binutils-gdb/sim/m68hc11/interp.c
Mike Frysinger 5357150c97 sim: unify symbol table handling
The common sim tracing code already handles loading and tracking of
symbols from the target program so that it can show symbol info in
trace/disassembly calls.  Once we touch up the trace code and add a
few API callbacks, ports don't need to do loading and searching of
symbol tables themselves anymore.
2016-08-15 07:00:11 -07:00

647 lines
16 KiB
C

/* interp.c -- Simulator for Motorola 68HC11/68HC12
Copyright (C) 1999-2016 Free Software Foundation, Inc.
Written by Stephane Carrez (stcarrez@nerim.fr)
This file is part of GDB, the GNU debugger.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "sim-main.h"
#include "sim-assert.h"
#include "sim-hw.h"
#include "sim-options.h"
#include "hw-tree.h"
#include "hw-device.h"
#include "hw-ports.h"
#include "elf32-m68hc1x.h"
#ifndef MONITOR_BASE
# define MONITOR_BASE (0x0C000)
# define MONITOR_SIZE (0x04000)
#endif
static void sim_get_info (SIM_DESC sd, char *cmd);
struct sim_info_list
{
const char *name;
const char *device;
};
struct sim_info_list dev_list_68hc11[] = {
{"cpu", "/m68hc11"},
{"timer", "/m68hc11/m68hc11tim"},
{"sio", "/m68hc11/m68hc11sio"},
{"spi", "/m68hc11/m68hc11spi"},
{"eeprom", "/m68hc11/m68hc11eepr"},
{0, 0}
};
struct sim_info_list dev_list_68hc12[] = {
{"cpu", "/m68hc12"},
{"timer", "/m68hc12/m68hc12tim"},
{"sio", "/m68hc12/m68hc12sio"},
{"spi", "/m68hc12/m68hc12spi"},
{"eeprom", "/m68hc12/m68hc12eepr"},
{0, 0}
};
/* Cover function of sim_state_free to free the cpu buffers as well. */
static void
free_state (SIM_DESC sd)
{
if (STATE_MODULES (sd) != NULL)
sim_module_uninstall (sd);
sim_state_free (sd);
}
/* Give some information about the simulator. */
static void
sim_get_info (SIM_DESC sd, char *cmd)
{
sim_cpu *cpu;
cpu = STATE_CPU (sd, 0);
if (cmd != 0 && (cmd[0] == ' ' || cmd[0] == '-'))
{
int i;
struct hw *hw_dev;
struct sim_info_list *dev_list;
const struct bfd_arch_info *arch;
arch = STATE_ARCHITECTURE (sd);
cmd++;
if (arch->arch == bfd_arch_m68hc11)
dev_list = dev_list_68hc11;
else
dev_list = dev_list_68hc12;
for (i = 0; dev_list[i].name; i++)
if (strcmp (cmd, dev_list[i].name) == 0)
break;
if (dev_list[i].name == 0)
{
sim_io_eprintf (sd, "Device '%s' not found.\n", cmd);
sim_io_eprintf (sd, "Valid devices: cpu timer sio eeprom\n");
return;
}
hw_dev = sim_hw_parse (sd, dev_list[i].device);
if (hw_dev == 0)
{
sim_io_eprintf (sd, "Device '%s' not found\n", dev_list[i].device);
return;
}
hw_ioctl (hw_dev, 23, 0);
return;
}
cpu_info (sd, cpu);
interrupts_info (sd, &cpu->cpu_interrupts);
}
void
sim_board_reset (SIM_DESC sd)
{
struct hw *hw_cpu;
sim_cpu *cpu;
const struct bfd_arch_info *arch;
const char *cpu_type;
cpu = STATE_CPU (sd, 0);
arch = STATE_ARCHITECTURE (sd);
