binutils-gdb/gdb/stabsread.c
Jim Kingdon 0848ad1c4d * stabsread.c (patch_block_stabs): If stab & no symbol, make
a LOC_OPTIMIZED_OUT symbol.
	symtab.h (enum address_class): Add LOC_OPTIMIZED_OUT.
	findvar.c (read_var_value), printcmd.c (address_info),
	symmisc.c (print_{,partial_}symbol), c-exp.y (variable),
	m2-exp.y (yylex): Deal with it.
1993-04-02 19:35:30 +00:00

3359 lines
94 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Support routines for decoding "stabs" debugging information format.
Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993
Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
/* Support routines for reading and decoding debugging information in
the "stabs" format. This format is used with many systems that use
the a.out object file format, as well as some systems that use
COFF or ELF where the stabs data is placed in a special section.
Avoid placing any object file format specific code in this file. */
#include "defs.h"
#include "bfd.h"
#include "obstack.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "symfile.h"
#include "objfiles.h"
#include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
#include "buildsym.h"
#include "complaints.h"
#include "demangle.h"
/* Ask stabsread.h to define the vars it normally declares `extern'. */
#define EXTERN /**/
#include "stabsread.h" /* Our own declarations */
#undef EXTERN
/* The routines that read and process a complete stabs for a C struct or
C++ class pass lists of data member fields and lists of member function
fields in an instance of a field_info structure, as defined below.
This is part of some reorganization of low level C++ support and is
expected to eventually go away... (FIXME) */
struct field_info
{
struct nextfield
{
struct nextfield *next;
int visibility;
struct field field;
} *list;
struct next_fnfieldlist
{
struct next_fnfieldlist *next;
struct fn_fieldlist fn_fieldlist;
} *fnlist;
};
static struct type *
dbx_alloc_type PARAMS ((int [2], struct objfile *));
static void
read_huge_number PARAMS ((char **, int, long *, int *));
static void
patch_block_stabs PARAMS ((struct pending *, struct pending_stabs *,
struct objfile *));
static void
fix_common_block PARAMS ((struct symbol *, int));
static struct type *
read_range_type PARAMS ((char **, int [2], struct objfile *));
static struct type *
read_sun_builtin_type PARAMS ((char **, int [2], struct objfile *));
static struct type *
read_sun_floating_type PARAMS ((char **, int [2], struct objfile *));
static struct type *
read_enum_type PARAMS ((char **, struct type *, struct objfile *));
static struct type *
rs6000_builtin_type PARAMS ((int));
static int
read_member_functions PARAMS ((struct field_info *, char **, struct type *,
struct objfile *));
static int
read_struct_fields PARAMS ((struct field_info *, char **, struct type *,
struct objfile *));
static int
read_baseclasses PARAMS ((struct field_info *, char **, struct type *,
struct objfile *));
static int
read_tilde_fields PARAMS ((struct field_info *, char **, struct type *,
struct objfile *));
static int
attach_fn_fields_to_type PARAMS ((struct field_info *, struct type *));
static int
attach_fields_to_type PARAMS ((struct field_info *, struct type *,
struct objfile *));
static struct type *
read_struct_type PARAMS ((char **, struct type *, struct objfile *));
static struct type *
read_array_type PARAMS ((char **, struct type *, struct objfile *));
static struct type **
read_args PARAMS ((char **, int, struct objfile *));
static void
read_cpp_abbrev PARAMS ((struct field_info *, char **, struct type *,
struct objfile *));
static const char vptr_name[] = { '_','v','p','t','r',CPLUS_MARKER,'\0' };
static const char vb_name[] = { '_','v','b',CPLUS_MARKER,'\0' };
/* Define this as 1 if a pcc declaration of a char or short argument
gives the correct address. Otherwise assume pcc gives the
address of the corresponding int, which is not the same on a
big-endian machine. */
#ifndef BELIEVE_PCC_PROMOTION
#define BELIEVE_PCC_PROMOTION 0
#endif
/* During some calls to read_type (and thus to read_range_type), this
contains the name of the type being defined. Range types are only
used in C as basic types. We use the name to distinguish the otherwise
identical basic types "int" and "long" and their unsigned versions.
FIXME, this should disappear with better type management. */
static char *long_kludge_name;
#if 0
struct complaint dbx_class_complaint =
{
"encountered DBX-style class variable debugging information.\n\
You seem to have compiled your program with \
\"g++ -g0\" instead of \"g++ -g\".\n\
Therefore GDB will not know about your class variables", 0, 0
};
#endif
struct complaint invalid_cpp_abbrev_complaint =
{"invalid C++ abbreviation `%s'", 0, 0};
struct complaint invalid_cpp_type_complaint =
{"C++ abbreviated type name unknown at symtab pos %d", 0, 0};
struct complaint member_fn_complaint =
{"member function type missing, got '%c'", 0, 0};
struct complaint const_vol_complaint =
{"const/volatile indicator missing, got '%c'", 0, 0};
struct complaint error_type_complaint =
{"debug info mismatch between compiler and debugger", 0, 0};
struct complaint invalid_member_complaint =
{"invalid (minimal) member type data format at symtab pos %d.", 0, 0};
struct complaint range_type_base_complaint =
{"base type %d of range type is not defined", 0, 0};
struct complaint reg_value_complaint =
{"register number too large in symbol %s", 0, 0};
struct complaint vtbl_notfound_complaint =
{"virtual function table pointer not found when defining class `%s'", 0, 0};
struct complaint unrecognized_cplus_name_complaint =
{"Unknown C++ symbol name `%s'", 0, 0};
struct complaint rs6000_builtin_complaint =
{"Unknown builtin type %d", 0, 0};
struct complaint stabs_general_complaint =
{"%s", 0, 0};
/* Make a list of forward references which haven't been defined. */
static struct type **undef_types;
static int undef_types_allocated;
static int undef_types_length;
/* Check for and handle cretinous stabs symbol name continuation! */
#define STABS_CONTINUE(pp) \
do { \
if (**(pp) == '\\') *(pp) = next_symbol_text (); \
} while (0)
int
hashname (name)
char *name;
{
register char *p = name;
register int total = p[0];
register int c;
c = p[1];
total += c << 2;
if (c)
{
c = p[2];
total += c << 4;
if (c)
{
total += p[3] << 6;
}
}
/* Ensure result is positive. */
if (total < 0)
{
total += (1000 << 6);
}
return (total % HASHSIZE);
}
/* Look up a dbx type-number pair. Return the address of the slot
where the type for that number-pair is stored.
The number-pair is in TYPENUMS.
This can be used for finding the type associated with that pair
or for associating a new type with the pair. */
struct type **
dbx_lookup_type (typenums)
int typenums[2];
{
register int filenum = typenums[0];
register int index = typenums[1];
unsigned old_len;
register int real_filenum;
register struct header_file *f;
int f_orig_length;
if (filenum == -1) /* -1,-1 is for temporary types. */
return 0;
if (filenum < 0 || filenum >= n_this_object_header_files)
error ("Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
filenum, index, symnum);
if (filenum == 0)
{
if (index < 0)
{
/* Caller wants address of address of type. We think
that negative (rs6k builtin) types will never appear as
"lvalues", (nor should they), so we stuff the real type
pointer into a temp, and return its address. If referenced,
this will do the right thing. */
static struct type *temp_type;
temp_type = rs6000_builtin_type(index);
return &temp_type;
}
/* Type is defined outside of header files.
Find it in this object file's type vector. */
if (index >= type_vector_length)
{
old_len = type_vector_length;
if (old_len == 0)
{
type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
type_vector = (struct type **)
malloc (type_vector_length * sizeof (struct type *));
}
while (index >= type_vector_length)
{
type_vector_length *= 2;
}
type_vector = (struct type **)
xrealloc ((char *) type_vector,
(type_vector_length * sizeof (struct type *)));
memset (&type_vector[old_len], 0,
(type_vector_length - old_len) * sizeof (struct type *));
}
return (&type_vector[index]);
}
else
{
real_filenum = this_object_header_files[filenum];
if (real_filenum >= n_header_files)
{
abort ();
}
f = &header_files[real_filenum];
f_orig_length = f->length;
if (index >= f_orig_length)
{
while (index >= f->length)
{
f->length *= 2;
}
f->vector = (struct type **)
xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
memset (&f->vector[f_orig_length], 0,
(f->length - f_orig_length) * sizeof (struct type *));
}
return (&f->vector[index]);
}
}
/* Make sure there is a type allocated for type numbers TYPENUMS
and return the type object.
This can create an empty (zeroed) type object.
TYPENUMS may be (-1, -1) to return a new type object that is not
put into the type vector, and so may not be referred to by number. */
static struct type *
dbx_alloc_type (typenums, objfile)
int typenums[2];
struct objfile *objfile;
{
register struct type **type_addr;
if (typenums[0] == -1)
{
return (alloc_type (objfile));
}
type_addr = dbx_lookup_type (typenums);
/* If we are referring to a type not known at all yet,
allocate an empty type for it.
We will fill it in later if we find out how. */
if (*type_addr == 0)
{
*type_addr = alloc_type (objfile);
}
return (*type_addr);
}
/* for all the stabs in a given stab vector, build appropriate types
and fix their symbols in given symbol vector. */
static void
patch_block_stabs (symbols, stabs, objfile)
struct pending *symbols;
struct pending_stabs *stabs;
struct objfile *objfile;
{
int ii;
char *name;
char *pp;
struct symbol *sym;
if (stabs)
{
/* for all the stab entries, find their corresponding symbols and
patch their types! */
for (ii = 0; ii < stabs->count; ++ii)
{
name = stabs->stab[ii];
pp = (char*) strchr (name, ':');
sym = find_symbol_in_list (symbols, name, pp-name);
if (!sym)
{
/* On xcoff, if a global is defined and never referenced,
ld will remove it from the executable. There is then
a N_GSYM stab for it, but no regular (C_EXT) symbol. */
sym = (struct symbol *)
obstack_alloc (&objfile->symbol_obstack,
sizeof (struct symbol));
memset (sym, 0, sizeof (struct symbol));
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
SYMBOL_NAME (sym) =
obstack_copy0 (&objfile->symbol_obstack, name, pp - name);
pp += 2;
if (*(pp-1) == 'F' || *(pp-1) == 'f')
{
/* I don't think the linker does this with functions,
so as far as I know this is never executed.
But it doesn't hurt to check. */
SYMBOL_TYPE (sym) =
lookup_function_type (read_type (&pp, objfile));
}
else
{
SYMBOL_TYPE (sym) = read_type (&pp, objfile);
}
add_symbol_to_list (sym, &global_symbols);
}
else
{
pp += 2;
if (*(pp-1) == 'F' || *(pp-1) == 'f')
{
SYMBOL_TYPE (sym) =
lookup_function_type (read_type (&pp, objfile));
}
else
{
SYMBOL_TYPE (sym) = read_type (&pp, objfile);
}
}
}
}
}
/* Read a number by which a type is referred to in dbx data,
or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
Just a single number N is equivalent to (0,N).
