mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-03 04:12:10 +08:00
614 lines
17 KiB
C
614 lines
17 KiB
C
/* atof_generic.c - turn a string of digits into a Flonum
|
|
Copyright (C) 1987-2014 Free Software Foundation, Inc.
|
|
|
|
This file is part of GAS, the GNU Assembler.
|
|
|
|
GAS is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3, or (at your option)
|
|
any later version.
|
|
|
|
GAS is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
|
License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GAS; see the file COPYING. If not, write to the Free
|
|
Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
|
|
02110-1301, USA. */
|
|
|
|
#include "as.h"
|
|
#include "safe-ctype.h"
|
|
|
|
#ifndef FALSE
|
|
#define FALSE (0)
|
|
#endif
|
|
#ifndef TRUE
|
|
#define TRUE (1)
|
|
#endif
|
|
|
|
#ifdef TRACE
|
|
static void flonum_print (const FLONUM_TYPE *);
|
|
#endif
|
|
|
|
#define ASSUME_DECIMAL_MARK_IS_DOT
|
|
|
|
/***********************************************************************\
|
|
* *
|
|
* Given a string of decimal digits , with optional decimal *
|
|
* mark and optional decimal exponent (place value) of the *
|
|
* lowest_order decimal digit: produce a floating point *
|
|
* number. The number is 'generic' floating point: our *
|
|
* caller will encode it for a specific machine architecture. *
|
|
* *
|
|
* Assumptions *
|
|
* uses base (radix) 2 *
|
|
* this machine uses 2's complement binary integers *
|
|
* target flonums use " " " " *
|
|
* target flonums exponents fit in a long *
|
|
* *
|
|
\***********************************************************************/
|
|
|
|
/*
|
|
|
|
Syntax:
|
|
|
|
<flonum> ::= <optional-sign> <decimal-number> <optional-exponent>
|
|
<optional-sign> ::= '+' | '-' | {empty}
|
|
<decimal-number> ::= <integer>
|
|
| <integer> <radix-character>
|
|
| <integer> <radix-character> <integer>
|
|
| <radix-character> <integer>
|
|
|
|
<optional-exponent> ::= {empty}
|
|
| <exponent-character> <optional-sign> <integer>
|
|
|
|
<integer> ::= <digit> | <digit> <integer>
|
|
<digit> ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
|
|
<exponent-character> ::= {one character from "string_of_decimal_exponent_marks"}
|
|
<radix-character> ::= {one character from "string_of_decimal_marks"}
|
|
|
|
*/
|
|
|
|
int
|
|
atof_generic (/* return pointer to just AFTER number we read. */
|
|
char **address_of_string_pointer,
|
|
/* At most one per number. */
|
|
const char *string_of_decimal_marks,
|
|
const char *string_of_decimal_exponent_marks,
|
|
FLONUM_TYPE *address_of_generic_floating_point_number)
|
|
{
|
|
int return_value; /* 0 means OK. */
|
|
char *first_digit;
|
|
unsigned int number_of_digits_before_decimal;
|
|
unsigned int number_of_digits_after_decimal;
|
|
long decimal_exponent;
|
|
unsigned int number_of_digits_available;
|
|
char digits_sign_char;
|
|
|
|
/*
|
|
* Scan the input string, abstracting (1)digits (2)decimal mark (3) exponent.
|
|
* It would be simpler to modify the string, but we don't; just to be nice
|
|
* to caller.
|
|
* We need to know how many digits we have, so we can allocate space for
|
|
* the digits' value.
|
|
*/
|
|
|
|
char *p;
|
|
char c;
|
|
int seen_significant_digit;
|
|
|
|
#ifdef ASSUME_DECIMAL_MARK_IS_DOT
|
|
gas_assert (string_of_decimal_marks[0] == '.'
|
|
&& string_of_decimal_marks[1] == 0);
|
|
#define IS_DECIMAL_MARK(c) ((c) == '.')
