mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-12 12:16:04 +08:00
f4f60336da
The existing ctf_lookup_by_symbol and ctf_arc_lookup_symbol functions suffice to look up the types of symbols if the caller already has a symbol number. But the caller often doesn't have one of those and only knows the name of the symbol: also, in object files, the caller might not have a useful symbol number in any sense (and neither does libctf: the 'symbol number' we use in that case literally starts at 0 for the lexicographically first-sorted symbol in the symtypetab and counts those symbols, so it corresponds to nothing useful). This means that even though object files have a symtypetab (generated by the compiler or by ld -r), the only way we can look up anything in it is to iterate over all symbols in turn with ctf_symbol_next until we find the one we want. This is unhelpful and pointlessly inefficient. So add a pair of functions to look up symbols by name in a dict and in a whole archive: ctf_lookup_by_symbol_name and ctf_arc_lookup_symbol_name. These are identical to the existing functions except that they take symbol names rather than symbol numbers. To avoid insane repetition, we do some refactoring in the process, so that both ctf_lookup_by_symbol and ctf_arc_lookup_symbol turn into thin wrappers around internal functions that do both lookup by symbol index and lookup by name. This massively reduces code duplication because even the existing lookup-by-index stuff wants to use a name sometimes (when looking up in indexed sections), and the new lookup-by-name stuff has to turn it into an index sometimes (when looking up in non-indexed sections): doing it this way lets us share most of that. The actual name->index lookup is done by ctf_lookup_symbol_idx. We do not anticipate this lookup to be as heavily used as ld.so symbol lookup by many orders of magnitude, so using the ELF symbol hashes would probably take more time to read them than is saved by using the hashes, and it adds a lot of complexity. Instead, do a linear search for the symbol name, caching all the name -> index mappings as we go, so that future searches are likely to hit in the cache. To avoid having to repeat this search over and over in a CTF archive when ctf_arc_lookup_symbol_name is used, have cached archive lookups (the sort done by ctf_arc_lookup_symbol* and the ctf_archive_next iterator) pick out the first dict they cache in a given archive and store it in a new ctf_archive field, ctfi_crossdict_cache. This can be used to store cross-dictionary cached state that depends on things like the ELF symbol table rather than the contents of any one dict. ctf_lookup_symbol_idx then caches its name->index mappings in the dictionary named in the crossdict cache, if any, so that ctf_lookup_symbol_idx in other dicts in the same archive benefit from the previous linear search, and the symtab only needs to be scanned at most once. (Note that if you call ctf_lookup_by_symbol_name in one specific dict, and then follow it with a ctf_arc_lookup_symbol_name, the former will not use the crossdict cache because it's only populated by the dict opens in ctf_arc_lookup_symbol_name. This is harmless except for a small one-off waste of memory and time: it's only a cache, after all. We can fix this later by using the archive caching machinery more aggressively.) In ctf-archive, we do similar things, turning ctf_arc_lookup_symbol into a wrapper around a new function that does both index -> ID and name -> ID lookups across all dicts in an archive. We add a new ctfi_symnamedicts cache that maps symbol names to the ctf_dict_t * that it was found in (so that linear searches for symbols don't need to be repeated): but we also *remove* a cache, the ctfi_syms cache that was memoizing the actual ctf_id_t returned from every call to ctf_arc_lookup_symbol. This is pointless: all it saves is one call to ctf_lookup_by_symbol, and that's basically an array lookup and nothing more so isn't worth caching. (Equally, given that symbol -> index mappings are cached by ctf_lookup_by_symbol_name, those calls are nearly free after the first call, so there's no point caching the ctf_id_t in that case either.) We fix up one test that was doing manual symbol lookup to use ctf_arc_lookup_symbol instead, and enhance it to check that the caching layer is not totally broken: we also add a new test to do lookups in a .o file, and another to do lookups in an archive with conflicted types and make sure that sort of multi-dict lookup is actually working. include/ChangeLog 2021-02-17 Nick Alcock <nick.alcock@oracle.com> * ctf-api.h (ctf_arc_lookup_symbol_name): New. (ctf_lookup_by_symbol_name): Likewise. libctf/ChangeLog 2021-02-17 Nick Alcock <nick.alcock@oracle.com> * ctf-impl.h (ctf_dict_t) <ctf_symhash>: New. <ctf_symhash_latest>: Likewise. (struct ctf_archive_internal) <ctfi_crossdict_cache>: New. <ctfi_symnamedicts>: New. <ctfi_syms>: Remove. (ctf_lookup_symbol_name): Remove. * ctf-lookup.c (ctf_lookup_symbol_name): Propagate errors from parent properly. Make static. (ctf_lookup_symbol_idx): New, linear search for the symbol name, cached in the crossdict cache's ctf_symhash (if available), or this dict's (otherwise). (ctf_try_lookup_indexed): Allow the symname to be passed in. (ctf_lookup_by_symbol): Turn into a wrapper around... (ctf_lookup_by_sym_or_name): ... this, supporting name lookup too, using ctf_lookup_symbol_idx in non-writable dicts. Special-case name lookup in dynamic dicts without reported symbols, which have no symtab or dynsymidx but where name lookup should still work. (ctf_lookup_by_symbol_name): New, another wrapper. * ctf-archive.c (enosym): Note that this is present in ctfi_symnamedicts too. (ctf_arc_close): Adjust for removal of ctfi_syms. Free the ctfi_symnamedicts. (ctf_arc_flush_caches): Likewise. (ctf_dict_open_cached): Memoize the first cached dict in the crossdict cache. (ctf_arc_lookup_symbol): Turn into a wrapper around... (ctf_arc_lookup_sym_or_name): ... this. No longer cache ctf_id_t lookups: just call ctf_lookup_by_symbol as needed (but still cache the dicts those lookups succeed in). Add lookup-by-name support, with dicts of successful lookups cached in ctfi_symnamedicts. Refactor the caching code a bit. (ctf_arc_lookup_symbol_name): New, another wrapper. * ctf-open.c (ctf_dict_close): Free the ctf_symhash. * libctf.ver (LIBCTF_1.2): New version. Add ctf_lookup_by_symbol_name, ctf_arc_lookup_symbol_name. * testsuite/libctf-lookup/enum-symbol.c (main): Use ctf_arc_lookup_symbol rather than looking up the name ourselves. Fish it out repeatedly, to make sure that symbol caching isn't broken. (symidx_64): Remove. (symidx_32): Remove. * testsuite/libctf-lookup/enum-symbol-obj.lk: Test symbol lookup in an unlinked object file (indexed symtypetab sections only). * testsuite/libctf-writable/symtypetab-nonlinker-writeout.c (try_maybe_reporting): Check symbol types via ctf_lookup_by_symbol_name as well as ctf_symbol_next. * testsuite/libctf-lookup/conflicting-type-syms.*: New test of lookups in a multi-dict archive.
