mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-15 04:31:49 +08:00
31a385d17a
(exit_processing_complete): Delete unwanted variable and all references.
6593 lines
162 KiB
C
6593 lines
162 KiB
C
/* tc-hppa.c -- Assemble for the PA
|
|
Copyright (C) 1989 Free Software Foundation, Inc.
|
|
|
|
This file is part of GAS, the GNU Assembler.
|
|
|
|
GAS is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 1, or (at your option)
|
|
any later version.
|
|
|
|
GAS is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GAS; see the file COPYING. If not, write to
|
|
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
|
|
|
|
|
|
/* HP PA-RISC support was contributed by the Center for Software Science
|
|
at the University of Utah. */
|
|
|
|
#include <stdio.h>
|
|
#include <ctype.h>
|
|
|
|
#include "as.h"
|
|
#include "subsegs.h"
|
|
|
|
#include "../bfd/libhppa.h"
|
|
#include "../bfd/libbfd.h"
|
|
|
|
/* Be careful, this file includes data *declarations*. */
|
|
#include "opcode/hppa.h"
|
|
|
|
/* A "convient" place to put object file dependencies which do
|
|
not need to be seen outside of tc-hppa.c. */
|
|
#ifdef OBJ_ELF
|
|
/* Names of various debugging spaces/subspaces. */
|
|
#define GDB_DEBUG_SPACE_NAME ".stab"
|
|
#define GDB_STRINGS_SUBSPACE_NAME ".stabstr"
|
|
#define GDB_SYMBOLS_SUBSPACE_NAME ".stab"
|
|
#define UNWIND_SECTION_NAME ".hppa_unwind"
|
|
/* Nonzero if CODE is a fixup code needing further processing. */
|
|
|
|
/* Object file formats specify relocation types. */
|
|
typedef elf32_hppa_reloc_type reloc_type;
|
|
|
|
/* Object file formats specify BFD symbol types. */
|
|
typedef elf_symbol_type obj_symbol_type;
|
|
|
|
/* How to generate a relocation. */
|
|
#define hppa_gen_reloc_type hppa_elf_gen_reloc_type
|
|
|
|
/* Who knows. */
|
|
#define obj_version obj_elf_version
|
|
|
|
/* Use space aliases. */
|
|
#define USE_ALIASES 1
|
|
|
|
/* Some local functions only used by ELF. */
|
|
static void pa_build_symextn_section PARAMS ((void));
|
|
static void hppa_tc_make_symextn_section PARAMS ((void));
|
|
#endif
|
|
|
|
#ifdef OBJ_SOM
|
|
/* Names of various debugging spaces/subspaces. */
|
|
#define GDB_DEBUG_SPACE_NAME "$GDB_DEBUG$"
|
|
#define GDB_STRINGS_SUBSPACE_NAME "$GDB_STRINGS$"
|
|
#define GDB_SYMBOLS_SUBSPACE_NAME "$GDB_SYMBOLS$"
|
|
#define UNWIND_SECTION_NAME "$UNWIND$"
|
|
|
|
/* Object file formats specify relocation types. */
|
|
typedef int reloc_type;
|
|
|
|
/* Who knows. */
|
|
#define obj_version obj_som_version
|
|
|
|
/* Do not use space aliases. */
|
|
#define USE_ALIASES 0
|
|
|
|
/* How to generate a relocation. */
|
|
#define hppa_gen_reloc_type hppa_som_gen_reloc_type
|
|
|
|
/* Object file formats specify BFD symbol types. */
|
|
typedef som_symbol_type obj_symbol_type;
|
|
#endif
|
|
|
|
/* Various structures and types used internally in tc-hppa.c. */
|
|
|
|
/* Unwind table and descriptor. FIXME: Sync this with GDB version. */
|
|
|
|
struct unwind_desc
|
|
{
|
|
unsigned int cannot_unwind:1;
|
|
unsigned int millicode:1;
|
|
unsigned int millicode_save_rest:1;
|
|
unsigned int region_desc:2;
|
|
unsigned int save_sr:2;
|
|
unsigned int entry_fr:4;
|
|
unsigned int entry_gr:5;
|
|
unsigned int args_stored:1;
|
|
unsigned int call_fr:5;
|
|
unsigned int call_gr:5;
|
|
unsigned int save_sp:1;
|
|
unsigned int save_rp:1;
|
|
unsigned int save_rp_in_frame:1;
|
|
unsigned int extn_ptr_defined:1;
|
|
unsigned int cleanup_defined:1;
|
|
|
|
unsigned int hpe_interrupt_marker:1;
|
|
unsigned int hpux_interrupt_marker:1;
|
|
unsigned int reserved:3;
|
|
unsigned int frame_size:27;
|
|
};
|
|
|
|
struct unwind_table
|
|
{
|
|
/* Starting and ending offsets of the region described by
|
|
descriptor. */
|
|
unsigned int start_offset;
|
|
unsigned int end_offset;
|
|
struct unwind_desc descriptor;
|
|
};
|
|
|
|
/* This structure is used by the .callinfo, .enter, .leave pseudo-ops to
|
|
control the entry and exit code they generate. It is also used in
|
|
creation of the correct stack unwind descriptors.
|
|
|
|
NOTE: GAS does not support .enter and .leave for the generation of
|
|
prologues and epilogues. FIXME.
|
|
|
|
The fields in structure roughly correspond to the arguments available on the
|
|
.callinfo pseudo-op. */
|
|
|
|
struct call_info
|
|
{
|
|
/* Should sr3 be saved in the prologue? */
|
|
int entry_sr;
|
|
|
|
/* Does this function make calls? */
|
|
int makes_calls;
|
|
|
|
/* The unwind descriptor being built. */
|
|
struct unwind_table ci_unwind;
|
|
|
|
/* Name of this function. */
|
|
symbolS *start_symbol;
|
|
|
|
/* (temporary) symbol used to mark the end of this function. */
|
|
symbolS *end_symbol;
|
|
|
|
/* frags associated with start and end of this function. */
|
|
fragS *start_frag;
|
|
fragS *end_frag;
|
|
|
|
/* frags for starting/ending offset of this descriptor. */
|
|
fragS *start_offset_frag;
|
|
fragS *end_offset_frag;
|
|
|
|
/* The location within {start,end}_offset_frag to find the
|
|
{start,end}_offset. */
|
|
int start_frag_where;
|
|
int end_frag_where;
|
|
|
|
/* Fixups (relocations) for start_offset and end_offset. */
|
|
fixS *start_fix;
|
|
fixS *end_fix;
|
|
|
|
/* Next entry in the chain. */
|
|
struct call_info *ci_next;
|
|
};
|
|
|
|
/* Operand formats for FP instructions. Note not all FP instructions
|
|
allow all four formats to be used (for example fmpysub only allows
|
|
SGL and DBL). */
|
|
typedef enum
|
|
{
|
|
SGL, DBL, ILLEGAL_FMT, QUAD
|
|
}
|
|
fp_operand_format;
|
|
|
|
/* This fully describes the symbol types which may be attached to
|
|
an EXPORT or IMPORT directive. Only SOM uses this formation
|
|
(ELF has no need for it). */
|
|
typedef enum
|
|
{
|
|
SYMBOL_TYPE_UNKNOWN,
|
|
SYMBOL_TYPE_ABSOLUTE,
|
|
SYMBOL_TYPE_CODE,
|
|
SYMBOL_TYPE_DATA,
|
|
SYMBOL_TYPE_ENTRY,
|
|
SYMBOL_TYPE_MILLICODE,
|
|
SYMBOL_TYPE_PLABEL,
|
|
SYMBOL_TYPE_PRI_PROG,
|
|
SYMBOL_TYPE_SEC_PROG,
|
|
}
|
|
pa_symbol_type;
|
|
|
|
/* This structure contains information needed to assemble
|
|
individual instructions. */
|
|
struct pa_it
|
|
{
|
|
/* Holds the opcode after parsing by pa_ip. */
|
|
unsigned long opcode;
|
|
|
|
/* Holds an expression associated with the current instruction. */
|
|
expressionS exp;
|
|
|
|
/* Does this instruction use PC-relative addressing. */
|
|
int pcrel;
|
|
|
|
/* Floating point formats for operand1 and operand2. */
|
|
fp_operand_format fpof1;
|
|
fp_operand_format fpof2;
|
|
|
|
/* Holds the field selector for this instruction
|
|
(for example L%, LR%, etc). */
|
|
long field_selector;
|
|
|
|
/* Holds any argument relocation bits associated with this
|
|
instruction. (instruction should be some sort of call). */
|
|
long arg_reloc;
|
|
|
|
/* The format specification for this instruction. */
|
|
int format;
|
|
|
|
/* The relocation (if any) associated with this instruction. */
|
|
reloc_type reloc;
|
|
};
|
|
|
|
/* PA-89 floating point registers are arranged like this:
|
|
|
|
|
|
+--------------+--------------+
|
|
| 0 or 16L | 16 or 16R |
|
|
+--------------+--------------+
|
|
| 1 or 17L | 17 or 17R |
|
|
+--------------+--------------+
|
|
| | |
|
|
|
|
. . .
|
|
. . .
|
|
. . .
|
|
|
|
| | |
|
|
+--------------+--------------+
|
|
| 14 or 30L | 30 or 30R |
|
|
+--------------+--------------+
|
|
| 15 or 31L | 31 or 31R |
|
|
+--------------+--------------+
|
|
|
|
|
|
The following is a version of pa_parse_number that
|
|
handles the L/R notation and returns the correct
|
|
value to put into the instruction register field.
