binutils-gdb/sim/m32r/traps-linux.c

1388 lines
39 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* m32r exception, interrupt, and trap (EIT) support
Copyright (C) 1998-2014 Free Software Foundation, Inc.
Contributed by Renesas.
This file is part of GDB, the GNU debugger.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "sim-main.h"
#include "syscall.h"
#include "targ-vals.h"
#include <dirent.h>
#include <errno.h>
#include <fcntl.h>
#include <time.h>
#include <unistd.h>
#include <utime.h>
#include <sys/mman.h>
#include <sys/poll.h>
#include <sys/resource.h>
#include <sys/sysinfo.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/timeb.h>
#include <sys/timex.h>
#include <sys/types.h>
#include <sys/uio.h>
#include <sys/utsname.h>
#include <sys/vfs.h>
#include <linux/sysctl.h>
#include <linux/types.h>
#include <linux/unistd.h>
#define TRAP_ELF_SYSCALL 0
#define TRAP_LINUX_SYSCALL 2
#define TRAP_FLUSH_CACHE 12
/* The semantic code invokes this for invalid (unrecognized) instructions. */
SEM_PC
sim_engine_invalid_insn (SIM_CPU *current_cpu, IADDR cia, SEM_PC vpc)
{
SIM_DESC sd = CPU_STATE (current_cpu);
#if 0
if (STATE_ENVIRONMENT (sd) == OPERATING_ENVIRONMENT)
{
h_bsm_set (current_cpu, h_sm_get (current_cpu));
h_bie_set (current_cpu, h_ie_get (current_cpu));
h_bcond_set (current_cpu, h_cond_get (current_cpu));
/* sm not changed */
h_ie_set (current_cpu, 0);
h_cond_set (current_cpu, 0);
h_bpc_set (current_cpu, cia);
sim_engine_restart (CPU_STATE (current_cpu), current_cpu, NULL,
EIT_RSVD_INSN_ADDR);
}
else
#endif
sim_engine_halt (sd, current_cpu, NULL, cia, sim_stopped, SIM_SIGILL);
return vpc;
}
/* Process an address exception. */
void
m32r_core_signal (SIM_DESC sd, SIM_CPU *current_cpu, sim_cia cia,
unsigned int map, int nr_bytes, address_word addr,
transfer_type transfer, sim_core_signals sig)
{
if (STATE_ENVIRONMENT (sd) == OPERATING_ENVIRONMENT)
{
m32rbf_h_cr_set (current_cpu, H_CR_BBPC,
m32rbf_h_cr_get (current_cpu, H_CR_BPC));
if (MACH_NUM (CPU_MACH (current_cpu)) == MACH_M32R)
{
m32rbf_h_bpsw_set (current_cpu, m32rbf_h_psw_get (current_cpu));
/* sm not changed */
m32rbf_h_psw_set (current_cpu, m32rbf_h_psw_get (current_cpu) & 0x80);
}
else if (MACH_NUM (CPU_MACH (current_cpu)) == MACH_M32RX)
{
m32rxf_h_bpsw_set (current_cpu, m32rxf_h_psw_get (current_cpu));
/* sm not changed */
m32rxf_h_psw_set (current_cpu, m32rxf_h_psw_get (current_cpu) & 0x80);
}
else
{
m32r2f_h_bpsw_set (current_cpu, m32r2f_h_psw_get (current_cpu));
/* sm not changed */
m32r2f_h_psw_set (current_cpu, m32r2f_h_psw_get (current_cpu) & 0x80);
}
m32rbf_h_cr_set (current_cpu, H_CR_BPC, cia);
sim_engine_restart (CPU_STATE (current_cpu), current_cpu, NULL,
EIT_ADDR_EXCP_ADDR);
}
else
sim_core_signal (sd, current_cpu, cia, map, nr_bytes, addr,
transfer, sig);
}
/* Read/write functions for system call interface. */
static int
syscall_read_mem (host_callback *cb, struct cb_syscall *sc,
unsigned long taddr, char *buf, int bytes)
{
SIM_DESC sd = (SIM_DESC) sc->p1;
SIM_CPU *cpu = (SIM_CPU *) sc->p2;
