binutils-gdb/gas/config/tc-h8300.c

795 lines
15 KiB
C

/* tc-h8300.c -- Assemble code for the Hitachi h8/300
Copyright (C) 1991 Free Software Foundation.
This file is part of GAS, the GNU Assembler.
GAS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GAS; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
/*
Written By Steve Chamberlain
steve@cygnus.com
*/
#include <stdio.h>
#include "as.h"
#include "bfd.h"
#include "h8300-opcode.h"
#include <ctype.h>
char comment_chars[] = { ';',0 };
char line_separator_chars[] = { '$' ,0};
/* This table describes all the machine specific pseudo-ops the assembler
has to support. The fields are:
pseudo-op name without dot
function to call to execute this pseudo-op
Integer arg to pass to the function
*/
void cons();
const pseudo_typeS md_pseudo_table[] = {
{ "int", cons, 2 },
{ 0, 0, 0 }
};
int md_reloc_size ;
const char EXP_CHARS[] = "eE";
/* Chars that mean this number is a floating point constant */
/* As in 0f12.456 */
/* or 0d1.2345e12 */
char FLT_CHARS[] = "rRsSfFdDxXpP";
const relax_typeS md_relax_table[1];
static struct hash_control *opcode_hash_control; /* Opcode mnemonics */
static struct hash_control *register_hash_control; /* Register name hash table */
/*
This function is called once, at assembler startup time. This should
set up all the tables, etc that the MD part of the assembler needs
*/
reloc_howto_type *r16;
reloc_howto_type *r8;
reloc_howto_type *r8ff;
reloc_howto_type *r8pcrel;
void md_begin ()
{
bfd_arch_info_type *ai;
const struct h8_opcode *opcode;
opcode_hash_control = hash_new();
for (opcode = h8_opcodes; opcode->name; opcode++) {
hash_insert(opcode_hash_control, opcode->name, (char *)opcode);
}
ai = bfd_lookup_arch(bfd_arch_h8300,0);
r16 = ai->reloc_type_lookup(ai, BFD_RELOC_16);
r8 = ai->reloc_type_lookup(ai, BFD_RELOC_8);
r8ff = ai->reloc_type_lookup(ai, BFD_RELOC_8_FFnn);
r8pcrel = ai->reloc_type_lookup(ai, BFD_RELOC_8_PCREL);
}
struct h8_exp {
char *e_beg;
char *e_end;
expressionS e_exp;
};
struct h8_op
{
op_type mode;
unsigned reg;
expressionS exp;
};
/*
parse operands
WREG r0,r1,r2,r3,r4,r5,r6,r7,fp,sp
r0l,r0h,..r7l,r7h
@WREG
@WREG+
@-WREG
#const
*/
op_type r8_sord[] = {RS8, RD8};
op_type r16_sord[] = {RS16, RD16};
op_type rind_sord[] = {RSIND, RDIND};
op_type abs_sord[2] = {ABS16SRC, ABS16DST};
op_type disp_sord[] = {DISPSRC, DISPDST};
/* try and parse a reg name, returns number of chars consumed */
int DEFUN(parse_reg,(src, mode, reg, dst),
char *src AND
op_type *mode AND
unsigned int *reg AND
int dst)
{
if (src[0] == 's' && src[1] == 'p') {
*mode = r16_sord[dst];
*reg = 7;
return 2;
}
if (src[0] == 'c' && src[1] == 'c' && src[2] == 'r') {
*mode = CCR;
*reg = 0;
return 3;
}
if (src[0] == 'f' && src[1] == 'p') {
*mode = r16_sord[dst];
*reg = 6;
return 2;
}
if (src[0] == 'r') {
if (src[1] >= '0' && src[1] <= '7') {
if(src[2] == 'l') {
*mode = r8_sord[dst];
*reg = (src[1] - '0') + 8;
return 3;
}
if(src[2] == 'h') {
*mode = r8_sord[dst];
*reg = (src[1] - '0') ;
return 3;
}
*mode = r16_sord[dst];
*reg = (src[1] - '0');
return 2;
}
}
return 0;
}
char *
DEFUN(parse_exp,(s, op),
char *s AND
expressionS *op)
{
char *save = input_line_pointer;
char *new;
segT seg;
input_line_pointer = s;
seg = expr(0,op);
new = input_line_pointer;
input_line_pointer = save;
if (SEG_NORMAL(seg))
return new;
switch (seg) {
case SEG_ABSOLUTE:
case SEG_UNKNOWN:
case SEG_DIFFERENCE:
case SEG_BIG:
