binutils-gdb/gdb/am29k-tdep.c
John Gilmore 17f7e032b8 Lint
1991-09-13 03:00:28 +00:00

697 lines
19 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Target-machine dependent code for the AMD 29000
Copyright (C) 1990 Free Software Foundation, Inc.
Contributed by Cygnus Support. Written by Jim Kingdon.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
#include "defs.h"
#include "gdbcore.h"
#include <stdio.h>
#include "frame.h"
#include "value.h"
#include "param.h"
#include "symtab.h"
#include "inferior.h"
/* Structure to hold cached info about function prologues. */
struct prologue_info
{
CORE_ADDR pc; /* First addr after fn prologue */
unsigned rsize, msize; /* register stack frame size, mem stack ditto */
unsigned mfp_used : 1; /* memory frame pointer used */
unsigned rsize_valid : 1; /* Validity bits for the above */
unsigned msize_valid : 1;
unsigned mfp_valid : 1;
};
/* Examine the prologue of a function which starts at PC. Return
the first addess past the prologue. If MSIZE is non-NULL, then
set *MSIZE to the memory stack frame size. If RSIZE is non-NULL,
then set *RSIZE to the register stack frame size (not including
incoming arguments and the return address & frame pointer stored
with them). If no prologue is found, *RSIZE is set to zero.
If no prologue is found, or a prologue which doesn't involve
allocating a memory stack frame, then set *MSIZE to zero.
Note that both msize and rsize are in bytes. This is not consistent
with the _User's Manual_ with respect to rsize, but it is much more
convenient.
If MFP_USED is non-NULL, *MFP_USED is set to nonzero if a memory
frame pointer is being used. */
CORE_ADDR
examine_prologue (pc, rsize, msize, mfp_used)
CORE_ADDR pc;
unsigned *msize;
unsigned *rsize;
int *mfp_used;
{
long insn;
CORE_ADDR p = pc;
int misc_index = find_pc_misc_function (pc);
struct prologue_info *mi = 0;
if (misc_index >= 0)
mi = (struct prologue_info *)misc_function_vector[misc_index].misc_info;
if (mi != 0)
{
int valid = 1;
if (rsize != NULL)
{
*rsize = mi->rsize;
valid &= mi->rsize_valid;
}
if (msize != NULL)
{
*msize = mi->msize;
valid &= mi->msize_valid;
}
if (mfp_used != NULL)
{
*mfp_used = mi->mfp_used;
valid &= mi->mfp_valid;
}
if (valid)
return mi->pc;
}
if (rsize != NULL)
*rsize = 0;
if (msize != NULL)
*msize = 0;
if (mfp_used != NULL)
*mfp_used = 0;
/* Prologue must start with subtracting a constant from gr1.
Normally this is sub gr1,gr1,<rsize * 4>. */
insn = read_memory_integer (p, 4);
if ((insn & 0xffffff00) != 0x25010100)
{
/* If the frame is large, instead of a single instruction it
might be a pair of instructions:
const <reg>, <rsize * 4>
sub gr1,gr1,<reg>
*/
int reg;
/* Possible value for rsize. */
unsigned int rsize0;
if ((insn & 0xff000000) != 0x03000000)
{
p = pc;
goto done;
}
reg = (insn >> 8) & 0xff;
rsize0 = (((insn >> 8) & 0xff00) | (insn & 0xff));
p += 4;
insn = read_memory_integer (p, 4);
if ((insn & 0xffffff00) != 0x24010100
|| (insn & 0xff) != reg)
{
p = pc;
goto done;
}
if (rsize != NULL)
*rsize = rsize0;
}
else
{
if (rsize != NULL)
*rsize = (insn & 0xff);
}
p += 4;
/* Next instruction must be asgeu V_SPILL,gr1,rab. */
insn = read_memory_integer (p, 4);
if (insn != 0x5e40017e)
{
p = pc;
goto done;
}
p += 4;
/* Next instruction usually sets the frame pointer (lr1) by adding
<size * 4> from gr1. However, this can (and high C does) be
deferred until anytime before the first function call. So it is
OK if we don't see anything which sets lr1. */
/* Normally this is just add lr1,gr1,<size * 4>. */
insn = read_memory_integer (p, 4);
if ((insn & 0xffffff00) == 0x15810100)
p += 4;
else
{
/* However, for large frames it can be
const <reg>, <size *4>
add lr1,gr1,<reg>
*/
int reg;
CORE_ADDR q;
if ((insn & 0xff000000) == 0x03000000)
{
reg = (insn >> 8) & 0xff;
q = p + 4;
insn = read_memory_integer (q, 4);
if ((insn & 0xffffff00) == 0x14810100
&& (insn & 0xff) == reg)
p = q;
}
}
/* Next comes "add lr{<rsize-1>},msp,0", but only if a memory
frame pointer is in use. We just check for add lr<anything>,msp,0;
we don't check this rsize against the first instruction, and
we don't check that the trace-back tag indicates a memory frame pointer
is in use.