return sim_core_read_buffer (sd, cpu, read_map, buf, taddr, bytes);
}
static int
syscall_write_mem (host_callback *cb, struct cb_syscall *sc,
unsigned long taddr, const char *buf, int bytes)
{
SIM_DESC sd = (SIM_DESC) sc->p1;
SIM_CPU *cpu = (SIM_CPU *) sc->p2;
return sim_core_write_buffer (sd, cpu, write_map, buf, taddr, bytes);
}
/* Translate target's address to host's address. */
static void *
t2h_addr (host_callback *cb, struct cb_syscall *sc,
unsigned long taddr)
{
void *addr;
SIM_DESC sd = (SIM_DESC) sc->p1;
SIM_CPU *cpu = (SIM_CPU *) sc->p2;
if (taddr == 0)
return NULL;
return sim_core_trans_addr (sd, cpu, read_map, taddr);
}
static unsigned int
conv_endian (unsigned int tvalue)
{
unsigned int hvalue;
unsigned int t1, t2, t3, t4;
if (CURRENT_HOST_BYTE_ORDER == LITTLE_ENDIAN)
{
t1 = tvalue & 0xff000000;
t2 = tvalue & 0x00ff0000;
t3 = tvalue & 0x0000ff00;
t4 = tvalue & 0x000000ff;
hvalue = t1 >> 24;
hvalue += t2 >> 8;
hvalue += t3 << 8;
hvalue += t4 << 24;
}
else
hvalue = tvalue;
return hvalue;
}
static unsigned short
conv_endian16 (unsigned short tvalue)
{
unsigned short hvalue;
unsigned short t1, t2;
if (CURRENT_HOST_BYTE_ORDER == LITTLE_ENDIAN)
{
t1 = tvalue & 0xff00;
t2 = tvalue & 0x00ff;
hvalue = t1 >> 8;
hvalue += t2 << 8;
}
else
hvalue = tvalue;
return hvalue;
}
static void
translate_endian(void *addr, size_t size)
{
unsigned int *p = (unsigned int *) addr;
int i;
for (i = 0; i <= size - 4; i += 4,p++)
*p = conv_endian(*p);
if (i <= size - 2)
*((unsigned short *) p) = conv_endian16(*((unsigned short *) p));
}
/* Trap support.
The result is the pc address to continue at.
Preprocessing like saving the various registers has already been done. */
USI
m32r_trap (SIM_CPU *current_cpu, PCADDR pc, int num)
{
SIM_DESC sd = CPU_STATE (current_cpu);
host_callback *cb = STATE_CALLBACK (sd);
#ifdef SIM_HAVE_BREAKPOINTS
/* Check for breakpoints "owned" by the simulator first, regardless
of --environment. */
if (num == TRAP_BREAKPOINT)
{
/* First try sim-break.c. If it's a breakpoint the simulator "owns"
it doesn't return. Otherwise it returns and let's us try. */
sim_handle_breakpoint (sd, current_cpu, pc);
/* Fall through. */
}
#endif
switch (num)
{
case TRAP_ELF_SYSCALL :
{
CB_SYSCALL s;
CB_SYSCALL_INIT (&s);
s.func = m32rbf_h_gr_get (current_cpu, 0);
s.arg1 = m32rbf_h_gr_get (current_cpu, 1);
s.arg2 = m32rbf_h_gr_get (current_cpu, 2);
s.arg3 = m32rbf_h_gr_get (current_cpu, 3);
if (s.func == TARGET_SYS_exit)
{
sim_engine_halt (sd, current_cpu, NULL, pc, sim_exited, s.arg1);
}
s.p1 = (PTR) sd;
s.p2 = (PTR) current_cpu;
s.read_mem = syscall_read_mem;
s.write_mem = syscall_write_mem;
cb_syscall (cb, &s);
m32rbf_h_gr_set (current_cpu, 2, s.errcode);
m32rbf_h_gr_set (current_cpu, 0, s.result);
m32rbf_h_gr_set (current_cpu, 1, s.result2);
break;
}
case TRAP_LINUX_SYSCALL :
{
CB_SYSCALL s;
unsigned int func, arg1, arg2, arg3, arg4, arg5, arg6, arg7;
int result, result2, errcode;
if (STATE_ENVIRONMENT (sd) == OPERATING_ENVIRONMENT)
{
/* The new pc is the trap vector entry.
We assume there's a branch there to some handler.
