GS ();
if (opcode->op[0].type == RX_Operand_Register)
mb &= 0x1f;
else
mb &= 0x07;
ma &= ~(1 << mb);
PD (ma);
EBIT;
break;
case RXO_bmcc:
ma = GD ();
mb = GS ();
if (opcode->op[0].type == RX_Operand_Register)
mb &= 0x1f;
else
mb &= 0x07;
if (GS2 ())
ma |= (1 << mb);
else
ma &= ~(1 << mb);
PD (ma);
EBIT;
break;
case RXO_bnot:
ma = GD ();
mb = GS ();
if (opcode->op[0].type == RX_Operand_Register)
mb &= 0x1f;
else
mb &= 0x07;
ma ^= (1 << mb);
PD (ma);
EBIT;
break;
case RXO_branch:
if (opcode->op[1].type == RX_Operand_None || GS())
{
#ifdef CYCLE_ACCURATE
SI old_pc = regs.r_pc;
int delta;
#endif
regs.r_pc = GD();
#ifdef CYCLE_ACCURATE
delta = regs.r_pc - old_pc;
if (delta >= 0 && delta < 16
&& opcode_size > 1)
{
tprintf("near forward branch bonus\n");
cycles (2);
}
else
{
cycles (3);
branch_alignment_penalty = 1;
}
#ifdef CYCLE_STATS
branch_stalls ++;
#endif
#endif
}
#ifdef CYCLE_ACCURATE
else
cycles (1);
#endif
break;
case RXO_branchrel:
if (opcode->op[1].type == RX_Operand_None || GS())
{
int delta = GD();
regs.r_pc = opcode_pc + delta;
#ifdef CYCLE_ACCURATE
/* Note: specs say 3, chip says 2. */
if (delta >= 0 && delta < 16
&& opcode_size > 1)
{
tprintf("near forward branch bonus\n");
cycles (2);
}
else
{
cycles (3);
branch_alignment_penalty = 1;
}
#ifdef CYCLE_STATS
branch_stalls ++;
#endif
#endif
}
#ifdef CYCLE_ACCURATE
else
cycles (1);
#endif
break;
case RXO_brk:
{
int old_psw = regs.r_psw;
if (rx_in_gdb)
DO_RETURN (RX_MAKE_HIT_BREAK ());
if (regs.r_intb == 0)
{
tprintf("BREAK hit, no vector table.\n");
DO_RETURN (RX_MAKE_EXITED(1));
}
regs.r_psw &= ~(FLAGBIT_I | FLAGBIT_U | FLAGBIT_PM);
pushpc (old_psw);
pushpc (regs.r_pc);
regs.r_pc = mem_get_si (regs.r_intb);
cycles(6);
}
break;
case RXO_bset:
ma = GD ();
mb = GS ();
if (opcode->op[0].type == RX_Operand_Register)
mb &= 0x1f;
else
mb &= 0x07;
ma |= (1 << mb);
PD (ma);
EBIT;
break;
case RXO_btst:
ma = GS ();
mb = GS2 ();
if (opcode->op[1].type == RX_Operand_Register)
mb &= 0x1f;
else
mb &= 0x07;
umb = ma & (1 << mb);
set_zc (! umb, umb);
EBIT;
break;
case RXO_clrpsw:
v = 1 << opcode->op[0].reg;
if (FLAG_PM
&& (v == FLAGBIT_I
|| v == FLAGBIT_U))
break;
regs.r_psw &= ~v;
cycles (1);
break;
case RXO_div: /* d = d / s */
ma = GS();
mb = GD();
tprintf("%d / %d = ", mb, ma);
if (ma == 0 || (ma == -1 && (unsigned int) mb == 0x80000000))
{
tprintf("#NAN\n");
set_flags (FLAGBIT_O, FLAGBIT_O);
cycles (3);
}
else
{
v = mb/ma;
tprintf("%d\n", v);
set_flags (FLAGBIT_O, 0);
PD (v);
div_cycles (mb, ma);
}
break;
case RXO_divu: /* d = d / s */
