binutils-gdb/sim/lm32/cpu.h
Joel Brobecker 32d0add0a6 Update year range in copyright notice of all files owned by the GDB project.
gdb/ChangeLog:

        Update year range in copyright notice of all files.
2015-01-01 13:32:14 +04:00

355 lines
9.3 KiB
C

/* CPU family header for lm32bf.
THIS FILE IS MACHINE GENERATED WITH CGEN.
Copyright 1996-2015 Free Software Foundation, Inc.
This file is part of the GNU simulators.
This file is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
It is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef CPU_LM32BF_H
#define CPU_LM32BF_H
/* Maximum number of instructions that are fetched at a time.
This is for LIW type instructions sets (e.g. m32r). */
#define MAX_LIW_INSNS 1
/* Maximum number of instructions that can be executed in parallel. */
#define MAX_PARALLEL_INSNS 1
/* The size of an "int" needed to hold an instruction word.
This is usually 32 bits, but some architectures needs 64 bits. */
typedef CGEN_INSN_INT CGEN_INSN_WORD;
#include "cgen-engine.h"
/* CPU state information. */
typedef struct {
/* Hardware elements. */
struct {
/* Program counter */
USI h_pc;
#define GET_H_PC() CPU (h_pc)
#define SET_H_PC(x) (CPU (h_pc) = (x))
/* General purpose registers */
SI h_gr[32];
#define GET_H_GR(a1) CPU (h_gr)[a1]
#define SET_H_GR(a1, x) (CPU (h_gr)[a1] = (x))
/* Control and status registers */
SI h_csr[32];
#define GET_H_CSR(a1) CPU (h_csr)[a1]
#define SET_H_CSR(a1, x) (CPU (h_csr)[a1] = (x))
} hardware;
#define CPU_CGEN_HW(cpu) (& (cpu)->cpu_data.hardware)
} LM32BF_CPU_DATA;
/* Cover fns for register access. */
USI lm32bf_h_pc_get (SIM_CPU *);
void lm32bf_h_pc_set (SIM_CPU *, USI);
SI lm32bf_h_gr_get (SIM_CPU *, UINT);
void lm32bf_h_gr_set (SIM_CPU *, UINT, SI);
SI lm32bf_h_csr_get (SIM_CPU *, UINT);
void lm32bf_h_csr_set (SIM_CPU *, UINT, SI);
/* These must be hand-written. */
extern CPUREG_FETCH_FN lm32bf_fetch_register;
extern CPUREG_STORE_FN lm32bf_store_register;
typedef struct {
int empty;
} MODEL_LM32_DATA;
/* Instruction argument buffer. */
union sem_fields {
struct { /* no operands */
int empty;
} sfmt_empty;
struct { /* */
IADDR i_call;
} sfmt_bi;
struct { /* */
UINT f_csr;
UINT f_r1;
} sfmt_wcsr;
struct { /* */
UINT f_csr;
UINT f_r2;
} sfmt_rcsr;
struct { /* */
IADDR i_branch;
UINT f_r0;
UINT f_r1;
} sfmt_be;
struct { /* */
UINT f_r0;
UINT f_r1;
UINT f_uimm;
} sfmt_andi;
struct { /* */
INT f_imm;
UINT f_r0;
UINT f_r1;
} sfmt_addi;
struct { /* */
UINT f_r0;
UINT f_r1;
UINT f_r2;
UINT f_user;
} sfmt_user;
#if WITH_SCACHE_PBB
/* Writeback handler. */
struct {
/* Pointer to argbuf entry for insn whose results need writing back. */
const struct argbuf *abuf;
} write;
/* x-before handler */
struct {
/*const SCACHE *insns[MAX_PARALLEL_INSNS];*/
int first_p;
} before;
/* x-after handler */
struct {
int empty;
} after;
/* This entry is used to terminate each pbb. */
struct {
/* Number of insns in pbb. */
int insn_count;
/* Next pbb to execute. */
SCACHE *next;
SCACHE *branch_target;
} chain;
#endif
};
/* The ARGBUF struct. */
struct argbuf {
/* These are the baseclass definitions. */
IADDR addr;
const IDESC *idesc;
char trace_p;
char profile_p;
/* ??? Temporary hack for skip insns. */
char skip_count;
char unused;
/* cpu specific data follows */
union sem semantic;
int written;
union sem_fields fields;
};
/* A cached insn.