Use cr5 as EVB (EIT Vector Base) register. */
USI new_pc = m32rbf_h_cr_get (current_cpu, 5) + 0x40 + num * 4;
return new_pc;
}
func = m32rbf_h_gr_get (current_cpu, 7);
arg1 = m32rbf_h_gr_get (current_cpu, 0);
arg2 = m32rbf_h_gr_get (current_cpu, 1);
arg3 = m32rbf_h_gr_get (current_cpu, 2);
arg4 = m32rbf_h_gr_get (current_cpu, 3);
arg5 = m32rbf_h_gr_get (current_cpu, 4);
arg6 = m32rbf_h_gr_get (current_cpu, 5);
arg7 = m32rbf_h_gr_get (current_cpu, 6);
CB_SYSCALL_INIT (&s);
s.func = func;
s.arg1 = arg1;
s.arg2 = arg2;
s.arg3 = arg3;
s.p1 = (PTR) sd;
s.p2 = (PTR) current_cpu;
s.read_mem = syscall_read_mem;
s.write_mem = syscall_write_mem;
result = 0;
result2 = 0;
errcode = 0;
switch (func)
{
case __NR_exit:
sim_engine_halt (sd, current_cpu, NULL, pc, sim_exited, arg1);
break;
case __NR_read:
result = read(arg1, t2h_addr(cb, &s, arg2), arg3);
errcode = errno;
break;
case __NR_write:
result = write(arg1, t2h_addr(cb, &s, arg2), arg3);
errcode = errno;
break;
case __NR_open:
result = open((char *) t2h_addr(cb, &s, arg1), arg2, arg3);
errcode = errno;
break;
case __NR_close:
result = close(arg1);
errcode = errno;
break;
case __NR_creat:
result = creat((char *) t2h_addr(cb, &s, arg1), arg2);
errcode = errno;
break;
case __NR_link:
result = link((char *) t2h_addr(cb, &s, arg1),
(char *) t2h_addr(cb, &s, arg2));
errcode = errno;
break;
case __NR_unlink:
result = unlink((char *) t2h_addr(cb, &s, arg1));
errcode = errno;
break;
case __NR_chdir:
result = chdir((char *) t2h_addr(cb, &s, arg1));
errcode = errno;
break;
case __NR_time:
{
time_t t;
if (arg1 == 0)
{
result = (int) time(NULL);
errcode = errno;
}
else
{
result = (int) time(&t);
errcode = errno;
if (result != 0)
break;
translate_endian((void *) &t, sizeof(t));
if ((s.write_mem) (cb, &s, arg1, (char *) &t, sizeof(t)) != sizeof(t))
{
result = -1;
errcode = EINVAL;
}
}
}
break;
case __NR_mknod:
result = mknod((char *) t2h_addr(cb, &s, arg1),
(mode_t) arg2, (dev_t) arg3);
errcode = errno;
break;
case __NR_chmod:
result = chmod((char *) t2h_addr(cb, &s, arg1), (mode_t) arg2);
errcode = errno;
break;
case __NR_lchown32:
case __NR_lchown:
result = lchown((char *) t2h_addr(cb, &s, arg1),
(uid_t) arg2, (gid_t) arg3);
errcode = errno;
break;
case __NR_lseek:
result = (int) lseek(arg1, (off_t) arg2, arg3);
errcode = errno;
break;
case __NR_getpid:
result = getpid();
errcode = errno;
break;
case __NR_getuid32:
case __NR_getuid:
result = getuid();
errcode = errno;
break;
case __NR_utime:
{
struct utimbuf buf;
if (arg2 == 0)
{
result = utime((char *) t2h_addr(cb, &s, arg1), NULL);
errcode = errno;
}
else
{
buf = *((struct utimbuf *) t2h_addr(cb, &s, arg2));
translate_endian((void *) &buf, sizeof(buf));
result = utime((char *) t2h_addr(cb, &s, arg1), &buf);
errcode = errno;
}
}
break;
case __NR_access:
result = access((char *) t2h_addr(cb, &s, arg1), arg2);
errcode = errno;
break;
case __NR_ftime:
{
struct timeb t;
result = ftime(&t);
errcode = errno;
if (result != 0)
break;
t.time = conv_endian(t.time);
t.millitm = conv_endian16(t.millitm);
t.timezone = conv_endian16(t.timezone);
t.dstflag = conv_endian16(t.dstflag);
if ((s.write_mem) (cb, &s, arg1, (char *) &t, sizeof(t))
!= sizeof(t))
{
result = -1;
errcode = EINVAL;
}
}
case __NR_sync:
sync();
result = 0;
break;
case __NR_rename:
result = rename((char *) t2h_addr(cb, &s, arg1),
(char *) t2h_addr(cb, &s, arg2));
errcode = errno;
break;
case __NR_mkdir:
result = mkdir((char *) t2h_addr(cb, &s, arg1), arg2);
errcode = errno;
break;
case __NR_rmdir:
result = rmdir((char *) t2h_addr(cb, &s, arg1));
errcode = errno;
break;
case __NR_dup:
result = dup(arg1);
errcode = errno;
break;
case __NR_brk:
result = brk((void *) arg1);
errcode = errno;
//result = arg1;
break;
case __NR_getgid32:
case __NR_getgid:
result = getgid();
errcode = errno;
break;
case __NR_geteuid32:
case __NR_geteuid:
result = geteuid();
errcode = errno;
break;
case __NR_getegid32:
case __NR_getegid:
result = getegid();
errcode = errno;
break;
case __NR_ioctl:
result = ioctl(arg1, arg2, arg3);
errcode = errno;
break;
case __NR_fcntl:
result = fcntl(arg1, arg2, arg3);
errcode = errno;
break;
case __NR_dup2:
result = dup2(arg1, arg2);
errcode = errno;
break;
case __NR_getppid:
result = getppid();
errcode = errno;
break;
case __NR_getpgrp:
result = getpgrp();
errcode = errno;
break;
case __NR_getrlimit:
{
struct rlimit rlim;
result = getrlimit(arg1, &rlim);
errcode = errno;
if (result != 0)
break;
translate_endian((void *) &rlim, sizeof(rlim));
if ((s.write_mem) (cb, &s, arg2, (char *) &rlim, sizeof(rlim))
!= sizeof(rlim))
{
result = -1;
errcode = EINVAL;
}
}
break;
case __NR_getrusage:
{
struct rusage usage;
result = getrusage(arg1, &usage);
errcode = errno;
if (result != 0)
break;
translate_endian((void *) &usage, sizeof(usage));
if ((s.write_mem) (cb, &s, arg2, (char *) &usage, sizeof(usage))
!= sizeof(usage))
{
result = -1;
errcode = EINVAL;
}
}
break;
case __NR_gettimeofday:
{
struct timeval tv;
struct timezone tz;
result = gettimeofday(&tv, &tz);
errcode = errno;
if (result != 0)
break;
translate_endian((void *) &tv, sizeof(tv));
if ((s.write_mem) (cb, &s, arg1, (char *) &tv, sizeof(tv))
!= sizeof(tv))
{
result = -1;
errcode = EINVAL;
}
translate_endian((void *) &tz, sizeof(tz));
if ((s.write_mem) (cb, &s, arg2, (char *) &tz, sizeof(tz))
!= sizeof(tz))
{
result = -1;
errcode = EINVAL;
}
}
break;
case __NR_getgroups32:
case __NR_getgroups:
{
gid_t *list;
if (arg1 > 0)
list = (gid_t *) malloc(arg1 * sizeof(gid_t));
result = getgroups(arg1, list);
errcode = errno;
if (result != 0)
break;
translate_endian((void *) list, arg1 * sizeof(gid_t));
if (arg1 > 0)
if ((s.write_mem) (cb, &s, arg2, (char *) list, arg1 * sizeof(gid_t))
!= arg1 * sizeof(gid_t))
{
result = -1;
errcode = EINVAL;
}
}
break;
case __NR_select:
{
int n;
fd_set readfds;
fd_set *treadfdsp;
fd_set *hreadfdsp;
fd_set writefds;
fd_set *twritefdsp;
fd_set *hwritefdsp;
fd_set exceptfds;
fd_set *texceptfdsp;
fd_set *hexceptfdsp;
struct timeval *ttimeoutp;
struct timeval timeout;
n = arg1;
treadfdsp = (fd_set *) arg2;
if (treadfdsp != NULL)
{
readfds = *((fd_set *) t2h_addr(cb, &s, (unsigned int) treadfdsp));
translate_endian((void *) &readfds, sizeof(readfds));
hreadfdsp = &readfds;
}
else
hreadfdsp = NULL;
twritefdsp = (fd_set *) arg3;
if (twritefdsp != NULL)
{
writefds = *((fd_set *) t2h_addr(cb, &s, (unsigned int) twritefdsp));
translate_endian((void *) &writefds, sizeof(writefds));
hwritefdsp = &writefds;
}
else
hwritefdsp = NULL;
texceptfdsp = (fd_set *) arg4;
if (texceptfdsp != NULL)
{
exceptfds = *((fd_set *) t2h_addr(cb, &s, (unsigned int) texceptfdsp));