|
|
The correct value to put into the instruction is
|
|
encoded in the structure 'pa_89_fp_reg_struct'. */
|
|
|
|
struct pa_89_fp_reg_struct
|
|
{
|
|
/* The register number. */
|
|
char number_part;
|
|
|
|
/* L/R selector. */
|
|
char l_r_select;
|
|
};
|
|
|
|
/* Additional information needed to build argument relocation stubs. */
|
|
struct call_desc
|
|
{
|
|
/* The argument relocation specification. */
|
|
unsigned int arg_reloc;
|
|
|
|
/* Number of arguments. */
|
|
unsigned int arg_count;
|
|
};
|
|
|
|
/* This structure defines an entry in the subspace dictionary
|
|
chain. */
|
|
|
|
struct subspace_dictionary_chain
|
|
{
|
|
/* Index of containing space. */
|
|
unsigned long ssd_space_index;
|
|
|
|
/* Nonzero if this space has been defined by the user code. */
|
|
unsigned int ssd_defined;
|
|
|
|
/* Which quadrant within the space this subspace should be loaded into. */
|
|
unsigned char ssd_quadrant;
|
|
|
|
/* Alignment (in bytes) for this subspace. */
|
|
unsigned long ssd_alignment;
|
|
|
|
/* Access control bits to determine read/write/execute permissions
|
|
as well as gateway privilege promotions. */
|
|
unsigned char ssd_access_control_bits;
|
|
|
|
/* A sorting key so that it is possible to specify ordering of
|
|
subspaces within a space. */
|
|
unsigned char ssd_sort_key;
|
|
|
|
/* Nonzero of this space should be zero filled. */
|
|
unsigned long ssd_zero;
|
|
|
|
/* Nonzero if this is a common subspace. */
|
|
unsigned char ssd_common;
|
|
|
|
/* Nonzero if this is a common subspace which allows symbols to be
|
|
multiply defined. */
|
|
unsigned char ssd_dup_common;
|
|
|
|
/* Nonzero if this subspace is loadable. Note loadable subspaces
|
|
must be contained within loadable spaces; unloadable subspaces
|
|
must be contained in unloadable spaces. */
|
|
unsigned char ssd_loadable;
|
|
|
|
/* Nonzero if this subspace contains only code. */
|
|
unsigned char ssd_code_only;
|
|
|
|
/* Starting offset of this subspace. */
|
|
unsigned long ssd_subspace_start;
|
|
|
|
/* Length of this subspace. */
|
|
unsigned long ssd_subspace_length;
|
|
|
|
/* Name of this subspace. */
|
|
char *ssd_name;
|
|
|
|
/* GAS segment and subsegment associated with this subspace. */
|
|
asection *ssd_seg;
|
|
int ssd_subseg;
|
|
|
|
/* Index of this subspace within the subspace dictionary of the object
|
|
file. Not used until object file is written. */
|
|
int object_file_index;
|
|
|
|
/* The size of the last alignment request for this subspace. */
|
|
int ssd_last_align;
|
|
|
|
/* Next space in the subspace dictionary chain. */
|
|
struct subspace_dictionary_chain *ssd_next;
|
|
};
|
|
|
|
typedef struct subspace_dictionary_chain ssd_chain_struct;
|
|
|
|
/* This structure defines an entry in the subspace dictionary
|
|
chain. */
|
|
|
|
struct space_dictionary_chain
|
|
{
|
|
|
|
/* Holds the index into the string table of the name of this
|
|
space. */
|
|
unsigned int sd_name_index;
|
|
|
|
/* Nonzero if the space is loadable. */
|
|
unsigned int sd_loadable;
|
|
|
|
/* Nonzero if this space has been defined by the user code or
|
|
as a default space. */
|
|
unsigned int sd_defined;
|
|
|
|
/* Nonzero if this spaces has been defined by the user code. */
|
|
unsigned int sd_user_defined;
|
|
|
|
/* Nonzero if this space is not sharable. */
|
|
unsigned int sd_private;
|
|
|
|
/* The space number (or index). */
|
|
unsigned int sd_spnum;
|
|
|
|
/* The sort key for this space. May be used to determine how to lay
|
|
out the spaces within the object file. */
|
|
unsigned char sd_sort_key;
|
|
|
|
/* The name of this subspace. */
|
|
char *sd_name;
|
|
|
|
/* GAS segment to which this subspace corresponds. */
|
|
asection *sd_seg;
|
|
|
|
/* Current subsegment number being used. */
|
|
int sd_last_subseg;
|
|
|
|
/* The chain of subspaces contained within this space. */
|
|
ssd_chain_struct *sd_subspaces;
|
|
|
|
/* The next entry in the space dictionary chain. */
|
|
struct space_dictionary_chain *sd_next;
|
|
};
|
|
|
|
typedef struct space_dictionary_chain sd_chain_struct;
|
|
|
|
/* Structure for previous label tracking. Needed so that alignments,
|
|
callinfo declarations, etc can be easily attached to a particular
|
|
label. */
|
|
typedef struct label_symbol_struct
|
|
{
|
|
struct symbol *lss_label;
|
|
sd_chain_struct *lss_space;
|
|
struct label_symbol_struct *lss_next;
|
|
}
|
|
label_symbol_struct;
|
|
|
|
/* This structure defines attributes of the default subspace
|
|
dictionary entries. */
|
|
|
|
struct default_subspace_dict
|
|
{
|
|
/* Name of the subspace. */
|
|
char *name;
|
|
|
|
/* FIXME. Is this still needed? */
|
|
char defined;
|
|
|
|
/* Nonzero if this subspace is loadable. */
|
|
char loadable;
|
|
|
|
/* Nonzero if this subspace contains only code. */
|
|
char code_only;
|
|
|
|
/* Nonzero if this is a common subspace. */
|
|
char common;
|
|
|
|
/* Nonzero if this is a common subspace which allows symbols
|
|
to be multiply defined. */
|
|
char dup_common;
|
|
|
|
/* Nonzero if this subspace should be zero filled. */
|
|
char zero;
|
|
|
|
/* Sort key for this subspace. */
|
|
unsigned char sort;
|
|
|
|
/* Access control bits for this subspace. Can represent RWX access
|
|
as well as privilege level changes for gateways. */
|
|
int access;
|
|
|
|
/* Index of containing space. */
|
|
int space_index;
|
|
|
|
/* Alignment (in bytes) of this subspace. */
|
|
int alignment;
|
|
|
|
/* Quadrant within space where this subspace should be loaded. */
|
|
int quadrant;
|
|
|
|
/* An index into the default spaces array. */
|
|
int def_space_index;
|
|
|
|
/* An alias for this section (or NULL if no alias exists). */
|
|
char *alias;
|
|
|
|
/* Subsegment associated with this subspace. */
|
|
subsegT subsegment;
|
|
};
|
|
|
|
/* This structure defines attributes of the default space
|
|
dictionary entries. */
|
|
|
|
struct default_space_dict
|
|
{
|
|
/* Name of the space. */
|
|
char *name;
|
|
|
|
/* Space number. It is possible to identify spaces within
|
|
assembly code numerically! */
|
|
int spnum;
|
|
|
|
/* Nonzero if this space is loadable. */
|
|
char loadable;
|
|
|
|
/* Nonzero if this space is "defined". FIXME is still needed */
|
|
char defined;
|
|
|
|
/* Nonzero if this space can not be shared. */
|
|
char private;
|
|
|
|
/* Sort key for this space. */
|
|
unsigned char sort;
|
|
|
|
/* Segment associated with this space. */
|
|
asection *segment;
|
|
|
|
/* An alias for this section (or NULL if no alias exists). */
|
|
char *alias;
|
|
};
|
|
|
|
/* Extra information needed to perform fixups (relocations) on the PA. */
|
|
struct hppa_fix_struct
|
|
{
|
|
/* The field selector. */
|
|
enum hppa_reloc_field_selector_type fx_r_field;
|
|
|
|
/* Type of fixup. */
|
|
int fx_r_type;
|
|
|
|
/* Format of fixup. */
|
|
int fx_r_format;
|
|
|
|
/* Argument relocation bits. */
|
|
long fx_arg_reloc;
|
|
|
|
/* The unwind descriptor associated with this fixup. */
|
|
char fx_unwind[8];
|
|
};
|
|
|
|
/* Structure to hold information about predefined registers. */
|
|
|
|
struct pd_reg
|
|
{
|
|
char *name;
|
|
int value;
|
|
};
|
|
|
|
/* This structure defines the mapping from a FP condition string
|
|
to a condition number which can be recorded in an instruction. */
|
|
struct fp_cond_map
|
|
{
|
|
char *string;
|
|
int cond;
|
|
};
|
|
|
|
/* This structure defines a mapping from a field selector
|
|
string to a field selector type. */
|
|
struct selector_entry
|
|
{
|
|
char *prefix;
|
|
int field_selector;
|
|
};
|
|
|
|
/* Prototypes for functions local to tc-hppa.c. */
|
|
|
|
static fp_operand_format pa_parse_fp_format PARAMS ((char **s));
|
|
static void pa_cons PARAMS ((int));
|
|
static void pa_data PARAMS ((int));
|
|
static void pa_desc PARAMS ((int));
|
|
static void pa_float_cons PARAMS ((int));
|
|
static void pa_fill PARAMS ((int));
|
|
static void pa_lcomm PARAMS ((int));
|
|
static void pa_lsym PARAMS ((int));
|
|
static void pa_stringer PARAMS ((int));
|
|
static void pa_text PARAMS ((int));
|
|
static void pa_version PARAMS ((int));
|
|
static int pa_parse_fp_cmp_cond PARAMS ((char **));
|
|
static int get_expression PARAMS ((char *));
|
|
static int pa_get_absolute_expression PARAMS ((struct pa_it *, char **));
|
|
static int evaluate_absolute PARAMS ((struct pa_it *));
|
|
static unsigned int pa_build_arg_reloc PARAMS ((char *));
|
|
static unsigned int pa_align_arg_reloc PARAMS ((unsigned int, unsigned int));
|
|
static int pa_parse_nullif PARAMS ((char **));
|
|
static int pa_parse_nonneg_cmpsub_cmpltr PARAMS ((char **, int));
|
|
static int pa_parse_neg_cmpsub_cmpltr PARAMS ((char **, int));
|
|
static int pa_parse_neg_add_cmpltr PARAMS ((char **, int));
|
|
static int pa_parse_nonneg_add_cmpltr PARAMS ((char **, int));
|
|
static void pa_block PARAMS ((int));
|
|
static void pa_call PARAMS ((int));
|
|
static void pa_call_args PARAMS ((struct call_desc *));
|
|
static void pa_callinfo PARAMS ((int));
|
|
static void pa_code PARAMS ((int));
|
|
static void pa_comm PARAMS ((int));
|
|
static void pa_copyright PARAMS ((int));
|
|
static void pa_end PARAMS ((int));
|
|
static void pa_enter PARAMS ((int));
|
|
static void pa_entry PARAMS ((int));
|
|
static void pa_equ PARAMS ((int));
|
|
static void pa_exit PARAMS ((int));
|
|
static void pa_export PARAMS ((int));
|
|
static void pa_type_args PARAMS ((symbolS *, int));
|
|
static void pa_import PARAMS ((int));
|
|
static void pa_label PARAMS ((int));
|
|
static void pa_leave PARAMS ((int));
|
|
static void pa_origin PARAMS ((int));
|
|
static void pa_proc PARAMS ((int));
|
|
static void pa_procend PARAMS ((int));
|
|
static void pa_space PARAMS ((int));
|
|
static void pa_spnum PARAMS ((int));
|
|
static void pa_subspace PARAMS ((int));
|
|
static void pa_param PARAMS ((int));
|
|
static void pa_undefine_label PARAMS ((void));
|
|
static int need_89_opcode PARAMS ((struct pa_it *,
|
|
struct pa_89_fp_reg_struct *));
|
|
static int pa_parse_number PARAMS ((char **, struct pa_89_fp_reg_struct *));