/* hw_cpu = sim_hw_parse (sd, "/"); */
if (arch->arch == bfd_arch_m68hc11)
{
cpu->cpu_type = CPU_M6811;
cpu_type = "/m68hc11";
}
else
{
cpu->cpu_type = CPU_M6812;
cpu_type = "/m68hc12";
}
hw_cpu = sim_hw_parse (sd, cpu_type);
if (hw_cpu == 0)
{
sim_io_eprintf (sd, "%s cpu not found in device tree.", cpu_type);
return;
}
cpu_reset (cpu);
hw_port_event (hw_cpu, 3, 0);
cpu_restart (cpu);
}
static int
sim_hw_configure (SIM_DESC sd)
{
const struct bfd_arch_info *arch;
struct hw *device_tree;
sim_cpu *cpu;
arch = STATE_ARCHITECTURE (sd);
if (arch == 0)
return 0;
cpu = STATE_CPU (sd, 0);
cpu->cpu_configured_arch = arch;
device_tree = sim_hw_parse (sd, "/");
if (arch->arch == bfd_arch_m68hc11)
{
cpu->cpu_interpretor = cpu_interp_m6811;
if (hw_tree_find_property (device_tree, "/m68hc11/reg") == 0)
{
/* Allocate core managed memory */
/* the monitor */
sim_do_commandf (sd, "memory region 0x%lx@%d,0x%lx",
/* MONITOR_BASE, MONITOR_SIZE */
0x8000, M6811_RAM_LEVEL, 0x8000);
sim_do_commandf (sd, "memory region 0x000@%d,0x8000",
M6811_RAM_LEVEL);
sim_hw_parse (sd, "/m68hc11/reg 0x1000 0x03F");
if (cpu->bank_start < cpu->bank_end)
{
sim_do_commandf (sd, "memory region 0x%lx@%d,0x100000",
cpu->bank_virtual, M6811_RAM_LEVEL);
sim_hw_parse (sd, "/m68hc11/use_bank 1");
}
}
if (cpu->cpu_start_mode)
{
sim_hw_parse (sd, "/m68hc11/mode %s", cpu->cpu_start_mode);
}
if (hw_tree_find_property (device_tree, "/m68hc11/m68hc11sio/reg") == 0)
{
sim_hw_parse (sd, "/m68hc11/m68hc11sio/reg 0x2b 0x5");
sim_hw_parse (sd, "/m68hc11/m68hc11sio/backend stdio");
sim_hw_parse (sd, "/m68hc11 > cpu-reset reset /m68hc11/m68hc11sio");
}
if (hw_tree_find_property (device_tree, "/m68hc11/m68hc11tim/reg") == 0)
{
/* M68hc11 Timer configuration. */
sim_hw_parse (sd, "/m68hc11/m68hc11tim/reg 0x1b 0x5");
sim_hw_parse (sd, "/m68hc11 > cpu-reset reset /m68hc11/m68hc11tim");
sim_hw_parse (sd, "/m68hc11 > capture capture /m68hc11/m68hc11tim");
}
/* Create the SPI device. */
if (hw_tree_find_property (device_tree, "/m68hc11/m68hc11spi/reg") == 0)
{
sim_hw_parse (sd, "/m68hc11/m68hc11spi/reg 0x28 0x3");
sim_hw_parse (sd, "/m68hc11 > cpu-reset reset /m68hc11/m68hc11spi");
}
if (hw_tree_find_property (device_tree, "/m68hc11/nvram/reg") == 0)
{
/* M68hc11 persistent ram configuration. */
sim_hw_parse (sd, "/m68hc11/nvram/reg 0x0 256");
sim_hw_parse (sd, "/m68hc11/nvram/file m68hc11.ram");
sim_hw_parse (sd, "/m68hc11/nvram/mode save-modified");
/*sim_hw_parse (sd, "/m68hc11 > cpu-reset reset /m68hc11/pram"); */
}
if (hw_tree_find_property (device_tree, "/m68hc11/m68hc11eepr/reg") == 0)
{
sim_hw_parse (sd, "/m68hc11/m68hc11eepr/reg 0xb000 512");
sim_hw_parse (sd, "/m68hc11 > cpu-reset reset /m68hc11/m68hc11eepr");
}
sim_hw_parse (sd, "/m68hc11 > port-a cpu-write-port /m68hc11");