1051 lines
28 KiB
C
1051 lines
28 KiB
C
/* Symbol, variable and name lookup.
|
|
Copyright (C) 2019-2021 Free Software Foundation, Inc.
|
|
|
|
This file is part of libctf.
|
|
|
|
libctf is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
This program is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
See the GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; see the file COPYING. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include <ctf-impl.h>
|
|
#include <elf.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
|
|
/* Grow the pptrtab so that it is at least NEW_LEN long. */
|
|
static int
|
|
grow_pptrtab (ctf_dict_t *fp, size_t new_len)
|
|
{
|
|
uint32_t *new_pptrtab;
|
|
|
|
if ((new_pptrtab = realloc (fp->ctf_pptrtab, sizeof (uint32_t)
|
|
* new_len)) == NULL)
|
|
return (ctf_set_errno (fp, ENOMEM));
|
|
|
|
fp->ctf_pptrtab = new_pptrtab;
|
|
|
|
memset (fp->ctf_pptrtab + fp->ctf_pptrtab_len, 0,
|
|
sizeof (uint32_t) * (new_len - fp->ctf_pptrtab_len));
|
|
|
|
fp->ctf_pptrtab_len = new_len;
|
|
return 0;
|
|
}
|
|
|
|
/* Update entries in the pptrtab that relate to types newly added in the
|
|
child. */
|
|
static int
|
|
refresh_pptrtab (ctf_dict_t *fp, ctf_dict_t *pfp)
|
|
{
|
|
uint32_t i;
|
|
for (i = fp->ctf_pptrtab_typemax; i <= fp->ctf_typemax; i++)
|
|
{
|
|
ctf_id_t type = LCTF_INDEX_TO_TYPE (fp, i, 1);
|
|
ctf_id_t reffed_type;
|
|
|
|
if (ctf_type_kind (fp, type) != CTF_K_POINTER)
|
|
continue;
|
|
|
|
reffed_type = ctf_type_reference (fp, type);
|
|
|
|
if (LCTF_TYPE_ISPARENT (fp, reffed_type))
|
|
{
|
|
uint32_t idx = LCTF_TYPE_TO_INDEX (fp, reffed_type);
|
|
|
|
/* Guard against references to invalid types. No need to consider
|
|
the CTF dict corrupt in this case: this pointer just can't be a
|
|
pointer to any type we know about. */
|
|
if (idx <= pfp->ctf_typemax)
|
|
{
|
|
if (idx >= fp->ctf_pptrtab_len
|
|
&& grow_pptrtab (fp, pfp->ctf_ptrtab_len) < 0)
|
|
return -1; /* errno is set for us. */
|
|
|
|
fp->ctf_pptrtab[idx] = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
fp->ctf_pptrtab_typemax = fp->ctf_typemax;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Compare the given input string and length against a table of known C storage
|
|
qualifier keywords. We just ignore these in ctf_lookup_by_name, below. To
|
|
do this quickly, we use a pre-computed Perfect Hash Function similar to the
|
|
technique originally described in the classic paper:
|
|
|
|
R.J. Cichelli, "Minimal Perfect Hash Functions Made Simple",
|
|
Communications of the ACM, Volume 23, Issue 1, January 1980, pp. 17-19.
|
|
|
|
For an input string S of length N, we use hash H = S[N - 1] + N - 105, which
|
|
for the current set of qualifiers yields a unique H in the range [0 .. 20].
|
|
The hash can be modified when the keyword set changes as necessary. We also
|
|
store the length of each keyword and check it prior to the final strcmp().
|
|
|
|
TODO: just use gperf. */
|
|
|
|
static int
|
|
isqualifier (const char *s, size_t len)
|
|
{
|
|
static const struct qual
|
|
{
|
|
const char *q_name;
|
|
size_t q_len;
|
|
} qhash[] = {
|
|
{"static", 6}, {"", 0}, {"", 0}, {"", 0},
|
|
{"volatile", 8}, {"", 0}, {"", 0}, {"", 0}, {"", 0},
|
|
{"", 0}, {"auto", 4}, {"extern", 6}, {"", 0}, {"", 0},
|
|
{"", 0}, {"", 0}, {"const", 5}, {"register", 8},
|
|
{"", 0}, {"restrict", 8}, {"_Restrict", 9}
|
|
};
|
|
|
|
int h = s[len - 1] + (int) len - 105;
|
|
const struct qual *qp = &qhash[h];
|
|
|
|
return (h >= 0 && (size_t) h < sizeof (qhash) / sizeof (qhash[0])
|
|
&& (size_t) len == qp->q_len &&
|
|
strncmp (qp->q_name, s, qp->q_len) == 0);
|
|
}
|
|
|
|
/* Attempt to convert the given C type name into the corresponding CTF type ID.
|
|
It is not possible to do complete and proper conversion of type names
|
|
without implementing a more full-fledged parser, which is necessary to
|
|
handle things like types that are function pointers to functions that
|
|
have arguments that are function pointers, and fun stuff like that.
