mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-06 12:09:26 +08:00
1a0ea39913
Moves the f_language class from f-lang.c into f-lang.h. The benefit of this is that functions declared in other f-*.c files can become member functions without having to go through a level of indirection. Some additional support functions have now become private member functions of the f_language class, these are mostly functions that then called some other function that was itself a member of the language_defn class hierarchy. There should be no user visible changes after this commit. gdb/ChangeLog: * f-exp.y (f_parse): Rename to... (f_language::parser): ...this. * f-lang.c (f_get_encoding): Rename to... (f_language::get_encoding): ...this. (f_op_print_tab): Rename to... (f_language::op_print_tab): ...this. (exp_descriptor_f): Rename to... (f_language::exp_descriptor_tab): ...this. (class f_language): Moved to f-lang.h. (f_language::language_arch_info): New function, moved out of class declaration. (f_language::search_name_hash): Likewise. (f_language::lookup_symbol_nonlocal): Likewise. (f_language::get_symbol_name_matcher_inner): Likewise. * f-lang.h: Add 'valprint.h' include. (class f_language): Moved here from f-lang.c. * f-typeprint.c (f_type_print_args): Delete commented out declaration. (f_print_typedef): Rename to... (f_language::print_typedef): ...this. (f_print_type): Rename to... (f_language::print_type): ...this. (f_type_print_varspec_prefix): Delete declaration and rename to... (f_language::f_type_print_varspec_prefix): ...this. (f_type_print_varspec_suffix): Delete declaration and rename to... (f_language::f_type_print_varspec_suffix): ...this. (f_type_print_base): Delete declaration and rename to... (f_language::f_type_print_base): ...this. * f-valprint.c (f_value_print_inner): Rename to... (f_language::value_print_inner): ...this. * parse.c: Delete 'f-lang.h' include.
908 lines
26 KiB
C
908 lines
26 KiB
C
/* Fortran language support routines for GDB, the GNU debugger.
|
||
|
||
Copyright (C) 1993-2020 Free Software Foundation, Inc.
|
||
|
||
Contributed by Motorola. Adapted from the C parser by Farooq Butt
|
||
(fmbutt@engage.sps.mot.com).
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include "symtab.h"
|
||
#include "gdbtypes.h"
|
||
#include "expression.h"
|
||
#include "parser-defs.h"
|
||
#include "language.h"
|
||
#include "varobj.h"
|
||
#include "gdbcore.h"
|
||
#include "f-lang.h"
|
||
#include "valprint.h"
|
||
#include "value.h"
|
||
#include "cp-support.h"
|
||
#include "charset.h"
|
||
#include "c-lang.h"
|
||
#include "target-float.h"
|
||
#include "gdbarch.h"
|
||
|
||
#include <math.h>
|
||
|
||
/* Local functions */
|
||
|
||
/* Return the encoding that should be used for the character type
|
||
TYPE. */
|
||
|
||
const char *
|
||
f_language::get_encoding (struct type *type)
|
||
{
|
||
const char *encoding;
|
||
|
||
switch (TYPE_LENGTH (type))
|
||
{
|
||
case 1:
|
||
encoding = target_charset (get_type_arch (type));
|
||
break;
|
||
case 4:
|
||
if (type_byte_order (type) == BFD_ENDIAN_BIG)
|
||
encoding = "UTF-32BE";
|
||
else
|
||
encoding = "UTF-32LE";
|
||
break;
|
||
|
||
default:
|
||
error (_("unrecognized character type"));
|
||
}
|
||
|
||
return encoding;
|
||
}
|
||
|
||
|
||
|
||
/* Table of operators and their precedences for printing expressions. */
|
||
|
||
const struct op_print f_language::op_print_tab[] =
|
||
{
|
||
{"+", BINOP_ADD, PREC_ADD, 0},
|
||
{"+", UNOP_PLUS, PREC_PREFIX, 0},
|
||
{"-", BINOP_SUB, PREC_ADD, 0},
|
||
{"-", UNOP_NEG, PREC_PREFIX, 0},
|
||
{"*", BINOP_MUL, PREC_MUL, 0},
|
||
{"/", BINOP_DIV, PREC_MUL, 0},
|
||
{"DIV", BINOP_INTDIV, PREC_MUL, 0},
|
||
{"MOD", BINOP_REM, PREC_MUL, 0},
|
||
{"=", BINOP_ASSIGN, PREC_ASSIGN, 1},