case SEG_REGISTER:
return new;
case SEG_ABSENT:
as_bad("Missing operand");
return new;
default:
as_bad("Don't understand operand of type %s", segment_name (seg));
return new;
}
}
static void
DEFUN(get_operand,(ptr, op, dst),
char **ptr AND
struct h8_op *op AND
unsigned int dst)
{
char *src = *ptr;
op_type mode;
unsigned int num;
unsigned int len;
op->mode = E;
while (*src == ' ') src++;
len = parse_reg(src, &op->mode, &op->reg, dst);
if (len) {
*ptr = src + len;
return ;
}
if (*src == '@') {
src++;
if (*src == '-') {
src++;
len = parse_reg(src, &mode, &num, dst);
if (len == 0 || mode != r16_sord[dst]) {
as_bad("@- needs word register");
}
op->mode = RDDEC;
op->reg = num;
*ptr = src + len;
return;
}
if (*src == '(' && ')') {
/* Disp */
src++;
src = parse_exp(src, &op->exp);
if (*src == ')') {
src++;
op->mode = abs_sord[dst];
*ptr = src;
return;
}
if (*src != ',') {
as_bad("expected @(exp, reg16)");
}
src++;
len = parse_reg(src, &mode, &op->reg, dst);
if (len == 0 || mode != r16_sord[dst])
{
as_bad("expected @(exp, reg16)");
}
op->mode = disp_sord[dst];
src += len;
if (*src != ')' && '(') {
as_bad("expected @(exp, reg16)");
}
*ptr = src +1;
return;
}
len = parse_reg(src, &mode, &num, dst);
if(len) {
src += len;
if (*src == '+') {
src++;
if (mode != RS16) {
as_bad("@Rn+ needs word register");
}
op->mode = RSINC;
op->reg = num;
*ptr = src;
return;
}
if (mode != r16_sord[dst]) {
as_bad("@Rn needs word register");
}
op->mode =rind_sord[dst];
op->reg = num;
*ptr = src;
return;
}
else {
/* must be a symbol */
op->mode = abs_sord[dst];
*ptr = parse_exp(src, &op->exp);
return;
}
}
if (*src == '#') {
src++;
op->mode = IMM16;
*ptr = parse_exp(src, &op->exp);
return;
}
else {
*ptr = parse_exp(src, &op->exp);
op->mode = DISP8;
}
}
/* This is the guts of the machine-dependent assembler. STR points to a
machine dependent instruction. This funciton is supposed to emit
the frags/bytes it assembles to.
*/
void
DEFUN(md_assemble,(str),
char *str)
{
char *op_start;
char *op_end;
unsigned int i;
struct h8_opcode * opcode;
/* Drop leading whitespace */
while (*str == ' ')
str++;
/* find the op code end */
for (op_start = op_end = str;
*op_end != 0 && *op_end != ' ';
op_end ++)
;
if (op_end == op_start) {
as_bad("can't find opcode ");
}
*op_end = 0;
opcode = (struct h8_opcode *) hash_find(opcode_hash_control,
op_start);
if (opcode == NULL) {
as_bad("unknown opcode");
return;
}
{
int ok = 1;
int j,i;
int dispreg = 0;
struct h8_op operand[2];
char *ptr = op_end+1;
if (opcode->noperands)
get_operand(& ptr, &operand[0],0);
else operand[0].mode = 0;
if (opcode->noperands==2) {
if (*ptr == ',') ptr++;
get_operand(& ptr, &operand[1], 1);
}
else operand[1].mode = 0;
{
struct h8_opcode *this_try ;
int found = 0;
for (j = 0; j < opcode->nopcodes && !found; j++) {
this_try = opcode + j;
for (i = 0; i < opcode->noperands; i++) {
op_type op = (this_try->args.nib[i]) & ~(B30|B31);
switch (op) {
case Hex0:
case Hex1:
case Hex2:
case Hex3:
case Hex4:
case Hex5:
case Hex6:
case Hex7:
case Hex8:
case Hex9:
case HexA:
case HexB:
case HexC:
case HexD:
case HexE:
case HexF:
break;
case DISPSRC:
case DISPDST:
dispreg = operand[i].reg;
case RD8:
case RS8:
case RDIND:
case RSIND:
case RD16:
case RS16:
case CCR:
case RSINC:
case RDDEC:
if (operand[i].mode != op) goto fail;
break;
case IMM8:
/* We have an expression, called IMM16, but we know we
want an 8 bit value here */
if (operand[i].mode != IMM16) goto fail;