Return the two numbers by storing them in the vector TYPENUMS.
TYPENUMS will then be used as an argument to dbx_lookup_type. */
void
read_type_number (pp, typenums)
register char **pp;
register int *typenums;
{
if (**pp == '(')
{
(*pp)++;
typenums[0] = read_number (pp, ',');
typenums[1] = read_number (pp, ')');
}
else
{
typenums[0] = 0;
typenums[1] = read_number (pp, 0);
}
}
/* To handle GNU C++ typename abbreviation, we need to be able to
fill in a type's name as soon as space for that type is allocated.
`type_synonym_name' is the name of the type being allocated.
It is cleared as soon as it is used (lest all allocated types
get this name). */
static char *type_synonym_name;
/* ARGSUSED */
struct symbol *
define_symbol (valu, string, desc, type, objfile)
unsigned int valu;
char *string;
int desc;
int type;
struct objfile *objfile;
{
register struct symbol *sym;
char *p = (char *) strchr (string, ':');
int deftype;
int synonym = 0;
register int i;
struct type *temptype;
/* We would like to eliminate nameless symbols, but keep their types.
E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
to type 2, but, should not create a symbol to address that type. Since
the symbol will be nameless, there is no way any user can refer to it. */
int nameless;
/* Ignore syms with empty names. */
if (string[0] == 0)
return 0;
/* Ignore old-style symbols from cc -go */
if (p == 0)
return 0;
/* If a nameless stab entry, all we need is the type, not the symbol.
e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
sym = (struct symbol *)
obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
memset (sym, 0, sizeof (struct symbol));
if (processing_gcc_compilation)
{
/* GCC 2.x puts the line number in desc. SunOS apparently puts in the
number of bytes occupied by a type or object, which we ignore. */
SYMBOL_LINE(sym) = desc;
}
else
{
SYMBOL_LINE(sym) = 0; /* unknown */
}
if (string[0] == CPLUS_MARKER)
{
/* Special GNU C++ names. */
switch (string[1])
{
case 't':
SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
&objfile -> symbol_obstack);
break;
case 'v': /* $vtbl_ptr_type */
/* Was: SYMBOL_NAME (sym) = "vptr"; */
goto normal;
case 'e':
SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
&objfile -> symbol_obstack);
break;
case '_':
/* This was an anonymous type that was never fixed up. */
goto normal;
default:
complain (unrecognized_cplus_name_complaint, string);
goto normal; /* Do *something* with it */
}
}
else
{
normal:
SYMBOL_LANGUAGE (sym) = current_subfile -> language;
SYMBOL_NAME (sym) = (char *)
obstack_alloc (&objfile -> symbol_obstack, ((p - string) + 1));
/* Open-coded bcopy--saves function call time. */
/* FIXME: Does it really? Try replacing with simple strcpy and
try it on an executable with a large symbol table. */
{
register char *p1 = string;
register char *p2 = SYMBOL_NAME (sym);
while (p1 != p)
{
*p2++ = *p1++;
}
*p2++ = '\0';
}
/* If this symbol is from a C++ compilation, then attempt to cache the
demangled form for future reference. This is a typical time versus
space tradeoff, that was decided in favor of time because it sped up
C++ symbol lookups by a factor of about 20. */
SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
}
p++;
/* Determine the type of name being defined. */
/* The Acorn RISC machine's compiler can put out locals that don't
start with "234=" or "(3,4)=", so assume anything other than the
deftypes we know how to handle is a local. */
if (!strchr ("cfFGpPrStTvVXCR", *p))
deftype = 'l';
else
deftype = *p++;
/* c is a special case, not followed by a type-number.
SYMBOL:c=iVALUE for an integer constant symbol.
SYMBOL:c=rVALUE for a floating constant symbol.
SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
e.g. "b:c=e6,0" for "const b = blob1"
(where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
if (deftype == 'c')
{
if (*p++ != '=')
error ("Invalid symbol data at symtab pos %d.", symnum);
switch (*p++)
{
case 'r':
{
double d = atof (p);
char *dbl_valu;
SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
FT_DBL_PREC_FLOAT);
dbl_valu = (char *)
obstack_alloc (&objfile -> symbol_obstack, sizeof (double));
memcpy (dbl_valu, &d, sizeof (double));
SWAP_TARGET_AND_HOST (dbl_valu, sizeof (double));
SYMBOL_VALUE_BYTES (sym) = dbl_valu;
SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
}
break;
case 'i':
{
SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
FT_INTEGER);
SYMBOL_VALUE (sym) = atoi (p);
SYMBOL_CLASS (sym) = LOC_CONST;
}
break;
case 'e':
/* SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
e.g. "b:c=e6,0" for "const b = blob1"
(where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
{
int typenums[2];
read_type_number (&p, typenums);
if (*p++ != ',')
error ("Invalid symbol data: no comma in enum const symbol");
SYMBOL_TYPE (sym) = *dbx_lookup_type (typenums);
SYMBOL_VALUE (sym) = atoi (p);
SYMBOL_CLASS (sym) = LOC_CONST;
}
break;
default:
error ("Invalid symbol data at symtab pos %d.", symnum);
}
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
add_symbol_to_list (sym, &file_symbols);
return sym;
}
/* Now usually comes a number that says which data type,
and possibly more stuff to define the type
(all of which is handled by read_type) */
if (deftype == 'p' && *p == 'F')
/* pF is a two-letter code that means a function parameter in Fortran.
The type-number specifies the type of the return value.
Translate it into a pointer-to-function type. */
{
p++;
SYMBOL_TYPE (sym)
= lookup_pointer_type (lookup_function_type (read_type (&p, objfile)));
}
else
{
/* The symbol class letter is followed by a type (typically the
type of the symbol, or its return-type, or etc). Read it. */
synonym = *p == 't';
if (synonym)
{
p++;
type_synonym_name = obsavestring (SYMBOL_NAME (sym),
strlen (SYMBOL_NAME (sym)),
&objfile -> symbol_obstack);
}
/* Here we save the name of the symbol for read_range_type, which
ends up reading in the basic types. In stabs, unfortunately there
is no distinction between "int" and "long" types except their
names. Until we work out a saner type policy (eliminating most
builtin types and using the names specified in the files), we
save away the name so that far away from here in read_range_type,
we can examine it to decide between "int" and "long". FIXME. */
long_kludge_name = SYMBOL_NAME (sym);
SYMBOL_TYPE (sym) = read_type (&p, objfile);
}
switch (deftype)
{
case 'C':
/* The name of a caught exception. */
SYMBOL_CLASS (sym) = LOC_LABEL;
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
SYMBOL_VALUE_ADDRESS (sym) = valu;
add_symbol_to_list (sym, &local_symbols);
break;
case 'f':
/* A static function definition. */
SYMBOL_CLASS (sym) = LOC_BLOCK;
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
add_symbol_to_list (sym, &file_symbols);
/* fall into process_function_types. */
process_function_types:
/* Function result types are described as the result type in stabs.
We need to convert this to the function-returning-type-X type
in GDB. E.g. "int" is converted to "function returning int". */
if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
{
#if 0
/* This code doesn't work -- it needs to realloc and can't. */
/* Attempt to set up to record a function prototype... */
struct type *new = alloc_type (objfile);
/* Generate a template for the type of this function. The
types of the arguments will be added as we read the symbol
table. */
*new = *lookup_function_type (SYMBOL_TYPE(sym));
SYMBOL_TYPE(sym) = new;
TYPE_OBJFILE (new) = objfile;
in_function_type = new;
#else
SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
#endif
}
/* fall into process_prototype_types */
process_prototype_types:
/* Sun acc puts declared types of arguments here. We don't care
about their actual types (FIXME -- we should remember the whole
function prototype), but the list may define some new types
that we have to remember, so we must scan it now. */
while (*p == ';') {
p++;
read_type (&p, objfile);
}
break;
case 'F':
/* A global function definition. */
SYMBOL_CLASS (sym) = LOC_BLOCK;
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
add_symbol_to_list (sym, &global_symbols);
goto process_function_types;
case 'G':
/* For a class G (global) symbol, it appears that the
value is not correct. It is necessary to search for the
corresponding linker definition to find the value.
These definitions appear at the end of the namelist. */
i = hashname (SYMBOL_NAME (sym));
SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
global_sym_chain[i] = sym;
SYMBOL_CLASS (sym) = LOC_STATIC;
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
add_symbol_to_list (sym, &global_symbols);
break;
/* This case is faked by a conditional above,
when there is no code letter in the dbx data.
Dbx data never actually contains 'l'. */
case 'l':
SYMBOL_CLASS (sym) = LOC_LOCAL;
SYMBOL_VALUE (sym) = valu;
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
add_symbol_to_list (sym, &local_symbols);
break;
case 'p':
/* Normally this is a parameter, a LOC_ARG. On the i960, it
can also be a LOC_LOCAL_ARG depending on symbol type. */
#ifndef DBX_PARM_SYMBOL_CLASS
#define DBX_PARM_SYMBOL_CLASS(type) LOC_ARG
#endif
SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type);
SYMBOL_VALUE (sym) = valu;
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
#if 0
/* This doesn't work yet. */
add_param_to_type (&in_function_type, sym);
#endif
add_symbol_to_list (sym, &local_symbols);
/* If it's gcc-compiled, if it says `short', believe it. */
if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
break;
#if defined(BELIEVE_PCC_PROMOTION_TYPE)
/* This macro is defined on machines (e.g. sparc) where
we should believe the type of a PCC 'short' argument,
but shouldn't believe the address (the address is
the address of the corresponding int). Note that
this is only different from the BELIEVE_PCC_PROMOTION
case on big-endian machines.
My guess is that this correction, as opposed to changing
the parameter to an 'int' (as done below, for PCC
on most machines), is the right thing to do
on all machines, but I don't want to risk breaking
something that already works. On most PCC machines,
the sparc problem doesn't come up because the calling
function has to zero the top bytes (not knowing whether
the called function wants an int or a short), so there
is no practical difference between an int and a short
(except perhaps what happens when the GDB user types
"print short_arg = 0x10000;").
Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the compiler
actually produces the correct address (we don't need to fix it
up). I made this code adapt so that it will offset the symbol
if it was pointing at an int-aligned location and not
otherwise. This way you can use the same gdb for 4.0.x and
4.1 systems.