uma = GS();
umb = GD();
tprintf("%u / %u = ", umb, uma);
if (uma == 0)
{
tprintf("#NAN\n");
set_flags (FLAGBIT_O, FLAGBIT_O);
cycles (2);
}
else
{
v = umb / uma;
tprintf("%u\n", v);
set_flags (FLAGBIT_O, 0);
PD (v);
divu_cycles (umb, uma);
}
break;
case RXO_emul:
ma = GD ();
mb = GS ();
sll = (long long)ma * (long long)mb;
tprintf("%d * %d = %lld\n", ma, mb, sll);
put_reg (opcode->op[0].reg, sll);
put_reg (opcode->op[0].reg + 1, sll >> 32);
E2;
break;
case RXO_emulu:
uma = GD ();
umb = GS ();
ll = (long long)uma * (long long)umb;
tprintf("%#x * %#x = %#llx\n", uma, umb, ll);
put_reg (opcode->op[0].reg, ll);
put_reg (opcode->op[0].reg + 1, ll >> 32);
E2;
break;
case RXO_fadd:
FLOAT_OP (fadd);
E (4);
break;
case RXO_fcmp:
ma = GD();
mb = GS();
FPCLEAR ();
rxfp_cmp (ma, mb);
FPCHECK ();
E (1);
break;
case RXO_fdiv:
FLOAT_OP (fdiv);
E (16);
break;
case RXO_fmul:
FLOAT_OP (fmul);
E (3);
break;
case RXO_rtfi:
PRIVILEDGED ();
regs.r_psw = regs.r_bpsw;
regs.r_pc = regs.r_bpc;
#ifdef CYCLE_ACCURATE
regs.fast_return = 0;
cycles(3);
#endif
break;
case RXO_fsub:
FLOAT_OP (fsub);
E (4);
break;
case RXO_ftoi:
ma = GS ();
FPCLEAR ();
mb = rxfp_ftoi (ma, FPRM_ZERO);
FPCHECK ();
PD (mb);
tprintf("(int) %g = %d\n", int2float(ma), mb);
set_sz (mb, 4);
E (2);
break;
case RXO_int:
v = GS ();
if (v == 255)
{
int rc = rx_syscall (regs.r[5]);
if (! RX_STEPPED (rc))
DO_RETURN (rc);
}
else
{
int old_psw = regs.r_psw;
regs.r_psw &= ~(FLAGBIT_I | FLAGBIT_U | FLAGBIT_PM);
pushpc (old_psw);
pushpc (regs.r_pc);
regs.r_pc = mem_get_si (regs.r_intb + 4 * v);
}
cycles (6);
break;
case RXO_itof:
ma = GS ();
FPCLEAR ();
mb = rxfp_itof (ma, regs.r_fpsw);
FPCHECK ();
tprintf("(float) %d = %x\n", ma, mb);
PD (mb);
set_sz (ma, 4);
E (2);
break;
case RXO_jsr:
case RXO_jsrrel:
{
#ifdef CYCLE_ACCURATE
int delta;
regs.m2m = 0;
#endif
v = GD ();
#ifdef CYCLE_ACCURATE
regs.link_register = regs.r_pc;
#endif
pushpc (get_reg (pc));
if (opcode->id == RXO_jsrrel)
v += regs.r_pc;
#ifdef CYCLE_ACCURATE
delta = v - regs.r_pc;
#endif
put_reg (pc, v);
#ifdef CYCLE_ACCURATE
/* Note: docs say 3, chip says 2 */
if (delta >= 0 && delta < 16)
{
tprintf ("near forward jsr bonus\n");
cycles (2);
}
else
{
branch_alignment_penalty = 1;
cycles (3);
}
regs.fast_return = 1;
#endif
}
break;
case RXO_machi:
ll = (long long)(signed short)(GS() >> 16) * (long long)(signed short)(GS2 () >> 16);
ll <<= 16;
put_reg64 (acc64, ll + regs.r_acc);
E1;
break;
case RXO_maclo:
ll = (long long)(signed short)(GS()) * (long long)(signed short)(GS2 ());
ll <<= 16;