translate_endian((void *) &exceptfds, sizeof(exceptfds));
hexceptfdsp = &exceptfds;
}
else
hexceptfdsp = NULL;
ttimeoutp = (struct timeval *) arg5;
timeout = *((struct timeval *) t2h_addr(cb, &s, (unsigned int) ttimeoutp));
translate_endian((void *) &timeout, sizeof(timeout));
result = select(n, hreadfdsp, hwritefdsp, hexceptfdsp, &timeout);
errcode = errno;
if (result != 0)
break;
if (treadfdsp != NULL)
{
translate_endian((void *) &readfds, sizeof(readfds));
if ((s.write_mem) (cb, &s, (unsigned long) treadfdsp,
(char *) &readfds, sizeof(readfds)) != sizeof(readfds))
{
result = -1;
errcode = EINVAL;
}
}
if (twritefdsp != NULL)
{
translate_endian((void *) &writefds, sizeof(writefds));
if ((s.write_mem) (cb, &s, (unsigned long) twritefdsp,
(char *) &writefds, sizeof(writefds)) != sizeof(writefds))
{
result = -1;
errcode = EINVAL;
}
}
if (texceptfdsp != NULL)
{
translate_endian((void *) &exceptfds, sizeof(exceptfds));
if ((s.write_mem) (cb, &s, (unsigned long) texceptfdsp,
(char *) &exceptfds, sizeof(exceptfds)) != sizeof(exceptfds))
{
result = -1;
errcode = EINVAL;
}
}
translate_endian((void *) &timeout, sizeof(timeout));
if ((s.write_mem) (cb, &s, (unsigned long) ttimeoutp,
(char *) &timeout, sizeof(timeout)) != sizeof(timeout))
{
result = -1;
errcode = EINVAL;
}
}
break;
case __NR_symlink:
result = symlink((char *) t2h_addr(cb, &s, arg1),
(char *) t2h_addr(cb, &s, arg2));
errcode = errno;
break;
case __NR_readlink:
result = readlink((char *) t2h_addr(cb, &s, arg1),
(char *) t2h_addr(cb, &s, arg2),
arg3);
errcode = errno;
break;
case __NR_readdir:
result = (int) readdir((DIR *) t2h_addr(cb, &s, arg1));
errcode = errno;
break;
#if 0
case __NR_mmap:
{
result = (int) mmap((void *) t2h_addr(cb, &s, arg1),
arg2, arg3, arg4, arg5, arg6);
errcode = errno;
if (errno == 0)
{
sim_core_attach (sd, NULL,
0, access_read_write_exec, 0,
result, arg2, 0, NULL, NULL);
}
}
break;
#endif
case __NR_mmap2:
{
void *addr;
size_t len;
int prot, flags, fildes;
off_t off;
addr = (void *) t2h_addr(cb, &s, arg1);
len = arg2;
prot = arg3;
flags = arg4;
fildes = arg5;
off = arg6 << 12;
result = (int) mmap(addr, len, prot, flags, fildes, off);
errcode = errno;
if (result != -1)
{
char c;
if (sim_core_read_buffer (sd, NULL, read_map, &c, result, 1) == 0)
sim_core_attach (sd, NULL,
0, access_read_write_exec, 0,
result, len, 0, NULL, NULL);
}
}
break;
case __NR_mmap:
{
void *addr;
size_t len;
int prot, flags, fildes;
off_t off;
addr = *((void **) t2h_addr(cb, &s, arg1));
len = *((size_t *) t2h_addr(cb, &s, arg1 + 4));
prot = *((int *) t2h_addr(cb, &s, arg1 + 8));
flags = *((int *) t2h_addr(cb, &s, arg1 + 12));
fildes = *((int *) t2h_addr(cb, &s, arg1 + 16));
off = *((off_t *) t2h_addr(cb, &s, arg1 + 20));
addr = (void *) conv_endian((unsigned int) addr);
len = conv_endian(len);
prot = conv_endian(prot);
flags = conv_endian(flags);
fildes = conv_endian(fildes);
off = conv_endian(off);
//addr = (void *) t2h_addr(cb, &s, (unsigned int) addr);
result = (int) mmap(addr, len, prot, flags, fildes, off);
errcode = errno;
//if (errno == 0)
if (result != -1)
{
char c;
if (sim_core_read_buffer (sd, NULL, read_map, &c, result, 1) == 0)
sim_core_attach (sd, NULL,
0, access_read_write_exec, 0,
result, len, 0, NULL, NULL);
}
}
break;
case __NR_munmap:
{