|
||
{".OR.", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
|
||
{".AND.", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
|
||
{".NOT.", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
|
||
{".EQ.", BINOP_EQUAL, PREC_EQUAL, 0},
|
||
{".NE.", BINOP_NOTEQUAL, PREC_EQUAL, 0},
|
||
{".LE.", BINOP_LEQ, PREC_ORDER, 0},
|
||
{".GE.", BINOP_GEQ, PREC_ORDER, 0},
|
||
{".GT.", BINOP_GTR, PREC_ORDER, 0},
|
||
{".LT.", BINOP_LESS, PREC_ORDER, 0},
|
||
{"**", UNOP_IND, PREC_PREFIX, 0},
|
||
{"@", BINOP_REPEAT, PREC_REPEAT, 0},
|
||
{NULL, OP_NULL, PREC_REPEAT, 0}
|
||
};
|
||
|
||
enum f_primitive_types {
|
||
f_primitive_type_character,
|
||
f_primitive_type_logical,
|
||
f_primitive_type_logical_s1,
|
||
f_primitive_type_logical_s2,
|
||
f_primitive_type_logical_s8,
|
||
f_primitive_type_integer,
|
||
f_primitive_type_integer_s2,
|
||
f_primitive_type_real,
|
||
f_primitive_type_real_s8,
|
||
f_primitive_type_real_s16,
|
||
f_primitive_type_complex_s8,
|
||
f_primitive_type_complex_s16,
|
||
f_primitive_type_void,
|
||
nr_f_primitive_types
|
||
};
|
||
|
||
/* Called from fortran_value_subarray to take a slice of an array or a
|
||
string. ARRAY is the array or string to be accessed. EXP, POS, and
|
||
NOSIDE are as for evaluate_subexp_standard. Return a value that is a
|
||
slice of the array. */
|
||
|
||
static struct value *
|
||
value_f90_subarray (struct value *array,
|
||
struct expression *exp, int *pos, enum noside noside)
|
||
{
|
||
int pc = (*pos) + 1;
|
||
LONGEST low_bound, high_bound, stride;
|
||
struct type *range = check_typedef (value_type (array)->index_type ());
|
||
enum range_flag range_flag
|
||
= (enum range_flag) longest_to_int (exp->elts[pc].longconst);
|
||
|
||
*pos += 3;
|
||
|
||
if (range_flag & RANGE_LOW_BOUND_DEFAULT)
|
||
low_bound = range->bounds ()->low.const_val ();
|
||
else
|
||
low_bound = value_as_long (evaluate_subexp (nullptr, exp, pos, noside));
|
||
|
||
if (range_flag & RANGE_HIGH_BOUND_DEFAULT)
|
||
high_bound = range->bounds ()->high.const_val ();
|
||
else
|
||
high_bound = value_as_long (evaluate_subexp (nullptr, exp, pos, noside));
|
||
|
||
if (range_flag & RANGE_HAS_STRIDE)
|
||
stride = value_as_long (evaluate_subexp (nullptr, exp, pos, noside));
|
||
else
|
||
stride = 1;
|
||
|
||
if (stride != 1)
|
||
error (_("Fortran array strides are not currently supported"));
|
||
|
||
return value_slice (array, low_bound, high_bound - low_bound + 1);
|
||
}
|
||
|
||
/* Helper for skipping all the arguments in an undetermined argument list.
|
||
This function was designed for use in the OP_F77_UNDETERMINED_ARGLIST
|
||
case of evaluate_subexp_standard as multiple, but not all, code paths
|
||
require a generic skip. */
|
||
|
||
static void
|
||
skip_undetermined_arglist (int nargs, struct expression *exp, int *pos,
|
||
enum noside noside)
|
||
{
|
||
for (int i = 0; i < nargs; ++i)
|
||
evaluate_subexp (nullptr, exp, pos, noside);
|
||
}
|
||
|
||
/* Return the number of dimensions for a Fortran array or string. */
|
||
|
||
int
|
||
calc_f77_array_dims (struct type *array_type)
|
||
{
|
||
int ndimen = 1;
|
||
struct type *tmp_type;
|
||
|
||
if ((array_type->code () == TYPE_CODE_STRING))
|
||
return 1;
|
||
|
||
if ((array_type->code () != TYPE_CODE_ARRAY))
|
||
error (_("Can't get dimensions for a non-array type"));
|
||
|
||
tmp_type = array_type;
|
||
|
||
while ((tmp_type = TYPE_TARGET_TYPE (tmp_type)))
|
||
{
|
||
if (tmp_type->code () == TYPE_CODE_ARRAY)
|
||
++ndimen;
|
||
}
|
||
return ndimen;
|
||
}
|
||
|
||
/* Called from evaluate_subexp_standard to perform array indexing, and
|
||
sub-range extraction, for Fortran. As well as arrays this function
|
||
also handles strings as they can be treated like arrays of characters.