put_reg64 (acc64, ll + regs.r_acc);
E1;
break;
case RXO_max:
mb = GS();
ma = GD();
if (ma > mb)
PD (ma);
else
PD (mb);
E (1);
break;
case RXO_min:
mb = GS();
ma = GD();
if (ma < mb)
PD (ma);
else
PD (mb);
E (1);
break;
case RXO_mov:
v = GS ();
if (opcode->op[1].type == RX_Operand_Register
&& opcode->op[1].reg == 17 /* PC */)
{
/* Special case. We want the address of the insn, not the
address of the next insn. */
v = opcode_pc;
}
if (opcode->op[0].type == RX_Operand_Register
&& opcode->op[0].reg == 16 /* PSW */)
{
/* Special case, LDC and POPC can't ever modify PM. */
int pm = regs.r_psw & FLAGBIT_PM;
v &= ~ FLAGBIT_PM;
v |= pm;
if (pm)
{
v &= ~ (FLAGBIT_I | FLAGBIT_U | FLAGBITS_IPL);
v |= pm;
}
}
if (FLAG_PM)
{
/* various things can't be changed in user mode. */
if (opcode->op[0].type == RX_Operand_Register)
if (opcode->op[0].reg == 32)
{
v &= ~ (FLAGBIT_I | FLAGBIT_U | FLAGBITS_IPL);
v |= regs.r_psw & (FLAGBIT_I | FLAGBIT_U | FLAGBITS_IPL);
}
if (opcode->op[0].reg == 34 /* ISP */
|| opcode->op[0].reg == 37 /* BPSW */
|| opcode->op[0].reg == 39 /* INTB */
|| opcode->op[0].reg == 38 /* VCT */)
/* These are ignored. */
break;
}
if (OM(0) && OM(1))
cycles (2);
else
cycles (1);
PD (v);
#ifdef CYCLE_ACCURATE
if ((opcode->op[0].type == RX_Operand_Predec
&& opcode->op[1].type == RX_Operand_Register)
|| (opcode->op[0].type == RX_Operand_Postinc
&& opcode->op[1].type == RX_Operand_Register))
{
/* Special case: push reg doesn't cause a memory stall. */
memory_dest = 0;
tprintf("push special case\n");
}
#endif
set_sz (v, DSZ());
break;
case RXO_movbi:
PD (GS ());
cycles (1);
break;
case RXO_movbir:
PS (GD ());
cycles (1);
break;
case RXO_mul:
v = US2 ();
ll = (unsigned long long) US1() * (unsigned long long) v;
PD(ll);
E (1);
break;
case RXO_mulhi:
v = GS2 ();
ll = (long long)(signed short)(GS() >> 16) * (long long)(signed short)(v >> 16);
ll <<= 16;
put_reg64 (acc64, ll);
E1;
break;
case RXO_mullo:
v = GS2 ();
ll = (long long)(signed short)(GS()) * (long long)(signed short)(v);
ll <<= 16;
put_reg64 (acc64, ll);
E1;
break;
case RXO_mvfachi:
PD (get_reg (acchi));
E1;
break;
case RXO_mvfaclo:
PD (get_reg (acclo));
E1;
break;
case RXO_mvfacmi:
PD (get_reg (accmi));
E1;
break;
case RXO_mvtachi:
put_reg (acchi, GS ());
E1;
break;
case RXO_mvtaclo:
put_reg (acclo, GS ());
E1;
break;
case RXO_mvtipl:
regs.r_psw &= ~ FLAGBITS_IPL;
regs.r_psw |= (GS () << FLAGSHIFT_IPL) & FLAGBITS_IPL;
E1;
break;
case RXO_nop:
case RXO_nop2:
case RXO_nop3:
case RXO_nop4:
case RXO_nop5:
case RXO_nop6:
case RXO_nop7:
E1;
break;