result = munmap((void *)arg1, arg2);
errcode = errno;
if (result != -1)
{
sim_core_detach (sd, NULL, 0, arg2, result);
}
}
break;
case __NR_truncate:
result = truncate((char *) t2h_addr(cb, &s, arg1), arg2);
errcode = errno;
break;
case __NR_ftruncate:
result = ftruncate(arg1, arg2);
errcode = errno;
break;
case __NR_fchmod:
result = fchmod(arg1, arg2);
errcode = errno;
break;
case __NR_fchown32:
case __NR_fchown:
result = fchown(arg1, arg2, arg3);
errcode = errno;
break;
case __NR_statfs:
{
struct statfs statbuf;
result = statfs((char *) t2h_addr(cb, &s, arg1), &statbuf);
errcode = errno;
if (result != 0)
break;
translate_endian((void *) &statbuf, sizeof(statbuf));
if ((s.write_mem) (cb, &s, arg2, (char *) &statbuf, sizeof(statbuf))
!= sizeof(statbuf))
{
result = -1;
errcode = EINVAL;
}
}
break;
case __NR_fstatfs:
{
struct statfs statbuf;
result = fstatfs(arg1, &statbuf);
errcode = errno;
if (result != 0)
break;
translate_endian((void *) &statbuf, sizeof(statbuf));
if ((s.write_mem) (cb, &s, arg2, (char *) &statbuf, sizeof(statbuf))
!= sizeof(statbuf))
{
result = -1;
errcode = EINVAL;
}
}
break;
case __NR_syslog:
result = syslog(arg1, (char *) t2h_addr(cb, &s, arg2));
errcode = errno;
break;
case __NR_setitimer:
{
struct itimerval value, ovalue;
value = *((struct itimerval *) t2h_addr(cb, &s, arg2));
translate_endian((void *) &value, sizeof(value));
if (arg2 == 0)
{
result = setitimer(arg1, &value, NULL);
errcode = errno;
}
else
{
result = setitimer(arg1, &value, &ovalue);
errcode = errno;
if (result != 0)
break;
translate_endian((void *) &ovalue, sizeof(ovalue));
if ((s.write_mem) (cb, &s, arg3, (char *) &ovalue, sizeof(ovalue))
!= sizeof(ovalue))
{
result = -1;
errcode = EINVAL;
}
}
}
break;
case __NR_getitimer:
{
struct itimerval value;
result = getitimer(arg1, &value);
errcode = errno;
if (result != 0)
break;
translate_endian((void *) &value, sizeof(value));
if ((s.write_mem) (cb, &s, arg2, (char *) &value, sizeof(value))
!= sizeof(value))
{
result = -1;
errcode = EINVAL;
}
}
break;
case __NR_stat:
{
char *buf;
int buflen;
struct stat statbuf;
result = stat((char *) t2h_addr(cb, &s, arg1), &statbuf);
errcode = errno;
if (result < 0)
break;
buflen = cb_host_to_target_stat (cb, NULL, NULL);
buf = xmalloc (buflen);
if (cb_host_to_target_stat (cb, &statbuf, buf) != buflen)
{
/* The translation failed. This is due to an internal
host program error, not the target's fault. */
free (buf);
result = -1;
errcode = ENOSYS;
break;
}
if ((s.write_mem) (cb, &s, arg2, buf, buflen) != buflen)
{
free (buf);
result = -1;
errcode = EINVAL;
break;
}
free (buf);
}
break;
case __NR_lstat:
{
char *buf;
int buflen;
struct stat statbuf;
result = lstat((char *) t2h_addr(cb, &s, arg1), &statbuf);
errcode = errno;
if (result < 0)
break;
buflen = cb_host_to_target_stat (cb, NULL, NULL);
buf = xmalloc (buflen);
if (cb_host_to_target_stat (cb, &statbuf, buf) != buflen)
{
/* The translation failed. This is due to an internal
host program error, not the target's fault. */
free (buf);
result = -1;
errcode = ENOSYS;
break;
}
if ((s.write_mem) (cb, &s, arg2, buf, buflen) != buflen)
{
free (buf);
result = -1;
errcode = EINVAL;
break;
}
free (buf);
}
break;
case __NR_fstat:
{
char *buf;
int buflen;
struct stat statbuf;
result = fstat(arg1, &statbuf);