If the parameter is shorter than an int, and is integral
(e.g. char, short, or unsigned equivalent), and is claimed to
be passed on an integer boundary, don't believe it! Offset the
parameter's address to the tail-end of that integer. */
temptype = lookup_fundamental_type (objfile, FT_INTEGER);
if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (temptype)
&& TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT
&& 0 == SYMBOL_VALUE (sym) % TYPE_LENGTH (temptype))
{
SYMBOL_VALUE (sym) += TYPE_LENGTH (temptype)
- TYPE_LENGTH (SYMBOL_TYPE (sym));
}
break;
#else /* no BELIEVE_PCC_PROMOTION_TYPE. */
/* If PCC says a parameter is a short or a char,
it is really an int. */
temptype = lookup_fundamental_type (objfile, FT_INTEGER);
if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (temptype)
&& TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
{
SYMBOL_TYPE (sym) = TYPE_UNSIGNED (SYMBOL_TYPE (sym))
? lookup_fundamental_type (objfile, FT_UNSIGNED_INTEGER)
: temptype;
}
break;
#endif /* no BELIEVE_PCC_PROMOTION_TYPE. */
case 'P':
/* acc seems to use P to delare the prototypes of functions that
are referenced by this file. gdb is not prepared to deal
with this extra information. FIXME, it ought to. */
if (type == N_FUN)
goto process_prototype_types;
/* Parameter which is in a register. */
SYMBOL_CLASS (sym) = LOC_REGPARM;
SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
if (SYMBOL_VALUE (sym) >= NUM_REGS)
{
complain (&reg_value_complaint, SYMBOL_SOURCE_NAME (sym));
SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
}
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
add_symbol_to_list (sym, &local_symbols);
break;
case 'R':
case 'r':
/* Register variable (either global or local). */
SYMBOL_CLASS (sym) = LOC_REGISTER;
SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
if (SYMBOL_VALUE (sym) >= NUM_REGS)
{
complain (&reg_value_complaint, SYMBOL_SOURCE_NAME (sym));
SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
}
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
if (within_function)
add_symbol_to_list (sym, &local_symbols);
else
add_symbol_to_list (sym, &file_symbols);
break;
case 'S':
/* Static symbol at top level of file */
SYMBOL_CLASS (sym) = LOC_STATIC;
SYMBOL_VALUE_ADDRESS (sym) = valu;
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
add_symbol_to_list (sym, &file_symbols);
break;
case 't':
/* For a nameless type, we don't want a create a symbol, thus we
did not use `sym'. Return without further processing. */
if (nameless) return NULL;
SYMBOL_CLASS (sym) = LOC_TYPEDEF;
SYMBOL_VALUE (sym) = valu;
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
/* C++ vagaries: we may have a type which is derived from
a base type which did not have its name defined when the
derived class was output. We fill in the derived class's
base part member's name here in that case. */
if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
|| TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
&& TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
{
int j;
for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
}
add_symbol_to_list (sym, &file_symbols);
break;
case 'T':
/* For a nameless type, we don't want a create a symbol, thus we
did not use `sym'. Return without further processing. */
if (nameless) return NULL;
SYMBOL_CLASS (sym) = LOC_TYPEDEF;
SYMBOL_VALUE (sym) = valu;
SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
TYPE_NAME (SYMBOL_TYPE (sym))
= obconcat (&objfile -> type_obstack, "",
(TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_ENUM
? "enum "
: (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
? "struct " : "union ")),
SYMBOL_NAME (sym));
add_symbol_to_list (sym, &file_symbols);
if (synonym)
{
/* Clone the sym and then modify it. */
register struct symbol *typedef_sym = (struct symbol *)
obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
*typedef_sym = *sym;
SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
SYMBOL_VALUE (typedef_sym) = valu;
SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE;
add_symbol_to_list (typedef_sym, &file_symbols);
}
break;
case 'V':
/* Static symbol of local scope */
SYMBOL_CLASS (sym) = LOC_STATIC;
SYMBOL_VALUE_ADDRESS (sym) = valu;
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
add_symbol_to_list (sym, &local_symbols);
break;
case 'v':
/* Reference parameter */
SYMBOL_CLASS (sym) = LOC_REF_ARG;
SYMBOL_VALUE (sym) = valu;
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
add_symbol_to_list (sym, &local_symbols);
break;
case 'X':
/* This is used by Sun FORTRAN for "function result value".
Sun claims ("dbx and dbxtool interfaces", 2nd ed)
that Pascal uses it too, but when I tried it Pascal used
"x:3" (local symbol) instead. */
SYMBOL_CLASS (sym) = LOC_LOCAL;
SYMBOL_VALUE (sym) = valu;
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
add_symbol_to_list (sym, &local_symbols);
break;
default:
error ("Invalid symbol data: unknown symbol-type code `%c' at symtab pos %d.", deftype, symnum);
}
return sym;
}
/* Skip rest of this symbol and return an error type.
General notes on error recovery: error_type always skips to the
end of the symbol (modulo cretinous dbx symbol name continuation).
Thus code like this:
if (*(*pp)++ != ';')
return error_type (pp);
is wrong because if *pp starts out pointing at '\0' (typically as the
result of an earlier error), it will be incremented to point to the
start of the next symbol, which might produce strange results, at least
if you run off the end of the string table. Instead use
if (**pp != ';')
return error_type (pp);
++*pp;
or
if (**pp != ';')
foo = error_type (pp);
else
++*pp;
And in case it isn't obvious, the point of all this hair is so the compiler
can define new types and new syntaxes, and old versions of the
debugger will be able to read the new symbol tables. */
struct type *
error_type (pp)
char **pp;
{
complain (&error_type_complaint);
while (1)
{
/* Skip to end of symbol. */
while (**pp != '\0')
{
(*pp)++;
}
/* Check for and handle cretinous dbx symbol name continuation! */
if ((*pp)[-1] == '\\')
{
*pp = next_symbol_text ();
}
else
{
break;
}
}
return (builtin_type_error);
}
/* Read a dbx type reference or definition;
return the type that is meant.
This can be just a number, in which case it references
a type already defined and placed in type_vector.
Or the number can be followed by an =, in which case
it means to define a new type according to the text that
follows the =. */
struct type *
read_type (pp, objfile)
register char **pp;
struct objfile *objfile;
{
register struct type *type = 0;
struct type *type1;
int typenums[2];
int xtypenums[2];
char type_descriptor;
/* Read type number if present. The type number may be omitted.
for instance in a two-dimensional array declared with type
"ar1;1;10;ar1;1;10;4". */
if ((**pp >= '0' && **pp <= '9')
|| **pp == '(')
{
read_type_number (pp, typenums);
/* Type is not being defined here. Either it already exists,
or this is a forward reference to it. dbx_alloc_type handles
both cases. */
if (**pp != '=')
return dbx_alloc_type (typenums, objfile);
/* Type is being defined here. */
#if 0 /* Callers aren't prepared for a NULL result! FIXME -- metin! */
{
struct type *tt;
/* if such a type already exists, this is an unnecessary duplication
of the stab string, which is common in (RS/6000) xlc generated
objects. In that case, simply return NULL and let the caller take
care of it. */
tt = *dbx_lookup_type (typenums);
if (tt && tt->length && tt->code)
return NULL;
}
#endif
*pp += 2;
}
else
{
/* 'typenums=' not present, type is anonymous. Read and return
the definition, but don't put it in the type vector. */
typenums[0] = typenums[1] = -1;
(*pp)++;
}
type_descriptor = (*pp)[-1];
switch (type_descriptor)
{
case 'x':
{
enum type_code code;
/* Used to index through file_symbols. */
struct pending *ppt;
int i;
/* Name including "struct", etc. */
char *type_name;
/* Name without "struct", etc. */
char *type_name_only;
{
char *prefix;
char *from, *to;
/* Set the type code according to the following letter. */
switch ((*pp)[0])
{
case 's':
code = TYPE_CODE_STRUCT;
prefix = "struct ";
break;
case 'u':
code = TYPE_CODE_UNION;
prefix = "union ";
break;
case 'e':
code = TYPE_CODE_ENUM;
prefix = "enum ";
break;
default:
return error_type (pp);
}
to = type_name = (char *)
obstack_alloc (&objfile -> type_obstack,
(strlen (prefix) +
((char *) strchr (*pp, ':') - (*pp)) + 1));
/* Copy the prefix. */
from = prefix;
while ((*to++ = *from++) != '\0')
;
to--;
type_name_only = to;
/* Copy the name. */
from = *pp + 1;
while ((*to++ = *from++) != ':')
;
*--to = '\0';
/* Set the pointer ahead of the name which we just read. */
*pp = from;
#if 0
/* The following hack is clearly wrong, because it doesn't
check whether we are in a baseclass. I tried to reproduce
the case that it is trying to fix, but I couldn't get
g++ to put out a cross reference to a basetype. Perhaps
it doesn't do it anymore. */
/* Note: for C++, the cross reference may be to a base type which
has not yet been seen. In this case, we skip to the comma,
which will mark the end of the base class name. (The ':'
at the end of the base class name will be skipped as well.)