operand[i].mode = IMM8;
break;
case KBIT:
case IMM16:
case IMM3:
if (operand[i].mode != IMM16) goto fail;
break;
case ABS16SRC:
case ABS8SRC:
if (operand[i].mode != ABS16SRC) goto fail;
break;
case ABS16DST:
case ABS8DST:
if (operand[i].mode != ABS16DST) goto fail;
break;
}
}
found =1;
fail: ;
}
if (found == 0)
as_bad("illegal operands for opcode");
/* Now we know what sort of opcodes etc, lets build the bytes -
actually we know how big the instruction will be too. So we
can get
*/
{
char *output = frag_more(this_try->length);
char *output_ptr = output;
op_type *nibble_ptr = this_try->data.nib;
char part;
op_type c;
char high;
int nib;
top: ;
while (*nibble_ptr != E) {
int nibble;
for (nibble = 0; nibble <2; nibble++) {
c = *nibble_ptr & ~(B30|B31);
switch (c) {
default:
abort();
case KBIT:
switch (operand[0].exp.X_add_number) {
case 1:
nib = 0;
break;
case 2:
nib = 8;
break;
default:
as_bad("Need #1 or #2 here");
break;
}
/* stop it making a fix */
operand[0].mode = 0;
break;
case 0:
case 1:
case 2: case 3: case 4: case 5: case 6:
case 7: case 8: case 9: case 10: case 11:
case 12: case 13: case 14: case 15:
nib = c;
break;
case DISPREG:
nib = dispreg;
break;
case IMM8:
nib = 0;
break;
case DISPDST:
nib = 0;
break;
case IMM3:
if (operand[0].exp.X_add_symbol == 0) {
operand[0].mode = 0; /* stop it making a fix */
nib = (operand[0].exp.X_add_number);
}
else as_bad("can't have symbol for bit number");
break;
case ABS16DST:
nib = 0;
break;
case DISPSRC:
case ABS16SRC:
case IMM16:
nib=0;
break;
case ABS8DST:
case ABS8SRC:
case IGNORE:
nib = 0;
break;
case DISP8:
nib = 0;
break;
case RS8:
case RS16:
case RSIND:
case RSINC:
nib= operand[0].reg;
break;
case RD8:
case RD16:
case RDDEC:
case RDIND:
nib = operand[1].reg;
break;
case E:
abort();
break;
}
if (*nibble_ptr & B31) nib|=0x8;
if (nibble == 0) {
*output_ptr = nib << 4;
}
else {
*output_ptr |= nib;
output_ptr++;
}
nibble_ptr++;
}
}
/* output any fixes */
for (i = 0; i < 2; i++)
{
switch (operand[i].mode) {
case 0:
break;
case DISP8:
fix_new(frag_now,
output - frag_now->fr_literal + 1,
1,
operand[i].exp.X_add_symbol,
operand[i].exp.X_subtract_symbol,
operand[i].exp.X_add_number -1,
1,
(int)r8pcrel);
break;
case IMM8:
fix_new(frag_now,
output - frag_now->fr_literal + 1,
1,
operand[i].exp.X_add_symbol,
operand[i].exp.X_subtract_symbol,
operand[i].exp.X_add_number,
0,
0);
break;
case ABS16SRC:
case ABS16DST:
case IMM16:
case DISPSRC:
case DISPDST:
fix_new(frag_now,
output - frag_now->fr_literal + 2,
2,
operand[i].exp.X_add_symbol,
operand[i].exp.X_subtract_symbol,
operand[i].exp.X_add_number,
0,
(int)r16);
break;
case RS8:
case RD8:
case RS16:
case RD16:
case RDDEC:
case KBIT:
case RSINC:
case RDIND:
case RSIND:
break;
default:
abort();
}
}
}
}
}
}
void
DEFUN(tc_crawl_symbol_chain, (headers),
object_headers *headers)
{
printf("call to tc_crawl_symbol_chain \n");
}
symbolS *DEFUN(md_undefined_symbol,(name),
char *name)
{
return 0;
}
void
DEFUN(tc_headers_hook,(headers),
object_headers *headers)
{
printf("call to tc_headers_hook \n");
}
void
DEFUN_VOID(md_end)
{
}
/* Various routines to kill one day */
/* Equal to MAX_PRECISION in atof-ieee.c */
#define MAX_LITTLENUMS 6
/* Turn a string in input_line_pointer into a floating point constant of type
type, and store the appropriate bytes in *litP. The number of LITTLENUMS
emitted is stored in *sizeP . An error message is returned, or NULL on OK.