errcode = errno;
if (result < 0)
break;
buflen = cb_host_to_target_stat (cb, NULL, NULL);
buf = xmalloc (buflen);
if (cb_host_to_target_stat (cb, &statbuf, buf) != buflen)
{
/* The translation failed. This is due to an internal
host program error, not the target's fault. */
free (buf);
result = -1;
errcode = ENOSYS;
break;
}
if ((s.write_mem) (cb, &s, arg2, buf, buflen) != buflen)
{
free (buf);
result = -1;
errcode = EINVAL;
break;
}
free (buf);
}
break;
case __NR_sysinfo:
{
struct sysinfo info;
result = sysinfo(&info);
errcode = errno;
if (result != 0)
break;
info.uptime = conv_endian(info.uptime);
info.loads[0] = conv_endian(info.loads[0]);
info.loads[1] = conv_endian(info.loads[1]);
info.loads[2] = conv_endian(info.loads[2]);
info.totalram = conv_endian(info.totalram);
info.freeram = conv_endian(info.freeram);
info.sharedram = conv_endian(info.sharedram);
info.bufferram = conv_endian(info.bufferram);
info.totalswap = conv_endian(info.totalswap);
info.freeswap = conv_endian(info.freeswap);
info.procs = conv_endian16(info.procs);
#if LINUX_VERSION_CODE >= 0x20400
info.totalhigh = conv_endian(info.totalhigh);
info.freehigh = conv_endian(info.freehigh);
info.mem_unit = conv_endian(info.mem_unit);
#endif
if ((s.write_mem) (cb, &s, arg1, (char *) &info, sizeof(info))
!= sizeof(info))
{
result = -1;
errcode = EINVAL;
}
}
break;
#if 0
case __NR_ipc:
{
result = ipc(arg1, arg2, arg3, arg4,
(void *) t2h_addr(cb, &s, arg5), arg6);
errcode = errno;
}
break;
#endif
case __NR_fsync:
result = fsync(arg1);
errcode = errno;
break;
case __NR_uname:
/* utsname contains only arrays of char, so it is not necessary
to translate endian. */
result = uname((struct utsname *) t2h_addr(cb, &s, arg1));
errcode = errno;
break;
case __NR_adjtimex:
{
struct timex buf;
result = adjtimex(&buf);
errcode = errno;
if (result != 0)
break;
translate_endian((void *) &buf, sizeof(buf));
if ((s.write_mem) (cb, &s, arg1, (char *) &buf, sizeof(buf))
!= sizeof(buf))
{
result = -1;
errcode = EINVAL;
}
}
break;
case __NR_mprotect:
result = mprotect((void *) arg1, arg2, arg3);
errcode = errno;
break;
case __NR_fchdir:
result = fchdir(arg1);
errcode = errno;
break;
case __NR_setfsuid32:
case __NR_setfsuid:
result = setfsuid(arg1);
errcode = errno;
break;
case __NR_setfsgid32:
case __NR_setfsgid:
result = setfsgid(arg1);
errcode = errno;
break;
#if 0
case __NR__llseek:
{
loff_t buf;
result = _llseek(arg1, arg2, arg3, &buf, arg5);
errcode = errno;
if (result != 0)
break;
translate_endian((void *) &buf, sizeof(buf));
if ((s.write_mem) (cb, &s, t2h_addr(cb, &s, arg4),
(char *) &buf, sizeof(buf)) != sizeof(buf))
{
result = -1;
errcode = EINVAL;
}
}
break;
case __NR_getdents:
{
struct dirent dir;
result = getdents(arg1, &dir, arg3);
errcode = errno;
if (result != 0)
break;
dir.d_ino = conv_endian(dir.d_ino);
dir.d_off = conv_endian(dir.d_off);
dir.d_reclen = conv_endian16(dir.d_reclen);
if ((s.write_mem) (cb, &s, arg2, (char *) &dir, sizeof(dir))
!= sizeof(dir))
{
result = -1;
errcode = EINVAL;
}
}
break;
#endif
case __NR_flock:
result = flock(arg1, arg2);
errcode = errno;
break;
case __NR_msync:
result = msync((void *) arg1, arg2, arg3);
errcode = errno;
break;
case __NR_readv:
{
struct iovec vector;
vector = *((struct iovec *) t2h_addr(cb, &s, arg2));
translate_endian((void *) &vector, sizeof(vector));