|
|
Instead, this function implements a very simple conversion algorithm that
|
|
finds the things that we actually care about: structs, unions, enums,
|
|
integers, floats, typedefs, and pointers to any of these named types. */
|
|
|
|
static ctf_id_t
|
|
ctf_lookup_by_name_internal (ctf_dict_t *fp, ctf_dict_t *child,
|
|
const char *name)
|
|
{
|
|
static const char delimiters[] = " \t\n\r\v\f*";
|
|
|
|
const ctf_lookup_t *lp;
|
|
const char *p, *q, *end;
|
|
ctf_id_t type = 0;
|
|
ctf_id_t ntype, ptype;
|
|
|
|
if (name == NULL)
|
|
return (ctf_set_errno (fp, EINVAL));
|
|
|
|
for (p = name, end = name + strlen (name); *p != '\0'; p = q)
|
|
{
|
|
while (isspace ((int) *p))
|
|
p++; /* Skip leading whitespace. */
|
|
|
|
if (p == end)
|
|
break;
|
|
|
|
if ((q = strpbrk (p + 1, delimiters)) == NULL)
|
|
q = end; /* Compare until end. */
|
|
|
|
if (*p == '*')
|
|
{
|
|
/* Find a pointer to type by looking in child->ctf_pptrtab (if child
|
|
is set) and fp->ctf_ptrtab. If we can't find a pointer to the
|
|
given type, see if we can compute a pointer to the type resulting
|
|
from resolving the type down to its base type and use that instead.
|
|
This helps with cases where the CTF data includes "struct foo *"
|
|
but not "foo_t *" and the user tries to access "foo_t *" in the
|
|
debugger.
|
|
|
|
There is extra complexity here because uninitialized elements in
|
|
the pptrtab and ptrtab are set to zero, but zero (as the type ID
|
|
meaning the unimplemented type) is a valid return type from
|
|
ctf_lookup_by_name. (Pointers to types are never of type 0, so
|
|
this is unambiguous, just fiddly to deal with.) */
|
|
|
|
uint32_t idx = LCTF_TYPE_TO_INDEX (fp, type);
|
|
int in_child = 0;
|
|
|
|
ntype = CTF_ERR;
|
|
if (child && idx <= child->ctf_pptrtab_len)
|
|
{
|
|
ntype = child->ctf_pptrtab[idx];
|
|
if (ntype)
|
|
in_child = 1;
|
|
else
|
|
ntype = CTF_ERR;
|
|
}
|
|
|
|
if (ntype == CTF_ERR)
|
|
{
|
|
ntype = fp->ctf_ptrtab[idx];
|
|
if (ntype == 0)
|
|
ntype = CTF_ERR;
|
|
}
|
|
|
|
/* Try resolving to its base type and check again. */
|
|
if (ntype == CTF_ERR)
|
|
{
|
|
if (child)
|
|
ntype = ctf_type_resolve_unsliced (child, type);
|
|
else
|
|
ntype = ctf_type_resolve_unsliced (fp, type);
|
|
|
|
if (ntype == CTF_ERR)
|
|
goto notype;
|
|
|
|
idx = LCTF_TYPE_TO_INDEX (fp, ntype);
|
|
|
|
ntype = CTF_ERR;
|
|
if (child && idx <= child->ctf_pptrtab_len)
|
|
{
|
|
ntype = child->ctf_pptrtab[idx];
|
|
if (ntype)
|
|
in_child = 1;
|
|
else
|
|
ntype = CTF_ERR;
|
|
}
|
|
|
|
if (ntype == CTF_ERR)
|
|
{
|
|
ntype = fp->ctf_ptrtab[idx];
|
|
if (ntype == 0)
|
|
ntype = CTF_ERR;
|
|
}
|
|
if (ntype == CTF_ERR)
|
|
goto notype;
|
|
}
|
|
|
|
type = LCTF_INDEX_TO_TYPE (fp, ntype, (fp->ctf_flags & LCTF_CHILD)
|
|
|| in_child);
|
|
|
|
/* We are looking up a type in the parent, but the pointed-to type is
|
|
in the child. Switch to looking in the child: if we need to go
|
|
back into the parent, we can recurse again. */
|
|
if (in_child)
|
|
{
|
|
fp = child;
|
|
child = NULL;
|
|
}
|
|
|
|
q = p + 1;
|
|
continue;
|
|
}
|
|
|
|
if (isqualifier (p, (size_t) (q - p)))
|
|
continue; /* Skip qualifier keyword. */
|
|
|
|
for (lp = fp->ctf_lookups; lp->ctl_prefix != NULL; lp++)
|
|
{
|
|
/* TODO: This is not MT-safe. */
|
|
if ((lp->ctl_prefix[0] == '\0' ||
|
|
strncmp (p, lp->ctl_prefix, (size_t) (q - p)) == 0) &&
|
|
(size_t) (q - p) >= lp->ctl_len)
|
|
{
|
|
for (p += lp->ctl_len; isspace ((int) *p); p++)
|
|
continue; /* Skip prefix and next whitespace. */
|
|
|
|
if ((q = strchr (p, '*')) == NULL)
|
|
q = end; /* Compare until end. */
|
|
|
|
while (isspace ((int) q[-1]))
|
|
q--; /* Exclude trailing whitespace. */
|
|
|
|
/* Expand and/or allocate storage for a slice of the name, then
|
|
copy it in. */
|
|
|
|
if (fp->ctf_tmp_typeslicelen >= (size_t) (q - p) + 1)
|
|
{
|
|
memcpy (fp->ctf_tmp_typeslice, p, (size_t) (q - p));
|
|
fp->ctf_tmp_typeslice[(size_t) (q - p)] = '\0';
|
|
}
|
|
else
|
|
{
|
|
free (fp->ctf_tmp_typeslice);
|
|
fp->ctf_tmp_typeslice = xstrndup (p, (size_t) (q - p));
|
|
if (fp->ctf_tmp_typeslice == NULL)
|
|
{
|
|
ctf_set_errno (fp, ENOMEM);
|
|
return CTF_ERR;
|
|
}
|
|
}
|
|
|
|
if ((type = ctf_lookup_by_rawhash (fp, lp->ctl_hash,
|
|
fp->ctf_tmp_typeslice)) == 0)
|
|
goto notype;
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (lp->ctl_prefix == NULL)
|
|
goto notype;
|
|
}
|
|
|
|
if (*p != '\0' || type == 0)
|
|
return (ctf_set_errno (fp, ECTF_SYNTAX));
|
|
|
|
return type;
|
|
|
|
notype:
|
|
ctf_set_errno (fp, ECTF_NOTYPE);
|
|
if (fp->ctf_parent != NULL)
|
|
{
|
|
/* Need to look up in the parent, from the child's perspective.