|
|
static label_symbol_struct *pa_get_label PARAMS ((void));
|
|
static sd_chain_struct *create_new_space PARAMS ((char *, int, char,
|
|
char, char, char,
|
|
asection *, int));
|
|
static ssd_chain_struct *create_new_subspace PARAMS ((sd_chain_struct *,
|
|
char *, char, char,
|
|
char, char, char,
|
|
char, int, int, int,
|
|
int, asection *));
|
|
static ssd_chain_struct *update_subspace PARAMS ((sd_chain_struct *,
|
|
char *, char, char, char,
|
|
char, char, char, int,
|
|
int, int, int,
|
|
asection *));
|
|
static sd_chain_struct *is_defined_space PARAMS ((char *));
|
|
static ssd_chain_struct *is_defined_subspace PARAMS ((char *));
|
|
static sd_chain_struct *pa_segment_to_space PARAMS ((asection *));
|
|
static ssd_chain_struct *pa_subsegment_to_subspace PARAMS ((asection *,
|
|
subsegT));
|
|
static sd_chain_struct *pa_find_space_by_number PARAMS ((int));
|
|
static unsigned int pa_subspace_start PARAMS ((sd_chain_struct *, int));
|
|
static void pa_ip PARAMS ((char *));
|
|
static void fix_new_hppa PARAMS ((fragS *, int, short int, symbolS *,
|
|
long, expressionS *, int,
|
|
bfd_reloc_code_real_type,
|
|
enum hppa_reloc_field_selector_type,
|
|
int, long, char *));
|
|
static void md_apply_fix_1 PARAMS ((fixS *, long));
|
|
static int is_end_of_statement PARAMS ((void));
|
|
static int reg_name_search PARAMS ((char *));
|
|
static int pa_chk_field_selector PARAMS ((char **));
|
|
static int is_same_frag PARAMS ((fragS *, fragS *));
|
|
static void pa_build_unwind_subspace PARAMS ((struct call_info *));
|
|
static void process_exit PARAMS ((void));
|
|
static sd_chain_struct *pa_parse_space_stmt PARAMS ((char *, int));
|
|
static void pa_align_subseg PARAMS ((asection *, subsegT));
|
|
static int log2 PARAMS ((int));
|
|
static int pa_next_subseg PARAMS ((sd_chain_struct *));
|
|
static unsigned int pa_stringer_aux PARAMS ((char *));
|
|
static void pa_spaces_begin PARAMS ((void));
|
|
|
|
|
|
/* File and gloally scoped variable declarations. */
|
|
|
|
/* Root and final entry in the space chain. */
|
|
static sd_chain_struct *space_dict_root;
|
|
static sd_chain_struct *space_dict_last;
|
|
|
|
/* The current space and subspace. */
|
|
static sd_chain_struct *current_space;
|
|
static ssd_chain_struct *current_subspace;
|
|
|
|
/* Root of the call_info chain. */
|
|
static struct call_info *call_info_root;
|
|
|
|
/* The last call_info (for functions) structure
|
|
seen so it can be associated with fixups and
|
|
function labels. */
|
|
static struct call_info *last_call_info;
|
|
|
|
/* The last call description (for actual calls). */
|
|
static struct call_desc last_call_desc;
|
|
|
|
/* Relaxation isn't supported for the PA yet. */
|
|
const relax_typeS md_relax_table[] =
|
|
{0};
|
|
|
|
/* Jumps are always the same size -- one instruction. */
|
|
int md_short_jump_size = 4;
|
|
int md_long_jump_size = 4;
|
|
|
|
/* handle of the OPCODE hash table */
|
|
static struct hash_control *op_hash = NULL;
|
|
|
|
/* This array holds the chars that always start a comment. If the
|
|
pre-processor is disabled, these aren't very useful. */
|
|
const char comment_chars[] = ";";
|
|
|
|
/* Table of pseudo ops for the PA. FIXME -- how many of these
|
|
are now redundant with the overall GAS and the object file
|
|
dependent tables? */
|
|
const pseudo_typeS md_pseudo_table[] =
|
|
{
|
|
/* align pseudo-ops on the PA specify the actual alignment requested,
|
|
not the log2 of the requested alignment. */
|
|
{"align", s_align_bytes, 8},
|
|
{"ALIGN", s_align_bytes, 8},
|
|
{"block", pa_block, 1},
|
|
{"BLOCK", pa_block, 1},
|
|
{"blockz", pa_block, 0},
|
|
{"BLOCKZ", pa_block, 0},
|
|
{"byte", pa_cons, 1},
|
|
{"BYTE", pa_cons, 1},
|
|
{"call", pa_call, 0},
|
|
{"CALL", pa_call, 0},
|
|
{"callinfo", pa_callinfo, 0},
|
|
{"CALLINFO", pa_callinfo, 0},
|
|
{"code", pa_code, 0},
|
|
{"CODE", pa_code, 0},
|
|
{"comm", pa_comm, 0},
|
|
{"COMM", pa_comm, 0},
|
|
{"copyright", pa_copyright, 0},
|
|
{"COPYRIGHT", pa_copyright, 0},
|
|
{"data", pa_data, 0},
|
|
{"DATA", pa_data, 0},
|
|
{"desc", pa_desc, 0},
|
|
{"DESC", pa_desc, 0},
|
|
{"double", pa_float_cons, 'd'},
|
|
{"DOUBLE", pa_float_cons, 'd'},
|
|
{"end", pa_end, 0},
|
|
{"END", pa_end, 0},
|
|
{"enter", pa_enter, 0},
|
|
{"ENTER", pa_enter, 0},
|
|
{"entry", pa_entry, 0},
|
|
{"ENTRY", pa_entry, 0},
|
|
{"equ", pa_equ, 0},
|
|
{"EQU", pa_equ, 0},
|
|
{"exit", pa_exit, 0},
|
|
{"EXIT", pa_exit, 0},
|
|
{"export", pa_export, 0},
|
|
{"EXPORT", pa_export, 0},
|
|
{"fill", pa_fill, 0},
|
|
{"FILL", pa_fill, 0},
|
|
{"float", pa_float_cons, 'f'},
|
|
{"FLOAT", pa_float_cons, 'f'},
|
|
{"half", pa_cons, 2},
|
|
{"HALF", pa_cons, 2},
|
|
{"import", pa_import, 0},
|
|
{"IMPORT", pa_import, 0},
|
|
{"int", pa_cons, 4},
|
|
{"INT", pa_cons, 4},
|
|
{"label", pa_label, 0},
|
|
{"LABEL", pa_label, 0},
|
|
{"lcomm", pa_lcomm, 0},
|
|
{"LCOMM", pa_lcomm, 0},
|
|
{"leave", pa_leave, 0},
|
|
{"LEAVE", pa_leave, 0},
|
|
{"long", pa_cons, 4},
|
|
{"LONG", pa_cons, 4},
|
|
{"lsym", pa_lsym, 0},
|
|
{"LSYM", pa_lsym, 0},
|
|
{"octa", pa_cons, 16},
|
|
{"OCTA", pa_cons, 16},
|
|
{"org", pa_origin, 0},
|
|
{"ORG", pa_origin, 0},
|
|
{"origin", pa_origin, 0},
|
|
{"ORIGIN", pa_origin, 0},
|
|
{"param", pa_param, 0},
|
|
{"PARAM", pa_param, 0},
|
|
{"proc", pa_proc, 0},
|
|
{"PROC", pa_proc, 0},
|
|
{"procend", pa_procend, 0},
|
|
{"PROCEND", pa_procend, 0},
|
|
{"quad", pa_cons, 8},
|
|
{"QUAD", pa_cons, 8},
|
|
{"reg", pa_equ, 1},
|
|
{"REG", pa_equ, 1},
|
|
{"short", pa_cons, 2},
|
|
{"SHORT", pa_cons, 2},
|
|
{"single", pa_float_cons, 'f'},
|
|
{"SINGLE", pa_float_cons, 'f'},
|
|
{"space", pa_space, 0},
|
|
{"SPACE", pa_space, 0},
|
|
{"spnum", pa_spnum, 0},
|
|
{"SPNUM", pa_spnum, 0},
|
|
{"string", pa_stringer, 0},
|
|
{"STRING", pa_stringer, 0},
|
|
{"stringz", pa_stringer, 1},
|
|
{"STRINGZ", pa_stringer, 1},
|
|
{"subspa", pa_subspace, 0},
|
|
{"SUBSPA", pa_subspace, 0},
|
|
{"text", pa_text, 0},
|
|
{"TEXT", pa_text, 0},
|
|
{"version", pa_version, 0},
|
|
{"VERSION", pa_version, 0},
|
|
{"word", pa_cons, 4},
|
|
{"WORD", pa_cons, 4},
|
|
{NULL, 0, 0}
|
|
};
|
|
|
|
/* This array holds the chars that only start a comment at the beginning of
|
|
a line. If the line seems to have the form '# 123 filename'
|
|
.line and .file directives will appear in the pre-processed output.
|
|
|
|
Note that input_file.c hand checks for '#' at the beginning of the
|
|
first line of the input file. This is because the compiler outputs
|
|
#NO_APP at the beginning of its output.
|
|
|
|
Also note that '/*' will always start a comment. */
|
|
const char line_comment_chars[] = "#";
|
|
|
|
/* This array holds the characters which act as line separators. */
|
|
const char line_separator_chars[] = "!";
|
|
|
|
/* Chars that can be used to separate mant from exp in floating point nums. */
|
|
const char EXP_CHARS[] = "eE";
|
|
|
|
/* Chars that mean this number is a floating point constant.
|
|
As in 0f12.456 or 0d1.2345e12.
|
|
|
|
Be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
|
|
changed in read.c. Ideally it shouldn't hae to know abou it at
|
|
all, but nothing is ideal around here. */
|
|
const char FLT_CHARS[] = "rRsSfFdDxXpP";
|
|
|
|
static struct pa_it the_insn;
|
|
|
|
/* Points to the end of an expression just parsed by get_expressoin
|
|
and friends. FIXME. This shouldn't be handled with a file-global
|
|
variable. */
|
|
static char *expr_end;
|
|
|
|
/* Nonzero if a .callinfo appeared within the current procedure. */
|
|
static int callinfo_found;
|
|
|
|
/* Nonzero if the assembler is currently within a .entry/.exit pair. */
|
|
static int within_entry_exit;
|
|
|
|
/* Nonzero if the assembler is currently within a procedure definition. */
|
|
static int within_procedure;
|
|
|
|
/* Handle on strucutre which keep track of the last symbol
|
|
seen in each subspace. */
|
|
static label_symbol_struct *label_symbols_rootp = NULL;
|
|
|
|
/* Holds the last field selector. */
|
|
static int hppa_field_selector;
|
|
|
|
/* Nonzero if errors are to be printed. */
|
|
static int print_errors = 1;
|
|
|
|
/* List of registers that are pre-defined:
|
|
|
|
Each general register has one predefined name of the form
|
|
%r<REGNUM> which has the value <REGNUM>.
|
|
|
|
Space and control registers are handled in a similar manner,
|
|
but use %sr<REGNUM> and %cr<REGNUM> as their predefined names.
|
|
|
|
Likewise for the floating point registers, but of the form
|
|
%fr<REGNUM>. Floating point registers have additional predefined
|
|
names with 'L' and 'R' suffixes (e.g. %fr19L, %fr19R) which
|
|
again have the value <REGNUM>.
|
|
|
|
Many registers also have synonyms:
|
|
|
|
%r26 - %r23 have %arg0 - %arg3 as synonyms
|
|
%r28 - %r29 have %ret0 - %ret1 as synonyms
|
|
%r30 has %sp as a synonym
|
|
%r27 has %dp as a synonym
|
|
%r2 has %rp as a synonym
|
|
|
|
Almost every control register has a synonym; they are not listed
|
|
here for brevity.
|
|
|
|
The table is sorted. Suitable for searching by a binary search. */
|
|
|
|
static const struct pd_reg pre_defined_registers[] =
|
|
{
|
|
{"%arg0", 26},
|
|
{"%arg1", 25},
|
|
{"%arg2", 24},
|
|
{"%arg3", 23},
|
|
{"%cr0", 0},
|
|
{"%cr10", 10},
|
|
{"%cr11", 11},
|
|
{"%cr12", 12},
|
|
{"%cr13", 13},
|
|
{"%cr14", 14},
|
|
{"%cr15", 15},
|
|
{"%cr16", 16},
|
|
{"%cr17", 17},
|
|
{"%cr18", 18},
|
|
{"%cr19", 19},
|
|
{"%cr20", 20},
|
|
{"%cr21", 21},
|
|
{"%cr22", 22},
|
|
{"%cr23", 23},
|
|
{"%cr24", 24},
|
|
{"%cr25", 25},
|
|
{"%cr26", 26},
|
|
{"%cr27", 27},
|
|
{"%cr28", 28},
|
|
{"%cr29", 29},
|
|
{"%cr30", 30},
|
|
{"%cr31", 31},
|
|
{"%cr8", 8},
|
|
{"%cr9", 9},
|
|
{"%dp", 27},
|
|
{"%eiem", 15},
|
|
{"%eirr", 23},
|
|
{"%fr0", 0},
|
|
{"%fr0L", 0},
|
|
{"%fr0R", 0},
|
|
{"%fr1", 1},
|
|
{"%fr10", 10},
|
|
{"%fr10L", 10},
|
|
{"%fr10R", 10},
|
|
{"%fr11", 11},
|
|
{"%fr11L", 11},
|
|
{"%fr11R", 11},
|
|
{"%fr12", 12},
|
|
{"%fr12L", 12},
|
|
{"%fr12R", 12},
|
|
{"%fr13", 13},
|
|