|
||
ARRAY is the array or string being accessed. EXP, POS, and NOSIDE are
|
||
as for evaluate_subexp_standard, and NARGS is the number of arguments
|
||
in this access (e.g. 'array (1,2,3)' would be NARGS 3). */
|
||
|
||
static struct value *
|
||
fortran_value_subarray (struct value *array, struct expression *exp,
|
||
int *pos, int nargs, enum noside noside)
|
||
{
|
||
if (exp->elts[*pos].opcode == OP_RANGE)
|
||
return value_f90_subarray (array, exp, pos, noside);
|
||
|
||
if (noside == EVAL_SKIP)
|
||
{
|
||
skip_undetermined_arglist (nargs, exp, pos, noside);
|
||
/* Return the dummy value with the correct type. */
|
||
return array;
|
||
}
|
||
|
||
LONGEST subscript_array[MAX_FORTRAN_DIMS];
|
||
int ndimensions = 1;
|
||
struct type *type = check_typedef (value_type (array));
|
||
|
||
if (nargs > MAX_FORTRAN_DIMS)
|
||
error (_("Too many subscripts for F77 (%d Max)"), MAX_FORTRAN_DIMS);
|
||
|
||
ndimensions = calc_f77_array_dims (type);
|
||
|
||
if (nargs != ndimensions)
|
||
error (_("Wrong number of subscripts"));
|
||
|
||
gdb_assert (nargs > 0);
|
||
|
||
/* Now that we know we have a legal array subscript expression let us
|
||
actually find out where this element exists in the array. */
|
||
|
||
/* Take array indices left to right. */
|
||
for (int i = 0; i < nargs; i++)
|
||
{
|
||
/* Evaluate each subscript; it must be a legal integer in F77. */
|
||
value *arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
|
||
|
||
/* Fill in the subscript array. */
|
||
subscript_array[i] = value_as_long (arg2);
|
||
}
|
||
|
||
/* Internal type of array is arranged right to left. */
|
||
for (int i = nargs; i > 0; i--)
|
||
{
|
||
struct type *array_type = check_typedef (value_type (array));
|
||
LONGEST index = subscript_array[i - 1];
|
||
|
||
array = value_subscripted_rvalue (array, index,
|
||
f77_get_lowerbound (array_type));
|
||
}
|
||
|
||
return array;
|
||
}
|
||
|
||
/* Special expression evaluation cases for Fortran. */
|
||
|
||
static struct value *
|
||
evaluate_subexp_f (struct type *expect_type, struct expression *exp,
|
||
int *pos, enum noside noside)
|
||
{
|
||
struct value *arg1 = NULL, *arg2 = NULL;
|
||
enum exp_opcode op;
|
||
int pc;
|
||
struct type *type;
|
||
|
||
pc = *pos;
|
||
*pos += 1;
|
||
op = exp->elts[pc].opcode;
|
||
|
||
switch (op)
|
||
{
|
||
default:
|
||
*pos -= 1;
|
||
return evaluate_subexp_standard (expect_type, exp, pos, noside);
|
||
|
||
case UNOP_ABS:
|
||
arg1 = evaluate_subexp (nullptr, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
return eval_skip_value (exp);
|
||
type = value_type (arg1);
|
||
switch (type->code ())
|
||
{
|
||
case TYPE_CODE_FLT:
|
||
{
|
||
double d
|
||
= fabs (target_float_to_host_double (value_contents (arg1),
|
||
value_type (arg1)));
|
||
return value_from_host_double (type, d);
|
||
}
|
||
case TYPE_CODE_INT:
|
||
{
|
||
LONGEST l = value_as_long (arg1);
|
||
l = llabs (l);
|
||
return value_from_longest (type, l);
|
||
}
|
||
}
|
||
error (_("ABS of type %s not supported"), TYPE_SAFE_NAME (type));
|
||
|
||
case BINOP_MOD:
|
||
arg1 = evaluate_subexp (nullptr, exp, pos, noside);
|
||
arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
return eval_skip_value (exp);
|
||
type = value_type (arg1);
|
||
if (type->code () != value_type (arg2)->code ())
|
||
error (_("non-matching types for parameters to MOD ()"));
|
||
switch (type->code ())
|
||
{
|
||
case TYPE_CODE_FLT:
|
||
{
|
||
double d1
|
||
= target_float_to_host_double (value_contents (arg1),
|
||
value_type (arg1));
|
||
double d2
|
||
= target_float_to_host_double (value_contents (arg2),
|
||
value_type (arg2));
|
||
double d3 = fmod (d1, d2);
|
||
return value_from_host_double (type, d3);
|
||
}
|
||
case TYPE_CODE_INT:
|
||
{
|
||
LONGEST v1 = value_as_long (arg1);
|
||
LONGEST v2 = value_as_long (arg2);
|
||
if (v2 == 0)
|
||
error (_("calling MOD (N, 0) is undefined"));
|
||
LONGEST v3 = v1 - (v1 / v2) * v2;
|
||