|
|
Make sure the pptrtab is up to date. */
|
|
|
|
if (fp->ctf_pptrtab_typemax < fp->ctf_typemax)
|
|
{
|
|
if (refresh_pptrtab (fp, fp->ctf_parent) < 0)
|
|
return -1; /* errno is set for us. */
|
|
}
|
|
|
|
if ((ptype = ctf_lookup_by_name_internal (fp->ctf_parent, fp,
|
|
name)) != CTF_ERR)
|
|
return ptype;
|
|
return (ctf_set_errno (fp, ctf_errno (fp->ctf_parent)));
|
|
}
|
|
|
|
return CTF_ERR;
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_lookup_by_name (ctf_dict_t *fp, const char *name)
|
|
{
|
|
return ctf_lookup_by_name_internal (fp, NULL, name);
|
|
}
|
|
|
|
/* Return the pointer to the internal CTF type data corresponding to the
|
|
given type ID. If the ID is invalid, the function returns NULL.
|
|
This function is not exported outside of the library. */
|
|
|
|
const ctf_type_t *
|
|
ctf_lookup_by_id (ctf_dict_t **fpp, ctf_id_t type)
|
|
{
|
|
ctf_dict_t *fp = *fpp; /* Caller passes in starting CTF dict. */
|
|
ctf_id_t idx;
|
|
|
|
if ((fp = ctf_get_dict (fp, type)) == NULL)
|
|
{
|
|
(void) ctf_set_errno (*fpp, ECTF_NOPARENT);
|
|
return NULL;
|
|
}
|
|
|
|
/* If this dict is writable, check for a dynamic type. */
|
|
|
|
if (fp->ctf_flags & LCTF_RDWR)
|
|
{
|
|
ctf_dtdef_t *dtd;
|
|
|
|
if ((dtd = ctf_dynamic_type (fp, type)) != NULL)
|
|
{
|
|
*fpp = fp;
|
|
return &dtd->dtd_data;
|
|
}
|
|
(void) ctf_set_errno (*fpp, ECTF_BADID);
|
|
return NULL;
|
|
}
|
|
|
|
/* Check for a type in the static portion. */
|
|
|
|
idx = LCTF_TYPE_TO_INDEX (fp, type);
|
|
if (idx > 0 && (unsigned long) idx <= fp->ctf_typemax)
|
|
{
|
|
*fpp = fp; /* Function returns ending CTF dict. */
|
|
return (LCTF_INDEX_TO_TYPEPTR (fp, idx));
|
|
}
|
|
|
|
(void) ctf_set_errno (*fpp, ECTF_BADID);
|
|
return NULL;
|
|
}
|
|
|
|
typedef struct ctf_lookup_idx_key
|
|
{
|
|
ctf_dict_t *clik_fp;
|
|
const char *clik_name;
|
|
uint32_t *clik_names;
|
|
} ctf_lookup_idx_key_t;
|
|
|
|
/* A bsearch function for variable names. */
|
|
|
|
static int
|
|
ctf_lookup_var (const void *key_, const void *lookup_)
|
|
{
|
|
const ctf_lookup_idx_key_t *key = key_;
|
|
const ctf_varent_t *lookup = lookup_;
|
|
|
|
return (strcmp (key->clik_name, ctf_strptr (key->clik_fp, lookup->ctv_name)));
|
|
}
|
|
|
|
/* Given a variable name, return the type of the variable with that name. */
|
|
|
|
ctf_id_t
|
|
ctf_lookup_variable (ctf_dict_t *fp, const char *name)
|
|
{
|
|
ctf_varent_t *ent;
|
|
ctf_lookup_idx_key_t key = { fp, name, NULL };
|
|
|
|
/* This array is sorted, so we can bsearch for it. */
|
|
|
|
ent = bsearch (&key, fp->ctf_vars, fp->ctf_nvars, sizeof (ctf_varent_t),
|
|
ctf_lookup_var);
|
|
|
|
if (ent == NULL)
|
|
{
|
|
if (fp->ctf_parent != NULL)
|
|
return ctf_lookup_variable (fp->ctf_parent, name);
|
|
|
|
return (ctf_set_errno (fp, ECTF_NOTYPEDAT));
|
|
}
|
|
|
|
return ent->ctv_type;
|
|
}
|
|
|
|
typedef struct ctf_symidx_sort_arg_cb
|
|
{
|
|
ctf_dict_t *fp;
|
|
uint32_t *names;
|
|
} ctf_symidx_sort_arg_cb_t;
|
|
|
|
static int
|
|
sort_symidx_by_name (const void *one_, const void *two_, void *arg_)
|
|
{
|
|
const uint32_t *one = one_;
|
|
const uint32_t *two = two_;
|
|
ctf_symidx_sort_arg_cb_t *arg = arg_;
|
|
|
|
return (strcmp (ctf_strptr (arg->fp, arg->names[*one]),
|
|
ctf_strptr (arg->fp, arg->names[*two])));
|
|
}
|
|
|
|
/* Sort a symbol index section by name. Takes a 1:1 mapping of names to the
|
|
corresponding symbol table. Returns a lexicographically sorted array of idx
|
|
indexes (and thus, of indexes into the corresponding func info / data object
|
|
section). */
|
|
|
|
static uint32_t *
|
|
ctf_symidx_sort (ctf_dict_t *fp, uint32_t *idx, size_t *nidx,
|
|
size_t len)
|
|
{
|
|
uint32_t *sorted;
|
|
size_t i;
|
|
|
|
if ((sorted = malloc (len)) == NULL)
|
|
{
|
|
ctf_set_errno (fp, ENOMEM);
|
|
return NULL;
|
|
}
|
|
|
|
*nidx = len / sizeof (uint32_t);
|
|
for (i = 0; i < *nidx; i++)
|
|
sorted[i] = i;
|
|
|
|
if (!(fp->ctf_header->cth_flags & CTF_F_IDXSORTED))
|
|
{
|
|
ctf_symidx_sort_arg_cb_t arg = { fp, idx };
|
|
ctf_dprintf ("Index section unsorted: sorting.");
|
|
ctf_qsort_r (sorted, *nidx, sizeof (uint32_t), sort_symidx_by_name, &arg);
|
|
fp->ctf_header->cth_flags |= CTF_F_IDXSORTED;
|
|
}
|
|