The recommended instruction is actually "sll lr<whatever>,msp,0".
We check for that, too. Originally Jim Kingdon's code seemed
to be looking for a "sub" instruction here, but the mask was set
up to lose all the time. */
insn = read_memory_integer (p, 4);
if (((insn & 0xff80ffff) == 0x15807d00) /* add */
|| ((insn & 0xff80ffff) == 0x81807d00) ) /* sll */
{
p += 4;
if (mfp_used != NULL)
*mfp_used = 1;
}
/* Next comes a subtraction from msp to allocate a memory frame,
but only if a memory frame is
being used. We don't check msize against the trace-back tag.
Normally this is just
sub msp,msp,<msize>
*/
insn = read_memory_integer (p, 4);
if ((insn & 0xffffff00) == 0x257d7d00)
{
p += 4;
if (msize != NULL)
*msize = insn & 0xff;
}
else
{
/* For large frames, instead of a single instruction it might
be
const <reg>, <msize>
consth <reg>, <msize> ; optional
sub msp,msp,<reg>
*/
int reg;
unsigned msize0;
CORE_ADDR q = p;
if ((insn & 0xff000000) == 0x03000000)
{
reg = (insn >> 8) & 0xff;
msize0 = ((insn >> 8) & 0xff00) | (insn & 0xff);
q += 4;
insn = read_memory_integer (q, 4);
/* Check for consth. */
if ((insn & 0xff000000) == 0x02000000
&& (insn & 0x0000ff00) == reg)
{
msize0 |= (insn << 8) & 0xff000000;
msize0 |= (insn << 16) & 0x00ff0000;
q += 4;
insn = read_memory_integer (q, 4);
}
/* Check for sub msp,msp,<reg>. */
if ((insn & 0xffffff00) == 0x247d7d00
&& (insn & 0xff) == reg)
{
p = q + 4;
if (msize != NULL)
*msize = msize0;
}
}
}
done:
if (misc_index >= 0)
{
if (mi == 0)
{
/* Add a new cache entry. */
mi = (struct prologue_info *)xmalloc (sizeof (struct prologue_info));
misc_function_vector[misc_index].misc_info = (char *)mi;
mi->rsize_valid = 0;
mi->msize_valid = 0;
mi->mfp_valid = 0;
}
/* else, cache entry exists, but info is incomplete. */
mi->pc = p;
if (rsize != NULL)
{
mi->rsize = *rsize;
mi->rsize_valid = 1;
}
if (msize != NULL)
{
mi->msize = *msize;
mi->msize_valid = 1;
}
if (mfp_used != NULL)
{
mi->mfp_used = *mfp_used;
mi->mfp_valid = 1;
}
}
return p;
}
/* Advance PC across any function entry prologue instructions
to reach some "real" code. */
CORE_ADDR
skip_prologue (pc)
CORE_ADDR pc;
{
return examine_prologue (pc, (unsigned *)NULL, (unsigned *)NULL,
(int *)NULL);
}
/* Initialize the frame. In addition to setting "extra" frame info,
we also set ->frame because we use it in a nonstandard way, and ->pc
because we need to know it to get the other stuff. See the diagram
of stacks and the frame cache in tm-29k.h for more detail. */
static void
init_frame_info (innermost_frame, fci)
int innermost_frame;
struct frame_info *fci;
{
CORE_ADDR p;
long insn;
unsigned rsize;
unsigned msize;
int mfp_used;
struct symbol *func;
p = fci->pc;
if (innermost_frame)
fci->frame = read_register (GR1_REGNUM);
else