??? SCACHE used to contain more than just argbuf. We could delete the
type entirely and always just use ARGBUF, but for future concerns and as
a level of abstraction it is left in. */
struct scache {
struct argbuf argbuf;
};
/* Macros to simplify extraction, reading and semantic code.
These define and assign the local vars that contain the insn's fields. */
#define EXTRACT_IFMT_EMPTY_VARS \
unsigned int length;
#define EXTRACT_IFMT_EMPTY_CODE \
length = 0; \
#define EXTRACT_IFMT_ADD_VARS \
UINT f_opcode; \
UINT f_r0; \
UINT f_r1; \
UINT f_r2; \
UINT f_resv0; \
unsigned int length;
#define EXTRACT_IFMT_ADD_CODE \
length = 4; \
f_opcode = EXTRACT_LSB0_UINT (insn, 32, 31, 6); \
f_r0 = EXTRACT_LSB0_UINT (insn, 32, 25, 5); \
f_r1 = EXTRACT_LSB0_UINT (insn, 32, 20, 5); \
f_r2 = EXTRACT_LSB0_UINT (insn, 32, 15, 5); \
f_resv0 = EXTRACT_LSB0_UINT (insn, 32, 10, 11); \
#define EXTRACT_IFMT_ADDI_VARS \
UINT f_opcode; \
UINT f_r0; \
UINT f_r1; \
INT f_imm; \
unsigned int length;
#define EXTRACT_IFMT_ADDI_CODE \
length = 4; \
f_opcode = EXTRACT_LSB0_UINT (insn, 32, 31, 6); \
f_r0 = EXTRACT_LSB0_UINT (insn, 32, 25, 5); \
f_r1 = EXTRACT_LSB0_UINT (insn, 32, 20, 5); \
f_imm = EXTRACT_LSB0_SINT (insn, 32, 15, 16); \
#define EXTRACT_IFMT_ANDI_VARS \
UINT f_opcode; \
UINT f_r0; \
UINT f_r1; \
UINT f_uimm; \
unsigned int length;
#define EXTRACT_IFMT_ANDI_CODE \
length = 4; \
f_opcode = EXTRACT_LSB0_UINT (insn, 32, 31, 6); \
f_r0 = EXTRACT_LSB0_UINT (insn, 32, 25, 5); \
f_r1 = EXTRACT_LSB0_UINT (insn, 32, 20, 5); \
f_uimm = EXTRACT_LSB0_UINT (insn, 32, 15, 16); \
#define EXTRACT_IFMT_ANDHII_VARS \
UINT f_opcode; \
UINT f_r0; \
UINT f_r1; \
UINT f_uimm; \
unsigned int length;
#define EXTRACT_IFMT_ANDHII_CODE \
length = 4; \
f_opcode = EXTRACT_LSB0_UINT (insn, 32, 31, 6); \
f_r0 = EXTRACT_LSB0_UINT (insn, 32, 25, 5); \
f_r1 = EXTRACT_LSB0_UINT (insn, 32, 20, 5); \
f_uimm = EXTRACT_LSB0_UINT (insn, 32, 15, 16); \
#define EXTRACT_IFMT_B_VARS \
UINT f_opcode; \
UINT f_r0; \
UINT f_r1; \
UINT f_r2; \
UINT f_resv0; \
unsigned int length;
#define EXTRACT_IFMT_B_CODE \
length = 4; \
f_opcode = EXTRACT_LSB0_UINT (insn, 32, 31, 6); \
f_r0 = EXTRACT_LSB0_UINT (insn, 32, 25, 5); \
f_r1 = EXTRACT_LSB0_UINT (insn, 32, 20, 5); \
f_r2 = EXTRACT_LSB0_UINT (insn, 32, 15, 5); \
f_resv0 = EXTRACT_LSB0_UINT (insn, 32, 10, 11); \
#define EXTRACT_IFMT_BI_VARS \
UINT f_opcode; \
SI f_call; \
unsigned int length;
#define EXTRACT_IFMT_BI_CODE \
length = 4; \
f_opcode = EXTRACT_LSB0_UINT (insn, 32, 31, 6); \
f_call = ((pc) + (((SI) (((EXTRACT_LSB0_SINT (insn, 32, 25, 26)) << (6))) >> (4)))); \
#define EXTRACT_IFMT_BE_VARS \
UINT f_opcode; \
UINT f_r0; \
UINT f_r1; \
SI f_branch; \