|
|
return sorted;
|
|
}
|
|
|
|
/* Given a symbol index, return the name of that symbol from the table provided
|
|
by ctf_link_shuffle_syms, or failing that from the secondary string table, or
|
|
the null string. */
|
|
static const char *
|
|
ctf_lookup_symbol_name (ctf_dict_t *fp, unsigned long symidx)
|
|
{
|
|
const ctf_sect_t *sp = &fp->ctf_symtab;
|
|
ctf_link_sym_t sym;
|
|
int err;
|
|
|
|
if (fp->ctf_dynsymidx)
|
|
{
|
|
err = EINVAL;
|
|
if (symidx > fp->ctf_dynsymmax)
|
|
goto try_parent;
|
|
|
|
ctf_link_sym_t *symp = fp->ctf_dynsymidx[symidx];
|
|
|
|
if (!symp)
|
|
goto try_parent;
|
|
|
|
return symp->st_name;
|
|
}
|
|
|
|
err = ECTF_NOSYMTAB;
|
|
if (sp->cts_data == NULL)
|
|
goto try_parent;
|
|
|
|
if (symidx >= fp->ctf_nsyms)
|
|
goto try_parent;
|
|
|
|
switch (sp->cts_entsize)
|
|
{
|
|
case sizeof (Elf64_Sym):
|
|
{
|
|
const Elf64_Sym *symp = (Elf64_Sym *) sp->cts_data + symidx;
|
|
ctf_elf64_to_link_sym (fp, &sym, symp, symidx);
|
|
}
|
|
break;
|
|
case sizeof (Elf32_Sym):
|
|
{
|
|
const Elf32_Sym *symp = (Elf32_Sym *) sp->cts_data + symidx;
|
|
ctf_elf32_to_link_sym (fp, &sym, symp, symidx);
|
|
}
|
|
break;
|
|
default:
|
|
ctf_set_errno (fp, ECTF_SYMTAB);
|
|
return _CTF_NULLSTR;
|
|
}
|
|
|
|
assert (!sym.st_nameidx_set);
|
|
|
|
return sym.st_name;
|
|
|
|
try_parent:
|
|
if (fp->ctf_parent)
|
|
{
|
|
const char *ret;
|
|
ret = ctf_lookup_symbol_name (fp->ctf_parent, symidx);
|
|
if (ret == NULL)
|
|
ctf_set_errno (fp, ctf_errno (fp->ctf_parent));
|
|
return ret;
|
|
}
|
|
else
|
|
{
|
|
ctf_set_errno (fp, err);
|
|
return _CTF_NULLSTR;
|
|
}
|
|
}
|
|
|
|
/* Given a symbol name, return the index of that symbol, or -1 on error or if
|
|
not found. */
|
|
static unsigned long
|
|
ctf_lookup_symbol_idx (ctf_dict_t *fp, const char *symname)
|
|
{
|
|
const ctf_sect_t *sp = &fp->ctf_symtab;
|
|
ctf_link_sym_t sym;
|
|
void *known_idx;
|
|
int err;
|
|
ctf_dict_t *cache = fp;
|
|
|
|
if (fp->ctf_dynsyms)
|
|
{
|
|
err = EINVAL;
|
|
|
|
ctf_link_sym_t *symp;
|
|
|
|
if ((symp = ctf_dynhash_lookup (fp->ctf_dynsyms, symname)) == NULL)
|
|
goto try_parent;
|
|
|
|
return symp->st_symidx;
|
|
}
|
|
|
|
err = ECTF_NOSYMTAB;
|
|
if (sp->cts_data == NULL)
|
|
goto try_parent;
|
|
|
|
/* First, try a hash lookup to see if we have already spotted this symbol
|
|
during a past iteration: create the hash first if need be. The lifespan
|
|
of the strings is equal to the lifespan of the cts_data, so we don't
|
|
need to strdup them. If this dict was opened as part of an archive,
|
|
and this archive has designed a crossdict_cache to cache results that
|
|
are the same across all dicts in an archive, use it. */
|
|
|
|
if (fp->ctf_archive && fp->ctf_archive->ctfi_crossdict_cache)
|
|
cache = fp->ctf_archive->ctfi_crossdict_cache;
|
|
|
|
if (!cache->ctf_symhash)
|
|
if ((cache->ctf_symhash = ctf_dynhash_create (ctf_hash_string,
|
|
ctf_hash_eq_string,
|
|
NULL, NULL)) == NULL)
|
|
goto oom;
|
|
|
|
if (ctf_dynhash_lookup_kv (cache->ctf_symhash, symname, NULL, &known_idx))
|
|
return (unsigned long) (uintptr_t) known_idx;
|
|
|
|
/* Hash lookup unsuccessful: linear search, populating the hashtab for later
|
|
lookups as we go. */
|
|
|
|
for (; cache->ctf_symhash_latest < sp->cts_size / sp->cts_entsize;
|
|
cache->ctf_symhash_latest++)
|
|
{
|
|
switch (sp->cts_entsize)
|
|
{
|
|
case sizeof (Elf64_Sym):
|
|
{
|
|
Elf64_Sym *symp = (Elf64_Sym *) sp->cts_data;
|
|
ctf_elf64_to_link_sym (fp, &sym, &symp[cache->ctf_symhash_latest],
|
|
cache->ctf_symhash_latest);
|
|
if (!ctf_dynhash_lookup_kv (cache->ctf_symhash, sym.st_name,
|
|
NULL, NULL))
|
|
if (ctf_dynhash_cinsert (cache->ctf_symhash, sym.st_name,
|
|
(const void *) (uintptr_t)
|
|
cache->ctf_symhash_latest) < 0)
|
|
goto oom;
|
|
if (strcmp (sym.st_name, symname) == 0)
|
|
return cache->ctf_symhash_latest++;
|
|
}
|
|
break;
|
|
case sizeof (Elf32_Sym):
|
|
{
|
|
Elf32_Sym *symp = (Elf32_Sym *) sp->cts_data;
|
|
ctf_elf32_to_link_sym (fp, &sym, &symp[cache->ctf_symhash_latest],
|
|
cache->ctf_symhash_latest);
|
|
if (!ctf_dynhash_lookup_kv (cache->ctf_symhash, sym.st_name,
|
|
NULL, NULL))
|
|
if (ctf_dynhash_cinsert (cache->ctf_symhash, sym.st_name,