return value_from_longest (value_type (arg1), v3);
|
||
}
|
||
}
|
||
error (_("MOD of type %s not supported"), TYPE_SAFE_NAME (type));
|
||
|
||
case UNOP_FORTRAN_CEILING:
|
||
{
|
||
arg1 = evaluate_subexp (nullptr, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
return eval_skip_value (exp);
|
||
type = value_type (arg1);
|
||
if (type->code () != TYPE_CODE_FLT)
|
||
error (_("argument to CEILING must be of type float"));
|
||
double val
|
||
= target_float_to_host_double (value_contents (arg1),
|
||
value_type (arg1));
|
||
val = ceil (val);
|
||
return value_from_host_double (type, val);
|
||
}
|
||
|
||
case UNOP_FORTRAN_FLOOR:
|
||
{
|
||
arg1 = evaluate_subexp (nullptr, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
return eval_skip_value (exp);
|
||
type = value_type (arg1);
|
||
if (type->code () != TYPE_CODE_FLT)
|
||
error (_("argument to FLOOR must be of type float"));
|
||
double val
|
||
= target_float_to_host_double (value_contents (arg1),
|
||
value_type (arg1));
|
||
val = floor (val);
|
||
return value_from_host_double (type, val);
|
||
}
|
||
|
||
case BINOP_FORTRAN_MODULO:
|
||
{
|
||
arg1 = evaluate_subexp (nullptr, exp, pos, noside);
|
||
arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
return eval_skip_value (exp);
|
||
type = value_type (arg1);
|
||
if (type->code () != value_type (arg2)->code ())
|
||
error (_("non-matching types for parameters to MODULO ()"));
|
||
/* MODULO(A, P) = A - FLOOR (A / P) * P */
|
||
switch (type->code ())
|
||
{
|
||
case TYPE_CODE_INT:
|
||
{
|
||
LONGEST a = value_as_long (arg1);
|
||
LONGEST p = value_as_long (arg2);
|
||
LONGEST result = a - (a / p) * p;
|
||
if (result != 0 && (a < 0) != (p < 0))
|
||
result += p;
|
||
return value_from_longest (value_type (arg1), result);
|
||
}
|
||
case TYPE_CODE_FLT:
|
||
{
|
||
double a
|
||
= target_float_to_host_double (value_contents (arg1),
|
||
value_type (arg1));
|
||
double p
|
||
= target_float_to_host_double (value_contents (arg2),
|
||
value_type (arg2));
|
||
double result = fmod (a, p);
|
||
if (result != 0 && (a < 0.0) != (p < 0.0))
|
||
result += p;
|
||
return value_from_host_double (type, result);
|
||
}
|
||
}
|
||
error (_("MODULO of type %s not supported"), TYPE_SAFE_NAME (type));
|
||
}
|
||
|
||
case BINOP_FORTRAN_CMPLX:
|
||
arg1 = evaluate_subexp (nullptr, exp, pos, noside);
|
||
arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
return eval_skip_value (exp);
|
||
type = builtin_f_type(exp->gdbarch)->builtin_complex_s16;
|
||
return value_literal_complex (arg1, arg2, type);
|
||
|
||
case UNOP_FORTRAN_KIND:
|
||
arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
|
||
type = value_type (arg1);
|
||
|
||
switch (type->code ())
|
||
{
|
||
case TYPE_CODE_STRUCT:
|
||
case TYPE_CODE_UNION:
|
||
case TYPE_CODE_MODULE:
|
||
case TYPE_CODE_FUNC:
|
||
error (_("argument to kind must be an intrinsic type"));
|
||
}
|
||
|
||
if (!TYPE_TARGET_TYPE (type))
|
||
return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
|
||
TYPE_LENGTH (type));
|
||
return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
|
||
TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
|
||
|
||
|
||
case OP_F77_UNDETERMINED_ARGLIST:
|
||
/* Remember that in F77, functions, substring ops and array subscript
|
||
operations cannot be disambiguated at parse time. We have made
|
||
all array subscript operations, substring operations as well as
|
||
function calls come here and we now have to discover what the heck
|
||
this thing actually was. If it is a function, we process just as
|
||
if we got an OP_FUNCALL. */
|
||
int nargs = longest_to_int (exp->elts[pc + 1].longconst);
|
||
(*pos) += 2;
|
||
|
||
/* First determine the type code we are dealing with. */
|
||
arg1 = evaluate_subexp (nullptr, exp, pos, noside);
|
||
type = check_typedef (value_type (arg1));
|
||
enum type_code code = type->code ();
|
||
|
||
if (code == TYPE_CODE_PTR)
|
||
{
|
||
/* Fortran always passes variable to subroutines as pointer.