|
|
#else
|
|
#define IS_DECIMAL_MARK(c) (0 != strchr (string_of_decimal_marks, (c)))
|
|
#endif
|
|
|
|
first_digit = *address_of_string_pointer;
|
|
c = *first_digit;
|
|
|
|
if (c == '-' || c == '+')
|
|
{
|
|
digits_sign_char = c;
|
|
first_digit++;
|
|
}
|
|
else
|
|
digits_sign_char = '+';
|
|
|
|
switch (first_digit[0])
|
|
{
|
|
case 'n':
|
|
case 'N':
|
|
if (!strncasecmp ("nan", first_digit, 3))
|
|
{
|
|
address_of_generic_floating_point_number->sign = 0;
|
|
address_of_generic_floating_point_number->exponent = 0;
|
|
address_of_generic_floating_point_number->leader =
|
|
address_of_generic_floating_point_number->low;
|
|
*address_of_string_pointer = first_digit + 3;
|
|
return 0;
|
|
}
|
|
break;
|
|
|
|
case 'i':
|
|
case 'I':
|
|
if (!strncasecmp ("inf", first_digit, 3))
|
|
{
|
|
address_of_generic_floating_point_number->sign =
|
|
digits_sign_char == '+' ? 'P' : 'N';
|
|
address_of_generic_floating_point_number->exponent = 0;
|
|
address_of_generic_floating_point_number->leader =
|
|
address_of_generic_floating_point_number->low;
|
|
|
|
first_digit += 3;
|
|
if (!strncasecmp ("inity", first_digit, 5))
|
|
first_digit += 5;
|
|
|
|
*address_of_string_pointer = first_digit;
|
|
|
|
return 0;
|
|
}
|
|
break;
|
|
}
|
|
|
|
number_of_digits_before_decimal = 0;
|
|
number_of_digits_after_decimal = 0;
|
|
decimal_exponent = 0;
|
|
seen_significant_digit = 0;
|
|
for (p = first_digit;
|
|
(((c = *p) != '\0')
|
|
&& (!c || !IS_DECIMAL_MARK (c))
|
|
&& (!c || !strchr (string_of_decimal_exponent_marks, c)));
|
|
p++)
|
|
{
|
|
if (ISDIGIT (c))
|
|
{
|
|
if (seen_significant_digit || c > '0')
|
|
{
|
|
++number_of_digits_before_decimal;
|
|
seen_significant_digit = 1;
|
|
}
|
|
else
|
|
{
|
|
first_digit++;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
break; /* p -> char after pre-decimal digits. */
|
|
}
|
|
} /* For each digit before decimal mark. */
|
|
|
|
#ifndef OLD_FLOAT_READS
|
|
/* Ignore trailing 0's after the decimal point. The original code here
|
|
* (ifdef'd out) does not do this, and numbers like
|
|
* 4.29496729600000000000e+09 (2**31)
|
|
* come out inexact for some reason related to length of the digit
|
|
* string.
|
|
*/
|
|
if (c && IS_DECIMAL_MARK (c))
|
|
{
|
|
unsigned int zeros = 0; /* Length of current string of zeros */
|
|
|
|
for (p++; (c = *p) && ISDIGIT (c); p++)
|
|
{
|
|
if (c == '0')
|
|
{
|
|
zeros++;
|
|
}
|
|
else
|
|
{
|
|
number_of_digits_after_decimal += 1 + zeros;
|
|
zeros = 0;
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
if (c && IS_DECIMAL_MARK (c))
|
|
{
|
|
for (p++;
|
|
(((c = *p) != '\0')
|
|
&& (!c || !strchr (string_of_decimal_exponent_marks, c)));
|
|
p++)
|
|
{
|
|
if (ISDIGIT (c))
|
|
{
|
|
/* This may be retracted below. */
|
|
number_of_digits_after_decimal++;
|
|
|
|
if ( /* seen_significant_digit || */ c > '0')
|
|
{
|
|
seen_significant_digit = TRUE;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (!seen_significant_digit)
|
|
{
|
|
number_of_digits_after_decimal = 0;
|
|
}
|
|
break;
|
|
}
|
|
} /* For each digit after decimal mark. */
|
|
}
|
|
|
|
while (number_of_digits_after_decimal
|
|
&& first_digit[number_of_digits_before_decimal
|
|
+ number_of_digits_after_decimal] == '0')
|
|
--number_of_digits_after_decimal;
|
|
#endif
|
|
|
|
if (flag_m68k_mri)
|
|
{
|
|
while (c == '_')
|
|
c = *++p;
|
|
}
|
|
if (c && strchr (string_of_decimal_exponent_marks, c))
|
|
{
|
|
char digits_exponent_sign_char;
|
|
|
|
c = *++p;
|
|
if (flag_m68k_mri)
|
|
{
|
|
while (c == '_')
|
|
c = *++p;
|
|
}
|
|
if (c && strchr ("+-", c))
|
|
{
|
|
digits_exponent_sign_char = c;
|
|
c = *++p;
|
|
}
|
|
else
|
|
{
|
|
digits_exponent_sign_char = '+';
|
|
}
|
|
|
|
for (; (c); c = *++p)
|
|
{
|
|
if (ISDIGIT (c))
|
|
{
|
|
decimal_exponent = decimal_exponent * 10 + c - '0';
|
|
/*
|
|
* BUG! If we overflow here, we lose!