{"%fr13L", 13},
|
|
{"%fr13R", 13},
|
|
{"%fr14", 14},
|
|
{"%fr14L", 14},
|
|
{"%fr14R", 14},
|
|
{"%fr15", 15},
|
|
{"%fr15L", 15},
|
|
{"%fr15R", 15},
|
|
{"%fr16", 16},
|
|
{"%fr16L", 16},
|
|
{"%fr16R", 16},
|
|
{"%fr17", 17},
|
|
{"%fr17L", 17},
|
|
{"%fr17R", 17},
|
|
{"%fr18", 18},
|
|
{"%fr18L", 18},
|
|
{"%fr18R", 18},
|
|
{"%fr19", 19},
|
|
{"%fr19L", 19},
|
|
{"%fr19R", 19},
|
|
{"%fr1L", 1},
|
|
{"%fr1R", 1},
|
|
{"%fr2", 2},
|
|
{"%fr20", 20},
|
|
{"%fr20L", 20},
|
|
{"%fr20R", 20},
|
|
{"%fr21", 21},
|
|
{"%fr21L", 21},
|
|
{"%fr21R", 21},
|
|
{"%fr22", 22},
|
|
{"%fr22L", 22},
|
|
{"%fr22R", 22},
|
|
{"%fr23", 23},
|
|
{"%fr23L", 23},
|
|
{"%fr23R", 23},
|
|
{"%fr24", 24},
|
|
{"%fr24L", 24},
|
|
{"%fr24R", 24},
|
|
{"%fr25", 25},
|
|
{"%fr25L", 25},
|
|
{"%fr25R", 25},
|
|
{"%fr26", 26},
|
|
{"%fr26L", 26},
|
|
{"%fr26R", 26},
|
|
{"%fr27", 27},
|
|
{"%fr27L", 27},
|
|
{"%fr27R", 27},
|
|
{"%fr28", 28},
|
|
{"%fr28L", 28},
|
|
{"%fr28R", 28},
|
|
{"%fr29", 29},
|
|
{"%fr29L", 29},
|
|
{"%fr29R", 29},
|
|
{"%fr2L", 2},
|
|
{"%fr2R", 2},
|
|
{"%fr3", 3},
|
|
{"%fr30", 30},
|
|
{"%fr30L", 30},
|
|
{"%fr30R", 30},
|
|
{"%fr31", 31},
|
|
{"%fr31L", 31},
|
|
{"%fr31R", 31},
|
|
{"%fr3L", 3},
|
|
{"%fr3R", 3},
|
|
{"%fr4", 4},
|
|
{"%fr4L", 4},
|
|
{"%fr4R", 4},
|
|
{"%fr5", 5},
|
|
{"%fr5L", 5},
|
|
{"%fr5R", 5},
|
|
{"%fr6", 6},
|
|
{"%fr6L", 6},
|
|
{"%fr6R", 6},
|
|
{"%fr7", 7},
|
|
{"%fr7L", 7},
|
|
{"%fr7R", 7},
|
|
{"%fr8", 8},
|
|
{"%fr8L", 8},
|
|
{"%fr8R", 8},
|
|
{"%fr9", 9},
|
|
{"%fr9L", 9},
|
|
{"%fr9R", 9},
|
|
{"%hta", 25},
|
|
{"%iir", 19},
|
|
{"%ior", 21},
|
|
{"%ipsw", 22},
|
|
{"%isr", 20},
|
|
{"%itmr", 16},
|
|
{"%iva", 14},
|
|
{"%pcoq", 18},
|
|
{"%pcsq", 17},
|
|
{"%pidr1", 8},
|
|
{"%pidr2", 9},
|
|
{"%pidr3", 12},
|
|
{"%pidr4", 13},
|
|
{"%ppda", 24},
|
|
{"%r0", 0},
|
|
{"%r1", 1},
|
|
{"%r10", 10},
|
|
{"%r11", 11},
|
|
{"%r12", 12},
|
|
{"%r13", 13},
|
|
{"%r14", 14},
|
|
{"%r15", 15},
|
|
{"%r16", 16},
|
|
{"%r17", 17},
|
|
{"%r18", 18},
|
|
{"%r19", 19},
|
|
{"%r2", 2},
|
|
{"%r20", 20},
|
|
{"%r21", 21},
|
|
{"%r22", 22},
|
|
{"%r23", 23},
|
|
{"%r24", 24},
|
|
{"%r25", 25},
|
|
{"%r26", 26},
|
|
{"%r27", 27},
|
|
{"%r28", 28},
|
|
{"%r29", 29},
|
|
{"%r3", 3},
|
|
{"%r30", 30},
|
|
{"%r31", 31},
|
|
{"%r4", 4},
|
|
{"%r4L", 4},
|
|
{"%r4R", 4},
|
|
{"%r5", 5},
|
|
{"%r5L", 5},
|
|
{"%r5R", 5},
|
|
{"%r6", 6},
|
|
{"%r6L", 6},
|
|
{"%r6R", 6},
|
|
{"%r7", 7},
|
|
{"%r7L", 7},
|
|
{"%r7R", 7},
|
|
{"%r8", 8},
|
|
{"%r8L", 8},
|
|
{"%r8R", 8},
|
|
{"%r9", 9},
|
|
{"%r9L", 9},
|
|
{"%r9R", 9},
|
|
{"%rctr", 0},
|
|
{"%ret0", 28},
|
|
{"%ret1", 29},
|
|
{"%rp", 2},
|
|
{"%sar", 11},
|
|
{"%sp", 30},
|
|
{"%sr0", 0},
|
|
{"%sr1", 1},
|
|
{"%sr2", 2},
|
|
{"%sr3", 3},
|
|
{"%sr4", 4},
|
|
{"%sr5", 5},
|
|
{"%sr6", 6},
|
|
{"%sr7", 7},
|
|
{"%tr0", 24},
|
|
{"%tr1", 25},
|
|
{"%tr2", 26},
|
|
{"%tr3", 27},
|
|
{"%tr4", 28},
|
|
{"%tr5", 29},
|
|
{"%tr6", 30},
|
|
{"%tr7", 31}
|
|
};
|
|
|
|
/* This table is sorted by order of the length of the string. This is
|
|
so we check for <> before we check for <. If we had a <> and checked
|
|
for < first, we would get a false match. */
|
|
static const struct fp_cond_map fp_cond_map[] =
|
|
{
|
|
{"false?", 0},
|
|
{"false", 1},
|
|
{"true?", 30},
|
|
{"true", 31},
|
|
{"!<=>", 3},
|
|
{"!?>=", 8},
|
|
{"!?<=", 16},
|
|
{"!<>", 7},
|
|
{"!>=", 11},
|
|
{"!?>", 12},
|
|
{"?<=", 14},
|
|
{"!<=", 19},
|
|
{"!?<", 20},
|
|
{"?>=", 22},
|
|
{"!?=", 24},
|
|
{"!=t", 27},
|
|
{"<=>", 29},
|
|
{"=t", 5},
|
|
{"?=", 6},
|
|
{"?<", 10},
|
|
{"<=", 13},
|
|
{"!>", 15},
|
|
{"?>", 18},
|
|
{">=", 21},
|
|
{"!<", 23},
|
|
{"<>", 25},
|
|
{"!=", 26},
|
|
{"!?", 28},
|
|
{"?", 2},
|
|
{"=", 4},
|
|
{"<", 9},
|
|
{">", 17}
|
|
};
|
|
|
|
static const struct selector_entry selector_table[] =
|
|
{
|
|
{"F'", e_fsel},
|
|
{"F%", e_fsel},
|
|
{"LS'", e_lssel},
|
|
{"LS%", e_lssel},
|
|
{"RS'", e_rssel},
|
|
{"RS%", e_rssel},
|
|
{"L'", e_lsel},
|
|
{"L%", e_lsel},
|
|
{"R'", e_rsel},
|
|
{"R%", e_rsel},
|
|
{"LD'", e_ldsel},
|
|
{"LD%", e_ldsel},
|
|
{"RD'", e_rdsel},
|
|
{"RD%", e_rdsel},
|
|
{"LR'", e_lrsel},
|
|
{"LR%", e_lrsel},
|
|
{"RR'", e_rrsel},
|
|
{"RR%", e_rrsel},
|
|
{"P'", e_psel},
|
|
{"P%", e_psel},
|
|
{"RP'", e_rpsel},
|
|
{"RP%", e_rpsel},
|
|
{"LP'", e_lpsel},
|
|
{"LP%", e_lpsel},
|
|
{"T'", e_tsel},
|
|
{"T%", e_tsel},
|
|
{"RT'", e_rtsel},
|
|
{"RT%", e_rtsel},
|
|
{"LT'", e_ltsel},
|
|
{"LT%", e_ltsel},
|
|
{NULL, e_fsel}
|
|
};
|
|
|
|
/* default space and subspace dictionaries */
|
|
|
|
#define GDB_SYMBOLS GDB_SYMBOLS_SUBSPACE_NAME
|
|
#define GDB_STRINGS GDB_STRINGS_SUBSPACE_NAME
|
|
|
|
/* pre-defined subsegments (subspaces) for the HPPA. */
|
|
#define SUBSEG_CODE 0
|
|
#define SUBSEG_DATA 0
|
|
#define SUBSEG_LIT 1
|
|
#define SUBSEG_BSS 2
|
|
#define SUBSEG_UNWIND 3
|
|
#define SUBSEG_GDB_STRINGS 0
|
|
#define SUBSEG_GDB_SYMBOLS 1
|
|
|
|
static struct default_subspace_dict pa_def_subspaces[] =
|
|
{
|
|
{"$CODE$", 1, 1, 1, 0, 0, 0, 24, 0x2c, 0, 8, 0, 0, ".text", SUBSEG_CODE},
|
|
{"$DATA$", 1, 1, 0, 0, 0, 0, 24, 0x1f, 1, 8, 1, 1, ".data", SUBSEG_DATA},
|
|
{"$LIT$", 1, 1, 0, 0, 0, 0, 16, 0x2c, 0, 8, 0, 0, ".text", SUBSEG_LIT},
|
|
{"$BSS$", 1, 1, 0, 0, 0, 1, 80, 0x1f, 1, 8, 1, 1, ".bss", SUBSEG_BSS},
|
|
#ifdef OBJ_ELF
|
|
{"$UNWIND$", 1, 1, 0, 0, 0, 0, 64, 0x2c, 0, 4, 0, 0, ".hppa_unwind", SUBSEG_UNWIND},
|
|
#endif
|
|
{NULL, 0, 1, 0, 0, 0, 0, 255, 0x1f, 0, 4, 0, 0, 0}
|
|
};
|
|
|
|
static struct default_space_dict pa_def_spaces[] =
|
|
{
|
|
{"$TEXT$", 0, 1, 1, 0, 8, ASEC_NULL, ".text"},
|
|
{"$PRIVATE$", 1, 1, 1, 1, 16, ASEC_NULL, ".data"},
|
|
{NULL, 0, 0, 0, 0, 0, ASEC_NULL, NULL}
|
|
};
|
|
|
|
/* Misc local definitions used by the assembler. */
|
|
|
|
/* Return nonzero if the string pointed to by S potentially represents
|
|
a right or left half of a FP register */
|
|
#define IS_R_SELECT(S) (*(S) == 'R' || *(S) == 'r')
|
|
#define IS_L_SELECT(S) (*(S) == 'L' || *(S) == 'l')
|
|
|
|
/* These macros are used to maintain spaces/subspaces. */
|
|
#define SPACE_DEFINED(space_chain) (space_chain)->sd_defined
|
|
#define SPACE_USER_DEFINED(space_chain) (space_chain)->sd_user_defined
|
|
#define SPACE_PRIVATE(space_chain) (space_chain)->sd_private
|
|
#define SPACE_LOADABLE(space_chain) (space_chain)->sd_loadable
|
|
#define SPACE_SPNUM(space_chain) (space_chain)->sd_spnum
|
|
#define SPACE_SORT(space_chain) (space_chain)->sd_sort_key
|
|
#define SPACE_NAME(space_chain) (space_chain)->sd_name
|
|
#define SPACE_NAME_INDEX(space_chain) (space_chain)->sd_name_index
|
|
|
|
#define SUBSPACE_SPACE_INDEX(ss_chain) (ss_chain)->ssd_space_index
|
|
#define SUBSPACE_DEFINED(ss_chain) (ss_chain)->ssd_defined
|
|
#define SUBSPACE_QUADRANT(ss_chain) (ss_chain)->ssd_quadrant
|
|
#define SUBSPACE_ALIGN(ss_chain) (ss_chain)->ssd_alignment
|
|
#define SUBSPACE_ACCESS(ss_chain) (ss_chain)->ssd_access_control_bits
|
|
#define SUBSPACE_SORT(ss_chain) (ss_chain)->ssd_sort_key
|
|
#define SUBSPACE_COMMON(ss_chain) (ss_chain)->ssd_common
|
|
#define SUBSPACE_ZERO(ss_chain) (ss_chain)->ssd_zero
|
|
#define SUBSPACE_DUP_COMM(ss_chain) (ss_chain)->ssd_dup_common
|
|
#define SUBSPACE_CODE_ONLY(ss_chain) (ss_chain)->ssd_code_only
|
|
#define SUBSPACE_LOADABLE(ss_chain) (ss_chain)->ssd_loadable
|
|
#define SUBSPACE_SUBSPACE_START(ss_chain) (ss_chain)->ssd_subspace_start
|
|
#define SUBSPACE_SUBSPACE_LENGTH(ss_chain) (ss_chain)->ssd_subspace_length
|
|
#define SUBSPACE_NAME(ss_chain) (ss_chain)->ssd_name
|
|
|
|
/* Insert FIELD into OPCODE starting at bit START. Continue pa_ip
|
|
main loop after insertion. */
|
|
|
|
#define INSERT_FIELD_AND_CONTINUE(OPCODE, FIELD, START) \
|
|
{ \
|
|
((OPCODE) |= (FIELD) << (START)); \
|
|
continue; \
|
|
}
|
|
|
|
/* Simple range checking for FIELD againt HIGH and LOW bounds.
|
|
IGNORE is used to suppress the error message. */
|
|
|
|
#define CHECK_FIELD(FIELD, HIGH, LOW, IGNORE) \
|
|
{ \
|
|
if ((FIELD) > (HIGH) || (FIELD) < (LOW)) \
|
|
{ \
|
|
if (! IGNORE) \
|
|
as_bad ("Field out of range [%d..%d] (%d).", (LOW), (HIGH), \
|
|
(int) (FIELD));\
|
|
break; \
|
|
} \
|
|
}
|
|
|
|
#define is_DP_relative(exp) \
|
|
((exp).X_op == O_subtract \
|
|
&& strcmp((exp).X_op_symbol->bsym->name, "$global$") == 0)
|
|
|
|
#define is_PC_relative(exp) \
|
|
((exp).X_op == O_subtract \
|
|
&& strcmp((exp).X_op_symbol->bsym->name, "$PIC_pcrel$0") == 0)
|
|
|
|
#define is_complex(exp) \
|
|
((exp).X_op != O_constant && (exp).X_op != O_symbol)
|
|
|
|
/* Actual functions to implement the PA specific code for the assembler. */
|
|
|
|
/* Returns a pointer to the label_symbol_struct for the current space.
|
|
or NULL if no label_symbol_struct exists for the current space. */
|
|
|
|
static label_symbol_struct *
|
|
pa_get_label ()
|
|
{
|
|
label_symbol_struct *label_chain;
|
|
sd_chain_struct *space_chain = current_space;
|
|
|
|
for (label_chain = label_symbols_rootp;
|
|
label_chain;
|
|
label_chain = label_chain->lss_next)
|
|
if (space_chain == label_chain->lss_space && label_chain->lss_label)
|
|
return label_chain;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Defines a label for the current space. If one is already defined,
|
|
this function will replace it with the new label. */
|
|
|
|
void
|
|
pa_define_label (symbol)
|
|
symbolS *symbol;
|
|
{
|
|
label_symbol_struct *label_chain = pa_get_label ();
|
|
sd_chain_struct *space_chain = current_space;
|
|
|
|
if (label_chain)
|
|
label_chain->lss_label = symbol;
|
|
else
|
|
{
|
|
/* Create a new label entry and add it to the head of the chain. */
|
|
label_chain
|
|
= (label_symbol_struct *) xmalloc (sizeof (label_symbol_struct));
|
|
label_chain->lss_label = symbol;
|
|
label_chain->lss_space = space_chain;
|
|
label_chain->lss_next = NULL;
|
|
|
|
if (label_symbols_rootp)
|
|
label_chain->lss_next = label_symbols_rootp;
|
|
|
|
label_symbols_rootp = label_chain;
|
|
}
|
|
}
|
|
|
|
/* Removes a label definition for the current space.