|
||
So we need to look into its target type to see if it is
|
||
array, string or function. If it is, we need to switch
|
||
to the target value the original one points to. */
|
||
struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
|
||
|
||
if (target_type->code () == TYPE_CODE_ARRAY
|
||
|| target_type->code () == TYPE_CODE_STRING
|
||
|| target_type->code () == TYPE_CODE_FUNC)
|
||
{
|
||
arg1 = value_ind (arg1);
|
||
type = check_typedef (value_type (arg1));
|
||
code = type->code ();
|
||
}
|
||
}
|
||
|
||
switch (code)
|
||
{
|
||
case TYPE_CODE_ARRAY:
|
||
case TYPE_CODE_STRING:
|
||
return fortran_value_subarray (arg1, exp, pos, nargs, noside);
|
||
|
||
case TYPE_CODE_PTR:
|
||
case TYPE_CODE_FUNC:
|
||
case TYPE_CODE_INTERNAL_FUNCTION:
|
||
{
|
||
/* It's a function call. Allocate arg vector, including
|
||
space for the function to be called in argvec[0] and a
|
||
termination NULL. */
|
||
struct value **argvec = (struct value **)
|
||
alloca (sizeof (struct value *) * (nargs + 2));
|
||
argvec[0] = arg1;
|
||
int tem = 1;
|
||
for (; tem <= nargs; tem++)
|
||
{
|
||
argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
|
||
/* Arguments in Fortran are passed by address. Coerce the
|
||
arguments here rather than in value_arg_coerce as
|
||
otherwise the call to malloc to place the non-lvalue
|
||
parameters in target memory is hit by this Fortran
|
||
specific logic. This results in malloc being called
|
||
with a pointer to an integer followed by an attempt to
|
||
malloc the arguments to malloc in target memory.
|
||
Infinite recursion ensues. */
|
||
if (code == TYPE_CODE_PTR || code == TYPE_CODE_FUNC)
|
||
{
|
||
bool is_artificial
|
||
= TYPE_FIELD_ARTIFICIAL (value_type (arg1), tem - 1);
|
||
argvec[tem] = fortran_argument_convert (argvec[tem],
|
||
is_artificial);
|
||
}
|
||
}
|
||
argvec[tem] = 0; /* signal end of arglist */
|
||
if (noside == EVAL_SKIP)
|
||
return eval_skip_value (exp);
|
||
return evaluate_subexp_do_call (exp, noside, nargs, argvec, NULL,
|
||
expect_type);
|
||
}
|
||
|
||
default:
|
||
error (_("Cannot perform substring on this type"));
|
||
}
|
||
}
|
||
|
||
/* Should be unreachable. */
|
||
return nullptr;
|
||
}
|
||
|
||
/* Special expression lengths for Fortran. */
|
||
|
||
static void
|
||
operator_length_f (const struct expression *exp, int pc, int *oplenp,
|
||
int *argsp)
|
||
{
|
||
int oplen = 1;
|
||
int args = 0;
|
||
|
||
switch (exp->elts[pc - 1].opcode)
|
||
{
|
||
default:
|
||
operator_length_standard (exp, pc, oplenp, argsp);
|
||
return;
|
||
|
||
case UNOP_FORTRAN_KIND:
|
||
case UNOP_FORTRAN_FLOOR:
|
||
case UNOP_FORTRAN_CEILING:
|
||
oplen = 1;
|
||
args = 1;
|
||
break;
|
||
|
||
case BINOP_FORTRAN_CMPLX:
|
||
case BINOP_FORTRAN_MODULO:
|
||
oplen = 1;
|
||
args = 2;
|
||
break;
|
||
|
||
case OP_F77_UNDETERMINED_ARGLIST:
|
||
oplen = 3;
|
||
args = 1 + longest_to_int (exp->elts[pc - 2].longconst);
|
||
break;
|
||
}
|
||
|
||
*oplenp = oplen;
|
||
*argsp = args;
|
||
}
|
||
|
||
/* Helper for PRINT_SUBEXP_F. Arguments are as for PRINT_SUBEXP_F, except
|
||
the extra argument NAME which is the text that should be printed as the
|
||
name of this operation. */
|
||
|
||
static void
|
||
print_unop_subexp_f (struct expression *exp, int *pos,
|
||
struct ui_file *stream, enum precedence prec,
|
||
const char *name)
|
||
{
|
||
(*pos)++;
|
||
fprintf_filtered (stream, "%s(", name);
|
||
print_subexp (exp, pos, stream, PREC_SUFFIX);
|
||
fputs_filtered (")", stream);