But sometimes (ie. when the cross ref is the last thing on
the line) there will be no ','. */
from = (char *) strchr (*pp, ',');
if (from)
*pp = from;
#endif /* 0 */
}
/* Now check to see whether the type has already been declared. */
/* This is necessary at least in the case where the
program says something like
struct foo bar[5];
The compiler puts out a cross-reference; we better find
set the length of the structure correctly so we can
set the length of the array. */
for (ppt = file_symbols; ppt; ppt = ppt->next)
for (i = 0; i < ppt->nsyms; i++)
{
struct symbol *sym = ppt->symbol[i];
if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
&& SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
&& (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
&& STREQ (SYMBOL_NAME (sym), type_name_only))
{
obstack_free (&objfile -> type_obstack, type_name);
type = SYMBOL_TYPE (sym);
return type;
}
}
/* Didn't find the type to which this refers, so we must
be dealing with a forward reference. Allocate a type
structure for it, and keep track of it so we can
fill in the rest of the fields when we get the full
type. */
type = dbx_alloc_type (typenums, objfile);
TYPE_CODE (type) = code;
TYPE_NAME (type) = type_name;
INIT_CPLUS_SPECIFIC(type);
TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
add_undefined_type (type);
return type;
}
case '-': /* RS/6000 built-in type */
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
case '(':
(*pp)--;
read_type_number (pp, xtypenums);
type = *dbx_lookup_type (xtypenums);
if (type == 0)
type = lookup_fundamental_type (objfile, FT_VOID);
if (typenums[0] != -1)
*dbx_lookup_type (typenums) = type;
break;
/* In the following types, we must be sure to overwrite any existing
type that the typenums refer to, rather than allocating a new one
and making the typenums point to the new one. This is because there
may already be pointers to the existing type (if it had been
forward-referenced), and we must change it to a pointer, function,
reference, or whatever, *in-place*. */
case '*':
type1 = read_type (pp, objfile);
type = make_pointer_type (type1, dbx_lookup_type (typenums));
break;
case '&': /* Reference to another type */
type1 = read_type (pp, objfile);
type = make_reference_type (type1, dbx_lookup_type (typenums));
break;
case 'f': /* Function returning another type */
type1 = read_type (pp, objfile);
type = make_function_type (type1, dbx_lookup_type (typenums));
break;
case 'k': /* Const qualifier on some type (Sun) */
type = read_type (pp, objfile);
/* FIXME! For now, we ignore const and volatile qualifiers. */
break;
case 'B': /* Volatile qual on some type (Sun) */
type = read_type (pp, objfile);
/* FIXME! For now, we ignore const and volatile qualifiers. */
break;
/* FIXME -- we should be doing smash_to_XXX types here. */
case '@': /* Member (class & variable) type */
{
struct type *domain = read_type (pp, objfile);
struct type *memtype;
if (**pp != ',')
/* Invalid member type data format. */
return error_type (pp);
++*pp;
memtype = read_type (pp, objfile);
type = dbx_alloc_type (typenums, objfile);
smash_to_member_type (type, domain, memtype);
}
break;
case '#': /* Method (class & fn) type */
if ((*pp)[0] == '#')
{
/* We'll get the parameter types from the name. */
struct type *return_type;
(*pp)++;
return_type = read_type (pp, objfile);
if (*(*pp)++ != ';')
complain (&invalid_member_complaint, symnum);
type = allocate_stub_method (return_type);
if (typenums[0] != -1)
*dbx_lookup_type (typenums) = type;
}
else
{
struct type *domain = read_type (pp, objfile);
struct type *return_type;
struct type **args;
if (*(*pp)++ != ',')
error ("invalid member type data format, at symtab pos %d.",
symnum);
return_type = read_type (pp, objfile);
args = read_args (pp, ';', objfile);
type = dbx_alloc_type (typenums, objfile);
smash_to_method_type (type, domain, return_type, args);
}
break;
case 'r': /* Range type */
type = read_range_type (pp, typenums, objfile);
if (typenums[0] != -1)
*dbx_lookup_type (typenums) = type;
break;
case 'b': /* Sun ACC builtin int type */
type = read_sun_builtin_type (pp, typenums, objfile);
if (typenums[0] != -1)
*dbx_lookup_type (typenums) = type;
break;
case 'R': /* Sun ACC builtin float type */
type = read_sun_floating_type (pp, typenums, objfile);
if (typenums[0] != -1)
*dbx_lookup_type (typenums) = type;
break;
case 'e': /* Enumeration type */
type = dbx_alloc_type (typenums, objfile);
type = read_enum_type (pp, type, objfile);
*dbx_lookup_type (typenums) = type;
break;
case 's': /* Struct type */
case 'u': /* Union type */
type = dbx_alloc_type (typenums, objfile);
if (!TYPE_NAME (type))
{
TYPE_NAME (type) = type_synonym_name;
}
type_synonym_name = NULL;
switch (type_descriptor)
{
case 's':
TYPE_CODE (type) = TYPE_CODE_STRUCT;
break;
case 'u':
TYPE_CODE (type) = TYPE_CODE_UNION;
break;
}
type = read_struct_type (pp, type, objfile);
break;
case 'a': /* Array type */
if (**pp != 'r')
return error_type (pp);
++*pp;
type = dbx_alloc_type (typenums, objfile);
type = read_array_type (pp, type, objfile);
break;
default:
--*pp; /* Go back to the symbol in error */
/* Particularly important if it was \0! */
return error_type (pp);
}
if (type == 0)
abort ();
return type;
}
/* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
Return the proper type node for a given builtin type number. */
static struct type *
rs6000_builtin_type (typenum)
int typenum;
{
/* default types are defined in dbxstclass.h. */
switch (-typenum) {
case 1:
return lookup_fundamental_type (current_objfile, FT_INTEGER);
case 2:
return lookup_fundamental_type (current_objfile, FT_CHAR);
case 3:
return lookup_fundamental_type (current_objfile, FT_SHORT);
case 4:
return lookup_fundamental_type (current_objfile, FT_LONG);
case 5:
return lookup_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
case 6:
return lookup_fundamental_type (current_objfile, FT_SIGNED_CHAR);
case 7:
return lookup_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
case 8:
return lookup_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
case 9:
return lookup_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
case 10:
return lookup_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
case 11:
return lookup_fundamental_type (current_objfile, FT_VOID);
case 12:
return lookup_fundamental_type (current_objfile, FT_FLOAT);
case 13:
return lookup_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
case 14:
return lookup_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
case 15:
/* requires a builtin `integer' */
return lookup_fundamental_type (current_objfile, FT_INTEGER);
case 16:
return lookup_fundamental_type (current_objfile, FT_BOOLEAN);
case 17:
/* requires builtin `short real' */
return lookup_fundamental_type (current_objfile, FT_FLOAT);
case 18:
/* requires builtin `real' */
return lookup_fundamental_type (current_objfile, FT_FLOAT);
default:
complain (rs6000_builtin_complaint, typenum);
return NULL;
}
}
/* This page contains subroutines of read_type. */
#define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
#define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
#define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
/* Read member function stabs info for C++ classes. The form of each member
function data is:
NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
An example with two member functions is:
afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
For the case of overloaded operators, the format is op$::*.funcs, where
$ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
name (such as `+=') and `.' marks the end of the operator name. */
static int
read_member_functions (fip, pp, type, objfile)
struct field_info *fip;
char **pp;
struct type *type;
struct objfile *objfile;
{
int nfn_fields = 0;
int length = 0;
/* Total number of member functions defined in this class. If the class
defines two `f' functions, and one `g' function, then this will have
the value 3. */
int total_length = 0;
int i;
struct next_fnfield
{
struct next_fnfield *next;
struct fn_field fn_field;
} *sublist;
struct type *look_ahead_type;
struct next_fnfieldlist *new_fnlist;
struct next_fnfield *new_sublist;
char *main_fn_name;
register char *p;
/* Process each list until we find something that is not a member function
or find the end of the functions. */
while (**pp != ';')
{
/* We should be positioned at the start of the function name.
Scan forward to find the first ':' and if it is not the
first of a "::" delimiter, then this is not a member function. */
p = *pp;
while (*p != ':')
{
p++;
}
if (p[1] != ':')
{
break;
}
sublist = NULL;
look_ahead_type = NULL;
length = 0;
new_fnlist = (struct next_fnfieldlist *)
xmalloc (sizeof (struct next_fnfieldlist));
make_cleanup (free, new_fnlist);
memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && (*pp)[2] == CPLUS_MARKER)
{
/* This is a completely wierd case. In order to stuff in the
names that might contain colons (the usual name delimiter),
Mike Tiemann defined a different name format which is
signalled if the identifier is "op$". In that case, the
format is "op$::XXXX." where XXXX is the name. This is
used for names like "+" or "=". YUUUUUUUK! FIXME! */
/* This lets the user type "break operator+".
We could just put in "+" as the name, but that wouldn't
work for "*". */
static char opname[32] = {'o', 'p', CPLUS_MARKER};
char *o = opname + 3;
/* Skip past '::'. */
*pp = p + 2;
STABS_CONTINUE (pp);
p = *pp;
while (*p != '.')
{
*o++ = *p++;
}
main_fn_name = savestring (opname, o - opname);
/* Skip past '.' */
*pp = p + 1;
}
else
{
main_fn_name = savestring (*pp, p - *pp);
/* Skip past '::'. */
*pp = p + 2;
}
new_fnlist -> fn_fieldlist.name = main_fn_name;
do
{
new_sublist =
(struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
make_cleanup (free, new_sublist);
memset (new_sublist, 0, sizeof (struct next_fnfield));
/* Check for and handle cretinous dbx symbol name continuation! */
if (look_ahead_type == NULL)
{
/* Normal case. */
STABS_CONTINUE (pp);
new_sublist -> fn_field.type = read_type (pp, objfile);
if (**pp != ':')
{
/* Invalid symtab info for member function. */
return 0;
}
}
else
{
/* g++ version 1 kludge */
new_sublist -> fn_field.type = look_ahead_type;
look_ahead_type = NULL;
}
(*pp)++;
p = *pp;
while (*p != ';')
{
p++;
}
/* If this is just a stub, then we don't have the real name here. */
if (TYPE_FLAGS (new_sublist -> fn_field.type) & TYPE_FLAG_STUB)
{
new_sublist -> fn_field.is_stub = 1;
}
new_sublist -> fn_field.physname = savestring (*pp, p - *pp);
*pp = p + 1;
/* Set this member function's visibility fields. */
switch (*(*pp)++)
{
case VISIBILITY_PRIVATE:
new_sublist -> fn_field.is_private = 1;
break;
case VISIBILITY_PROTECTED:
new_sublist -> fn_field.is_protected = 1;
break;
}
STABS_CONTINUE (pp);
switch (**pp)
{
case 'A': /* Normal functions. */
new_sublist -> fn_field.is_const = 0;
new_sublist -> fn_field.is_volatile = 0;
(*pp)++;
break;
case 'B': /* `const' member functions. */
new_sublist -> fn_field.is_const = 1;
new_sublist -> fn_field.is_volatile = 0;
(*pp)++;
break;
case 'C': /* `volatile' member function. */
new_sublist -> fn_field.is_const = 0;
new_sublist -> fn_field.is_volatile = 1;
(*pp)++;
break;
case 'D': /* `const volatile' member function. */
new_sublist -> fn_field.is_const = 1;
new_sublist -> fn_field.is_volatile = 1;
(*pp)++;
break;
case '*': /* File compiled with g++ version 1 -- no info */
case '?':
case '.':
break;
default:
complain (&const_vol_complaint, **pp);
break;
}
switch (*(*pp)++)
{
case '*':
/* virtual member function, followed by index.
The sign bit is set to distinguish pointers-to-methods
from virtual function indicies. Since the array is
in words, the quantity must be shifted left by 1
on 16 bit machine, and by 2 on 32 bit machine, forcing
the sign bit out, and usable as a valid index into
the array. Remove the sign bit here. */
new_sublist -> fn_field.voffset =
(0x7fffffff & read_number (pp, ';')) + 2;
STABS_CONTINUE (pp);
if (**pp == ';' || **pp == '\0')
{
/* Must be g++ version 1. */
new_sublist -> fn_field.fcontext = 0;
}
else
{
/* Figure out from whence this virtual function came.