sim_hw_parse (sd, "/m68hc11 > port-b cpu-write-port /m68hc11");
sim_hw_parse (sd, "/m68hc11 > port-c cpu-write-port /m68hc11");
sim_hw_parse (sd, "/m68hc11 > port-d cpu-write-port /m68hc11");
cpu->hw_cpu = sim_hw_parse (sd, "/m68hc11");
}
else
{
cpu->cpu_interpretor = cpu_interp_m6812;
if (hw_tree_find_property (device_tree, "/m68hc12/reg") == 0)
{
/* Allocate core external memory. */
sim_do_commandf (sd, "memory region 0x%lx@%d,0x%lx",
0x8000, M6811_RAM_LEVEL, 0x8000);
sim_do_commandf (sd, "memory region 0x000@%d,0x8000",
M6811_RAM_LEVEL);
if (cpu->bank_start < cpu->bank_end)
{
sim_do_commandf (sd, "memory region 0x%lx@%d,0x100000",
cpu->bank_virtual, M6811_RAM_LEVEL);
sim_hw_parse (sd, "/m68hc12/use_bank 1");
}
sim_hw_parse (sd, "/m68hc12/reg 0x0 0x3FF");
}
if (!hw_tree_find_property (device_tree, "/m68hc12/m68hc12sio@1/reg"))
{
sim_hw_parse (sd, "/m68hc12/m68hc12sio@1/reg 0xC0 0x8");
sim_hw_parse (sd, "/m68hc12/m68hc12sio@1/backend stdio");
sim_hw_parse (sd, "/m68hc12 > cpu-reset reset /m68hc12/m68hc12sio@1");
}
if (hw_tree_find_property (device_tree, "/m68hc12/m68hc12tim/reg") == 0)
{
/* M68hc11 Timer configuration. */
sim_hw_parse (sd, "/m68hc12/m68hc12tim/reg 0x1b 0x5");
sim_hw_parse (sd, "/m68hc12 > cpu-reset reset /m68hc12/m68hc12tim");
sim_hw_parse (sd, "/m68hc12 > capture capture /m68hc12/m68hc12tim");
}
/* Create the SPI device. */
if (hw_tree_find_property (device_tree, "/m68hc12/m68hc12spi/reg") == 0)
{
sim_hw_parse (sd, "/m68hc12/m68hc12spi/reg 0x28 0x3");
sim_hw_parse (sd, "/m68hc12 > cpu-reset reset /m68hc12/m68hc12spi");
}
if (hw_tree_find_property (device_tree, "/m68hc12/nvram/reg") == 0)
{
/* M68hc11 persistent ram configuration. */
sim_hw_parse (sd, "/m68hc12/nvram/reg 0x2000 8192");
sim_hw_parse (sd, "/m68hc12/nvram/file m68hc12.ram");
sim_hw_parse (sd, "/m68hc12/nvram/mode save-modified");
}
if (hw_tree_find_property (device_tree, "/m68hc12/m68hc12eepr/reg") == 0)
{
sim_hw_parse (sd, "/m68hc12/m68hc12eepr/reg 0x0800 2048");
sim_hw_parse (sd, "/m68hc12 > cpu-reset reset /m68hc12/m68hc12eepr");
}
sim_hw_parse (sd, "/m68hc12 > port-a cpu-write-port /m68hc12");
sim_hw_parse (sd, "/m68hc12 > port-b cpu-write-port /m68hc12");
sim_hw_parse (sd, "/m68hc12 > port-c cpu-write-port /m68hc12");
sim_hw_parse (sd, "/m68hc12 > port-d cpu-write-port /m68hc12");
cpu->hw_cpu = sim_hw_parse (sd, "/m68hc12");
}
return 1;
}
/* Get the memory bank parameters by looking at the global symbols
defined by the linker. */
static int
sim_get_bank_parameters (SIM_DESC sd)
{
sim_cpu *cpu;
unsigned size;
bfd_vma addr;
cpu = STATE_CPU (sd, 0);
addr = trace_sym_value (sd, BFD_M68HC11_BANK_START_NAME);
if (addr != -1)
cpu->bank_start = addr;
size = trace_sym_value (sd, BFD_M68HC11_BANK_SIZE_NAME);
if (size == -1)
size = 0;