|
|
If there is no label_symbol_struct entry, then no action is taken. */
|
|
|
|
static void
|
|
pa_undefine_label ()
|
|
{
|
|
label_symbol_struct *label_chain;
|
|
label_symbol_struct *prev_label_chain = NULL;
|
|
sd_chain_struct *space_chain = current_space;
|
|
|
|
for (label_chain = label_symbols_rootp;
|
|
label_chain;
|
|
label_chain = label_chain->lss_next)
|
|
{
|
|
if (space_chain == label_chain->lss_space && label_chain->lss_label)
|
|
{
|
|
/* Remove the label from the chain and free its memory. */
|
|
if (prev_label_chain)
|
|
prev_label_chain->lss_next = label_chain->lss_next;
|
|
else
|
|
label_symbols_rootp = label_chain->lss_next;
|
|
|
|
free (label_chain);
|
|
break;
|
|
}
|
|
prev_label_chain = label_chain;
|
|
}
|
|
}
|
|
|
|
|
|
/* An HPPA-specific version of fix_new. This is required because the HPPA
|
|
code needs to keep track of some extra stuff. Each call to fix_new_hppa
|
|
results in the creation of an instance of an hppa_fix_struct. An
|
|
hppa_fix_struct stores the extra information along with a pointer to the
|
|
original fixS. This is attached to the original fixup via the
|
|
tc_fix_data field. */
|
|
|
|
static void
|
|
fix_new_hppa (frag, where, size, add_symbol, offset, exp, pcrel,
|
|
r_type, r_field, r_format, arg_reloc, unwind_desc)
|
|
fragS *frag;
|
|
int where;
|
|
short int size;
|
|
symbolS *add_symbol;
|
|
long offset;
|
|
expressionS *exp;
|
|
int pcrel;
|
|
bfd_reloc_code_real_type r_type;
|
|
enum hppa_reloc_field_selector_type r_field;
|
|
int r_format;
|
|
long arg_reloc;
|
|
char *unwind_desc;
|
|
{
|
|
fixS *new_fix;
|
|
|
|
struct hppa_fix_struct *hppa_fix = (struct hppa_fix_struct *)
|
|
obstack_alloc (¬es, sizeof (struct hppa_fix_struct));
|
|
|
|
if (exp != NULL)
|
|
new_fix = fix_new_exp (frag, where, size, exp, pcrel, r_type);
|
|
else
|
|
new_fix = fix_new (frag, where, size, add_symbol, offset, pcrel, r_type);
|
|
new_fix->tc_fix_data = hppa_fix;
|
|
hppa_fix->fx_r_type = r_type;
|
|
hppa_fix->fx_r_field = r_field;
|
|
hppa_fix->fx_r_format = r_format;
|
|
hppa_fix->fx_arg_reloc = arg_reloc;
|
|
if (unwind_desc)
|
|
{
|
|
bcopy (unwind_desc, hppa_fix->fx_unwind, 8);
|
|
|
|
/* If necessary call BFD backend function to attach the
|
|
unwind bits to the target dependent parts of a BFD symbol.
|
|
Yuk. */
|
|
#ifdef obj_attach_unwind_info
|
|
obj_attach_unwind_info (add_symbol->bsym, unwind_desc);
|
|
#endif
|
|
}
|
|
|
|
/* foo-$global$ is used to access non-automatic storage. $global$
|
|
is really just a marker and has served its purpose, so eliminate
|
|
it now so as not to confuse write.c. */
|
|
if (!strcmp (S_GET_NAME (new_fix->fx_subsy), "$global$"))
|
|
new_fix->fx_subsy = NULL;
|
|
}
|
|
|
|
/* Parse a .byte, .word, .long expression for the HPPA. Called by
|
|
cons via the TC_PARSE_CONS_EXPRESSION macro. */
|
|
|
|
void
|
|
parse_cons_expression_hppa (exp)
|
|
expressionS *exp;
|
|
{
|
|
hppa_field_selector = pa_chk_field_selector (&input_line_pointer);
|
|
expression (exp);
|
|
}
|
|
|
|
/* This fix_new is called by cons via TC_CONS_FIX_NEW.
|
|
hppa_field_selector is set by the parse_cons_expression_hppa. */
|
|
|
|
void
|
|
cons_fix_new_hppa (frag, where, size, exp)
|
|
fragS *frag;
|
|
int where;
|
|
int size;
|
|
expressionS *exp;
|
|
{
|
|
unsigned int reloc_type;
|
|
|
|
if (is_DP_relative (*exp))
|
|
reloc_type = R_HPPA_GOTOFF;
|
|
else if (is_complex (*exp))
|
|
reloc_type = R_HPPA_COMPLEX;
|
|
else
|
|
reloc_type = R_HPPA;
|
|
|
|
if (hppa_field_selector != e_psel && hppa_field_selector != e_fsel)
|
|
as_warn ("Invalid field selector. Assuming F%%.");
|
|
|
|
fix_new_hppa (frag, where, size,
|
|
(symbolS *) NULL, (offsetT) 0, exp, 0, reloc_type,
|
|
hppa_field_selector, 32, 0, (char *) 0);
|
|
|
|
/* Reset field selector to its default state. */
|
|
hppa_field_selector = 0;
|
|
}
|
|
|
|
/* This function is called once, at assembler startup time. It should
|
|
set up all the tables, etc. that the MD part of the assembler will need. */
|
|
|
|
void
|
|
md_begin ()
|
|
{
|
|
const char *retval = NULL;
|
|
int lose = 0;
|
|
unsigned int i = 0;
|
|
|
|
last_call_info = NULL;
|
|
call_info_root = NULL;
|
|
|
|
/* Folding of text and data segments fails miserably on the PA.
|
|
Warn user and disable "-R" option. */
|
|
if (flagseen['R'])
|
|
{
|
|
as_warn ("-R option not supported on this target.");
|
|
flag_readonly_data_in_text = 0;
|
|
flagseen['R'] = 0;
|
|
}
|
|
|
|
pa_spaces_begin ();
|
|
|
|
op_hash = hash_new ();
|
|
if (op_hash == NULL)
|
|
as_fatal ("Virtual memory exhausted");
|
|
|
|
while (i < NUMOPCODES)
|
|
{
|
|
const char *name = pa_opcodes[i].name;
|
|
retval = hash_insert (op_hash, name, (struct pa_opcode *) &pa_opcodes[i]);
|
|
if (retval != NULL && *retval != '\0')
|
|
{
|
|
as_fatal ("Internal error: can't hash `%s': %s\n", name, retval);
|
|
lose = 1;
|
|
}
|
|
do
|
|
{
|
|
if ((pa_opcodes[i].match & pa_opcodes[i].mask)
|
|
!= pa_opcodes[i].match)
|
|
{
|
|
fprintf (stderr, "internal error: losing opcode: `%s' \"%s\"\n",
|
|
pa_opcodes[i].name, pa_opcodes[i].args);
|
|
lose = 1;
|
|
}
|
|
++i;
|
|
}
|
|
while (i < NUMOPCODES && !strcmp (pa_opcodes[i].name, name));
|
|
}
|
|
|
|
if (lose)
|
|
as_fatal ("Broken assembler. No assembly attempted.");
|
|
|
|
/* SOM will change text_section. To make sure we never put
|
|
anything into the old one switch to the new one now. */
|
|
subseg_set (text_section, 0);
|
|
}
|
|
|
|
/* Called at the end of assembling a source file. Nothing to do
|
|
at this point on the PA. */
|
|
|
|
void
|
|
md_end ()
|
|
{
|
|
return;
|
|
}
|
|
|
|
/* Assemble a single instruction storing it into a frag. */
|
|
void
|
|
md_assemble (str)
|
|
char *str;
|
|
{
|
|
char *to;
|
|
|
|
/* The had better be something to assemble. */
|
|
assert (str);
|
|
|
|
/* Assemble the instruction. Results are saved into "the_insn". */
|
|
pa_ip (str);
|
|
|
|
/* Get somewhere to put the assembled instrution. */
|
|
to = frag_more (4);
|
|
|
|
/* Output the opcode. */
|
|
md_number_to_chars (to, the_insn.opcode, 4);
|
|
|
|
/* If necessary output more stuff. */
|
|
if (the_insn.reloc != R_HPPA_NONE)
|
|
fix_new_hppa (frag_now, (to - frag_now->fr_literal), 4, NULL,
|
|
(offsetT) 0, &the_insn.exp, the_insn.pcrel,
|
|
the_insn.reloc, the_insn.field_selector,
|
|
the_insn.format, the_insn.arg_reloc, NULL);
|
|
|
|
}
|
|
|
|
/* Do the real work for assembling a single instruction. Store results
|
|
into the global "the_insn" variable.
|
|
|
|
FIXME: Should define and use some functions/macros to handle
|
|
various common insertions of information into the opcode. */
|
|
|
|
static void
|
|
pa_ip (str)
|
|
char *str;
|
|
{
|
|
char *error_message = "";
|
|
char *s, c, *argstart, *name, *save_s;
|
|
const char *args;
|
|
int match = FALSE;
|
|
int comma = 0;
|
|
int cmpltr, nullif, flag, cond, num;
|
|
unsigned long opcode;
|
|
struct pa_opcode *insn;
|
|
|
|
/* Skip to something interesting. */
|
|
for (s = str; isupper (*s) || islower (*s) || (*s >= '0' && *s <= '3'); ++s)
|
|
;
|
|
|
|
switch (*s)
|
|
{
|
|
|
|
case '\0':
|
|
break;
|
|
|
|
case ',':
|
|
comma = 1;
|
|
|
|
/*FALLTHROUGH */
|
|
|
|
case ' ':
|
|
*s++ = '\0';
|
|
break;
|
|
|
|
default:
|
|
as_bad ("Unknown opcode: `%s'", str);
|
|
exit (1);
|
|
}
|
|
|
|
save_s = str;
|
|
|
|
/* Convert everything into lower case. */
|
|
while (*save_s)
|
|
{
|
|
if (isupper (*save_s))
|
|
*save_s = tolower (*save_s);
|
|
save_s++;
|
|
}
|
|
|
|
/* Look up the opcode in the has table. */
|
|
if ((insn = (struct pa_opcode *) hash_find (op_hash, str)) == NULL)
|
|
{
|
|
as_bad ("Unknown opcode: `%s'", str);
|
|
return;
|
|
}
|
|
|
|
if (comma)
|
|
{
|
|
*--s = ',';
|
|
}
|
|
|
|
/* Mark the location where arguments for the instruction start, then
|
|
start processing them. */
|
|
argstart = s;
|
|
for (;;)
|
|
{
|
|
/* Do some initialization. */
|
|
opcode = insn->match;
|
|
bzero (&the_insn, sizeof (the_insn));
|
|
|
|
the_insn.reloc = R_HPPA_NONE;
|
|
|
|
/* Build the opcode, checking as we go to make
|
|
sure that the operands match. */
|
|
for (args = insn->args;; ++args)
|
|
{
|
|
switch (*args)
|
|
{
|
|
|
|
/* End of arguments. */
|
|
case '\0':
|
|
if (*s == '\0')
|
|
match = TRUE;
|
|
break;
|
|
|
|
case '+':
|
|
if (*s == '+')
|
|
{
|
|
++s;
|
|
continue;
|
|
}
|
|
if (*s == '-')
|
|
continue;
|
|
break;
|
|
|
|
/* These must match exactly. */
|
|
case '(':
|
|
case ')':
|
|
case ',':
|
|
case ' ':
|
|
if (*s++ == *args)
|
|
continue;
|
|
break;
|
|
|
|
/* Handle a 5 bit register or control register field at 10. */
|
|
case 'b':
|
|
case '^':
|
|
num = pa_parse_number (&s, 0);
|
|
CHECK_FIELD (num, 31, 0, 0);
|
|
INSERT_FIELD_AND_CONTINUE (opcode, num, 21);
|
|
|
|
/* Handle a 5 bit register field at 15. */
|
|
case 'x':
|
|
num = pa_parse_number (&s, 0);
|
|
CHECK_FIELD (num, 31, 0, 0);
|
|
INSERT_FIELD_AND_CONTINUE (opcode, num, 16);
|
|
|
|
/* Handle a 5 bit register field at 31. */
|
|
case 'y':
|
|
case 't':
|
|
num = pa_parse_number (&s, 0);
|
|
CHECK_FIELD (num, 31, 0, 0);
|
|
INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
|
|
|
|
/* Handle a 5 bit field length at 31. */
|
|
case 'T':
|
|
num = pa_get_absolute_expression (&the_insn, &s);
|
|
s = expr_end;
|
|
CHECK_FIELD (num, 32, 1, 0);
|
|
INSERT_FIELD_AND_CONTINUE (opcode, 32 - num, 0);
|
|
|
|
/* Handle a 5 bit immediate at 15. */