result = readv(arg1, &vector, arg3);
errcode = errno;
}
break;
case __NR_writev:
{
struct iovec vector;
vector = *((struct iovec *) t2h_addr(cb, &s, arg2));
translate_endian((void *) &vector, sizeof(vector));
result = writev(arg1, &vector, arg3);
errcode = errno;
}
break;
case __NR_fdatasync:
result = fdatasync(arg1);
errcode = errno;
break;
case __NR_mlock:
result = mlock((void *) t2h_addr(cb, &s, arg1), arg2);
errcode = errno;
break;
case __NR_munlock:
result = munlock((void *) t2h_addr(cb, &s, arg1), arg2);
errcode = errno;
break;
case __NR_nanosleep:
{
struct timespec req, rem;
req = *((struct timespec *) t2h_addr(cb, &s, arg2));
translate_endian((void *) &req, sizeof(req));
result = nanosleep(&req, &rem);
errcode = errno;
if (result != 0)
break;
translate_endian((void *) &rem, sizeof(rem));
if ((s.write_mem) (cb, &s, arg2, (char *) &rem, sizeof(rem))
!= sizeof(rem))
{
result = -1;
errcode = EINVAL;
}
}
break;
case __NR_mremap: /* FIXME */
result = (int) mremap((void *) t2h_addr(cb, &s, arg1), arg2, arg3, arg4);
errcode = errno;
break;
case __NR_getresuid32:
case __NR_getresuid:
{
uid_t ruid, euid, suid;
result = getresuid(&ruid, &euid, &suid);
errcode = errno;
if (result != 0)
break;
*((uid_t *) t2h_addr(cb, &s, arg1)) = conv_endian(ruid);
*((uid_t *) t2h_addr(cb, &s, arg2)) = conv_endian(euid);
*((uid_t *) t2h_addr(cb, &s, arg3)) = conv_endian(suid);
}
break;
case __NR_poll:
{
struct pollfd ufds;
ufds = *((struct pollfd *) t2h_addr(cb, &s, arg1));
ufds.fd = conv_endian(ufds.fd);
ufds.events = conv_endian16(ufds.events);
ufds.revents = conv_endian16(ufds.revents);
result = poll(&ufds, arg2, arg3);
errcode = errno;
}
break;
case __NR_getresgid32:
case __NR_getresgid:
{
uid_t rgid, egid, sgid;
result = getresgid(&rgid, &egid, &sgid);
errcode = errno;
if (result != 0)
break;
*((uid_t *) t2h_addr(cb, &s, arg1)) = conv_endian(rgid);
*((uid_t *) t2h_addr(cb, &s, arg2)) = conv_endian(egid);
*((uid_t *) t2h_addr(cb, &s, arg3)) = conv_endian(sgid);
}
break;
case __NR_pread:
result = pread(arg1, (void *) t2h_addr(cb, &s, arg2), arg3, arg4);
errcode = errno;
break;
case __NR_pwrite:
result = pwrite(arg1, (void *) t2h_addr(cb, &s, arg2), arg3, arg4);
errcode = errno;
break;
case __NR_chown32:
case __NR_chown:
result = chown((char *) t2h_addr(cb, &s, arg1), arg2, arg3);
errcode = errno;
break;
case __NR_getcwd:
result = (int) getcwd((char *) t2h_addr(cb, &s, arg1), arg2);
errcode = errno;
break;
case __NR_sendfile:
{
off_t offset;
offset = *((off_t *) t2h_addr(cb, &s, arg3));
offset = conv_endian(offset);
result = sendfile(arg1, arg2, &offset, arg3);
errcode = errno;
if (result != 0)
break;
*((off_t *) t2h_addr(cb, &s, arg3)) = conv_endian(offset);
}
break;
default:
result = -1;
errcode = ENOSYS;
break;
}
if (result == -1)
m32rbf_h_gr_set (current_cpu, 0, -errcode);
else
m32rbf_h_gr_set (current_cpu, 0, result);
break;
}
case TRAP_BREAKPOINT:
sim_engine_halt (sd, current_cpu, NULL, pc,
sim_stopped, SIM_SIGTRAP);
break;
case TRAP_FLUSH_CACHE:
/* Do nothing. */
break;
default :
{
/* Use cr5 as EVB (EIT Vector Base) register. */
USI new_pc = m32rbf_h_cr_get (current_cpu, 5) + 0x40 + num * 4;
return new_pc;
}
}
/* Fake an "rte" insn. */
/* FIXME: Should duplicate all of rte processing. */
return (pc & -4) + 4;
}