It may belong to virtual function table of
one of its baseclasses. */
look_ahead_type = read_type (pp, objfile);
if (**pp == ':')
{
/* g++ version 1 overloaded methods. */
}
else
{
new_sublist -> fn_field.fcontext = look_ahead_type;
if (**pp != ';')
{
return 0;
}
else
{
++*pp;
}
look_ahead_type = NULL;
}
}
break;
case '?':
/* static member function. */
new_sublist -> fn_field.voffset = VOFFSET_STATIC;
if (strncmp (new_sublist -> fn_field.physname,
main_fn_name, strlen (main_fn_name)))
{
new_sublist -> fn_field.is_stub = 1;
}
break;
default:
/* error */
complain (&member_fn_complaint, (*pp)[-1]);
/* Fall through into normal member function. */
case '.':
/* normal member function. */
new_sublist -> fn_field.voffset = 0;
new_sublist -> fn_field.fcontext = 0;
break;
}
new_sublist -> next = sublist;
sublist = new_sublist;
length++;
STABS_CONTINUE (pp);
}
while (**pp != ';' && **pp != '\0');
(*pp)++;
new_fnlist -> fn_fieldlist.fn_fields = (struct fn_field *)
obstack_alloc (&objfile -> type_obstack,
sizeof (struct fn_field) * length);
memset (new_fnlist -> fn_fieldlist.fn_fields, 0,
sizeof (struct fn_field) * length);
for (i = length; (i--, sublist); sublist = sublist -> next)
{
new_fnlist -> fn_fieldlist.fn_fields[i] = sublist -> fn_field;
}
new_fnlist -> fn_fieldlist.length = length;
new_fnlist -> next = fip -> fnlist;
fip -> fnlist = new_fnlist;
nfn_fields++;
total_length += length;
STABS_CONTINUE (pp);
}
if (nfn_fields)
{
ALLOCATE_CPLUS_STRUCT_TYPE (type);
TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
memset (TYPE_FN_FIELDLISTS (type), 0,
sizeof (struct fn_fieldlist) * nfn_fields);
TYPE_NFN_FIELDS (type) = nfn_fields;
TYPE_NFN_FIELDS_TOTAL (type) = total_length;
}
return 1;
}
/* Special GNU C++ name.
FIXME: Still need to properly handle parse error conditions. */
static void
read_cpp_abbrev (fip, pp, type, objfile)
struct field_info *fip;
char **pp;
struct type *type;
struct objfile *objfile;
{
register char *p;
const char *prefix;
char *name;
char cpp_abbrev;
struct type *context;
p = *pp;
if (*++p == 'v')
{
name = NULL;
cpp_abbrev = *++p;
*pp = p + 1;
/* At this point, *pp points to something like "22:23=*22...",
where the type number before the ':' is the "context" and
everything after is a regular type definition. Lookup the
type, find it's name, and construct the field name. */
context = read_type (pp, objfile);
switch (cpp_abbrev)
{
case 'f': /* $vf -- a virtual function table pointer */
fip->list->field.name =
obconcat (&objfile->type_obstack, vptr_name, "", "");
break;
case 'b': /* $vb -- a virtual bsomethingorother */
name = type_name_no_tag (context);
if (name == NULL)
{
complain (&invalid_cpp_type_complaint, symnum);
name = "FOO";
}
fip->list->field.name =
obconcat (&objfile->type_obstack, vb_name, name, "");
break;
default:
complain (&invalid_cpp_abbrev_complaint, *pp);
fip->list->field.name =
obconcat (&objfile->type_obstack,
"INVALID_CPLUSPLUS_ABBREV", "", "");
break;
}
/* At this point, *pp points to the ':'. Skip it and read the
field type. */
p = ++(*pp);
if (p[-1] != ':')
{
complain (&invalid_cpp_abbrev_complaint, *pp);
}
fip->list->field.type = read_type (pp, objfile);
(*pp)++; /* Skip the comma. */
fip->list->field.bitpos = read_number (pp, ';');
/* This field is unpacked. */
fip->list->field.bitsize = 0;
fip->list->visibility = VISIBILITY_PRIVATE;
}
else if (*p == '_')
{
/* GNU C++ anonymous type. */
complain (&stabs_general_complaint, "g++ anonymous type $_ not handled");
}
else
{
complain (&invalid_cpp_abbrev_complaint, *pp);
}
}
static void
read_one_struct_field (fip, pp, p, type, objfile)
struct field_info *fip;
char **pp;
char *p;
struct type *type;
struct objfile *objfile;
{
fip -> list -> field.name =
obsavestring (*pp, p - *pp, &objfile -> type_obstack);
*pp = p + 1;
/* This means we have a visibility for a field coming. */
if (**pp == '/')
{
(*pp)++;
fip -> list -> visibility = *(*pp)++;
switch (fip -> list -> visibility)
{
case VISIBILITY_PRIVATE:
case VISIBILITY_PROTECTED:
break;
case VISIBILITY_PUBLIC:
/* Nothing to do */
break;
default:
/* Unknown visibility specifier. */
complain (&stabs_general_complaint,
"unknown visibility specifier");
return;
break;
}
}
else
{
/* normal dbx-style format, no explicit visibility */
fip -> list -> visibility = VISIBILITY_PUBLIC;
}
fip -> list -> field.type = read_type (pp, objfile);
if (**pp == ':')
{
p = ++(*pp);
#if 0
/* Possible future hook for nested types. */
if (**pp == '!')
{
fip -> list -> field.bitpos = (long)-2; /* nested type */
p = ++(*pp);
}
else
#endif
{
/* Static class member. */
fip -> list -> field.bitpos = (long) -1;
}
while (*p != ';')
{
p++;
}
fip -> list -> field.bitsize = (long) savestring (*pp, p - *pp);
*pp = p + 1;
return;
}
else if (**pp != ',')
{
/* Bad structure-type format. */
complain (&stabs_general_complaint, "bad structure-type format");
return;
}
(*pp)++; /* Skip the comma. */
fip -> list -> field.bitpos = read_number (pp, ',');
fip -> list -> field.bitsize = read_number (pp, ';');
#if 0
/* FIXME-tiemann: Can't the compiler put out something which
lets us distinguish these? (or maybe just not put out anything
for the field). What is the story here? What does the compiler
really do? Also, patch gdb.texinfo for this case; I document
it as a possible problem there. Search for "DBX-style". */
/* This is wrong because this is identical to the symbols
produced for GCC 0-size arrays. For example:
typedef union {
int num;
char str[0];
} foo;
The code which dumped core in such circumstances should be
fixed not to dump core. */
/* g++ -g0 can put out bitpos & bitsize zero for a static
field. This does not give us any way of getting its
class, so we can't know its name. But we can just
ignore the field so we don't dump core and other nasty
stuff. */
if (fip -> list -> field.bitpos == 0 && fip -> list -> field.bitsize == 0)
{
complain (&dbx_class_complaint);
/* Ignore this field. */
fip -> list = fip -> list -> next;
}
else
#endif /* 0 */
{
/* Detect an unpacked field and mark it as such.
dbx gives a bit size for all fields.
Note that forward refs cannot be packed,
and treat enums as if they had the width of ints. */
if (TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_INT
&& TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_ENUM)
{
fip -> list -> field.bitsize = 0;
}
if ((fip -> list -> field.bitsize
== 8 * TYPE_LENGTH (fip -> list -> field.type)
|| (TYPE_CODE (fip -> list -> field.type) == TYPE_CODE_ENUM
&& (fip -> list -> field.bitsize
== 8 * TYPE_LENGTH (lookup_fundamental_type (objfile, FT_INTEGER)))
)
)
&&
fip -> list -> field.bitpos % 8 == 0)
{
fip -> list -> field.bitsize = 0;
}
}
}
/* Read struct or class data fields. They have the form:
NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
At the end, we see a semicolon instead of a field.
In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
a static field.
The optional VISIBILITY is one of:
'/0' (VISIBILITY_PRIVATE)
'/1' (VISIBILITY_PROTECTED)
'/2' (VISIBILITY_PUBLIC)
or nothing, for C style fields with public visibility. */
static int
read_struct_fields (fip, pp, type, objfile)
struct field_info *fip;
char **pp;
struct type *type;
struct objfile *objfile;
{
register char *p;
struct nextfield *new;
/* We better set p right now, in case there are no fields at all... */
p = *pp;
/* Read each data member type until we find the terminating ';' at the end of
the data member list, or break for some other reason such as finding the
start of the member function list. */
while (**pp != ';')
{
STABS_CONTINUE (pp);
/* Get space to record the next field's data. */
new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
make_cleanup (free, new);
memset (new, 0, sizeof (struct nextfield));
new -> next = fip -> list;
fip -> list = new;
/* Get the field name. */
p = *pp;
if (*p == CPLUS_MARKER)
{
read_cpp_abbrev (fip, pp, type, objfile);
continue;
}
/* Look for the ':' that separates the field name from the field
values. Data members are delimited by a single ':', while member
functions are delimited by a pair of ':'s. When we hit the member
functions (if any), terminate scan loop and return. */
while (*p != ':')
{
p++;
}
/* Check to see if we have hit the member functions yet. */
if (p[1] == ':')
{
break;
}
read_one_struct_field (fip, pp, p, type, objfile);
}
if (p[1] == ':')
{
/* chill the list of fields: the last entry (at the head) is a
partially constructed entry which we now scrub. */
fip -> list = fip -> list -> next;
}
return 1;
}
/* The stabs for C++ derived classes contain baseclass information which
is marked by a '!' character after the total size. This function is
called when we encounter the baseclass marker, and slurps up all the
baseclass information.
Immediately following the '!' marker is the number of base classes that
the class is derived from, followed by information for each base class.
For each base class, there are two visibility specifiers, a bit offset
to the base class information within the derived class, a reference to
the type for the base class, and a terminating semicolon.
A typical example, with two base classes, would be "!2,020,19;0264,21;".
^^ ^ ^ ^ ^ ^ ^
Baseclass information marker __________________|| | | | | | |
Number of baseclasses __________________________| | | | | | |
Visibility specifiers (2) ________________________| | | | | |
Offset in bits from start of class _________________| | | | |
Type number for base class ___________________________| | | |
Visibility specifiers (2) _______________________________| | |
Offset in bits from start of class ________________________| |
Type number of base class ____________________________________|
*/
static int
read_baseclasses (fip, pp, type, objfile)
struct field_info *fip;
char **pp;
struct type *type;
struct objfile *objfile;
{
int i;
struct nextfield *new;
if (**pp != '!')
{
return 1;
}
else
{
/* Skip the '!' baseclass information marker. */
(*pp)++;
}
ALLOCATE_CPLUS_STRUCT_TYPE (type);
TYPE_N_BASECLASSES (type) = read_number (pp, ',');
#if 0
/* Some stupid compilers have trouble with the following, so break
it up into simpler expressions. */
TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
#else
{
int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
char *pointer;
pointer = (char *) TYPE_ALLOC (type, num_bytes);
TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
}
#endif /* 0 */
B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
{
new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
make_cleanup (free, new);
memset (new, 0, sizeof (struct nextfield));
new -> next = fip -> list;
fip -> list = new;
new -> field.bitsize = 0; /* this should be an unpacked field! */
STABS_CONTINUE (pp);
switch (*(*pp)++)
{
case '0':
/* Nothing to do. */
break;
case '1':
SET_TYPE_FIELD_VIRTUAL (type, i);
break;
default:
/* Bad visibility format. */
return 0;
}
new -> visibility = *(*pp)++;
switch (new -> visibility)
{
case VISIBILITY_PRIVATE:
case VISIBILITY_PROTECTED:
case VISIBILITY_PUBLIC:
break;
default:
/* Bad visibility format. */
return 0;
}
/* The remaining value is the bit offset of the portion of the object
corresponding to this baseclass. Always zero in the absence of
multiple inheritance. */
new -> field.bitpos = read_number (pp, ',');
/* The last piece of baseclass information is the type of the base
class. Read it, and remember it's type name as this field's name. */
new -> field.type = read_type (pp, objfile);
new -> field.name = type_name_no_tag (new -> field.type);
/* skip trailing ';' and bump count of number of fields seen */
(*pp)++;
}
return 1;
}
/* The tail end of stabs for C++ classes that contain a virtual function
pointer contains a tilde, a %, and a type number.