|
||
}
|
||
|
||
/* Helper for PRINT_SUBEXP_F. Arguments are as for PRINT_SUBEXP_F, except
|
||
the extra argument NAME which is the text that should be printed as the
|
||
name of this operation. */
|
||
|
||
static void
|
||
print_binop_subexp_f (struct expression *exp, int *pos,
|
||
struct ui_file *stream, enum precedence prec,
|
||
const char *name)
|
||
{
|
||
(*pos)++;
|
||
fprintf_filtered (stream, "%s(", name);
|
||
print_subexp (exp, pos, stream, PREC_SUFFIX);
|
||
fputs_filtered (",", stream);
|
||
print_subexp (exp, pos, stream, PREC_SUFFIX);
|
||
fputs_filtered (")", stream);
|
||
}
|
||
|
||
/* Special expression printing for Fortran. */
|
||
|
||
static void
|
||
print_subexp_f (struct expression *exp, int *pos,
|
||
struct ui_file *stream, enum precedence prec)
|
||
{
|
||
int pc = *pos;
|
||
enum exp_opcode op = exp->elts[pc].opcode;
|
||
|
||
switch (op)
|
||
{
|
||
default:
|
||
print_subexp_standard (exp, pos, stream, prec);
|
||
return;
|
||
|
||
case UNOP_FORTRAN_KIND:
|
||
print_unop_subexp_f (exp, pos, stream, prec, "KIND");
|
||
return;
|
||
|
||
case UNOP_FORTRAN_FLOOR:
|
||
print_unop_subexp_f (exp, pos, stream, prec, "FLOOR");
|
||
return;
|
||
|
||
case UNOP_FORTRAN_CEILING:
|
||
print_unop_subexp_f (exp, pos, stream, prec, "CEILING");
|
||
return;
|
||
|
||
case BINOP_FORTRAN_CMPLX:
|
||
print_binop_subexp_f (exp, pos, stream, prec, "CMPLX");
|
||
return;
|
||
|
||
case BINOP_FORTRAN_MODULO:
|
||
print_binop_subexp_f (exp, pos, stream, prec, "MODULO");
|
||
return;
|
||
|
||
case OP_F77_UNDETERMINED_ARGLIST:
|
||
print_subexp_funcall (exp, pos, stream);
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* Special expression names for Fortran. */
|
||
|
||
static const char *
|
||
op_name_f (enum exp_opcode opcode)
|
||
{
|
||
switch (opcode)
|
||
{
|
||
default:
|
||
return op_name_standard (opcode);
|
||
|
||
#define OP(name) \
|
||
case name: \
|
||
return #name ;
|
||
#include "fortran-operator.def"
|
||
#undef OP
|
||
}
|
||
}
|
||
|
||
/* Special expression dumping for Fortran. */
|
||
|
||
static int
|
||
dump_subexp_body_f (struct expression *exp,
|
||
struct ui_file *stream, int elt)
|
||
{
|
||
int opcode = exp->elts[elt].opcode;
|
||
int oplen, nargs, i;
|
||
|
||
switch (opcode)
|
||
{
|
||
default:
|
||
return dump_subexp_body_standard (exp, stream, elt);
|
||
|
||
case UNOP_FORTRAN_KIND:
|
||
case UNOP_FORTRAN_FLOOR:
|
||
case UNOP_FORTRAN_CEILING:
|
||
case BINOP_FORTRAN_CMPLX:
|
||
case BINOP_FORTRAN_MODULO:
|
||
operator_length_f (exp, (elt + 1), &oplen, &nargs);
|
||
break;
|
||
|
||
case OP_F77_UNDETERMINED_ARGLIST:
|
||
return dump_subexp_body_funcall (exp, stream, elt);
|
||
}
|
||
|
||
elt += oplen;
|
||
for (i = 0; i < nargs; i += 1)
|
||
elt = dump_subexp (exp, stream, elt);
|
||
|
||
return elt;
|
||
}
|
||
|
||
/* Special expression checking for Fortran. */
|
||
|
||
static int
|
||
operator_check_f (struct expression *exp, int pos,
|
||
int (*objfile_func) (struct objfile *objfile,
|
||
void *data),
|
||
void *data)
|
||
{
|
||
const union exp_element *const elts = exp->elts;
|
||
|
||
switch (elts[pos].opcode)
|
||
{
|
||
case UNOP_FORTRAN_KIND:
|
||
case UNOP_FORTRAN_FLOOR:
|
||
case UNOP_FORTRAN_CEILING:
|
||
case BINOP_FORTRAN_CMPLX:
|
||
case BINOP_FORTRAN_MODULO:
|
||
/* Any references to objfiles are held in the arguments to this
|
||
expression, not within the expression itself, so no additional
|
||
checking is required here, the outer expression iteration code