fci->frame = fci->next_frame + fci->next->rsize;
#if CALL_DUMMY_LOCATION == ON_STACK
This wont work;
#else
if (PC_IN_CALL_DUMMY (p, 0, 0))
#endif
{
fci->rsize = DUMMY_FRAME_RSIZE;
/* This doesn't matter since we never try to get locals or args
from a dummy frame. */
fci->msize = 0;
/* Dummy frames always use a memory frame pointer. */
fci->saved_msp =
read_register_stack_integer (fci->frame + DUMMY_FRAME_RSIZE - 4, 4);
return;
}
func = find_pc_function (p);
if (func != NULL)
p = BLOCK_START (SYMBOL_BLOCK_VALUE (func));
else
{
/* Search backward to find the trace-back tag. However,
do not trace back beyond the start of the text segment
(just as a sanity check to avoid going into never-never land). */
while (p >= text_start
&& ((insn = read_memory_integer (p, 4)) & 0xff000000) != 0)
p -= 4;
if (p < text_start)
{
/* Couldn't find the trace-back tag.
Something strange is going on. */
fci->saved_msp = 0;
fci->rsize = 0;
fci->msize = 0;
return;
}
else
/* Advance to the first word of the function, i.e. the word
after the trace-back tag. */
p += 4;
}
/* We've found the start of the function. Since High C interchanges
the meanings of bits 23 and 22 (as of Jul 90), and we
need to look at the prologue anyway to figure out
what rsize is, ignore the contents of the trace-back tag. */
examine_prologue (p, &rsize, &msize, &mfp_used);
fci->rsize = rsize;
fci->msize = msize;
if (innermost_frame)
{
fci->saved_msp = read_register (MSP_REGNUM) + msize;
}
else
{
if (mfp_used)
fci->saved_msp =
read_register_stack_integer (fci->frame + rsize - 1, 4);
else
fci->saved_msp = fci->next->saved_msp + msize;
}
}
void
init_extra_frame_info (fci)
struct frame_info *fci;
{
if (fci->next == 0)
/* Assume innermost frame. May produce strange results for "info frame"
but there isn't any way to tell the difference. */
init_frame_info (1, fci);
else {
/* We're in get_prev_frame_info.
Take care of everything in init_frame_pc. */
;
}
}
void
init_frame_pc (fromleaf, fci)
int fromleaf;
struct frame_info *fci;
{
fci->pc = (fromleaf ? SAVED_PC_AFTER_CALL (fci->next) :
fci->next ? FRAME_SAVED_PC (fci->next) : read_pc ());
init_frame_info (0, fci);
}
/* Local variables (i.e. LOC_LOCAL) are on the memory stack, with their
offsets being relative to the memory stack pointer (high C) or
saved_msp (gcc). */
CORE_ADDR
frame_locals_address (fi)
struct frame_info *fi;
{
struct block *b = block_for_pc (fi->pc);
/* If compiled without -g, assume GCC. */
if (b == NULL || BLOCK_GCC_COMPILED (b))
return fi->saved_msp;
else
return fi->saved_msp - fi->msize;
}
/* Routines for reading the register stack. The caller gets to treat
the register stack as a uniform stack in memory, from address $gr1
straight through $rfb and beyond. */
/* Analogous to read_memory except the length is understood to be 4.