unsigned int length;
#define EXTRACT_IFMT_BE_CODE \
length = 4; \
f_opcode = EXTRACT_LSB0_UINT (insn, 32, 31, 6); \
f_r0 = EXTRACT_LSB0_UINT (insn, 32, 25, 5); \
f_r1 = EXTRACT_LSB0_UINT (insn, 32, 20, 5); \
f_branch = ((pc) + (((SI) (((EXTRACT_LSB0_SINT (insn, 32, 15, 16)) << (16))) >> (14)))); \
#define EXTRACT_IFMT_ORI_VARS \
UINT f_opcode; \
UINT f_r0; \
UINT f_r1; \
UINT f_uimm; \
unsigned int length;
#define EXTRACT_IFMT_ORI_CODE \
length = 4; \
f_opcode = EXTRACT_LSB0_UINT (insn, 32, 31, 6); \
f_r0 = EXTRACT_LSB0_UINT (insn, 32, 25, 5); \
f_r1 = EXTRACT_LSB0_UINT (insn, 32, 20, 5); \
f_uimm = EXTRACT_LSB0_UINT (insn, 32, 15, 16); \
#define EXTRACT_IFMT_RCSR_VARS \
UINT f_opcode; \
UINT f_csr; \
UINT f_r1; \
UINT f_r2; \
UINT f_resv0; \
unsigned int length;
#define EXTRACT_IFMT_RCSR_CODE \
length = 4; \
f_opcode = EXTRACT_LSB0_UINT (insn, 32, 31, 6); \
f_csr = EXTRACT_LSB0_UINT (insn, 32, 25, 5); \
f_r1 = EXTRACT_LSB0_UINT (insn, 32, 20, 5); \
f_r2 = EXTRACT_LSB0_UINT (insn, 32, 15, 5); \
f_resv0 = EXTRACT_LSB0_UINT (insn, 32, 10, 11); \
#define EXTRACT_IFMT_SEXTB_VARS \
UINT f_opcode; \
UINT f_r0; \
UINT f_r1; \
UINT f_r2; \
UINT f_resv0; \
unsigned int length;
#define EXTRACT_IFMT_SEXTB_CODE \
length = 4; \
f_opcode = EXTRACT_LSB0_UINT (insn, 32, 31, 6); \
f_r0 = EXTRACT_LSB0_UINT (insn, 32, 25, 5); \
f_r1 = EXTRACT_LSB0_UINT (insn, 32, 20, 5); \
f_r2 = EXTRACT_LSB0_UINT (insn, 32, 15, 5); \
f_resv0 = EXTRACT_LSB0_UINT (insn, 32, 10, 11); \
#define EXTRACT_IFMT_USER_VARS \
UINT f_opcode; \
UINT f_r0; \
UINT f_r1; \
UINT f_r2; \
UINT f_user; \
unsigned int length;
#define EXTRACT_IFMT_USER_CODE \
length = 4; \
f_opcode = EXTRACT_LSB0_UINT (insn, 32, 31, 6); \
f_r0 = EXTRACT_LSB0_UINT (insn, 32, 25, 5); \
f_r1 = EXTRACT_LSB0_UINT (insn, 32, 20, 5); \
f_r2 = EXTRACT_LSB0_UINT (insn, 32, 15, 5); \
f_user = EXTRACT_LSB0_UINT (insn, 32, 10, 11); \
#define EXTRACT_IFMT_WCSR_VARS \
UINT f_opcode; \
UINT f_csr; \
UINT f_r1; \
UINT f_r2; \
UINT f_resv0; \
unsigned int length;
#define EXTRACT_IFMT_WCSR_CODE \
length = 4; \
f_opcode = EXTRACT_LSB0_UINT (insn, 32, 31, 6); \
f_csr = EXTRACT_LSB0_UINT (insn, 32, 25, 5); \
f_r1 = EXTRACT_LSB0_UINT (insn, 32, 20, 5); \
f_r2 = EXTRACT_LSB0_UINT (insn, 32, 15, 5); \
f_resv0 = EXTRACT_LSB0_UINT (insn, 32, 10, 11); \
#define EXTRACT_IFMT_BREAK_VARS \
UINT f_opcode; \
UINT f_exception; \
unsigned int length;
#define EXTRACT_IFMT_BREAK_CODE \
length = 4; \
f_opcode = EXTRACT_LSB0_UINT (insn, 32, 31, 6); \
f_exception = EXTRACT_LSB0_UINT (insn, 32, 25, 26); \
/* Collection of various things for the trace handler to use. */
typedef struct trace_record {
IADDR pc;
/* FIXME:wip */
} TRACE_RECORD;
#endif /* CPU_LM32BF_H */