|
||
will take care of checking each argument. */
|
||
break;
|
||
|
||
default:
|
||
return operator_check_standard (exp, pos, objfile_func, data);
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Expression processing for Fortran. */
|
||
const struct exp_descriptor f_language::exp_descriptor_tab =
|
||
{
|
||
print_subexp_f,
|
||
operator_length_f,
|
||
operator_check_f,
|
||
op_name_f,
|
||
dump_subexp_body_f,
|
||
evaluate_subexp_f
|
||
};
|
||
|
||
/* See language.h. */
|
||
|
||
void
|
||
f_language::language_arch_info (struct gdbarch *gdbarch,
|
||
struct language_arch_info *lai) const
|
||
{
|
||
const struct builtin_f_type *builtin = builtin_f_type (gdbarch);
|
||
|
||
lai->string_char_type = builtin->builtin_character;
|
||
lai->primitive_type_vector
|
||
= GDBARCH_OBSTACK_CALLOC (gdbarch, nr_f_primitive_types + 1,
|
||
struct type *);
|
||
|
||
lai->primitive_type_vector [f_primitive_type_character]
|
||
= builtin->builtin_character;
|
||
lai->primitive_type_vector [f_primitive_type_logical]
|
||
= builtin->builtin_logical;
|
||
lai->primitive_type_vector [f_primitive_type_logical_s1]
|
||
= builtin->builtin_logical_s1;
|
||
lai->primitive_type_vector [f_primitive_type_logical_s2]
|
||
= builtin->builtin_logical_s2;
|
||
lai->primitive_type_vector [f_primitive_type_logical_s8]
|
||
= builtin->builtin_logical_s8;
|
||
lai->primitive_type_vector [f_primitive_type_real]
|
||
= builtin->builtin_real;
|
||
lai->primitive_type_vector [f_primitive_type_real_s8]
|
||
= builtin->builtin_real_s8;
|
||
lai->primitive_type_vector [f_primitive_type_real_s16]
|
||
= builtin->builtin_real_s16;
|
||
lai->primitive_type_vector [f_primitive_type_complex_s8]
|
||
= builtin->builtin_complex_s8;
|
||
lai->primitive_type_vector [f_primitive_type_complex_s16]
|
||
= builtin->builtin_complex_s16;
|
||
lai->primitive_type_vector [f_primitive_type_void]
|
||
= builtin->builtin_void;
|
||
|
||
lai->bool_type_symbol = "logical";
|
||
lai->bool_type_default = builtin->builtin_logical_s2;
|
||
}
|
||
|
||
/* See language.h. */
|
||
|
||
unsigned int
|
||
f_language::search_name_hash (const char *name) const
|
||
{
|
||
return cp_search_name_hash (name);
|
||
}
|
||
|
||
/* See language.h. */
|
||
|
||
struct block_symbol
|
||
f_language::lookup_symbol_nonlocal (const char *name,
|
||
const struct block *block,
|
||
const domain_enum domain) const
|
||
{
|
||
return cp_lookup_symbol_nonlocal (this, name, block, domain);
|
||
}
|
||
|
||
/* See language.h. */
|
||
|
||
symbol_name_matcher_ftype *
|
||
f_language::get_symbol_name_matcher_inner
|
||
(const lookup_name_info &lookup_name) const
|
||
{
|
||
return cp_get_symbol_name_matcher (lookup_name);
|
||
}
|
||
|
||
/* Single instance of the Fortran language class. */
|
||
|
||
static f_language f_language_defn;
|
||
|
||
static void *
|
||
build_fortran_types (struct gdbarch *gdbarch)
|
||
{
|
||
struct builtin_f_type *builtin_f_type
|
||
= GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_f_type);
|
||
|
||
builtin_f_type->builtin_void
|
||
= arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
|
||
|
||
builtin_f_type->builtin_character
|
||
= arch_type (gdbarch, TYPE_CODE_CHAR, TARGET_CHAR_BIT, "character");
|
||
|
||
builtin_f_type->builtin_logical_s1
|
||
= arch_boolean_type (gdbarch, TARGET_CHAR_BIT, 1, "logical*1");
|
||
|
||
builtin_f_type->builtin_integer_s2
|
||
= arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch), 0,
|
||
"integer*2");
|
||
|
||