Also, myaddr can be NULL (meaning don't bother to read), and
if actual_mem_addr is non-NULL, store there the address that it
was fetched from (or if from a register the offset within
registers). Set *LVAL to lval_memory or lval_register, depending
on where it came from. */
void
read_register_stack (memaddr, myaddr, actual_mem_addr, lval)
CORE_ADDR memaddr;
char *myaddr;
CORE_ADDR *actual_mem_addr;
enum lval_type *lval;
{
long rfb = read_register (RFB_REGNUM);
long rsp = read_register (RSP_REGNUM);
if (memaddr < rfb)
{
/* It's in a register. */
int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
if (regnum < LR0_REGNUM || regnum > LR0_REGNUM + 127)
error ("Attempt to read register stack out of range.");
if (myaddr != NULL)
read_register_gen (regnum, myaddr);
if (lval != NULL)
*lval = lval_register;
if (actual_mem_addr != NULL)
*actual_mem_addr = REGISTER_BYTE (regnum);
}
else
{
/* It's in the memory portion of the register stack. */
if (myaddr != NULL)
read_memory (memaddr, myaddr, 4);
if (lval != NULL)
*lval = lval_memory;
if (actual_mem_addr != NULL)
*actual_mem_addr = memaddr;
}
}
/* Analogous to read_memory_integer
except the length is understood to be 4. */
long
read_register_stack_integer (memaddr, len)
CORE_ADDR memaddr;
int len;
{
long buf;
read_register_stack (memaddr, &buf, NULL, NULL);
SWAP_TARGET_AND_HOST (&buf, 4);
return buf;
}
/* Copy 4 bytes from GDB memory at MYADDR into inferior memory
at MEMADDR and put the actual address written into in
*ACTUAL_MEM_ADDR. */
static void
write_register_stack (memaddr, myaddr, actual_mem_addr)
CORE_ADDR memaddr;
char *myaddr;
CORE_ADDR *actual_mem_addr;
{
long rfb = read_register (RFB_REGNUM);
long rsp = read_register (RSP_REGNUM);
if (memaddr < rfb)
{
/* It's in a register. */
int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
if (regnum < LR0_REGNUM || regnum > LR0_REGNUM + 127)
error ("Attempt to read register stack out of range.");
if (myaddr != NULL)
write_register (regnum, *(long *)myaddr);
if (actual_mem_addr != NULL)
*actual_mem_addr = NULL;
}
else
{
/* It's in the memory portion of the register stack. */
if (myaddr != NULL)
write_memory (memaddr, myaddr, 4);
if (actual_mem_addr != NULL)
*actual_mem_addr = memaddr;
}
}
/* Find register number REGNUM relative to FRAME and put its
(raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable
was optimized out (and thus can't be fetched). If the variable
was fetched from memory, set *ADDRP to where it was fetched from,
otherwise it was fetched from a register.
The argument RAW_BUFFER must point to aligned memory. */
void
get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lvalp)
char *raw_buffer;
int *optimized;
CORE_ADDR *addrp;
FRAME frame;
int regnum;
enum lval_type *lvalp;
{
struct frame_info *fi = get_frame_info (frame);
CORE_ADDR addr;
enum lval_type lval;
/* Once something has a register number, it doesn't get optimized out. */
if (optimized != NULL)
*optimized = 0;
if (regnum == RSP_REGNUM)
{
if (raw_buffer != NULL)
*(CORE_ADDR *)raw_buffer = fi->frame;
if (lvalp != NULL)
*lvalp = not_lval;
return;
}
else if (regnum == PC_REGNUM)
{
if (raw_buffer != NULL)
*(CORE_ADDR *)raw_buffer = fi->pc;
/* Not sure we have to do this. */
if (lvalp != NULL)
*lvalp = not_lval;
return;
}
else if (regnum == MSP_REGNUM)
{
if (raw_buffer != NULL)
{
if (fi->next != NULL)
*(CORE_ADDR *)raw_buffer = fi->next->saved_msp;
else
*(CORE_ADDR *)raw_buffer = read_register (MSP_REGNUM);
}
/* The value may have been computed, not fetched. */
if (lvalp != NULL)