The type number refers to the base class (possibly this class itself) which
contains the vtable pointer for the current class.
This function is called when we have parsed all the method declarations,
so we can look for the vptr base class info. */
static int
read_tilde_fields (fip, pp, type, objfile)
struct field_info *fip;
char **pp;
struct type *type;
struct objfile *objfile;
{
register char *p;
STABS_CONTINUE (pp);
/* If we are positioned at a ';', then skip it. */
if (**pp == ';')
{
(*pp)++;
}
if (**pp == '~')
{
(*pp)++;
if (**pp == '=' || **pp == '+' || **pp == '-')
{
/* Obsolete flags that used to indicate the presence
of constructors and/or destructors. */
(*pp)++;
}
/* Read either a '%' or the final ';'. */
if (*(*pp)++ == '%')
{
/* The next number is the type number of the base class
(possibly our own class) which supplies the vtable for
this class. Parse it out, and search that class to find
its vtable pointer, and install those into TYPE_VPTR_BASETYPE
and TYPE_VPTR_FIELDNO. */
struct type *t;
int i;
t = read_type (pp, objfile);
p = (*pp)++;
while (*p != '\0' && *p != ';')
{
p++;
}
if (*p == '\0')
{
/* Premature end of symbol. */
return 0;
}
TYPE_VPTR_BASETYPE (type) = t;
if (type == t) /* Our own class provides vtbl ptr */
{
for (i = TYPE_NFIELDS (t) - 1;
i >= TYPE_N_BASECLASSES (t);
--i)
{
if (! strncmp (TYPE_FIELD_NAME (t, i), vptr_name,
sizeof (vptr_name) - 1))
{
TYPE_VPTR_FIELDNO (type) = i;
goto gotit;
}
}
/* Virtual function table field not found. */
complain (vtbl_notfound_complaint, TYPE_NAME (type));
return 0;
}
else
{
TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
}
gotit:
*pp = p + 1;
}
}
return 1;
}
static int
attach_fn_fields_to_type (fip, type)
struct field_info *fip;
register struct type *type;
{
register int n;
for (n = 0; n < TYPE_N_BASECLASSES (type); n++)
{
if (TYPE_CODE (TYPE_BASECLASS (type, n)) == TYPE_CODE_UNDEF)
{
/* @@ Memory leak on objfile -> type_obstack? */
return 0;
}
TYPE_NFN_FIELDS_TOTAL (type) +=
TYPE_NFN_FIELDS_TOTAL (TYPE_BASECLASS (type, n));
}
for (n = TYPE_NFN_FIELDS (type);
fip -> fnlist != NULL;
fip -> fnlist = fip -> fnlist -> next)
{
--n; /* Circumvent Sun3 compiler bug */
TYPE_FN_FIELDLISTS (type)[n] = fip -> fnlist -> fn_fieldlist;
}
return 1;
}
/* Create the vector of fields, and record how big it is.
We need this info to record proper virtual function table information
for this class's virtual functions. */
static int
attach_fields_to_type (fip, type, objfile)
struct field_info *fip;
register struct type *type;
struct objfile *objfile;
{
register int nfields = 0;
register int non_public_fields = 0;
register struct nextfield *scan;
/* Count up the number of fields that we have, as well as taking note of
whether or not there are any non-public fields, which requires us to
allocate and build the private_field_bits and protected_field_bits
bitfields. */
for (scan = fip -> list; scan != NULL; scan = scan -> next)
{
nfields++;
if (scan -> visibility != VISIBILITY_PUBLIC)
{
non_public_fields++;
}
}
/* Now we know how many fields there are, and whether or not there are any
non-public fields. Record the field count, allocate space for the
array of fields, and create blank visibility bitfields if necessary. */
TYPE_NFIELDS (type) = nfields;
TYPE_FIELDS (type) = (struct field *)
TYPE_ALLOC (type, sizeof (struct field) * nfields);
memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
if (non_public_fields)
{
ALLOCATE_CPLUS_STRUCT_TYPE (type);
TYPE_FIELD_PRIVATE_BITS (type) =
(B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
TYPE_FIELD_PROTECTED_BITS (type) =
(B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
}
/* Copy the saved-up fields into the field vector. Start from the head
of the list, adding to the tail of the field array, so that they end
up in the same order in the array in which they were added to the list. */
while (nfields-- > 0)
{
TYPE_FIELD (type, nfields) = fip -> list -> field;
switch (fip -> list -> visibility)
{
case VISIBILITY_PRIVATE:
SET_TYPE_FIELD_PRIVATE (type, nfields);
break;
case VISIBILITY_PROTECTED:
SET_TYPE_FIELD_PROTECTED (type, nfields);
break;
case VISIBILITY_PUBLIC:
break;
default:
/* Should warn about this unknown visibility? */
break;
}
fip -> list = fip -> list -> next;
}
return 1;
}
/* Read the description of a structure (or union type) and return an object
describing the type.
PP points to a character pointer that points to the next unconsumed token
in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
*PP will point to "4a:1,0,32;;".
TYPE points to an incomplete type that needs to be filled in.
OBJFILE points to the current objfile from which the stabs information is
being read. (Note that it is redundant in that TYPE also contains a pointer
to this same objfile, so it might be a good idea to eliminate it. FIXME).
*/
static struct type *
read_struct_type (pp, type, objfile)
char **pp;
struct type *type;
struct objfile *objfile;
{
struct cleanup *back_to;
struct field_info fi;
fi.list = NULL;
fi.fnlist = NULL;
back_to = make_cleanup (null_cleanup, 0);
INIT_CPLUS_SPECIFIC (type);
TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
/* First comes the total size in bytes. */
TYPE_LENGTH (type) = read_number (pp, 0);
/* Now read the baseclasses, if any, read the regular C struct or C++
class member fields, attach the fields to the type, read the C++
member functions, attach them to the type, and then read any tilde
field (baseclass specifier for the class holding the main vtable). */
if (!read_baseclasses (&fi, pp, type, objfile))
{
do_cleanups (back_to);
return (error_type (pp));
}
if (!read_struct_fields (&fi, pp, type, objfile))
{
do_cleanups (back_to);
return (error_type (pp));
}
if (!attach_fields_to_type (&fi, type, objfile))
{
do_cleanups (back_to);
return (error_type (pp));
}
if (!read_member_functions (&fi, pp, type, objfile))
{
do_cleanups (back_to);
return (error_type (pp));
}
if (!attach_fn_fields_to_type (&fi, type))
{
do_cleanups (back_to);
return (error_type (pp));
}
if (!read_tilde_fields (&fi, pp, type, objfile))
{
do_cleanups (back_to);
return (error_type (pp));
}
do_cleanups (back_to);
return (type);
}
/* Read a definition of an array type,
and create and return a suitable type object.
Also creates a range type which represents the bounds of that
array. */
static struct type *
read_array_type (pp, type, objfile)
register char **pp;
register struct type *type;
struct objfile *objfile;
{
struct type *index_type, *element_type, *range_type;
int lower, upper;
int adjustable = 0;
/* Format of an array type:
"ar<index type>;lower;upper;<array_contents_type>". Put code in
to handle this.
Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
for these, produce a type like float[][]. */
index_type = read_type (pp, objfile);
if (**pp != ';')
/* Improper format of array type decl. */
return error_type (pp);
++*pp;
if (!(**pp >= '0' && **pp <= '9'))
{
(*pp)++;
adjustable = 1;
}
lower = read_number (pp, ';');
if (!(**pp >= '0' && **pp <= '9'))
{
(*pp)++;
adjustable = 1;
}
upper = read_number (pp, ';');
element_type = read_type (pp, objfile);
if (adjustable)
{
lower = 0;
upper = -1;
}
range_type =
create_range_type ((struct type *) NULL, index_type, lower, upper);
type = create_array_type (type, element_type, range_type);
/* If we have an array whose element type is not yet known, but whose
bounds *are* known, record it to be adjusted at the end of the file. */
if (TYPE_LENGTH (element_type) == 0 && !adjustable)
{
add_undefined_type (type);
}
return type;
}
/* Read a definition of an enumeration type,
and create and return a suitable type object.
Also defines the symbols that represent the values of the type. */
static struct type *
read_enum_type (pp, type, objfile)
register char **pp;
register struct type *type;
struct objfile *objfile;
{
register char *p;
char *name;
register long n;
register struct symbol *sym;
int nsyms = 0;
struct pending **symlist;
struct pending *osyms, *syms;
int o_nsyms;
#if 0
/* FIXME! The stabs produced by Sun CC merrily define things that ought
to be file-scope, between N_FN entries, using N_LSYM. What's a mother
to do? For now, force all enum values to file scope. */
if (within_function)
symlist = &local_symbols;
else
#endif
symlist = &file_symbols;
osyms = *symlist;
o_nsyms = osyms ? osyms->nsyms : 0;
/* Read the value-names and their values.
The input syntax is NAME:VALUE,NAME:VALUE, and so on.
A semicolon or comma instead of a NAME means the end. */
while (**pp && **pp != ';' && **pp != ',')
{
STABS_CONTINUE (pp);
p = *pp;
while (*p != ':') p++;
name = obsavestring (*pp, p - *pp, &objfile -> symbol_obstack);
*pp = p + 1;
n = read_number (pp, ',');
sym = (struct symbol *)
obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
memset (sym, 0, sizeof (struct symbol));
SYMBOL_NAME (sym) = name;
SYMBOL_LANGUAGE (sym) = current_subfile -> language;
SYMBOL_CLASS (sym) = LOC_CONST;
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
SYMBOL_VALUE (sym) = n;
add_symbol_to_list (sym, symlist);
nsyms++;
}
if (**pp == ';')
(*pp)++; /* Skip the semicolon. */
/* Now fill in the fields of the type-structure. */
TYPE_LENGTH (type) = sizeof (int);
TYPE_CODE (type) = TYPE_CODE_ENUM;
TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
TYPE_NFIELDS (type) = nsyms;
TYPE_FIELDS (type) = (struct field *)
TYPE_ALLOC (type, sizeof (struct field) * nsyms);
memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
/* Find the symbols for the values and put them into the type.