*/
char *
md_atof(type,litP,sizeP)
char type;
char *litP;
int *sizeP;
{
int prec;
LITTLENUM_TYPE words[MAX_LITTLENUMS];
LITTLENUM_TYPE *wordP;
char *t;
char *atof_ieee();
switch(type) {
case 'f':
case 'F':
case 's':
case 'S':
prec = 2;
break;
case 'd':
case 'D':
case 'r':
case 'R':
prec = 4;
break;
case 'x':
case 'X':
prec = 6;
break;
case 'p':
case 'P':
prec = 6;
break;
default:
*sizeP=0;
return "Bad call to MD_ATOF()";
}
t=atof_ieee(input_line_pointer,type,words);
if(t)
input_line_pointer=t;
*sizeP=prec * sizeof(LITTLENUM_TYPE);
for(wordP=words;prec--;) {
md_number_to_chars(litP,(long)(*wordP++),sizeof(LITTLENUM_TYPE));
litP+=sizeof(LITTLENUM_TYPE);
}
return ""; /* Someone should teach Dean about null pointers */
}
int
md_parse_option(argP, cntP, vecP)
char **argP;
int *cntP;
char ***vecP;
{abort();
}
int md_short_jump_size;
void tc_aout_fix_to_chars () { printf("call to tc_aout_fix_to_chars \n");
abort(); }
void md_create_short_jump(ptr, from_addr, to_addr, frag, to_symbol)
char *ptr;
long from_addr;
long to_addr;
fragS *frag;
symbolS *to_symbol;
{
as_fatal("failed sanity check.");
}
void
md_create_long_jump(ptr,from_addr,to_addr,frag,to_symbol)
char *ptr;
long from_addr, to_addr;
fragS *frag;
symbolS *to_symbol;
{
as_fatal("failed sanity check.");
}
void
md_convert_frag(headers, fragP)
object_headers *headers;
fragS * fragP;
{ printf("call to md_convert_frag \n"); abort(); }
long
DEFUN(md_section_align,(seg, size),
segT seg AND
long size)
{
return((size + (1 << section_alignment[(int) seg]) - 1) & (-1 << section_alignment[(int) seg]));
}
void
md_apply_fix(fixP, val)
fixS *fixP;
long val;
{
char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
switch(fixP->fx_size) {
case 1:
*buf++=val;
break;
case 2:
*buf++=(val>>8);
*buf++=val;
break;
case 4:
*buf++=(val>>24);
*buf++=(val>>16);
*buf++=(val>>8);
*buf++=val;
break;
default:
abort();
}
}
void DEFUN(md_operand, (expressionP),expressionS *expressionP)
{ }
int md_long_jump_size;
int
md_estimate_size_before_relax(fragP, segment_type)
register fragS *fragP;
register segT segment_type;
{ printf("call tomd_estimate_size_before_relax \n"); abort(); }
/* Put number into target byte order */
void DEFUN(md_number_to_chars,(ptr, use, nbytes),
char *ptr AND
long use AND
int nbytes)
{
switch (nbytes) {
case 4: *ptr++ = (use >> 24) & 0xff;
case 3: *ptr++ = (use >> 16) & 0xff;
case 2: *ptr++ = (use >> 8) & 0xff;
case 1: *ptr++ = (use >> 0) & 0xff;
break;
default:
abort();
}
}
long md_pcrel_from(fixP)
fixS *fixP; { abort(); }
void tc_coff_symbol_emit_hook() { }