|
|
(const void *) (uintptr_t)
|
|
cache->ctf_symhash_latest) < 0)
|
|
goto oom;
|
|
if (strcmp (sym.st_name, symname) == 0)
|
|
return cache->ctf_symhash_latest++;
|
|
}
|
|
break;
|
|
default:
|
|
ctf_set_errno (fp, ECTF_SYMTAB);
|
|
return (unsigned long) -1;
|
|
}
|
|
}
|
|
|
|
/* Searched everything, still not found. */
|
|
|
|
return (unsigned long) -1;
|
|
|
|
try_parent:
|
|
if (fp->ctf_parent)
|
|
return ctf_lookup_symbol_idx (fp->ctf_parent, symname);
|
|
else
|
|
{
|
|
ctf_set_errno (fp, err);
|
|
return (unsigned long) -1;
|
|
}
|
|
oom:
|
|
ctf_set_errno (fp, ENOMEM);
|
|
ctf_err_warn (fp, 0, ENOMEM, _("cannot allocate memory for symbol "
|
|
"lookup hashtab"));
|
|
return (unsigned long) -1;
|
|
|
|
}
|
|
|
|
/* Iterate over all symbols with types: if FUNC, function symbols, otherwise,
|
|
data symbols. The name argument is not optional. The return order is
|
|
arbitrary, though is likely to be in symbol index or name order. You can
|
|
change the value of 'functions' in the middle of iteration over non-dynamic
|
|
dicts, but doing so on dynamic dicts will fail. (This is probably not very
|
|
useful, but there is no reason to prohibit it.) */
|
|
|
|
ctf_id_t
|
|
ctf_symbol_next (ctf_dict_t *fp, ctf_next_t **it, const char **name,
|
|
int functions)
|
|
{
|
|
ctf_id_t sym;
|
|
ctf_next_t *i = *it;
|
|
int err;
|
|
|
|
if (!i)
|
|
{
|
|
if ((i = ctf_next_create ()) == NULL)
|
|
return ctf_set_errno (fp, ENOMEM);
|
|
|
|
i->cu.ctn_fp = fp;
|
|
i->ctn_iter_fun = (void (*) (void)) ctf_symbol_next;
|
|
i->ctn_n = 0;
|
|
*it = i;
|
|
}
|
|
|
|
if ((void (*) (void)) ctf_symbol_next != i->ctn_iter_fun)
|
|
return (ctf_set_errno (fp, ECTF_NEXT_WRONGFUN));
|
|
|
|
if (fp != i->cu.ctn_fp)
|
|
return (ctf_set_errno (fp, ECTF_NEXT_WRONGFP));
|
|
|
|
/* We intentionally use raw access, not ctf_lookup_by_symbol, to avoid
|
|
incurring additional sorting cost for unsorted symtypetabs coming from the
|
|
compiler, to allow ctf_symbol_next to work in the absence of a symtab, and
|
|
finally because it's easier to work out what the name of each symbol is if
|
|
we do that. */
|
|
|
|
if (fp->ctf_flags & LCTF_RDWR)
|
|
{
|
|
ctf_dynhash_t *dynh = functions ? fp->ctf_funchash : fp->ctf_objthash;
|
|
void *dyn_name = NULL, *dyn_value = NULL;
|
|
|
|
if (!dynh)
|
|
{
|
|
ctf_next_destroy (i);
|
|
return (ctf_set_errno (fp, ECTF_NEXT_END));
|
|
}
|
|
|
|
err = ctf_dynhash_next (dynh, &i->ctn_next, &dyn_name, &dyn_value);
|
|
/* This covers errors and also end-of-iteration. */
|
|
if (err != 0)
|
|
{
|
|
ctf_next_destroy (i);
|
|
*it = NULL;
|
|
return ctf_set_errno (fp, err);
|
|
}
|
|
|
|
*name = dyn_name;
|
|
sym = (ctf_id_t) (uintptr_t) dyn_value;
|
|
}
|
|
else if ((!functions && fp->ctf_objtidx_names) ||
|
|
(functions && fp->ctf_funcidx_names))
|
|
{
|
|
ctf_header_t *hp = fp->ctf_header;
|
|
uint32_t *idx = functions ? fp->ctf_funcidx_names : fp->ctf_objtidx_names;
|
|
uint32_t *tab;
|
|
size_t len;
|
|
|
|
if (functions)
|
|
{
|
|
len = (hp->cth_varoff - hp->cth_funcidxoff) / sizeof (uint32_t);
|
|
tab = (uint32_t *) (fp->ctf_buf + hp->cth_funcoff);
|
|
}
|
|
else
|
|
{
|
|
len = (hp->cth_funcidxoff - hp->cth_objtidxoff) / sizeof (uint32_t);
|
|
tab = (uint32_t *) (fp->ctf_buf + hp->cth_objtoff);
|
|
}
|
|
|
|
do
|
|
{
|
|
if (i->ctn_n >= len)
|
|
goto end;
|
|
|
|
*name = ctf_strptr (fp, idx[i->ctn_n]);
|
|
sym = tab[i->ctn_n++];
|
|
} while (sym == -1u || sym == 0);
|
|
}
|
|
else
|
|
{
|
|
/* Skip over pads in ctf_xslate, padding for typeless symbols in the
|
|
symtypetab itself, and symbols in the wrong table. */
|
|
for (; i->ctn_n < fp->ctf_nsyms; i->ctn_n++)
|
|
{
|
|
ctf_header_t *hp = fp->ctf_header;
|
|
|
|
if (fp->ctf_sxlate[i->ctn_n] == -1u)
|
|
continue;
|
|
|
|
sym = *(uint32_t *) ((uintptr_t) fp->ctf_buf + fp->ctf_sxlate[i->ctn_n]);
|
|
|
|
if (sym == 0)
|
|
continue;
|
|
|
|
if (functions)
|
|
{
|
|
if (fp->ctf_sxlate[i->ctn_n] >= hp->cth_funcoff
|
|
&& fp->ctf_sxlate[i->ctn_n] < hp->cth_objtidxoff)
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
if (fp->ctf_sxlate[i->ctn_n] >= hp->cth_objtoff
|
|
&& fp->ctf_sxlate[i->ctn_n] < hp->cth_funcoff)
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (i->ctn_n >= fp->ctf_nsyms)