The symbols can be found in the symlist that we put them on
to cause them to be defined. osyms contains the old value
of that symlist; everything up to there was defined by us. */
/* Note that we preserve the order of the enum constants, so
that in something like "enum {FOO, LAST_THING=FOO}" we print
FOO, not LAST_THING. */
for (syms = *symlist, n = 0; syms; syms = syms->next)
{
int j = 0;
if (syms == osyms)
j = o_nsyms;
for (; j < syms->nsyms; j++,n++)
{
struct symbol *xsym = syms->symbol[j];
SYMBOL_TYPE (xsym) = type;
TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (xsym);
TYPE_FIELD_VALUE (type, n) = 0;
TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
TYPE_FIELD_BITSIZE (type, n) = 0;
}
if (syms == osyms)
break;
}
#if 0
/* This screws up perfectly good C programs with enums. FIXME. */
/* Is this Modula-2's BOOLEAN type? Flag it as such if so. */
if(TYPE_NFIELDS(type) == 2 &&
((STREQ(TYPE_FIELD_NAME(type,0),"TRUE") &&
STREQ(TYPE_FIELD_NAME(type,1),"FALSE")) ||
(STREQ(TYPE_FIELD_NAME(type,1),"TRUE") &&
STREQ(TYPE_FIELD_NAME(type,0),"FALSE"))))
TYPE_CODE(type) = TYPE_CODE_BOOL;
#endif
return type;
}
/* Sun's ACC uses a somewhat saner method for specifying the builtin
typedefs in every file (for int, long, etc):
type = b <signed> <width>; <offset>; <nbits>
signed = u or s. Possible c in addition to u or s (for char?).
offset = offset from high order bit to start bit of type.
width is # bytes in object of this type, nbits is # bits in type.
The width/offset stuff appears to be for small objects stored in
larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
FIXME. */
static struct type *
read_sun_builtin_type (pp, typenums, objfile)
char **pp;
int typenums[2];
struct objfile *objfile;
{
int nbits;
int signed_type;
switch (**pp)
{
case 's':
signed_type = 1;
break;
case 'u':
signed_type = 0;
break;
default:
return error_type (pp);
}
(*pp)++;
/* For some odd reason, all forms of char put a c here. This is strange
because no other type has this honor. We can safely ignore this because
we actually determine 'char'acterness by the number of bits specified in
the descriptor. */
if (**pp == 'c')
(*pp)++;
/* The first number appears to be the number of bytes occupied
by this type, except that unsigned short is 4 instead of 2.
Since this information is redundant with the third number,
we will ignore it. */
read_number (pp, ';');
/* The second number is always 0, so ignore it too. */
read_number (pp, ';');
/* The third number is the number of bits for this type. */
nbits = read_number (pp, 0);
/* FIXME. Here we should just be able to make a type of the right
number of bits and signedness. FIXME. */
if (nbits == TARGET_LONG_LONG_BIT)
return (lookup_fundamental_type (objfile,
signed_type? FT_LONG_LONG: FT_UNSIGNED_LONG_LONG));
if (nbits == TARGET_INT_BIT)
{
/* FIXME -- the only way to distinguish `int' from `long'
is to look at its name! */
if (signed_type)
{
if (long_kludge_name && long_kludge_name[0] == 'l' /* long */)
return lookup_fundamental_type (objfile, FT_LONG);
else
return lookup_fundamental_type (objfile, FT_INTEGER);
}
else
{
if (long_kludge_name
&& ((long_kludge_name[0] == 'u' /* unsigned */ &&
long_kludge_name[9] == 'l' /* long */)
|| (long_kludge_name[0] == 'l' /* long unsigned */)))
return lookup_fundamental_type (objfile, FT_UNSIGNED_LONG);
else
return lookup_fundamental_type (objfile, FT_UNSIGNED_INTEGER);
}
}
if (nbits == TARGET_SHORT_BIT)
return (lookup_fundamental_type (objfile,
signed_type? FT_SHORT: FT_UNSIGNED_SHORT));
if (nbits == TARGET_CHAR_BIT)
return (lookup_fundamental_type (objfile,
signed_type? FT_CHAR: FT_UNSIGNED_CHAR));
if (nbits == 0)
return lookup_fundamental_type (objfile, FT_VOID);
return error_type (pp);
}
static struct type *
read_sun_floating_type (pp, typenums, objfile)
char **pp;
int typenums[2];
struct objfile *objfile;
{
int nbytes;
/* The first number has more details about the type, for example
FN_COMPLEX. See the sun stab.h. */
read_number (pp, ';');
/* The second number is the number of bytes occupied by this type */
nbytes = read_number (pp, ';');
if (**pp != 0)
return error_type (pp);
if (nbytes == TARGET_FLOAT_BIT / TARGET_CHAR_BIT)
return lookup_fundamental_type (objfile, FT_FLOAT);
if (nbytes == TARGET_DOUBLE_BIT / TARGET_CHAR_BIT)
return lookup_fundamental_type (objfile, FT_DBL_PREC_FLOAT);
if (nbytes == TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT)
return lookup_fundamental_type (objfile, FT_EXT_PREC_FLOAT);
return error_type (pp);
}
/* Read a number from the string pointed to by *PP.
The value of *PP is advanced over the number.
If END is nonzero, the character that ends the
number must match END, or an error happens;
and that character is skipped if it does match.
If END is zero, *PP is left pointing to that character.
If the number fits in a long, set *VALUE and set *BITS to 0.
If not, set *BITS to be the number of bits in the number.
If encounter garbage, set *BITS to -1. */
static void
read_huge_number (pp, end, valu, bits)
char **pp;
int end;
long *valu;
int *bits;
{
char *p = *pp;
int sign = 1;
long n = 0;
int radix = 10;
char overflow = 0;
int nbits = 0;
int c;
long upper_limit;
if (*p == '-')
{
sign = -1;
p++;
}
/* Leading zero means octal. GCC uses this to output values larger
than an int (because that would be hard in decimal). */
if (*p == '0')
{
radix = 8;
p++;
}
upper_limit = LONG_MAX / radix;
while ((c = *p++) >= '0' && c <= ('0' + radix))
{
if (n <= upper_limit)
{
n *= radix;
n += c - '0'; /* FIXME this overflows anyway */
}
else
overflow = 1;
/* This depends on large values being output in octal, which is
what GCC does. */
if (radix == 8)
{
if (nbits == 0)
{
if (c == '0')
/* Ignore leading zeroes. */
;
else if (c == '1')
nbits = 1;
else if (c == '2' || c == '3')
nbits = 2;
else
nbits = 3;
}
else
nbits += 3;
}
}
if (end)
{
if (c && c != end)
{
if (bits != NULL)
*bits = -1;
return;
}
}
else
--p;
*pp = p;
if (overflow)
{
if (nbits == 0)
{
/* Large decimal constants are an error (because it is hard to
count how many bits are in them). */
if (bits != NULL)
*bits = -1;
return;
}
/* -0x7f is the same as 0x80. So deal with it by adding one to
the number of bits. */
if (sign == -1)
++nbits;
if (bits)
*bits = nbits;
}
else
{
if (valu)
*valu = n * sign;
if (bits)
*bits = 0;
}
}
static struct type *
read_range_type (pp, typenums, objfile)
char **pp;
int typenums[2];
struct objfile *objfile;
{
int rangenums[2];
long n2, n3;
int n2bits, n3bits;
int self_subrange;
struct type *result_type;
struct type *index_type;
/* First comes a type we are a subrange of.
In C it is usually 0, 1 or the type being defined. */
read_type_number (pp, rangenums);
self_subrange = (rangenums[0] == typenums[0] &&
rangenums[1] == typenums[1]);
/* A semicolon should now follow; skip it. */
if (**pp == ';')
(*pp)++;
/* The remaining two operands are usually lower and upper bounds
of the range. But in some special cases they mean something else. */
read_huge_number (pp, ';', &n2, &n2bits);
read_huge_number (pp, ';', &n3, &n3bits);
if (n2bits == -1 || n3bits == -1)
return error_type (pp);
/* If limits are huge, must be large integral type. */
if (n2bits != 0 || n3bits != 0)
{
char got_signed = 0;
char got_unsigned = 0;
/* Number of bits in the type. */
int nbits;
/* Range from 0 to <large number> is an unsigned large integral type. */
if ((n2bits == 0 && n2 == 0) && n3bits != 0)
{
got_unsigned = 1;
nbits = n3bits;
}
/* Range from <large number> to <large number>-1 is a large signed
integral type. */
else if (n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
{
got_signed = 1;
nbits = n2bits;
}
/* Check for "long long". */
if (got_signed && nbits == TARGET_LONG_LONG_BIT)
return (lookup_fundamental_type (objfile, FT_LONG_LONG));
if (got_unsigned && nbits == TARGET_LONG_LONG_BIT)
return (lookup_fundamental_type (objfile, FT_UNSIGNED_LONG_LONG));
if (got_signed || got_unsigned)
{
result_type = alloc_type (objfile);
TYPE_LENGTH (result_type) = nbits / TARGET_CHAR_BIT;
TYPE_CODE (result_type) = TYPE_CODE_INT;
if (got_unsigned)
TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
return result_type;
}
else
return error_type (pp);
}
/* A type defined as a subrange of itself, with bounds both 0, is void. */
if (self_subrange && n2 == 0 && n3 == 0)
return (lookup_fundamental_type (objfile, FT_VOID));
/* If n3 is zero and n2 is not, we want a floating type,
and n2 is the width in bytes.
Fortran programs appear to use this for complex types also,
and they give no way to distinguish between double and single-complex!
We don't have complex types, so we would lose on all fortran files!
So return type `double' for all of those. It won't work right
for the complex values, but at least it makes the file loadable.