case RXO_or:
LOGIC_OP (|);
break;
case RXO_popm:
/* POPM cannot pop R0 (sp). */
if (opcode->op[1].reg == 0 || opcode->op[2].reg == 0)
EXCEPTION (EX_UNDEFINED);
if (opcode->op[1].reg >= opcode->op[2].reg)
{
regs.r_pc = opcode_pc;
DO_RETURN (RX_MAKE_STOPPED (SIGILL));
}
for (v = opcode->op[1].reg; v <= opcode->op[2].reg; v++)
{
cycles (1);
RLD (v);
put_reg (v, pop ());
}
break;
case RXO_pushm:
/* PUSHM cannot push R0 (sp). */
if (opcode->op[1].reg == 0 || opcode->op[2].reg == 0)
EXCEPTION (EX_UNDEFINED);
if (opcode->op[1].reg >= opcode->op[2].reg)
{
regs.r_pc = opcode_pc;
return RX_MAKE_STOPPED (SIGILL);
}
for (v = opcode->op[2].reg; v >= opcode->op[1].reg; v--)
{
RL (v);
push (get_reg (v));
}
cycles (opcode->op[2].reg - opcode->op[1].reg + 1);
break;
case RXO_racw:
ll = get_reg64 (acc64) << GS ();
ll += 0x80000000ULL;
if ((signed long long)ll > (signed long long)0x00007fff00000000ULL)
ll = 0x00007fff00000000ULL;
else if ((signed long long)ll < (signed long long)0xffff800000000000ULL)
ll = 0xffff800000000000ULL;
else
ll &= 0xffffffff00000000ULL;
put_reg64 (acc64, ll);
E1;
break;
case RXO_rte:
PRIVILEDGED ();
regs.r_pc = poppc ();
regs.r_psw = poppc ();
if (FLAG_PM)
regs.r_psw |= FLAGBIT_U;
#ifdef CYCLE_ACCURATE
regs.fast_return = 0;
cycles (6);
#endif
break;
case RXO_revl:
uma = GS ();
umb = (((uma >> 24) & 0xff)
| ((uma >> 8) & 0xff00)
| ((uma << 8) & 0xff0000)
| ((uma << 24) & 0xff000000UL));
PD (umb);
E1;
break;
case RXO_revw:
uma = GS ();
umb = (((uma >> 8) & 0x00ff00ff)
| ((uma << 8) & 0xff00ff00UL));
PD (umb);
E1;
break;
case RXO_rmpa:
RL(4);
RL(5);
#ifdef CYCLE_ACCURATE
tx = regs.r[3];
#endif
while (regs.r[3] != 0)
{
long long tmp;
switch (opcode->size)
{
case RX_Long:
ma = mem_get_si (regs.r[1]);
mb = mem_get_si (regs.r[2]);
regs.r[1] += 4;
regs.r[2] += 4;
break;
case RX_Word:
ma = sign_ext (mem_get_hi (regs.r[1]), 16);
mb = sign_ext (mem_get_hi (regs.r[2]), 16);
regs.r[1] += 2;
regs.r[2] += 2;
break;
case RX_Byte:
ma = sign_ext (mem_get_qi (regs.r[1]), 8);
mb = sign_ext (mem_get_qi (regs.r[2]), 8);
regs.r[1] += 1;
regs.r[2] += 1;
break;
default:
abort ();
}
/* We do the multiply as a signed value. */
sll = (long long)ma * (long long)mb;
tprintf(" %016llx = %d * %d\n", sll, ma, mb);
/* but we do the sum as unsigned, while sign extending the operands. */
tmp = regs.r[4] + (sll & 0xffffffffUL);
regs.r[4] = tmp & 0xffffffffUL;
tmp >>= 32;
sll >>= 32;
tmp += regs.r[5] + (sll & 0xffffffffUL);
regs.r[5] = tmp & 0xffffffffUL;
tmp >>= 32;
sll >>= 32;
tmp += regs.r[6] + (sll & 0xffffffffUL);