|
|
goto end;
|
|
|
|
*name = ctf_lookup_symbol_name (fp, i->ctn_n++);
|
|
}
|
|
|
|
return sym;
|
|
|
|
end:
|
|
ctf_next_destroy (i);
|
|
*it = NULL;
|
|
return (ctf_set_errno (fp, ECTF_NEXT_END));
|
|
}
|
|
|
|
/* A bsearch function for function and object index names. */
|
|
|
|
static int
|
|
ctf_lookup_idx_name (const void *key_, const void *idx_)
|
|
{
|
|
const ctf_lookup_idx_key_t *key = key_;
|
|
const uint32_t *idx = idx_;
|
|
|
|
return (strcmp (key->clik_name, ctf_strptr (key->clik_fp, key->clik_names[*idx])));
|
|
}
|
|
|
|
/* Given a symbol name or (failing that) number, look up that symbol in the
|
|
function or object index table (which must exist). Return 0 if not found
|
|
there (or pad). */
|
|
|
|
static ctf_id_t
|
|
ctf_try_lookup_indexed (ctf_dict_t *fp, unsigned long symidx,
|
|
const char *symname, int is_function)
|
|
{
|
|
struct ctf_header *hp = fp->ctf_header;
|
|
uint32_t *symtypetab;
|
|
uint32_t *names;
|
|
uint32_t *sxlate;
|
|
size_t nidx;
|
|
|
|
if (symname == NULL)
|
|
symname = ctf_lookup_symbol_name (fp, symidx);
|
|
|
|
ctf_dprintf ("Looking up type of object with symtab idx %lx or name %s in "
|
|
"indexed symtypetab\n", symidx, symname);
|
|
|
|
if (symname[0] == '\0')
|
|
return -1; /* errno is set for us. */
|
|
|
|
if (is_function)
|
|
{
|
|
if (!fp->ctf_funcidx_sxlate)
|
|
{
|
|
if ((fp->ctf_funcidx_sxlate
|
|
= ctf_symidx_sort (fp, (uint32_t *)
|
|
(fp->ctf_buf + hp->cth_funcidxoff),
|
|
&fp->ctf_nfuncidx,
|
|
hp->cth_varoff - hp->cth_funcidxoff))
|
|
== NULL)
|
|
{
|
|
ctf_err_warn (fp, 0, 0, _("cannot sort function symidx"));
|
|
return -1; /* errno is set for us. */
|
|
}
|
|
}
|
|
symtypetab = (uint32_t *) (fp->ctf_buf + hp->cth_funcoff);
|
|
sxlate = fp->ctf_funcidx_sxlate;
|
|
names = fp->ctf_funcidx_names;
|
|
nidx = fp->ctf_nfuncidx;
|
|
}
|
|
else
|
|
{
|
|
if (!fp->ctf_objtidx_sxlate)
|
|
{
|
|
if ((fp->ctf_objtidx_sxlate
|
|
= ctf_symidx_sort (fp, (uint32_t *)
|
|
(fp->ctf_buf + hp->cth_objtidxoff),
|
|
&fp->ctf_nobjtidx,
|
|
hp->cth_funcidxoff - hp->cth_objtidxoff))
|
|
== NULL)
|
|
{
|
|
ctf_err_warn (fp, 0, 0, _("cannot sort object symidx"));
|
|
return -1; /* errno is set for us. */
|
|
}
|
|
}
|
|
|
|
symtypetab = (uint32_t *) (fp->ctf_buf + hp->cth_objtoff);
|
|
sxlate = fp->ctf_objtidx_sxlate;
|
|
names = fp->ctf_objtidx_names;
|
|
nidx = fp->ctf_nobjtidx;
|
|
}
|
|
|
|
ctf_lookup_idx_key_t key = { fp, symname, names };
|
|
uint32_t *idx;
|
|
|
|
idx = bsearch (&key, sxlate, nidx, sizeof (uint32_t), ctf_lookup_idx_name);
|
|
|
|
if (!idx)
|
|
{
|
|
ctf_dprintf ("%s not found in idx\n", symname);
|
|
return 0;
|
|
}
|
|
|
|
/* Should be impossible, but be paranoid. */
|
|
if ((idx - sxlate) > (ptrdiff_t) nidx)
|
|
return (ctf_set_errno (fp, ECTF_CORRUPT));
|
|
|
|
ctf_dprintf ("Symbol %lx (%s) is of type %x\n", symidx, symname,
|
|
symtypetab[*idx]);
|
|
return symtypetab[*idx];
|
|
}
|
|
|
|
/* Given a symbol name or (if NULL) symbol index, return the type of the
|
|
function or data object described by the corresponding entry in the symbol
|
|
table. We can only return symbols in read-only dicts and in dicts for which
|
|
ctf_link_shuffle_syms has been called to assign symbol indexes to symbol
|
|
names. */
|
|
|
|
static ctf_id_t
|
|
ctf_lookup_by_sym_or_name (ctf_dict_t *fp, unsigned long symidx,
|
|
const char *symname)
|
|
{
|
|
const ctf_sect_t *sp = &fp->ctf_symtab;
|
|
ctf_id_t type = 0;
|
|
int err = 0;
|
|
|
|
/* Shuffled dynsymidx present? Use that. */
|
|
if (fp->ctf_dynsymidx)
|
|
{
|
|
const ctf_link_sym_t *sym;
|
|
|
|
if (symname)
|
|
ctf_dprintf ("Looking up type of object with symname %s in "
|
|
"writable dict symtypetab\n", symname);
|
|
else
|
|
ctf_dprintf ("Looking up type of object with symtab idx %lx in "
|
|
"writable dict symtypetab\n", symidx);
|
|
|
|
/* The dict must be dynamic. */
|
|
if (!ctf_assert (fp, fp->ctf_flags & LCTF_RDWR))
|
|
return CTF_ERR;
|
|
|
|
/* No name? Need to look it up. */
|
|
if (!symname)
|
|
{
|
|
err = EINVAL;
|
|
if (symidx > fp->ctf_dynsymmax)
|
|
goto try_parent;
|
|
|
|
sym = fp->ctf_dynsymidx[symidx];
|
|
err = ECTF_NOTYPEDAT;
|
|
if (!sym || (sym->st_shndx != STT_OBJECT && sym->st_shndx != STT_FUNC))
