binutils-gdb/gdb/common/byte-vector.h
Simon Marchi 9018be22e0 Make target_read_alloc & al return vectors
This patch started by changing target_read_alloc_1 to return a
byte_vector, to avoid manual memory management (in target_read_alloc_1
and in the callers).  To communicate failures to the callers, it
actually returns a gdb::optional<gdb::byte_vector>.

Adjusting target_read_stralloc was a bit more tricky, since it wants to
return a buffer of char, and not gdb_byte.  Since you can't just cast a
gdb::byte_vector into a gdb::def_vector<char>, I made
target_read_alloc_1 templated, so both versions (that return vectors of
gdb_byte and char) are generated.  Since target_read_stralloc now
returns a gdb::char_vector instead of a gdb::unique_xmalloc_ptr<char>, a
few callers need to be adjusted.

gdb/ChangeLog:

	* common/byte-vector.h (char_vector): New type.
	* target.h (target_read_alloc): Return
	gdb::optional<byte_vector>.
	(target_read_stralloc): Return gdb::optional<char_vector>.
	(target_get_osdata): Return gdb::optional<char_vector>.
	* target.c (target_read_alloc_1): Templatize.  Replacement
	manual memory management with vector.
	(target_read_alloc): Change return type, adjust.
	(target_read_stralloc): Change return type, adjust.
	(target_get_osdata): Change return type, adjust.
	* auxv.c (struct auxv_info) <length>: Remove.
	<data>: Change type to gdb::optional<byte_vector>.
	(auxv_inferior_data_cleanup): Free auxv_info with delete.
	(get_auxv_inferior_data): Allocate auxv_info with new, adjust.
	(target_auxv_search): Adjust.
	(fprint_target_auxv): Adjust.
	* avr-tdep.c (avr_io_reg_read_command): Adjust.
	* linux-tdep.c (linux_spu_make_corefile_notes): Adjust.
	(linux_make_corefile_notes): Adjust.
	* osdata.c (get_osdata): Adjust.
	* remote.c (remote_get_threads_with_qxfer): Adjust.
	(remote_memory_map): Adjust.
	(remote_traceframe_info): Adjust.
	(btrace_read_config): Adjust.
	(remote_read_btrace): Adjust.
	(remote_pid_to_exec_file): Adjust.
	* solib-aix.c (solib_aix_get_library_list): Adjust.
	* solib-dsbt.c (decode_loadmap): Don't free buf.
	(dsbt_get_initial_loadmaps): Adjust.
	* solib-svr4.c (svr4_current_sos_via_xfer_libraries): Adjust.
	* solib-target.c (solib_target_current_sos): Adjust.
	* tracepoint.c (sdata_make_value): Adjust.
	* xml-support.c (xinclude_start_include): Adjust.
	(xml_fetch_content_from_file): Adjust.
	* xml-support.h (xml_fetch_another): Change return type.
	(xml_fetch_content_from_file): Change return type.
	* xml-syscall.c (xml_init_syscalls_info): Adjust.
	* xml-tdesc.c (file_read_description_xml): Adjust.
	(fetch_available_features_from_target): Change return type.
	(target_fetch_description_xml): Adjust.
	(target_read_description_xml): Adjust.
2018-04-07 13:19:12 -04:00

64 lines
2.2 KiB
C++

/* Copyright (C) 2017-2018 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#ifndef COMMON_BYTE_VECTOR_H
#define COMMON_BYTE_VECTOR_H
#include "common/def-vector.h"
namespace gdb {
/* byte_vector is a gdb_byte std::vector with a custom allocator that
unlike std::vector<gdb_byte> does not zero-initialize new elements
by default when the vector is created/resized. This is what you
usually want when working with byte buffers, since if you're
creating or growing a buffer you'll most surely want to fill it in
with data, in which case zero-initialization would be a
pessimization. For example:
gdb::byte_vector buf (some_large_size);
fill_with_data (buf.data (), buf.size ());
On the odd case you do need zero initialization, then you can still
call the overloads that specify an explicit value, like:
gdb::byte_vector buf (some_initial_size, 0);
buf.resize (a_bigger_size, 0);
(Or use std::vector<gdb_byte> instead.)
Note that unlike std::vector<gdb_byte>, function local
gdb::byte_vector objects constructed with an initial size like:
gdb::byte_vector buf (some_size);
fill_with_data (buf.data (), buf.size ());
usually compile down to the exact same as:
std::unique_ptr<byte[]> buf (new gdb_byte[some_size]);
fill_with_data (buf.get (), some_size);
with the former having the advantage of being a bit more readable,
and providing the whole std::vector API, if you end up needing it.
*/
using byte_vector = gdb::def_vector<gdb_byte>;
using char_vector = gdb::def_vector<char>;
} /* namespace gdb */
#endif /* COMMON_DEF_VECTOR_H */