|
|
case '5':
|
|
num = pa_get_absolute_expression (&the_insn, &s);
|
|
s = expr_end;
|
|
CHECK_FIELD (num, 15, -16, 0);
|
|
low_sign_unext (num, 5, &num);
|
|
INSERT_FIELD_AND_CONTINUE (opcode, num, 16);
|
|
|
|
/* Handle a 5 bit immediate at 31. */
|
|
case 'V':
|
|
num = pa_get_absolute_expression (&the_insn, &s);
|
|
s = expr_end;
|
|
CHECK_FIELD (num, 15, -16, 0)
|
|
low_sign_unext (num, 5, &num);
|
|
INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
|
|
|
|
/* Handle an unsigned 5 bit immediate at 31. */
|
|
case 'r':
|
|
num = pa_get_absolute_expression (&the_insn, &s);
|
|
s = expr_end;
|
|
CHECK_FIELD (num, 31, 0, 0);
|
|
INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
|
|
|
|
/* Handle an unsigned 5 bit immediate at 15. */
|
|
case 'R':
|
|
num = pa_get_absolute_expression (&the_insn, &s);
|
|
s = expr_end;
|
|
CHECK_FIELD (num, 31, 0, 0);
|
|
INSERT_FIELD_AND_CONTINUE (opcode, num, 16);
|
|
|
|
/* Handle a 2 bit space identifier at 17. */
|
|
case 's':
|
|
num = pa_parse_number (&s, 0);
|
|
CHECK_FIELD (num, 3, 0, 1);
|
|
INSERT_FIELD_AND_CONTINUE (opcode, num, 14);
|
|
|
|
/* Handle a 3 bit space identifier at 18. */
|
|
case 'S':
|
|
num = pa_parse_number (&s, 0);
|
|
CHECK_FIELD (num, 7, 0, 1);
|
|
dis_assemble_3 (num, &num);
|
|
INSERT_FIELD_AND_CONTINUE (opcode, num, 13);
|
|
|
|
/* Handle a completer for an indexing load or store. */
|
|
case 'c':
|
|
{
|
|
int uu = 0;
|
|
int m = 0;
|
|
int i = 0;
|
|
while (*s == ',' && i < 2)
|
|
{
|
|
s++;
|
|
if (strncasecmp (s, "sm", 2) == 0)
|
|
{
|
|
uu = 1;
|
|
m = 1;
|
|
s++;
|
|
i++;
|
|
}
|
|
else if (strncasecmp (s, "m", 1) == 0)
|
|
m = 1;
|
|
else if (strncasecmp (s, "s", 1) == 0)
|
|
uu = 1;
|
|
else
|
|
as_bad ("Invalid Indexed Load Completer.");
|
|
s++;
|
|
i++;
|
|
}
|
|
if (i > 2)
|
|
as_bad ("Invalid Indexed Load Completer Syntax.");
|
|
opcode |= m << 5;
|
|
INSERT_FIELD_AND_CONTINUE (opcode, uu, 13);
|
|
}
|
|
|
|
/* Handle a short load/store completer. */
|
|
case 'C':
|
|
{
|
|
int a = 0;
|
|
int m = 0;
|
|
if (*s == ',')
|
|
{
|
|
s++;
|
|
if (strncasecmp (s, "ma", 2) == 0)
|
|
{
|
|
a = 0;
|
|
m = 1;
|
|
}
|
|
else if (strncasecmp (s, "mb", 2) == 0)
|
|
{
|
|
a = 1;
|
|
m = 1;
|
|
}
|
|
else
|
|
as_bad ("Invalid Short Load/Store Completer.");
|
|
s += 2;
|
|
}
|
|
opcode |= m << 5;
|
|
INSERT_FIELD_AND_CONTINUE (opcode, a, 13);
|
|
}
|
|
|
|
/* Handle a stbys completer. */
|
|
case 'Y':
|
|
{
|
|
int a = 0;
|
|
int m = 0;
|
|
int i = 0;
|
|
while (*s == ',' && i < 2)
|
|
{
|
|
s++;
|
|
if (strncasecmp (s, "m", 1) == 0)
|
|
m = 1;
|
|
else if (strncasecmp (s, "b", 1) == 0)
|
|
a = 0;
|
|
else if (strncasecmp (s, "e", 1) == 0)
|
|
a = 1;
|
|
else
|
|
as_bad ("Invalid Store Bytes Short Completer");
|
|
s++;
|
|
i++;
|
|
}
|
|
if (i > 2)
|
|
as_bad ("Invalid Store Bytes Short Completer");
|
|
opcode |= m << 5;
|
|
INSERT_FIELD_AND_CONTINUE (opcode, a, 13);
|
|
}
|
|
|
|
/* Handle a non-negated compare/stubtract condition. */
|
|
case '<':
|
|
cmpltr = pa_parse_nonneg_cmpsub_cmpltr (&s, 1);
|
|
if (cmpltr < 0)
|
|
{
|
|
as_bad ("Invalid Compare/Subtract Condition: %c", *s);
|
|
cmpltr = 0;
|
|
}
|
|
INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
|
|
|
|
/* Handle a negated or non-negated compare/subtract condition. */
|
|
case '?':
|
|
save_s = s;
|
|
cmpltr = pa_parse_nonneg_cmpsub_cmpltr (&s, 1);
|
|
if (cmpltr < 0)
|
|
{
|
|
s = save_s;
|
|
cmpltr = pa_parse_neg_cmpsub_cmpltr (&s, 1);
|
|
if (cmpltr < 0)
|
|
{
|
|
as_bad ("Invalid Compare/Subtract Condition.");
|
|
cmpltr = 0;
|
|
}
|
|
else
|
|
{
|
|
/* Negated condition requires an opcode change. */
|
|
opcode |= 1 << 27;
|
|
}
|
|
}
|
|
INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
|
|
|
|
/* Handle a negated or non-negated add condition. */
|
|
case '!':
|
|
save_s = s;
|
|
cmpltr = pa_parse_nonneg_add_cmpltr (&s, 1);
|
|
if (cmpltr < 0)
|
|
{
|
|
s = save_s;
|
|
cmpltr = pa_parse_neg_add_cmpltr (&s, 1);
|
|
if (cmpltr < 0)
|
|
{
|
|
as_bad ("Invalid Compare/Subtract Condition");
|
|
cmpltr = 0;
|
|
}
|
|
else
|
|
{
|
|
/* Negated condition requires an opcode change. */
|
|
opcode |= 1 << 27;
|
|
}
|
|
}
|
|
INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
|
|
|
|
/* Handle a compare/subtract condition. */
|
|
case 'a':
|
|
cmpltr = 0;
|
|
flag = 0;
|
|
save_s = s;
|
|
if (*s == ',')
|
|
{
|
|
cmpltr = pa_parse_nonneg_cmpsub_cmpltr (&s, 0);
|
|
if (cmpltr < 0)
|
|
{
|
|
flag = 1;
|
|
s = save_s;
|
|
cmpltr = pa_parse_neg_cmpsub_cmpltr (&s, 0);
|
|
if (cmpltr < 0)
|
|
{
|
|
as_bad ("Invalid Compare/Subtract Condition");
|
|
}
|
|
}
|
|
}
|
|
opcode |= cmpltr << 13;
|
|
INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
|
|
|
|
/* Handle a non-negated add condition. */
|
|
case 'd':
|
|
cmpltr = 0;
|
|
nullif = 0;
|
|
flag = 0;
|
|
if (*s == ',')
|
|
{
|
|
s++;
|
|
name = s;
|
|
while (*s != ',' && *s != ' ' && *s != '\t')
|
|
s += 1;
|
|
c = *s;
|
|
*s = 0x00;
|
|
if (strcmp (name, "=") == 0)
|
|
cmpltr = 1;
|
|
else if (strcmp (name, "<") == 0)
|
|
cmpltr = 2;
|
|
else if (strcmp (name, "<=") == 0)
|
|
cmpltr = 3;
|
|
else if (strcasecmp (name, "nuv") == 0)
|
|
cmpltr = 4;
|
|
else if (strcasecmp (name, "znv") == 0)
|
|
cmpltr = 5;
|
|
else if (strcasecmp (name, "sv") == 0)
|
|
cmpltr = 6;
|
|
else if (strcasecmp (name, "od") == 0)
|
|
cmpltr = 7;
|
|
else if (strcasecmp (name, "n") == 0)
|
|
nullif = 1;
|
|
else if (strcasecmp (name, "tr") == 0)
|
|
{
|
|
cmpltr = 0;
|
|
flag = 1;
|
|
}
|
|
else if (strcasecmp (name, "<>") == 0)
|
|
{
|
|
cmpltr = 1;
|
|
flag = 1;
|
|
}
|
|
else if (strcasecmp (name, ">=") == 0)
|
|
{
|
|
cmpltr = 2;
|
|
flag = 1;
|
|
}
|
|
else if (strcasecmp (name, ">") == 0)
|
|
{
|
|
cmpltr = 3;
|
|
flag = 1;
|
|
}
|
|
else if (strcasecmp (name, "uv") == 0)
|
|
{
|
|
cmpltr = 4;
|
|
flag = 1;
|
|
}
|
|
else if (strcasecmp (name, "vnz") == 0)
|
|
{
|
|
cmpltr = 5;
|
|
flag = 1;
|
|
}
|
|
else if (strcasecmp (name, "nsv") == 0)
|
|
{
|
|
cmpltr = 6;
|
|
flag = 1;
|
|
}
|
|
else if (strcasecmp (name, "ev") == 0)
|
|
{
|
|
cmpltr = 7;
|
|
flag = 1;
|
|
}
|
|
else
|
|
as_bad ("Invalid Add Condition: %s", name);
|
|
*s = c;
|
|
}
|
|
nullif = pa_parse_nullif (&s);
|
|
opcode |= nullif << 1;
|
|
opcode |= cmpltr << 13;
|
|
INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
|
|
|
|
/* HANDLE a logical instruction condition. */
|
|
case '&':
|
|
cmpltr = 0;
|
|
flag = 0;
|
|
if (*s == ',')
|
|
{
|
|
s++;
|
|
name = s;
|
|
while (*s != ',' && *s != ' ' && *s != '\t')
|
|
s += 1;
|
|
c = *s;
|
|
*s = 0x00;
|
|
if (strcmp (name, "=") == 0)
|
|
cmpltr = 1;
|
|
else if (strcmp (name, "<") == 0)
|
|
cmpltr = 2;
|
|
else if (strcmp (name, "<=") == 0)
|
|
cmpltr = 3;
|
|
else if (strcasecmp (name, "od") == 0)
|
|
cmpltr = 7;
|
|
else if (strcasecmp (name, "tr") == 0)
|
|
{
|
|
cmpltr = 0;
|
|
flag = 1;
|
|
}
|
|
else if (strcmp (name, "<>") == 0)
|
|
{
|
|
cmpltr = 1;
|
|
flag = 1;
|
|
}
|
|
else if (strcmp (name, ">=") == 0)
|
|
{
|
|
cmpltr = 2;
|
|
flag = 1;
|
|
}
|
|
else if (strcmp (name, ">") == 0)
|
|
{
|
|
cmpltr = 3;
|
|
flag = 1;
|
|
}
|
|
else if (strcasecmp (name, "ev") == 0)
|
|
{
|
|
cmpltr = 7;
|
|
flag = 1;
|
|
}
|
|
else
|
|
as_bad ("Invalid Logical Instruction Condition.");
|
|
*s = c;
|
|
}
|
|
opcode |= cmpltr << 13;
|
|
INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
|
|
|
|
/* Handle a unit instruction condition. */
|
|
case 'U':
|
|
cmpltr = 0;
|
|
flag = 0;
|
|
if (*s == ',')
|
|
{
|
|
s++;
|
|
if (strncasecmp (s, "sbz", 3) == 0)
|
|
{
|
|
cmpltr = 2;
|
|
s += 3;
|
|
}
|
|
else if (strncasecmp (s, "shz", 3) == 0)
|
|
{
|
|
cmpltr = 3;
|
|
s += 3;
|
|
}
|
|
else if (strncasecmp (s, "sdc", 3) == 0)
|
|
{
|
|
cmpltr = 4;
|
|
s += 3;
|
|
}
|
|
else if (strncasecmp (s, "sbc", 3) == 0)
|
|
{
|
|
cmpltr = 6;
|
|
s += 3;
|
|
}
|
|
else if (strncasecmp (s, "shc", 3) == 0)
|
|
{
|
|
cmpltr = 7;
|
|
s += 3;
|
|
}
|
|
else if (strncasecmp (s, "tr", 2) == 0)
|
|
{
|
|
cmpltr = 0;
|
|
flag = 1;
|
|
s += 2;
|
|
}
|
|
else if (strncasecmp (s, "nbz", 3) == 0)
|
|
{
|
|
cmpltr = 2;
|
|
flag = 1;
|
|
s += 3;
|
|
}
|
|
else if (strncasecmp (s, "nhz", 3) == 0)
|
|
{
|
|
cmpltr = 3;
|
|
flag = 1;
|
|
s += 3;
|
|
}
|
|
else if (strncasecmp (s, "ndc", 3) == 0)
|
|
{
|
|
cmpltr = 4;
|
|
flag = 1;
|
|
s += 3;
|
|
}
|
|
else if (strncasecmp (s, "nbc", 3) == 0)
|
|
{
|
|
cmpltr = 6;
|
|
flag = 1;
|
|
s += 3;
|
|
}
|
|
else if (strncasecmp (s, "nhc", 3) == 0)
|
|
{
|
|
cmpltr = 7;
|
|
flag = 1;
|
|
s += 3;
|
|
}
|
|
else
|
|
as_bad ("Invalid Logical Instruction Condition.");
|
|
}
|
|
opcode |= cmpltr << 13;
|
|
INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
|
|
|
|
/* Handle a shift/extract/deposit condition. */
|
|
case '|':
|
|
case '>':
|
|
cmpltr = 0;
|
|
if (*s == ',')
|
|
{
|
|
save_s = s++;
|
|
name = s;
|
|
while (*s != ',' && *s != ' ' && *s != '\t')
|
|
s += 1;
|
|
c = *s;
|
|
*s = 0x00;
|
|
if (strcmp (name, "=") == 0)
|
|
cmpltr = 1;
|
|
else if (strcmp (name, "<") == 0)
|
|
cmpltr = 2;
|
|
else if (strcasecmp (name, "od") == 0)
|
|
cmpltr = 3;
|
|
else if (strcasecmp (name, "tr") == 0)
|
|
cmpltr = 4;
|
|
else if (strcmp (name, "<>") == 0)
|
|
cmpltr = 5;
|
|
else if (strcmp (name, ">=") == 0)
|
|
cmpltr = 6;
|
|
else if (strcasecmp (name, "ev") == 0)
|
|
cmpltr = 7;
|
|
/* Handle movb,n. Put things back the way they were.