addr = trace_sym_value (sd, BFD_M68HC11_BANK_VIRTUAL_NAME);
if (addr != -1)
cpu->bank_virtual = addr;
cpu->bank_end = cpu->bank_start + size;
cpu->bank_shift = 0;
for (; size > 1; size >>= 1)
cpu->bank_shift++;
return 0;
}
static int
sim_prepare_for_program (SIM_DESC sd, bfd* abfd)
{
sim_cpu *cpu;
int elf_flags = 0;
cpu = STATE_CPU (sd, 0);
if (abfd != NULL)
{
asection *s;
if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
elf_flags = elf_elfheader (abfd)->e_flags;
cpu->cpu_elf_start = bfd_get_start_address (abfd);
/* See if any section sets the reset address */
cpu->cpu_use_elf_start = 1;
for (s = abfd->sections; s && cpu->cpu_use_elf_start; s = s->next)
{
if (s->flags & SEC_LOAD)
{
bfd_size_type size;
size = bfd_get_section_size (s);
if (size > 0)
{
bfd_vma lma;
if (STATE_LOAD_AT_LMA_P (sd))
lma = bfd_section_lma (abfd, s);
else
lma = bfd_section_vma (abfd, s);
if (lma <= 0xFFFE && lma+size >= 0x10000)
cpu->cpu_use_elf_start = 0;
}
}
}
if (elf_flags & E_M68HC12_BANKS)
{
if (sim_get_bank_parameters (sd) != 0)
sim_io_eprintf (sd, "Memory bank parameters are not initialized\n");
}
}
if (!sim_hw_configure (sd))
return SIM_RC_FAIL;
/* reset all state information */
sim_board_reset (sd);
return SIM_RC_OK;
}
static sim_cia
m68hc11_pc_get (sim_cpu *cpu)
{
return cpu_get_pc (cpu);
}
static void
m68hc11_pc_set (sim_cpu *cpu, sim_cia pc)
{
cpu_set_pc (cpu, pc);
}
static int m68hc11_reg_fetch (SIM_CPU *, int, unsigned char *, int);
static int m68hc11_reg_store (SIM_CPU *, int, unsigned char *, int);
SIM_DESC
sim_open (SIM_OPEN_KIND kind, host_callback *callback,
bfd *abfd, char * const *argv)
{
int i;
SIM_DESC sd;
sim_cpu *cpu;
sd = sim_state_alloc (kind, callback);
SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
/* The cpu data is kept in a separately allocated chunk of memory. */
if (sim_cpu_alloc_all (sd, 1, /*cgen_cpu_max_extra_bytes ()*/0) != SIM_RC_OK)
{
free_state (sd);
return 0;
}
cpu = STATE_CPU (sd, 0);
cpu_initialize (sd, cpu);
if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
{
free_state (sd);
return 0;
}
/* The parser will print an error message for us, so we silently return. */
if (sim_parse_args (sd, argv) != SIM_RC_OK)
{
/* Uninstall the modules to avoid memory leaks,
file descriptor leaks, etc. */
free_state (sd);
return 0;
}
/* Check for/establish the a reference program image. */
if (sim_analyze_program (sd,
(STATE_PROG_ARGV (sd) != NULL
? *STATE_PROG_ARGV (sd)
: NULL), abfd) != SIM_RC_OK)
{
free_state (sd);
return 0;
}
/* Establish any remaining configuration options. */
if (sim_config (sd) != SIM_RC_OK)
{
free_state (sd);
return 0;
}
if (sim_post_argv_init (sd) != SIM_RC_OK)
{
/* Uninstall the modules to avoid memory leaks,
file descriptor leaks, etc. */
free_state (sd);
return 0;
}
if (sim_prepare_for_program (sd, abfd) != SIM_RC_OK)