|
|
*/
|
|
}
|
|
else
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (digits_exponent_sign_char == '-')
|
|
{
|
|
decimal_exponent = -decimal_exponent;
|
|
}
|
|
}
|
|
|
|
*address_of_string_pointer = p;
|
|
|
|
number_of_digits_available =
|
|
number_of_digits_before_decimal + number_of_digits_after_decimal;
|
|
return_value = 0;
|
|
if (number_of_digits_available == 0)
|
|
{
|
|
address_of_generic_floating_point_number->exponent = 0; /* Not strictly necessary */
|
|
address_of_generic_floating_point_number->leader
|
|
= -1 + address_of_generic_floating_point_number->low;
|
|
address_of_generic_floating_point_number->sign = digits_sign_char;
|
|
/* We have just concocted (+/-)0.0E0 */
|
|
|
|
}
|
|
else
|
|
{
|
|
int count; /* Number of useful digits left to scan. */
|
|
|
|
LITTLENUM_TYPE *digits_binary_low;
|
|
unsigned int precision;
|
|
unsigned int maximum_useful_digits;
|
|
unsigned int number_of_digits_to_use;
|
|
unsigned int more_than_enough_bits_for_digits;
|
|
unsigned int more_than_enough_littlenums_for_digits;
|
|
unsigned int size_of_digits_in_littlenums;
|
|
unsigned int size_of_digits_in_chars;
|
|
FLONUM_TYPE power_of_10_flonum;
|
|
FLONUM_TYPE digits_flonum;
|
|
|
|
precision = (address_of_generic_floating_point_number->high
|
|
- address_of_generic_floating_point_number->low
|
|
+ 1); /* Number of destination littlenums. */
|
|
|
|
/* Includes guard bits (two littlenums worth) */
|
|
maximum_useful_digits = (((precision - 2))
|
|
* ( (LITTLENUM_NUMBER_OF_BITS))
|
|
* 1000000 / 3321928)
|
|
+ 2; /* 2 :: guard digits. */
|
|
|
|
if (number_of_digits_available > maximum_useful_digits)
|
|
{
|
|
number_of_digits_to_use = maximum_useful_digits;
|
|
}
|
|
else
|
|
{
|
|
number_of_digits_to_use = number_of_digits_available;
|
|
}
|
|
|
|
/* Cast these to SIGNED LONG first, otherwise, on systems with
|
|
LONG wider than INT (such as Alpha OSF/1), unsignedness may
|
|
cause unexpected results. */
|
|
decimal_exponent += ((long) number_of_digits_before_decimal
|
|
- (long) number_of_digits_to_use);
|
|
|
|
more_than_enough_bits_for_digits
|
|
= (number_of_digits_to_use * 3321928 / 1000000 + 1);
|
|
|
|
more_than_enough_littlenums_for_digits
|
|
= (more_than_enough_bits_for_digits
|
|
/ LITTLENUM_NUMBER_OF_BITS)
|
|
+ 2;
|
|
|
|
/* Compute (digits) part. In "12.34E56" this is the "1234" part.
|
|
Arithmetic is exact here. If no digits are supplied then this
|
|
part is a 0 valued binary integer. Allocate room to build up
|
|
the binary number as littlenums. We want this memory to
|
|
disappear when we leave this function. Assume no alignment
|
|
problems => (room for n objects) == n * (room for 1
|
|
object). */
|
|
|
|
size_of_digits_in_littlenums = more_than_enough_littlenums_for_digits;
|
|
size_of_digits_in_chars = size_of_digits_in_littlenums
|
|
* sizeof (LITTLENUM_TYPE);
|
|
|
|
digits_binary_low = (LITTLENUM_TYPE *)
|
|
alloca (size_of_digits_in_chars);
|
|
|
|
memset ((char *) digits_binary_low, '\0', size_of_digits_in_chars);
|
|
|
|
/* Digits_binary_low[] is allocated and zeroed. */
|
|
|
|
/*
|
|
* Parse the decimal digits as if * digits_low was in the units position.
|
|
* Emit a binary number into digits_binary_low[].
|
|
*
|
|
* Use a large-precision version of:
|
|
* (((1st-digit) * 10 + 2nd-digit) * 10 + 3rd-digit ...) * 10 + last-digit
|
|
*/
|
|
|
|
for (p = first_digit, count = number_of_digits_to_use; count; p++, --count)
|
|
{
|
|
c = *p;
|
|
if (ISDIGIT (c))
|
|
{
|
|
/*
|
|
* Multiply by 10. Assume can never overflow.
|
|
* Add this digit to digits_binary_low[].