builtin_f_type->builtin_integer_s8
|
||
= arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch), 0,
|
||
"integer*8");
|
||
|
||
builtin_f_type->builtin_logical_s2
|
||
= arch_boolean_type (gdbarch, gdbarch_short_bit (gdbarch), 1,
|
||
"logical*2");
|
||
|
||
builtin_f_type->builtin_logical_s8
|
||
= arch_boolean_type (gdbarch, gdbarch_long_long_bit (gdbarch), 1,
|
||
"logical*8");
|
||
|
||
builtin_f_type->builtin_integer
|
||
= arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), 0,
|
||
"integer");
|
||
|
||
builtin_f_type->builtin_logical
|
||
= arch_boolean_type (gdbarch, gdbarch_int_bit (gdbarch), 1,
|
||
"logical*4");
|
||
|
||
builtin_f_type->builtin_real
|
||
= arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
|
||
"real", gdbarch_float_format (gdbarch));
|
||
builtin_f_type->builtin_real_s8
|
||
= arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
|
||
"real*8", gdbarch_double_format (gdbarch));
|
||
auto fmt = gdbarch_floatformat_for_type (gdbarch, "real(kind=16)", 128);
|
||
if (fmt != nullptr)
|
||
builtin_f_type->builtin_real_s16
|
||
= arch_float_type (gdbarch, 128, "real*16", fmt);
|
||
else if (gdbarch_long_double_bit (gdbarch) == 128)
|
||
builtin_f_type->builtin_real_s16
|
||
= arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
|
||
"real*16", gdbarch_long_double_format (gdbarch));
|
||
else
|
||
builtin_f_type->builtin_real_s16
|
||
= arch_type (gdbarch, TYPE_CODE_ERROR, 128, "real*16");
|
||
|
||
builtin_f_type->builtin_complex_s8
|
||
= init_complex_type ("complex*8", builtin_f_type->builtin_real);
|
||
builtin_f_type->builtin_complex_s16
|
||
= init_complex_type ("complex*16", builtin_f_type->builtin_real_s8);
|
||
|
||
if (builtin_f_type->builtin_real_s16->code () == TYPE_CODE_ERROR)
|
||
builtin_f_type->builtin_complex_s32
|
||
= arch_type (gdbarch, TYPE_CODE_ERROR, 256, "complex*32");
|
||
else
|
||
builtin_f_type->builtin_complex_s32
|
||
= init_complex_type ("complex*32", builtin_f_type->builtin_real_s16);
|
||
|
||
return builtin_f_type;
|
||
}
|
||
|
||
static struct gdbarch_data *f_type_data;
|
||
|
||
const struct builtin_f_type *
|
||
builtin_f_type (struct gdbarch *gdbarch)
|
||
{
|
||
return (const struct builtin_f_type *) gdbarch_data (gdbarch, f_type_data);
|
||
}
|
||
|
||
void _initialize_f_language ();
|
||
void
|
||
_initialize_f_language ()
|
||
{
|
||
f_type_data = gdbarch_data_register_post_init (build_fortran_types);
|
||
}
|
||
|
||
/* See f-lang.h. */
|
||
|
||
struct value *
|
||
fortran_argument_convert (struct value *value, bool is_artificial)
|
||
{
|
||
if (!is_artificial)
|
||
{
|
||
/* If the value is not in the inferior e.g. registers values,
|
||
convenience variables and user input. */
|
||
if (VALUE_LVAL (value) != lval_memory)
|
||
{
|
||
struct type *type = value_type (value);
|
||
const int length = TYPE_LENGTH (type);
|
||
const CORE_ADDR addr
|
||
= value_as_long (value_allocate_space_in_inferior (length));
|
||
write_memory (addr, value_contents (value), length);
|
||
struct value *val
|
||
= value_from_contents_and_address (type, value_contents (value),
|
||
addr);
|
||
return value_addr (val);
|
||
}
|
||
else
|
||
return value_addr (value); /* Program variables, e.g. arrays. */
|
||
}
|
||
return value;
|
||
}
|
||
|
||
/* See f-lang.h. */
|
||
|
||
struct type *
|
||
fortran_preserve_arg_pointer (struct value *arg, struct type *type)
|
||
{
|
||
if (value_type (arg)->code () == TYPE_CODE_PTR)
|
||
return value_type (arg);
|
||
return type;
|
||
}
|