regs.r[6] = tmp & 0xffffffffUL;
tprintf("%08lx\033[36m%08lx\033[0m%08lx\n",
(unsigned long) regs.r[6],
(unsigned long) regs.r[5],
(unsigned long) regs.r[4]);
regs.r[3] --;
}
if (regs.r[6] & 0x00008000)
regs.r[6] |= 0xffff0000UL;
else
regs.r[6] &= 0x0000ffff;
ma = (regs.r[6] & 0x80000000UL) ? FLAGBIT_S : 0;
if (regs.r[6] != 0 && regs.r[6] != 0xffffffffUL)
set_flags (FLAGBIT_O|FLAGBIT_S, ma | FLAGBIT_O);
else
set_flags (FLAGBIT_O|FLAGBIT_S, ma);
#ifdef CYCLE_ACCURATE
switch (opcode->size)
{
case RX_Long:
cycles (6 + 4 * tx);
break;
case RX_Word:
cycles (6 + 5 * (tx / 2) + 4 * (tx % 2));
break;
case RX_Byte:
cycles (6 + 7 * (tx / 4) + 4 * (tx % 4));
break;
default:
abort ();
}
#endif
break;
case RXO_rolc:
v = GD ();
ma = v & 0x80000000UL;
v <<= 1;
v |= carry;
set_szc (v, 4, ma);
PD (v);
E1;
break;
case RXO_rorc:
uma = GD ();
mb = uma & 1;
uma >>= 1;
uma |= (carry ? 0x80000000UL : 0);
set_szc (uma, 4, mb);
PD (uma);
E1;
break;
case RXO_rotl:
mb = GS ();
uma = GD ();
if (mb)
{
uma = (uma << mb) | (uma >> (32-mb));
mb = uma & 1;
}
set_szc (uma, 4, mb);
PD (uma);
E1;
break;
case RXO_rotr:
mb = GS ();
uma = GD ();
if (mb)
{
uma = (uma >> mb) | (uma << (32-mb));
mb = uma & 0x80000000;
}
set_szc (uma, 4, mb);
PD (uma);
E1;
break;
case RXO_round:
ma = GS ();
FPCLEAR ();
mb = rxfp_ftoi (ma, regs.r_fpsw);
FPCHECK ();
PD (mb);
tprintf("(int) %g = %d\n", int2float(ma), mb);
set_sz (mb, 4);
E (2);
break;
case RXO_rts:
{
#ifdef CYCLE_ACCURATE
int cyc = 5;
#endif
regs.r_pc = poppc ();
#ifdef CYCLE_ACCURATE
/* Note: specs say 5, chip says 3. */
if (regs.fast_return && regs.link_register == regs.r_pc)
{
#ifdef CYCLE_STATS
fast_returns ++;
#endif
tprintf("fast return bonus\n");
cyc -= 2;
}
cycles (cyc);
regs.fast_return = 0;
branch_alignment_penalty = 1;
#endif
}
break;
case RXO_rtsd:
if (opcode->op[2].type == RX_Operand_Register)
{
int i;
/* RTSD cannot pop R0 (sp). */
put_reg (0, get_reg (0) + GS() - (opcode->op[0].reg-opcode->op[2].reg+1)*4);
if (opcode->op[2].reg == 0)
EXCEPTION (EX_UNDEFINED);
#ifdef CYCLE_ACCURATE
tx = opcode->op[0].reg - opcode->op[2].reg + 1;
#endif
for (i = opcode->op[2].reg; i <= opcode->op[0].reg; i ++)
{
RLD (i);
put_reg (i, pop ());
}
}
else
{
#ifdef CYCLE_ACCURATE
tx = 0;
#endif
put_reg (0, get_reg (0) + GS());
}
put_reg (pc, poppc());
#ifdef CYCLE_ACCURATE
if (regs.fast_return && regs.link_register == regs.r_pc)
{
tprintf("fast return bonus\n");
#ifdef CYCLE_STATS
fast_returns ++;
#endif
cycles (tx < 3 ? 3 : tx + 1);
}
else
{
cycles (tx < 5 ? 5 : tx + 1);
}
regs.fast_return = 0;