*lvalp = not_lval;
return;
}
else if (regnum < LR0_REGNUM || regnum >= LR0_REGNUM + 128)
{
/* These registers are not saved over procedure calls,
so just print out the current values. */
if (raw_buffer != NULL)
*(CORE_ADDR *)raw_buffer = read_register (regnum);
if (lvalp != NULL)
*lvalp = lval_register;
if (addrp != NULL)
*addrp = REGISTER_BYTE (regnum);
return;
}
addr = fi->frame + (regnum - LR0_REGNUM) * 4;
if (raw_buffer != NULL)
read_register_stack (addr, raw_buffer, &addr, &lval);
if (lvalp != NULL)
*lvalp = lval;
if (addrp != NULL)
*addrp = addr;
}
/* Discard from the stack the innermost frame,
restoring all saved registers. */
void
pop_frame ()
{
FRAME frame = get_current_frame ();
struct frame_info *fi = get_frame_info (frame);
CORE_ADDR rfb = read_register (RFB_REGNUM);
CORE_ADDR gr1 = fi->frame + fi->rsize;
CORE_ADDR lr1;
CORE_ADDR ret_addr;
int i;
/* If popping a dummy frame, need to restore registers. */
if (PC_IN_CALL_DUMMY (read_register (PC_REGNUM),
read_register (SP_REGNUM),
FRAME_FP (fi)))
{
for (i = 0; i < DUMMY_SAVE_SR128; ++i)
write_register
(SR_REGNUM (i + 128),
read_register (LR0_REGNUM + DUMMY_ARG / 4 + i));
for (i = 0; i < DUMMY_SAVE_GREGS; ++i)
write_register
(RETURN_REGNUM + i,
read_register (LR0_REGNUM + DUMMY_ARG / 4 + DUMMY_SAVE_SR128 + i));
}
/* Restore the memory stack pointer. */
write_register (MSP_REGNUM, fi->saved_msp);
/* Restore the register stack pointer. */
write_register (GR1_REGNUM, gr1);
/* Check whether we need to fill registers. */
lr1 = read_register (LR0_REGNUM + 1);
if (lr1 > rfb)
{
/* Fill. */
int num_bytes = lr1 - rfb;
int i;
long word;
write_register (RAB_REGNUM, read_register (RAB_REGNUM) + num_bytes);
write_register (RFB_REGNUM, lr1);
for (i = 0; i < num_bytes; i += 4)
{
/* Note: word is in host byte order. */
word = read_memory_integer (rfb + i, 4);
write_register (LR0_REGNUM + ((rfb - gr1) % 0x80) + i / 4, word);
}
}
ret_addr = read_register (LR0_REGNUM);
write_register (PC_REGNUM, ret_addr);
write_register (NPC_REGNUM, ret_addr + 4);
flush_cached_frames ();
set_current_frame (create_new_frame (0, read_pc()));
}
/* Push an empty stack frame, to record the current PC, etc. */
void
push_dummy_frame ()
{
long w;
CORE_ADDR rab, gr1;
CORE_ADDR msp = read_register (MSP_REGNUM);
int i;
/* Save the PC. */
write_register (LR0_REGNUM, read_register (PC_REGNUM));
/* Allocate the new frame. */
gr1 = read_register (GR1_REGNUM) - DUMMY_FRAME_RSIZE;
write_register (GR1_REGNUM, gr1);
rab = read_register (RAB_REGNUM);
if (gr1 < rab)
{
/* We need to spill registers. */
int num_bytes = rab - gr1;
CORE_ADDR rfb = read_register (RFB_REGNUM);
int i;
long word;
write_register (RFB_REGNUM, rfb - num_bytes);
write_register (RAB_REGNUM, gr1);
for (i = 0; i < num_bytes; i += 4)
{
/* Note: word is in target byte order. */
read_register_gen (LR0_REGNUM + i / 4, &word, 4);
write_memory (rfb - num_bytes + i, &word, 4);
}
}
/* There are no arguments in to the dummy frame, so we don't need
more than rsize plus the return address and lr1. */
write_register (LR0_REGNUM + 1, gr1 + DUMMY_FRAME_RSIZE + 2 * 4);
/* Set the memory frame pointer. */
write_register (LR0_REGNUM + DUMMY_FRAME_RSIZE / 4 - 1, msp);
/* Allocate arg_slop. */
write_register (MSP_REGNUM, msp - 16 * 4);
/* Save registers. */
for (i = 0; i < DUMMY_SAVE_SR128; ++i)
write_register (LR0_REGNUM + DUMMY_ARG / 4 + i,
read_register (SR_REGNUM (i + 128)));
for (i = 0; i < DUMMY_SAVE_GREGS; ++i)
write_register (LR0_REGNUM + DUMMY_ARG / 4 + DUMMY_SAVE_SR128 + i,
read_register (RETURN_REGNUM + i));
}