|
|
This includes moving s back to where it started. */
|
|
else if (strcasecmp (name, "n") == 0 && *args == '|')
|
|
{
|
|
*s = c;
|
|
s = save_s;
|
|
continue;
|
|
}
|
|
else
|
|
as_bad ("Invalid Shift/Extract/Deposit Condition.");
|
|
*s = c;
|
|
}
|
|
INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
|
|
|
|
/* Handle bvb and bb conditions. */
|
|
case '~':
|
|
cmpltr = 0;
|
|
if (*s == ',')
|
|
{
|
|
s++;
|
|
if (strncmp (s, "<", 1) == 0)
|
|
{
|
|
cmpltr = 2;
|
|
s++;
|
|
}
|
|
else if (strncmp (s, ">=", 2) == 0)
|
|
{
|
|
cmpltr = 6;
|
|
s += 2;
|
|
}
|
|
else
|
|
as_bad ("Invalid Bit Branch Condition: %c", *s);
|
|
}
|
|
INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
|
|
|
|
/* Handle a system control completer. */
|
|
case 'Z':
|
|
if (*s == ',' && (*(s + 1) == 'm' || *(s + 1) == 'M'))
|
|
{
|
|
flag = 1;
|
|
s += 2;
|
|
}
|
|
else
|
|
flag = 0;
|
|
|
|
INSERT_FIELD_AND_CONTINUE (opcode, flag, 5);
|
|
|
|
/* Handle a nullification completer for branch instructions. */
|
|
case 'n':
|
|
nullif = pa_parse_nullif (&s);
|
|
INSERT_FIELD_AND_CONTINUE (opcode, nullif, 1);
|
|
|
|
/* Handle a 11 bit immediate at 31. */
|
|
case 'i':
|
|
the_insn.field_selector = pa_chk_field_selector (&s);
|
|
get_expression (s);
|
|
s = expr_end;
|
|
if (the_insn.exp.X_op == O_constant)
|
|
{
|
|
num = evaluate_absolute (&the_insn);
|
|
CHECK_FIELD (num, 1023, -1024, 0);
|
|
low_sign_unext (num, 11, &num);
|
|
INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
|
|
}
|
|
else
|
|
{
|
|
if (is_DP_relative (the_insn.exp))
|
|
the_insn.reloc = R_HPPA_GOTOFF;
|
|
else if (is_PC_relative (the_insn.exp))
|
|
the_insn.reloc = R_HPPA_PCREL_CALL;
|
|
else if (is_complex (the_insn.exp))
|
|
the_insn.reloc = R_HPPA_COMPLEX;
|
|
else
|
|
the_insn.reloc = R_HPPA;
|
|
the_insn.format = 11;
|
|
continue;
|
|
}
|
|
|
|
/* Handle a 14 bit immediate at 31. */
|
|
case 'j':
|
|
the_insn.field_selector = pa_chk_field_selector (&s);
|
|
get_expression (s);
|
|
s = expr_end;
|
|
if (the_insn.exp.X_op == O_constant)
|
|
{
|
|
num = evaluate_absolute (&the_insn);
|
|
CHECK_FIELD (num, 8191, -8192, 0);
|
|
low_sign_unext (num, 14, &num);
|
|
INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
|
|
}
|
|
else
|
|
{
|
|
if (is_DP_relative (the_insn.exp))
|
|
the_insn.reloc = R_HPPA_GOTOFF;
|
|
else if (is_PC_relative (the_insn.exp))
|
|
the_insn.reloc = R_HPPA_PCREL_CALL;
|
|
else if (is_complex (the_insn.exp))
|
|
the_insn.reloc = R_HPPA_COMPLEX;
|
|
else
|
|
the_insn.reloc = R_HPPA;
|
|
the_insn.format = 14;
|
|
continue;
|
|
}
|
|
|
|
/* Handle a 21 bit immediate at 31. */
|
|
case 'k':
|
|
the_insn.field_selector = pa_chk_field_selector (&s);
|
|
get_expression (s);
|
|
s = expr_end;
|
|
if (the_insn.exp.X_op == O_constant)
|
|
{
|
|
num = evaluate_absolute (&the_insn);
|
|
CHECK_FIELD (num >> 11, 1048575, -1048576, 0);
|
|
dis_assemble_21 (num, &num);
|
|
INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
|
|
}
|
|
else
|
|
{
|
|
if (is_DP_relative (the_insn.exp))
|
|
the_insn.reloc = R_HPPA_GOTOFF;
|
|
else if (is_PC_relative (the_insn.exp))
|
|
the_insn.reloc = R_HPPA_PCREL_CALL;
|
|
else if (is_complex (the_insn.exp))
|
|
the_insn.reloc = R_HPPA_COMPLEX;
|
|
else
|
|
the_insn.reloc = R_HPPA;
|
|
the_insn.format = 21;
|
|
continue;
|
|
}
|
|
|
|
/* Handle a 12 bit branch displacement. */
|
|
case 'w':
|
|
the_insn.field_selector = pa_chk_field_selector (&s);
|
|
get_expression (s);
|
|
s = expr_end;
|
|
the_insn.pcrel = 1;
|
|
if (!strcmp (S_GET_NAME (the_insn.exp.X_add_symbol), "L$0\001"))
|
|
{
|
|
unsigned int w1, w, result;
|
|
|
|
num = evaluate_absolute (&the_insn);
|
|
if (num % 4)
|
|
{
|
|
as_bad ("Branch to unaligned address");
|
|
break;
|
|
}
|
|
CHECK_FIELD (num, 8191, -8192, 0);
|
|
sign_unext ((num - 8) >> 2, 12, &result);
|
|
dis_assemble_12 (result, &w1, &w);
|
|
INSERT_FIELD_AND_CONTINUE (opcode, ((w1 << 2) | w), 0);
|
|
}
|
|
else
|
|
{
|
|
if (is_complex (the_insn.exp))
|
|
the_insn.reloc = R_HPPA_COMPLEX_PCREL_CALL;
|
|
else
|
|
the_insn.reloc = R_HPPA_PCREL_CALL;
|
|
the_insn.format = 12;
|
|
the_insn.arg_reloc = last_call_desc.arg_reloc;
|
|
bzero (&last_call_desc, sizeof (struct call_desc));
|
|
s = expr_end;
|
|
continue;
|
|
}
|
|
|
|
/* Handle a 17 bit branch displacement. */
|
|
case 'W':
|
|
the_insn.field_selector = pa_chk_field_selector (&s);
|
|
get_expression (s);
|
|
s = expr_end;
|
|
the_insn.pcrel = 1;
|
|
if (!the_insn.exp.X_add_symbol
|
|
|| !strcmp (S_GET_NAME (the_insn.exp.X_add_symbol),
|
|
"L$0\001"))
|
|
{
|
|
unsigned int w2, w1, w, result;
|
|
|
|
num = evaluate_absolute (&the_insn);
|
|
if (num % 4)
|
|
{
|
|
as_bad ("Branch to unaligned address");
|
|
break;
|
|
}
|
|
CHECK_FIELD (num, 262143, -262144, 0);
|
|
|
|
if (the_insn.exp.X_add_symbol)
|
|
num -= 8;
|
|
|
|
sign_unext (num >> 2, 17, &result);
|
|
dis_assemble_17 (result, &w1, &w2, &w);
|
|
INSERT_FIELD_AND_CONTINUE (opcode,
|
|
((w2 << 2) | (w1 << 16) | w), 0);
|
|
}
|
|
else
|
|
{
|
|
if (is_complex (the_insn.exp))
|
|
the_insn.reloc = R_HPPA_COMPLEX_PCREL_CALL;
|
|
else
|
|
the_insn.reloc = R_HPPA_PCREL_CALL;
|
|
the_insn.format = 17;
|
|
the_insn.arg_reloc = last_call_desc.arg_reloc;
|
|
bzero (&last_call_desc, sizeof (struct call_desc));
|
|
continue;
|
|
}
|
|
|
|
/* Handle an absolute 17 bit branch target. */
|
|
case 'z':
|
|
the_insn.field_selector = pa_chk_field_selector (&s);
|
|
get_expression (s);
|
|
s = expr_end;
|
|
the_insn.pcrel = 0;
|
|
if (!the_insn.exp.X_add_symbol
|
|
|| !strcmp (S_GET_NAME (the_insn.exp.X_add_symbol),
|
|
"L$0\001"))
|
|
{
|
|
unsigned int w2, w1, w, result;
|
|
|
|
num = evaluate_absolute (&the_insn);
|
|
if (num % 4)
|
|
{
|
|
as_bad ("Branch to unaligned address");
|
|
break;
|
|
}
|
|
CHECK_FIELD (num, 262143, -262144, 0);
|
|
|
|
if (the_insn.exp.X_add_symbol)
|
|
num -= 8;
|
|
|
|
sign_unext (num >> 2, 17, &result);
|
|
dis_assemble_17 (result, &w1, &w2, &w);
|
|
INSERT_FIELD_AND_CONTINUE (opcode,
|
|
((w2 << 2) | (w1 << 16) | w), 0);
|
|
}
|
|
else
|
|
{
|
|
if (is_complex (the_insn.exp))
|
|
the_insn.reloc = R_HPPA_COMPLEX_ABS_CALL;
|
|
else
|
|
the_insn.reloc = R_HPPA_ABS_CALL;
|
|
the_insn.format = 17;
|
|
continue;
|
|
}
|
|
|
|
/* Handle a 5 bit shift count at 26. */
|
|
case 'p':
|
|
num = pa_get_absolute_expression (&the_insn, &s);
|
|
s = expr_end;
|
|
CHECK_FIELD (num, 31, 0, 0);
|
|
INSERT_FIELD_AND_CONTINUE (opcode, 31 - num, 5);
|
|
|
|
/* Handle a 5 bit bit position at 26. */
|
|
case 'P':
|
|
num = pa_get_absolute_expression (&the_insn, &s);
|
|
s = expr_end;
|
|
CHECK_FIELD (num, 31, 0, 0);
|
|
INSERT_FIELD_AND_CONTINUE (opcode, num, 5);
|
|
|
|
/* Handle a 5 bit immediate at 10. */
|
|
case 'Q':
|
|
num = pa_get_absolute_expression (&the_insn, &s);
|
|
s = expr_end;
|
|
CHECK_FIELD (num, 31, 0, 0);
|
|
INSERT_FIELD_AND_CONTINUE (opcode, num, 21);
|
|
|
|
/* Handle a 13 bit immediate at 18. */
|
|
case 'A':
|
|
num = pa_get_absolute_expression (&the_insn, &s);
|
|
s = expr_end;
|
|
CHECK_FIELD (num, 4095, -4096, 0);
|
|
INSERT_FIELD_AND_CONTINUE (opcode, num, 13);
|
|
|
|
/* Handle a 26 bit immediate at 31. */
|
|
case 'D':
|
|
num = pa_get_absolute_expression (&the_insn, &s);
|
|
s = expr_end;
|
|
CHECK_FIELD (num, 671108864, 0, 0);
|
|
INSERT_FIELD_AND_CONTINUE (opcode, num, 1);
|
|
|
|
/* Handle a 3 bit SFU identifier at 25. */
|
|
case 'f':
|
|
num = pa_get_absolute_expression (&the_insn, &s);
|
|
s = expr_end;
|
|
CHECK_FIELD (num, 7, 0, 0);
|
|
INSERT_FIELD_AND_CONTINUE (opcode, num, 6);
|
|
|
|
/* We don't support any of these. FIXME. */
|
|
case 'O':
|
|
get_expression (s);
|
|
s = expr_end;
|
|
abort ();
|
|
continue;
|
|
|
|
/* Handle a source FP operand format completer. */
|
|
case 'F':
|
|
flag = pa_parse_fp_format (&s);
|
|
the_insn.fpof1 = flag;
|
|
INSERT_FIELD_AND_CONTINUE (opcode, flag, 11);
|
|
|
|
/* Handle a destination FP operand format completer. */
|
|
case 'G':
|
|
/* pa_parse_format needs the ',' prefix. */
|
|
s--;
|
|
flag = pa_parse_fp_format (&s);
|
|
the_insn.fpof2 = flag;
|
|
INSERT_FIELD_AND_CONTINUE (opcode, flag, 13);
|
|
|
|
/* Handle FP compare conditions. */
|
|
case 'M':
|
|
cond = pa_parse_fp_cmp_cond (&s);
|
|
INSERT_FIELD_AND_CONTINUE (opcode, cond, 0);
|
|
|
|
/* Handle L/R register halves like 't'. */
|
|
case 'v':
|
|
{
|
|
struct pa_89_fp_reg_struct result;
|
|
|
|
pa_parse_number (&s, &result);
|
|
CHECK_FIELD (result.number_part, 31, 0, 0);
|
|
opcode |= result.number_part;
|
|
|
|
/* 0x30 opcodes are FP arithmetic operation opcodes
|
|
and need to be turned into 0x38 opcodes. This
|
|
is not necessary for loads/stores. */
|
|
if (need_89_opcode (&the_insn, &result)
|
|
&& ((opcode & 0xfc000000) == 0x30000000))
|
|
opcode |= 1 << 27;
|
|
|
|