FIXME, we may be able to distinguish these by their names. FIXME. */
if (n3 == 0 && n2 > 0)
{
if (n2 == sizeof (float))
return (lookup_fundamental_type (objfile, FT_FLOAT));
return (lookup_fundamental_type (objfile, FT_DBL_PREC_FLOAT));
}
/* If the upper bound is -1, it must really be an unsigned int. */
else if (n2 == 0 && n3 == -1)
{
/* FIXME -- the only way to distinguish `unsigned int' from `unsigned
long' is to look at its name! */
if (
long_kludge_name && ((long_kludge_name[0] == 'u' /* unsigned */ &&
long_kludge_name[9] == 'l' /* long */)
|| (long_kludge_name[0] == 'l' /* long unsigned */)))
return (lookup_fundamental_type (objfile, FT_UNSIGNED_LONG));
else
return (lookup_fundamental_type (objfile, FT_UNSIGNED_INTEGER));
}
/* Special case: char is defined (Who knows why) as a subrange of
itself with range 0-127. */
else if (self_subrange && n2 == 0 && n3 == 127)
return (lookup_fundamental_type (objfile, FT_CHAR));
/* Assumptions made here: Subrange of self is equivalent to subrange
of int. FIXME: Host and target type-sizes assumed the same. */
/* FIXME: This is the *only* place in GDB that depends on comparing
some type to a builtin type with ==. Fix it! */
else if (n2 == 0
&& (self_subrange ||
*dbx_lookup_type (rangenums) == lookup_fundamental_type (objfile, FT_INTEGER)))
{
/* an unsigned type */
#ifdef LONG_LONG
if (n3 == - sizeof (long long))
return (lookup_fundamental_type (objfile, FT_UNSIGNED_LONG_LONG));
#endif
/* FIXME -- the only way to distinguish `unsigned int' from `unsigned
long' is to look at its name! */
if (n3 == (unsigned long)~0L &&
long_kludge_name && ((long_kludge_name[0] == 'u' /* unsigned */ &&
long_kludge_name[9] == 'l' /* long */)
|| (long_kludge_name[0] == 'l' /* long unsigned */)))
return (lookup_fundamental_type (objfile, FT_UNSIGNED_LONG));
if (n3 == (unsigned int)~0L)
return (lookup_fundamental_type (objfile, FT_UNSIGNED_INTEGER));
if (n3 == (unsigned short)~0L)
return (lookup_fundamental_type (objfile, FT_UNSIGNED_SHORT));
if (n3 == (unsigned char)~0L)
return (lookup_fundamental_type (objfile, FT_UNSIGNED_CHAR));
}
#ifdef LONG_LONG
else if (n3 == 0 && n2 == -sizeof (long long))
return (lookup_fundamental_type (objfile, FT_LONG_LONG));
#endif
else if (n2 == -n3 -1)
{
/* a signed type */
/* FIXME -- the only way to distinguish `int' from `long' is to look
at its name! */
if ((n3 ==(long)(((unsigned long)1 << (8 * sizeof (long) - 1)) - 1)) &&
long_kludge_name && long_kludge_name[0] == 'l' /* long */)
return (lookup_fundamental_type (objfile, FT_LONG));
if (n3 == (long)(((unsigned long)1 << (8 * sizeof (int) - 1)) - 1))
return (lookup_fundamental_type (objfile, FT_INTEGER));
if (n3 == ( 1 << (8 * sizeof (short) - 1)) - 1)
return (lookup_fundamental_type (objfile, FT_SHORT));
if (n3 == ( 1 << (8 * sizeof (char) - 1)) - 1)
return (lookup_fundamental_type (objfile, FT_SIGNED_CHAR));
}
/* We have a real range type on our hands. Allocate space and
return a real pointer. */
/* At this point I don't have the faintest idea how to deal with
a self_subrange type; I'm going to assume that this is used
as an idiom, and that all of them are special cases. So . . . */
if (self_subrange)
return error_type (pp);
index_type = *dbx_lookup_type (rangenums);
if (index_type == NULL)
{
complain (&range_type_base_complaint, rangenums[1]);
index_type = lookup_fundamental_type (objfile, FT_INTEGER);
}
result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
return (result_type);
}
/* Read a number from the string pointed to by *PP.
The value of *PP is advanced over the number.
If END is nonzero, the character that ends the
number must match END, or an error happens;
and that character is skipped if it does match.
If END is zero, *PP is left pointing to that character. */
long
read_number (pp, end)
char **pp;
int end;
{
register char *p = *pp;
register long n = 0;
register int c;
int sign = 1;
/* Handle an optional leading minus sign. */
if (*p == '-')
{
sign = -1;
p++;
}
/* Read the digits, as far as they go. */
while ((c = *p++) >= '0' && c <= '9')
{
n *= 10;
n += c - '0';
}
if (end)
{
if (c && c != end)
error ("Invalid symbol data: invalid character \\%03o at symbol pos %d.", c, symnum);
}
else
--p;
*pp = p;
return n * sign;
}
/* Read in an argument list. This is a list of types, separated by commas
and terminated with END. Return the list of types read in, or (struct type
**)-1 if there is an error. */
static struct type **
read_args (pp, end, objfile)
char **pp;
int end;
struct objfile *objfile;
{
/* FIXME! Remove this arbitrary limit! */
struct type *types[1024], **rval; /* allow for fns of 1023 parameters */
int n = 0;
while (**pp != end)
{
if (**pp != ',')
/* Invalid argument list: no ','. */
return (struct type **)-1;
(*pp)++;
STABS_CONTINUE (pp);
types[n++] = read_type (pp, objfile);
}
(*pp)++; /* get past `end' (the ':' character) */
if (n == 1)
{
rval = (struct type **) xmalloc (2 * sizeof (struct type *));
}
else if (TYPE_CODE (types[n-1]) != TYPE_CODE_VOID)
{
rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
memset (rval + n, 0, sizeof (struct type *));
}
else
{
rval = (struct type **) xmalloc (n * sizeof (struct type *));
}
memcpy (rval, types, n * sizeof (struct type *));
return rval;
}
/* Add a common block's start address to the offset of each symbol
declared to be in it (by being between a BCOMM/ECOMM pair that uses
the common block name). */
static void
fix_common_block (sym, valu)
struct symbol *sym;
int valu;
{
struct pending *next = (struct pending *) SYMBOL_NAMESPACE (sym);
for ( ; next; next = next->next)
{
register int j;
for (j = next->nsyms - 1; j >= 0; j--)
SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
}
}
/* What about types defined as forward references inside of a small lexical
scope? */
/* Add a type to the list of undefined types to be checked through
once this file has been read in. */
void
add_undefined_type (type)
struct type *type;
{
if (undef_types_length == undef_types_allocated)
{
undef_types_allocated *= 2;
undef_types = (struct type **)
xrealloc ((char *) undef_types,
undef_types_allocated * sizeof (struct type *));
}
undef_types[undef_types_length++] = type;
}
/* Go through each undefined type, see if it's still undefined, and fix it
up if possible. We have two kinds of undefined types:
TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
Fix: update array length using the element bounds
and the target type's length.
TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
yet defined at the time a pointer to it was made.
Fix: Do a full lookup on the struct/union tag. */
void
cleanup_undefined_types ()
{
struct type **type;
for (type = undef_types; type < undef_types + undef_types_length; type++)
{
switch (TYPE_CODE (*type))
{
case TYPE_CODE_STRUCT:
case TYPE_CODE_UNION:
case TYPE_CODE_ENUM:
{
/* Check if it has been defined since. */
if (TYPE_FLAGS (*type) & TYPE_FLAG_STUB)
{
struct pending *ppt;
int i;
/* Name of the type, without "struct" or "union" */
char *typename = TYPE_NAME (*type);
if (!strncmp (typename, "struct ", 7))
typename += 7;
if (!strncmp (typename, "union ", 6))
typename += 6;
if (!strncmp (typename, "enum ", 5))
typename += 5;
for (ppt = file_symbols; ppt; ppt = ppt->next)
{
for (i = 0; i < ppt->nsyms; i++)
{
struct symbol *sym = ppt->symbol[i];
if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
&& SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
&& (TYPE_CODE (SYMBOL_TYPE (sym)) ==
TYPE_CODE (*type))
&& STREQ (SYMBOL_NAME (sym), typename))
{
memcpy (*type, SYMBOL_TYPE (sym),
sizeof (struct type));
}
}
}
}
}
break;
case TYPE_CODE_ARRAY:
{
struct type *range_type;
int lower, upper;
if (TYPE_LENGTH (*type) != 0) /* Better be unknown */
goto badtype;
if (TYPE_NFIELDS (*type) != 1)
goto badtype;
range_type = TYPE_FIELD_TYPE (*type, 0);
if (TYPE_CODE (range_type) != TYPE_CODE_RANGE)
goto badtype;
/* Now recompute the length of the array type, based on its
number of elements and the target type's length. */
lower = TYPE_FIELD_BITPOS (range_type, 0);
upper = TYPE_FIELD_BITPOS (range_type, 1);
TYPE_LENGTH (*type) = (upper - lower + 1)
* TYPE_LENGTH (TYPE_TARGET_TYPE (*type));
}
break;
default:
badtype:
error ("GDB internal error. cleanup_undefined_types with bad type %d.", TYPE_CODE (*type));
break;
}
}
undef_types_length = 0;
}
/* Scan through all of the global symbols defined in the object file,
assigning values to the debugging symbols that need to be assigned
to. Get these symbols from the minimal symbol table. */
void
scan_file_globals (objfile)
struct objfile *objfile;
{
int hash;
struct minimal_symbol *msymbol;
struct symbol *sym, *prev;
if (objfile->msymbols == 0) /* Beware the null file. */
return;
for (msymbol = objfile -> msymbols; SYMBOL_NAME (msymbol) != NULL; msymbol++)
{
QUIT;
prev = NULL;
/* Get the hash index and check all the symbols
under that hash index. */
hash = hashname (SYMBOL_NAME (msymbol));
for (sym = global_sym_chain[hash]; sym;)
{
if (SYMBOL_NAME (msymbol)[0] == SYMBOL_NAME (sym)[0] &&
STREQ(SYMBOL_NAME (msymbol) + 1, SYMBOL_NAME (sym) + 1))
{
/* Splice this symbol out of the hash chain and
assign the value we have to it. */
if (prev)
{
SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
}
else
{
global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
}
/* Check to see whether we need to fix up a common block. */
/* Note: this code might be executed several times for
the same symbol if there are multiple references. */
if (SYMBOL_CLASS (sym) == LOC_BLOCK)
{
fix_common_block (sym, SYMBOL_VALUE_ADDRESS (msymbol));
}
else
{
SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msymbol);
}
if (prev)
{
sym = SYMBOL_VALUE_CHAIN (prev);
}
else
{
sym = global_sym_chain[hash];
}
}
else
{
prev = sym;
sym = SYMBOL_VALUE_CHAIN (sym);
}
}
}
}
/* Initialize anything that needs initializing when starting to read
a fresh piece of a symbol file, e.g. reading in the stuff corresponding
to a psymtab. */
void
stabsread_init ()
{
}
/* Initialize anything that needs initializing when a completely new
symbol file is specified (not just adding some symbols from another
file, e.g. a shared library). */
void
stabsread_new_init ()
{
/* Empty the hash table of global syms looking for values. */
memset (global_sym_chain, 0, sizeof (global_sym_chain));
}
/* Initialize anything that needs initializing at the same time as
start_symtab() is called. */
void start_stabs ()
{
global_stabs = NULL; /* AIX COFF */
/* Leave FILENUM of 0 free for builtin types and this file's types. */
n_this_object_header_files = 1;
type_vector_length = 0;
type_vector = (struct type **) 0;
}
/* Call after end_symtab() */
void end_stabs ()
{
if (type_vector)
{
free ((char *) type_vector);
}
type_vector = 0;
type_vector_length = 0;
previous_stab_code = 0;
}
void
finish_global_stabs (objfile)
struct objfile *objfile;
{
if (global_stabs)
{
patch_block_stabs (global_symbols, global_stabs, objfile);
free ((PTR) global_stabs);
global_stabs = NULL;
}
}
/* Initializer for this module */
void
_initialize_stabsread ()
{
undef_types_allocated = 20;
undef_types_length = 0;
undef_types = (struct type **)
xmalloc (undef_types_allocated * sizeof (struct type *));
}