|
|
*/
|
|
|
|
long carry;
|
|
LITTLENUM_TYPE *littlenum_pointer;
|
|
LITTLENUM_TYPE *littlenum_limit;
|
|
|
|
littlenum_limit = digits_binary_low
|
|
+ more_than_enough_littlenums_for_digits
|
|
- 1;
|
|
|
|
carry = c - '0'; /* char -> binary */
|
|
|
|
for (littlenum_pointer = digits_binary_low;
|
|
littlenum_pointer <= littlenum_limit;
|
|
littlenum_pointer++)
|
|
{
|
|
long work;
|
|
|
|
work = carry + 10 * (long) (*littlenum_pointer);
|
|
*littlenum_pointer = work & LITTLENUM_MASK;
|
|
carry = work >> LITTLENUM_NUMBER_OF_BITS;
|
|
}
|
|
|
|
if (carry != 0)
|
|
{
|
|
/*
|
|
* We have a GROSS internal error.
|
|
* This should never happen.
|
|
*/
|
|
as_fatal (_("failed sanity check"));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
++count; /* '.' doesn't alter digits used count. */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Digits_binary_low[] properly encodes the value of the digits.
|
|
* Forget about any high-order littlenums that are 0.
|
|
*/
|
|
while (digits_binary_low[size_of_digits_in_littlenums - 1] == 0
|
|
&& size_of_digits_in_littlenums >= 2)
|
|
size_of_digits_in_littlenums--;
|
|
|
|
digits_flonum.low = digits_binary_low;
|
|
digits_flonum.high = digits_binary_low + size_of_digits_in_littlenums - 1;
|
|
digits_flonum.leader = digits_flonum.high;
|
|
digits_flonum.exponent = 0;
|
|
/*
|
|
* The value of digits_flonum . sign should not be important.
|
|
* We have already decided the output's sign.
|
|
* We trust that the sign won't influence the other parts of the number!
|
|
* So we give it a value for these reasons:
|
|
* (1) courtesy to humans reading/debugging
|
|
* these numbers so they don't get excited about strange values
|
|
* (2) in future there may be more meaning attached to sign,
|
|
* and what was
|
|
* harmless noise may become disruptive, ill-conditioned (or worse)
|
|
* input.
|
|
*/
|
|
digits_flonum.sign = '+';
|
|
|
|
{
|
|
/*
|
|
* Compute the mantssa (& exponent) of the power of 10.
|
|
* If successful, then multiply the power of 10 by the digits
|
|
* giving return_binary_mantissa and return_binary_exponent.
|
|
*/
|
|
|
|
LITTLENUM_TYPE *power_binary_low;
|
|
int decimal_exponent_is_negative;
|
|
/* This refers to the "-56" in "12.34E-56". */
|
|
/* FALSE: decimal_exponent is positive (or 0) */
|
|
/* TRUE: decimal_exponent is negative */
|
|
FLONUM_TYPE temporary_flonum;
|
|
LITTLENUM_TYPE *temporary_binary_low;
|
|
unsigned int size_of_power_in_littlenums;
|
|
unsigned int size_of_power_in_chars;
|
|
|
|
size_of_power_in_littlenums = precision;
|
|
/* Precision has a built-in fudge factor so we get a few guard bits. */
|
|
|
|
decimal_exponent_is_negative = decimal_exponent < 0;
|
|
if (decimal_exponent_is_negative)
|
|
{
|
|
decimal_exponent = -decimal_exponent;
|
|
}
|
|
|
|
/* From now on: the decimal exponent is > 0. Its sign is separate. */
|
|
|
|
size_of_power_in_chars = size_of_power_in_littlenums
|
|
* sizeof (LITTLENUM_TYPE) + 2;
|
|
|
|
power_binary_low = (LITTLENUM_TYPE *) alloca (size_of_power_in_chars);
|
|
temporary_binary_low = (LITTLENUM_TYPE *) alloca (size_of_power_in_chars);
|
|
memset ((char *) power_binary_low, '\0', size_of_power_in_chars);
|
|
*power_binary_low = 1;
|
|
power_of_10_flonum.exponent = 0;
|
|
power_of_10_flonum.low = power_binary_low;
|
|
power_of_10_flonum.leader = power_binary_low;
|
|
power_of_10_flonum.high = power_binary_low + size_of_power_in_littlenums - 1;
|
|
power_of_10_flonum.sign = '+';
|
|
temporary_flonum.low = temporary_binary_low;
|
|
temporary_flonum.high = temporary_binary_low + size_of_power_in_littlenums - 1;
|
|
/*
|
|
* (power) == 1.
|
|
* Space for temporary_flonum allocated.