|
|
goto try_parent;
|
|
|
|
if (!ctf_assert (fp, !sym->st_nameidx_set))
|
|
return CTF_ERR;
|
|
symname = sym->st_name;
|
|
}
|
|
|
|
if (fp->ctf_objthash == NULL
|
|
|| ((type = (ctf_id_t) (uintptr_t)
|
|
ctf_dynhash_lookup (fp->ctf_objthash, symname)) == 0))
|
|
{
|
|
if (fp->ctf_funchash == NULL
|
|
|| ((type = (ctf_id_t) (uintptr_t)
|
|
ctf_dynhash_lookup (fp->ctf_funchash, symname)) == 0))
|
|
goto try_parent;
|
|
}
|
|
|
|
return type;
|
|
}
|
|
|
|
/* Lookup by name in a dynamic dict: just do it directly. */
|
|
if (symname && fp->ctf_flags & LCTF_RDWR)
|
|
{
|
|
if (fp->ctf_objthash == NULL
|
|
|| ((type = (ctf_id_t) (uintptr_t)
|
|
ctf_dynhash_lookup (fp->ctf_objthash, symname)) == 0))
|
|
{
|
|
if (fp->ctf_funchash == NULL
|
|
|| ((type = (ctf_id_t) (uintptr_t)
|
|
ctf_dynhash_lookup (fp->ctf_funchash, symname)) == 0))
|
|
goto try_parent;
|
|
}
|
|
return type;
|
|
}
|
|
|
|
err = ECTF_NOSYMTAB;
|
|
if (sp->cts_data == NULL)
|
|
goto try_parent;
|
|
|
|
/* This covers both out-of-range lookups and a dynamic dict which hasn't been
|
|
shuffled yet. */
|
|
err = EINVAL;
|
|
if (symname == NULL && symidx >= fp->ctf_nsyms)
|
|
goto try_parent;
|
|
|
|
if (fp->ctf_objtidx_names)
|
|
{
|
|
if ((type = ctf_try_lookup_indexed (fp, symidx, symname, 0)) == CTF_ERR)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
}
|
|
if (type == 0 && fp->ctf_funcidx_names)
|
|
{
|
|
if ((type = ctf_try_lookup_indexed (fp, symidx, symname, 1)) == CTF_ERR)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
}
|
|
if (type != 0)
|
|
return type;
|
|
|
|
err = ECTF_NOTYPEDAT;
|
|
if (fp->ctf_objtidx_names && fp->ctf_funcidx_names)
|
|
goto try_parent;
|
|
|
|
/* Table must be nonindexed. */
|
|
|
|
ctf_dprintf ("Looking up object type %lx in 1:1 dict symtypetab\n", symidx);
|
|
|
|
if (symname != NULL)
|
|
if ((symidx = ctf_lookup_symbol_idx (fp, symname)) == (unsigned long) -1)
|
|
goto try_parent;
|
|
|
|
if (fp->ctf_sxlate[symidx] == -1u)
|
|
goto try_parent;
|
|
|
|
type = *(uint32_t *) ((uintptr_t) fp->ctf_buf + fp->ctf_sxlate[symidx]);
|
|
|
|
if (type == 0)
|
|
goto try_parent;
|
|
|
|
return type;
|
|
try_parent:
|
|
if (fp->ctf_parent)
|
|
{
|
|
ctf_id_t ret = ctf_lookup_by_sym_or_name (fp->ctf_parent, symidx,
|
|
symname);
|
|
if (ret == CTF_ERR)
|
|
ctf_set_errno (fp, ctf_errno (fp->ctf_parent));
|
|
return ret;
|
|
}
|
|
else
|
|
return (ctf_set_errno (fp, err));
|
|
}
|
|
|
|
/* Given a symbol table index, return the type of the function or data object
|
|
described by the corresponding entry in the symbol table. */
|
|
ctf_id_t
|
|
ctf_lookup_by_symbol (ctf_dict_t *fp, unsigned long symidx)
|
|
{
|
|
return ctf_lookup_by_sym_or_name (fp, symidx, NULL);
|
|
}
|
|
|
|
/* Given a symbol name, return the type of the function or data object described
|
|
by the corresponding entry in the symbol table. */
|
|
ctf_id_t
|
|
ctf_lookup_by_symbol_name (ctf_dict_t *fp, const char *symname)
|
|
{
|
|
return ctf_lookup_by_sym_or_name (fp, 0, symname);
|
|
}
|
|
|
|
/* Given a symbol table index, return the info for the function described
|
|
by the corresponding entry in the symbol table, which may be a function
|
|
symbol or may be a data symbol that happens to be a function pointer. */
|
|
|
|
int
|
|
ctf_func_info (ctf_dict_t *fp, unsigned long symidx, ctf_funcinfo_t *fip)
|
|
{
|
|
ctf_id_t type;
|
|
|
|
if ((type = ctf_lookup_by_symbol (fp, symidx)) == CTF_ERR)
|
|
return -1; /* errno is set for us. */
|
|
|
|
if (ctf_type_kind (fp, type) != CTF_K_FUNCTION)
|
|
return (ctf_set_errno (fp, ECTF_NOTFUNC));
|
|
|
|
return ctf_func_type_info (fp, type, fip);
|
|
}
|
|
|
|
/* Given a symbol table index, return the arguments for the function described
|
|
by the corresponding entry in the symbol table. */
|
|
|
|
int
|
|
ctf_func_args (ctf_dict_t *fp, unsigned long symidx, uint32_t argc,
|
|
ctf_id_t *argv)
|
|
{
|
|
ctf_id_t type;
|
|
|
|
if ((type = ctf_lookup_by_symbol (fp, symidx)) == CTF_ERR)
|
|
return -1; /* errno is set for us. */
|
|
|
|
if (ctf_type_kind (fp, type) != CTF_K_FUNCTION)
|
|
return (ctf_set_errno (fp, ECTF_NOTFUNC));
|
|
|
|
return ctf_func_type_args (fp, type, argc, argv);
|
|
}
|