branch_alignment_penalty = 1;
#endif
break;
case RXO_sat:
if (FLAG_O && FLAG_S)
PD (0x7fffffffUL);
else if (FLAG_O && ! FLAG_S)
PD (0x80000000UL);
E1;
break;
case RXO_satr:
if (FLAG_O && ! FLAG_S)
{
put_reg (6, 0x0);
put_reg (5, 0x7fffffff);
put_reg (4, 0xffffffff);
}
else if (FLAG_O && FLAG_S)
{
put_reg (6, 0xffffffff);
put_reg (5, 0x80000000);
put_reg (4, 0x0);
}
E1;
break;
case RXO_sbb:
MATH_OP (-, ! carry);
break;
case RXO_sccnd:
if (GS())
PD (1);
else
PD (0);
E1;
break;
case RXO_scmpu:
#ifdef CYCLE_ACCURATE
tx = regs.r[3];
#endif
while (regs.r[3] != 0)
{
uma = mem_get_qi (regs.r[1] ++);
umb = mem_get_qi (regs.r[2] ++);
regs.r[3] --;
if (uma != umb || uma == 0)
break;
}
if (uma == umb)
set_zc (1, 1);
else
set_zc (0, ((int)uma - (int)umb) >= 0);
cycles (2 + 4 * (tx / 4) + 4 * (tx % 4));
break;
case RXO_setpsw:
v = 1 << opcode->op[0].reg;
if (FLAG_PM
&& (v == FLAGBIT_I
|| v == FLAGBIT_U))
break;
regs.r_psw |= v;
cycles (1);
break;
case RXO_smovb:
RL (3);
#ifdef CYCLE_ACCURATE
tx = regs.r[3];
#endif
while (regs.r[3])
{
uma = mem_get_qi (regs.r[2] --);
mem_put_qi (regs.r[1]--, uma);
regs.r[3] --;
}
#ifdef CYCLE_ACCURATE
if (tx > 3)
cycles (6 + 3 * (tx / 4) + 3 * (tx % 4));
else
cycles (2 + 3 * (tx % 4));
#endif
break;
case RXO_smovf:
RL (3);
#ifdef CYCLE_ACCURATE
tx = regs.r[3];
#endif
while (regs.r[3])
{
uma = mem_get_qi (regs.r[2] ++);
mem_put_qi (regs.r[1]++, uma);
regs.r[3] --;
}
cycles (2 + 3 * (int)(tx / 4) + 3 * (tx % 4));
break;
case RXO_smovu:
#ifdef CYCLE_ACCURATE
tx = regs.r[3];
#endif
while (regs.r[3] != 0)
{
uma = mem_get_qi (regs.r[2] ++);
mem_put_qi (regs.r[1]++, uma);
regs.r[3] --;
if (uma == 0)
break;
}
cycles (2 + 3 * (int)(tx / 4) + 3 * (tx % 4));
break;
case RXO_shar: /* d = ma >> mb */
SHIFT_OP (sll, int, mb, >>=, 1);
E (1);
break;
case RXO_shll: /* d = ma << mb */
SHIFT_OP (ll, int, mb, <<=, 0x80000000UL);
E (1);
break;
case RXO_shlr: /* d = ma >> mb */
SHIFT_OP (ll, unsigned int, mb, >>=, 1);
E (1);
break;
case RXO_sstr:
RL (3);
#ifdef CYCLE_ACCURATE
tx = regs.r[3];
#endif
switch (opcode->size)
{
case RX_Long:
while (regs.r[3] != 0)
{
mem_put_si (regs.r[1], regs.r[2]);
regs.r[1] += 4;
regs.r[3] --;
}
cycles (2 + tx);
break;
case RX_Word:
while (regs.r[3] != 0)
{
mem_put_hi (regs.r[1], regs.r[2]);
regs.r[1] += 2;
regs.r[3] --;
}
cycles (2 + (int)(tx / 2) + tx % 2);
break;
case RX_Byte:
while (regs.r[3] != 0)
{
mem_put_qi (regs.r[1], regs.r[2]);
regs.r[1] ++;
regs.r[3] --;
}
cycles (2 + (int)(tx / 4) + tx % 4);
break;
default:
abort ();
}
break;
case RXO_stcc:
if (GS2())
PD (GS ());
E1;
break;
case RXO_stop:
PRIVILEDGED ();
regs.r_psw |= FLAGBIT_I;
DO_RETURN (RX_MAKE_STOPPED(0));
case RXO_sub:
MATH_OP (-, 0);
break;
case RXO_suntil:
RL(3);
#ifdef CYCLE_ACCURATE
tx = 0;
#endif
if (regs.r[3] == 0)
{
cycles (3);
break;
}
switch (opcode->size)
{
case RX_Long:
uma = get_reg (2);
while (regs.r[3] != 0)
{
regs.r[3] --;
umb = mem_get_si (get_reg (1));
regs.r[1] += 4;
#ifdef CYCLE_ACCURATE
tx ++;
#endif
if (umb == uma)
break;
}
#ifdef CYCLE_ACCURATE
cycles (3 + 3 * tx);
#endif
break;
case RX_Word:
uma = get_reg (2) & 0xffff;
while (regs.r[3] != 0)
{
regs.r[3] --;
umb = mem_get_hi (get_reg (1));
regs.r[1] += 2;
#ifdef CYCLE_ACCURATE
tx ++;
#endif
if (umb == uma)
break;
}
#ifdef CYCLE_ACCURATE
cycles (3 + 3 * (tx / 2) + 3 * (tx % 2));
#endif
break;
case RX_Byte:
uma = get_reg (2) & 0xff;
while (regs.r[3] != 0)
{
regs.r[3] --;
umb = mem_get_qi (regs.r[1]);
regs.r[1] += 1;
#ifdef CYCLE_ACCURATE
tx ++;
#endif
if (umb == uma)
break;
}
#ifdef CYCLE_ACCURATE
cycles (3 + 3 * (tx / 4) + 3 * (tx % 4));
#endif
break;
default:
abort();
}
if (uma == umb)
set_zc (1, 1);
else
set_zc (0, ((int)uma - (int)umb) >= 0);
break;
case RXO_swhile:
RL(3);
#ifdef CYCLE_ACCURATE
tx = 0;
#endif
if (regs.r[3] == 0)
break;
switch (opcode->size)
{
case RX_Long:
uma = get_reg (2);
while (regs.r[3] != 0)
{
regs.r[3] --;
umb = mem_get_si (get_reg (1));
regs.r[1] += 4;
#ifdef CYCLE_ACCURATE
tx ++;
#endif
if (umb != uma)
break;
}
#ifdef CYCLE_ACCURATE
cycles (3 + 3 * tx);
#endif
break;
case RX_Word:
uma = get_reg (2) & 0xffff;
while (regs.r[3] != 0)
{
regs.r[3] --;
umb = mem_get_hi (get_reg (1));
regs.r[1] += 2;
#ifdef CYCLE_ACCURATE
tx ++;
#endif
if (umb != uma)
break;
}
#ifdef CYCLE_ACCURATE
cycles (3 + 3 * (tx / 2) + 3 * (tx % 2));
#endif
break;
case RX_Byte:
uma = get_reg (2) & 0xff;
while (regs.r[3] != 0)
{
regs.r[3] --;
umb = mem_get_qi (regs.r[1]);
regs.r[1] += 1;
#ifdef CYCLE_ACCURATE
tx ++;
#endif
if (umb != uma)
break;
}
#ifdef CYCLE_ACCURATE
cycles (3 + 3 * (tx / 4) + 3 * (tx % 4));
#endif
break;
default:
abort();
}
if (uma == umb)
set_zc (1, 1);
else
set_zc (0, ((int)uma - (int)umb) >= 0);
break;
case RXO_wait:
PRIVILEDGED ();
regs.r_psw |= FLAGBIT_I;
DO_RETURN (RX_MAKE_STOPPED(0));
case RXO_xchg:
#ifdef CYCLE_ACCURATE
regs.m2m = 0;
#endif
v = GS (); /* This is the memory operand, if any. */
PS (GD ()); /* and this may change the address register. */
PD (v);
E2;
#ifdef CYCLE_ACCURATE
/* all M cycles happen during xchg's cycles. */
memory_dest = 0;
memory_source = 0;