{
free_state (sd);
return 0;
}
/* CPU specific initialization. */
for (i = 0; i < MAX_NR_PROCESSORS; ++i)
{
SIM_CPU *cpu = STATE_CPU (sd, i);
CPU_REG_FETCH (cpu) = m68hc11_reg_fetch;
CPU_REG_STORE (cpu) = m68hc11_reg_store;
CPU_PC_FETCH (cpu) = m68hc11_pc_get;
CPU_PC_STORE (cpu) = m68hc11_pc_set;
}
return sd;
}
/* Generic implementation of sim_engine_run that works within the
sim_engine setjmp/longjmp framework. */
void
sim_engine_run (SIM_DESC sd,
int next_cpu_nr, /* ignore */
int nr_cpus, /* ignore */
int siggnal) /* ignore */
{
sim_cpu *cpu;
SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
cpu = STATE_CPU (sd, 0);
while (1)
{
cpu_single_step (cpu);
/* process any events */
if (sim_events_tickn (sd, cpu->cpu_current_cycle))
{
sim_events_process (sd);
}
}
}
void
sim_info (SIM_DESC sd, int verbose)
{
const char *cpu_type;
const struct bfd_arch_info *arch;
/* Nothing to do if there is no verbose flag set. */
if (verbose == 0 && STATE_VERBOSE_P (sd) == 0)
return;
arch = STATE_ARCHITECTURE (sd);
if (arch->arch == bfd_arch_m68hc11)
cpu_type = "68HC11";
else
cpu_type = "68HC12";
sim_io_eprintf (sd, "Simulator info:\n");
sim_io_eprintf (sd, " CPU Motorola %s\n", cpu_type);
sim_get_info (sd, 0);
sim_module_info (sd, verbose || STATE_VERBOSE_P (sd));
}
SIM_RC
sim_create_inferior (SIM_DESC sd, struct bfd *abfd,
char * const *argv, char * const *env)
{
return sim_prepare_for_program (sd, abfd);
}
static int
m68hc11_reg_fetch (SIM_CPU *cpu, int rn, unsigned char *memory, int length)
{
uint16 val;
int size = 2;
switch (rn)
{
case A_REGNUM:
val = cpu_get_a (cpu);
size = 1;
break;
case B_REGNUM:
val = cpu_get_b (cpu);
size = 1;
break;
case D_REGNUM:
val = cpu_get_d (cpu);
break;
case X_REGNUM:
val = cpu_get_x (cpu);
break;
case Y_REGNUM:
val = cpu_get_y (cpu);
break;
case SP_REGNUM:
val = cpu_get_sp (cpu);
break;
case PC_REGNUM:
val = cpu_get_pc (cpu);
break;
case PSW_REGNUM:
val = cpu_get_ccr (cpu);
size = 1;
break;
case PAGE_REGNUM:
val = cpu_get_page (cpu);
size = 1;
break;
default:
val = 0;
break;
}
if (size == 1)
{
memory[0] = val;
}
else
{
memory[0] = val >> 8;
memory[1] = val & 0x0FF;
}
return size;
}
static int
m68hc11_reg_store (SIM_CPU *cpu, int rn, unsigned char *memory, int length)
{
uint16 val;
val = *memory++;
if (length == 2)
val = (val << 8) | *memory;
switch (rn)
{
case D_REGNUM:
cpu_set_d (cpu, val);
break;
case A_REGNUM:
cpu_set_a (cpu, val);
return 1;
case B_REGNUM:
cpu_set_b (cpu, val);
return 1;
case X_REGNUM:
cpu_set_x (cpu, val);
break;
case Y_REGNUM:
cpu_set_y (cpu, val);
break;
case SP_REGNUM:
cpu_set_sp (cpu, val);
break;
case PC_REGNUM:
cpu_set_pc (cpu, val);
break;
case PSW_REGNUM:
cpu_set_ccr (cpu, val);
return 1;
case PAGE_REGNUM:
cpu_set_page (cpu, val);
return 1;
default:
break;
}
return 2;
}