|
|
*/
|
|
|
|
/*
|
|
* ...
|
|
*
|
|
* WHILE more bits
|
|
* DO find next bit (with place value)
|
|
* multiply into power mantissa
|
|
* OD
|
|
*/
|
|
{
|
|
int place_number_limit;
|
|
/* Any 10^(2^n) whose "n" exceeds this */
|
|
/* value will fall off the end of */
|
|
/* flonum_XXXX_powers_of_ten[]. */
|
|
int place_number;
|
|
const FLONUM_TYPE *multiplicand; /* -> 10^(2^n) */
|
|
|
|
place_number_limit = table_size_of_flonum_powers_of_ten;
|
|
|
|
multiplicand = (decimal_exponent_is_negative
|
|
? flonum_negative_powers_of_ten
|
|
: flonum_positive_powers_of_ten);
|
|
|
|
for (place_number = 1;/* Place value of this bit of exponent. */
|
|
decimal_exponent;/* Quit when no more 1 bits in exponent. */
|
|
decimal_exponent >>= 1, place_number++)
|
|
{
|
|
if (decimal_exponent & 1)
|
|
{
|
|
if (place_number > place_number_limit)
|
|
{
|
|
/* The decimal exponent has a magnitude so great
|
|
that our tables can't help us fragment it.
|
|
Although this routine is in error because it
|
|
can't imagine a number that big, signal an
|
|
error as if it is the user's fault for
|
|
presenting such a big number. */
|
|
return_value = ERROR_EXPONENT_OVERFLOW;
|
|
/* quit out of loop gracefully */
|
|
decimal_exponent = 0;
|
|
}
|
|
else
|
|
{
|
|
#ifdef TRACE
|
|
printf ("before multiply, place_number = %d., power_of_10_flonum:\n",
|
|
place_number);
|
|
|
|
flonum_print (&power_of_10_flonum);
|
|
(void) putchar ('\n');
|
|
#endif
|
|
#ifdef TRACE
|
|
printf ("multiplier:\n");
|
|
flonum_print (multiplicand + place_number);
|
|
(void) putchar ('\n');
|
|
#endif
|
|
flonum_multip (multiplicand + place_number,
|
|
&power_of_10_flonum, &temporary_flonum);
|
|
#ifdef TRACE
|
|
printf ("after multiply:\n");
|
|
flonum_print (&temporary_flonum);
|
|
(void) putchar ('\n');
|
|
#endif
|
|
flonum_copy (&temporary_flonum, &power_of_10_flonum);
|
|
#ifdef TRACE
|
|
printf ("after copy:\n");
|
|
flonum_print (&power_of_10_flonum);
|
|
(void) putchar ('\n');
|
|
#endif
|
|
} /* If this bit of decimal_exponent was computable.*/
|
|
} /* If this bit of decimal_exponent was set. */
|
|
} /* For each bit of binary representation of exponent */
|
|
#ifdef TRACE
|
|
printf ("after computing power_of_10_flonum:\n");
|
|
flonum_print (&power_of_10_flonum);
|
|
(void) putchar ('\n');
|
|
#endif
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* power_of_10_flonum is power of ten in binary (mantissa) , (exponent).
|
|
* It may be the number 1, in which case we don't NEED to multiply.
|
|
*
|
|
* Multiply (decimal digits) by power_of_10_flonum.
|
|
*/
|
|
|
|
flonum_multip (&power_of_10_flonum, &digits_flonum, address_of_generic_floating_point_number);
|
|
/* Assert sign of the number we made is '+'. */
|
|
address_of_generic_floating_point_number->sign = digits_sign_char;
|
|
|
|
}
|
|
return return_value;
|
|
}
|
|
|
|
#ifdef TRACE
|
|
static void
|
|
flonum_print (f)
|
|
const FLONUM_TYPE *f;
|
|
{
|
|
LITTLENUM_TYPE *lp;
|
|
char littlenum_format[10];
|
|
sprintf (littlenum_format, " %%0%dx", sizeof (LITTLENUM_TYPE) * 2);
|
|
#define print_littlenum(LP) (printf (littlenum_format, LP))
|
|
printf ("flonum @%p %c e%ld", f, f->sign, f->exponent);
|
|
if (f->low < f->high)
|
|
for (lp = f->high; lp >= f->low; lp--)
|
|
print_littlenum (*lp);
|
|
else
|
|
for (lp = f->low; lp <= f->high; lp++)
|
|
print_littlenum (*lp);
|
|
printf ("\n");
|
|
fflush (stdout);
|
|
}
|
|
#endif
|
|
|
|
/* end of atof_generic.c */
|