#endif
break;
case RXO_xor:
LOGIC_OP (^);
break;
default:
EXCEPTION (EX_UNDEFINED);
}
#ifdef CYCLE_ACCURATE
regs.m2m = 0;
if (memory_source)
regs.m2m |= M2M_SRC;
if (memory_dest)
regs.m2m |= M2M_DST;
regs.rt = new_rt;
new_rt = -1;
#endif
#ifdef CYCLE_STATS
if (prev_cycle_count == regs.cycle_count)
{
printf("Cycle count not updated! id %s\n", id_names[opcode->id]);
abort ();
}
#endif
#ifdef CYCLE_STATS
if (running_benchmark)
{
int omap = op_lookup (opcode->op[0].type, opcode->op[1].type, opcode->op[2].type);
cycles_per_id[opcode->id][omap] += regs.cycle_count - prev_cycle_count;
times_per_id[opcode->id][omap] ++;
times_per_pair[prev_opcode_id][po0][opcode->id][omap] ++;
prev_opcode_id = opcode->id;
po0 = omap;
}
#endif
return RX_MAKE_STEPPED ();
}
#ifdef CYCLE_STATS
void
reset_pipeline_stats (void)
{
memset (cycles_per_id, 0, sizeof(cycles_per_id));
memset (times_per_id, 0, sizeof(times_per_id));
memory_stalls = 0;
register_stalls = 0;
branch_stalls = 0;
branch_alignment_stalls = 0;
fast_returns = 0;
memset (times_per_pair, 0, sizeof(times_per_pair));
running_benchmark = 1;
benchmark_start_cycle = regs.cycle_count;
}
void
halt_pipeline_stats (void)
{
running_benchmark = 0;
benchmark_end_cycle = regs.cycle_count;
}
#endif
void
pipeline_stats (void)
{
#ifdef CYCLE_STATS
int i, o1;
int p, p1;
#endif
#ifdef CYCLE_ACCURATE
if (verbose == 1)
{
printf ("cycles: %llu\n", regs.cycle_count);
return;
}
printf ("cycles: %13s\n", comma (regs.cycle_count));
#endif
#ifdef CYCLE_STATS
if (benchmark_start_cycle)
printf ("bmark: %13s\n", comma (benchmark_end_cycle - benchmark_start_cycle));
printf("\n");
for (i = 0; i < N_RXO; i++)
for (o1 = 0; o1 < N_MAP; o1 ++)
if (times_per_id[i][o1])
printf("%13s %13s %7.2f %s %s\n",
comma (cycles_per_id[i][o1]),
comma (times_per_id[i][o1]),
(double)cycles_per_id[i][o1] / times_per_id[i][o1],
op_cache_string(o1),
id_names[i]+4);
printf("\n");
for (p = 0; p < N_RXO; p ++)
for (p1 = 0; p1 < N_MAP; p1 ++)
for (i = 0; i < N_RXO; i ++)
for (o1 = 0; o1 < N_MAP; o1 ++)
if (times_per_pair[p][p1][i][o1])
{
printf("%13s %s %-9s -> %s %s\n",
comma (times_per_pair[p][p1][i][o1]),
op_cache_string(p1),
id_names[p]+4,
op_cache_string(o1),
id_names[i]+4);
}
printf("\n");
printf("%13s memory stalls\n", comma (memory_stalls));
printf("%13s register stalls\n", comma (register_stalls));
printf("%13s branches taken (non-return)\n", comma (branch_stalls));
printf("%13s branch alignment stalls\n", comma (branch_alignment_stalls));
printf("%13s fast returns\n", comma (fast_returns));
#endif
}