INSERT_FIELD_AND_CONTINUE (opcode, result.l_r_select & 1, 6);
|
|
}
|
|
|
|
/* Handle L/R register halves like 'b'. */
|
|
case 'E':
|
|
{
|
|
struct pa_89_fp_reg_struct result;
|
|
|
|
pa_parse_number (&s, &result);
|
|
CHECK_FIELD (result.number_part, 31, 0, 0);
|
|
opcode |= result.number_part << 21;
|
|
if (need_89_opcode (&the_insn, &result))
|
|
{
|
|
opcode |= (result.l_r_select & 1) << 7;
|
|
opcode |= 1 << 27;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
/* Handle L/R register halves like 'x'. */
|
|
case 'X':
|
|
{
|
|
struct pa_89_fp_reg_struct result;
|
|
|
|
pa_parse_number (&s, &result);
|
|
CHECK_FIELD (result.number_part, 31, 0, 0);
|
|
opcode |= (result.number_part & 0x1f) << 16;
|
|
if (need_89_opcode (&the_insn, &result))
|
|
{
|
|
opcode |= (result.l_r_select & 1) << 12;
|
|
opcode |= 1 << 27;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
/* Handle a 5 bit register field at 10. */
|
|
case '4':
|
|
{
|
|
struct pa_89_fp_reg_struct result;
|
|
|
|
pa_parse_number (&s, &result);
|
|
CHECK_FIELD (result.number_part, 31, 0, 0);
|
|
if (the_insn.fpof1 == SGL)
|
|
{
|
|
result.number_part &= 0xF;
|
|
result.number_part |= (result.l_r_select & 1) << 4;
|
|
}
|
|
INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 21);
|
|
}
|
|
|
|
/* Handle a 5 bit register field at 15. */
|
|
case '6':
|
|
{
|
|
struct pa_89_fp_reg_struct result;
|
|
|
|
pa_parse_number (&s, &result);
|
|
CHECK_FIELD (result.number_part, 31, 0, 0);
|
|
if (the_insn.fpof1 == SGL)
|
|
{
|
|
result.number_part &= 0xF;
|
|
result.number_part |= (result.l_r_select & 1) << 4;
|
|
}
|
|
INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 16);
|
|
}
|
|
|
|
/* Handle a 5 bit register field at 31. */
|
|
case '7':
|
|
{
|
|
struct pa_89_fp_reg_struct result;
|
|
|
|
pa_parse_number (&s, &result);
|
|
CHECK_FIELD (result.number_part, 31, 0, 0);
|
|
if (the_insn.fpof1 == SGL)
|
|
{
|
|
result.number_part &= 0xF;
|
|
result.number_part |= (result.l_r_select & 1) << 4;
|
|
}
|
|
INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 0);
|
|
}
|
|
|
|
/* Handle a 5 bit register field at 20. */
|
|
case '8':
|
|
{
|
|
struct pa_89_fp_reg_struct result;
|
|
|
|
pa_parse_number (&s, &result);
|
|
CHECK_FIELD (result.number_part, 31, 0, 0);
|
|
if (the_insn.fpof1 == SGL)
|
|
{
|
|
result.number_part &= 0xF;
|
|
result.number_part |= (result.l_r_select & 1) << 4;
|
|
}
|
|
INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 11);
|
|
}
|
|
|
|
/* Handle a 5 bit register field at 25. */
|
|
case '9':
|
|
{
|
|
struct pa_89_fp_reg_struct result;
|
|
|
|
pa_parse_number (&s, &result);
|
|
CHECK_FIELD (result.number_part, 31, 0, 0);
|
|
if (the_insn.fpof1 == SGL)
|
|
{
|
|
result.number_part &= 0xF;
|
|
result.number_part |= (result.l_r_select & 1) << 4;
|
|
}
|
|
INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 6);
|
|
}
|
|
|
|
/* Handle a floating point operand format at 26.
|
|
Only allows single and double precision. */
|
|
case 'H':
|
|
flag = pa_parse_fp_format (&s);
|
|
switch (flag)
|
|
{
|
|
case SGL:
|
|
opcode |= 0x20;
|
|
case DBL:
|
|
the_insn.fpof1 = flag;
|
|
continue;
|
|
|
|
case QUAD:
|
|
case ILLEGAL_FMT:
|
|
default:
|
|
as_bad ("Invalid Floating Point Operand Format.");
|
|
}
|
|
break;
|
|
|
|
default:
|
|
abort ();
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Check if the args matched. */
|
|
if (match == FALSE)
|
|
{
|
|
if (&insn[1] - pa_opcodes < NUMOPCODES
|
|
&& !strcmp (insn->name, insn[1].name))
|
|
{
|
|
++insn;
|
|
s = argstart;
|
|
continue;
|
|
}
|
|
else
|
|
{
|
|
as_bad ("Invalid operands %s", error_message);
|
|
return;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
the_insn.opcode = opcode;
|
|
return;
|
|
}
|
|
|
|
/* Turn a string in input_line_pointer into a floating point constant of type
|
|
type, and store the appropriate bytes in *litP. The number of LITTLENUMS
|
|
emitted is stored in *sizeP . An error message or NULL is returned. */
|
|
|
|
#define MAX_LITTLENUMS 6
|
|
|
|
char *
|
|
md_atof (type, litP, sizeP)
|
|
char type;
|
|
char *litP;
|
|
int *sizeP;
|
|
{
|
|
int prec;
|
|
LITTLENUM_TYPE words[MAX_LITTLENUMS];
|
|
LITTLENUM_TYPE *wordP;
|
|
char *t;
|
|
|
|
switch (type)
|
|
{
|
|
|
|
case 'f':
|
|
case 'F':
|
|
case 's':
|
|
case 'S':
|
|
prec = 2;
|
|
break;
|
|
|
|
case 'd':
|
|
case 'D':
|
|
case 'r':
|
|
case 'R':
|
|
prec = 4;
|
|
break;
|
|
|
|
case 'x':
|
|
case 'X':
|
|
prec = 6;
|
|
break;
|
|
|
|
case 'p':
|
|
case 'P':
|
|
prec = 6;
|
|
break;
|
|
|
|
default:
|
|
*sizeP = 0;
|
|
return "Bad call to MD_ATOF()";
|
|
}
|
|
t = atof_ieee (input_line_pointer, type, words);
|
|
if (t)
|
|
input_line_pointer = t;
|
|
*sizeP = prec * sizeof (LITTLENUM_TYPE);
|
|
for (wordP = words; prec--;)
|
|
{
|
|
md_number_to_chars (litP, (valueT) (*wordP++), sizeof (LITTLENUM_TYPE));
|
|
litP += sizeof (LITTLENUM_TYPE);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* Write out big-endian. */
|
|
|
|
void
|
|
md_number_to_chars (buf, val, n)
|
|
char *buf;
|
|
valueT val;
|
|
int n;
|
|
{
|
|
|
|
switch (n)
|
|
{
|
|
case 4:
|
|
*buf++ = val >> 24;
|
|
*buf++ = val >> 16;
|
|
case 2:
|
|
*buf++ = val >> 8;
|
|
case 1:
|
|
*buf = val;
|
|
break;
|
|
default:
|
|
abort ();
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Translate internal representation of relocation info to BFD target
|
|
format. */
|
|
|
|
arelent **
|
|
tc_gen_reloc (section, fixp)
|
|
asection *section;
|
|
fixS *fixp;
|
|
{
|
|
arelent *reloc;
|
|
struct hppa_fix_struct *hppa_fixp = fixp->tc_fix_data;
|
|
bfd_reloc_code_real_type code;
|
|
static int unwind_reloc_fixp_cnt = 0;
|
|
static arelent *unwind_reloc_entryP = NULL;
|
|
static arelent *no_relocs = NULL;
|
|
arelent **relocs;
|
|
bfd_reloc_code_real_type **codes;
|
|
int n_relocs;
|
|
int i;
|
|
|
|
if (fixp->fx_addsy == 0)
|
|
return &no_relocs;
|
|
assert (hppa_fixp != 0);
|
|
assert (section != 0);
|
|
|
|
#ifdef OBJ_ELF
|
|
/* Yuk. I would really like to push all this ELF specific unwind
|
|
crud into BFD and the linker. That's how SOM does it -- and
|
|
if we could make ELF emulate that then we could share more code
|
|
in GAS (and potentially a gnu-linker later).
|
|
|
|
Unwind section relocations are handled in a special way.
|
|
The relocations for the .unwind section are originally
|
|
built in the usual way. That is, for each unwind table
|
|
entry there are two relocations: one for the beginning of
|
|
the function and one for the end.
|
|
|
|
The first time we enter this function we create a
|
|
relocation of the type R_HPPA_UNWIND_ENTRIES. The addend
|
|
of the relocation is initialized to 0. Each additional
|
|
pair of times this function is called for the unwind
|
|
section represents an additional unwind table entry. Thus,
|
|
the addend of the relocation should end up to be the number
|
|
of unwind table entries. */
|
|
if (strcmp (UNWIND_SECTION_NAME, section->name) == 0)
|
|
{
|
|
if (unwind_reloc_entryP == NULL)
|
|
{
|
|
reloc = (arelent *) bfd_alloc_by_size_t (stdoutput,
|
|
sizeof (arelent));
|
|
assert (reloc != 0);
|
|
unwind_reloc_entryP = reloc;
|
|
unwind_reloc_fixp_cnt++;
|
|
unwind_reloc_entryP->address
|
|
= fixp->fx_frag->fr_address + fixp->fx_where;
|
|
/* A pointer to any function will do. We only
|
|
need one to tell us what section the unwind
|
|
relocations are for. */
|
|
unwind_reloc_entryP->sym_ptr_ptr = &fixp->fx_addsy->bsym;
|
|
hppa_fixp->fx_r_type = code = R_HPPA_UNWIND_ENTRIES;
|
|
fixp->fx_r_type = R_HPPA_UNWIND;
|
|
unwind_reloc_entryP->howto = bfd_reloc_type_lookup (stdoutput, code);
|
|
unwind_reloc_entryP->addend = unwind_reloc_fixp_cnt / 2;
|
|
relocs = (arelent **) bfd_alloc_by_size_t (stdoutput,
|
|
sizeof (arelent *) * 2);
|
|
assert (relocs != 0);
|
|
relocs[0] = unwind_reloc_entryP;
|
|
relocs[1] = NULL;
|
|
return relocs;
|
|
}
|
|
unwind_reloc_fixp_cnt++;
|
|
unwind_reloc_entryP->addend = unwind_reloc_fixp_cnt / 2;
|
|
|
|
return &no_relocs;
|
|
}
|
|
#endif
|
|
|
|
reloc = (arelent *) bfd_alloc_by_size_t (stdoutput, sizeof (arelent));
|
|
assert (reloc != 0);
|
|
|
|
reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
|
|
codes = hppa_gen_reloc_type (stdoutput,
|
|
fixp->fx_r_type,
|
|
hppa_fixp->fx_r_format,
|
|
hppa_fixp->fx_r_field);
|
|
|
|
for (n_relocs = 0; codes[n_relocs]; n_relocs++)
|
|
;
|
|
|
|
relocs = (arelent **)
|
|
bfd_alloc_by_size_t (stdoutput, sizeof (arelent *) * n_relocs + 1);
|
|
assert (relocs != 0);
|
|
|
|
reloc = (arelent *) bfd_alloc_by_size_t (stdoutput,
|
|
sizeof (arelent) * n_relocs);
|
|
if (n_relocs > 0)
|
|
assert (reloc != 0);
|
|
|
|
for (i = 0; i < n_relocs; i++)
|
|
relocs[i] = &reloc[i];
|
|
|
|
relocs[n_relocs] = NULL;
|
|
|
|
#ifdef OBJ_ELF
|
|
switch (fixp->fx_r_type)
|
|
{
|
|
case R_HPPA_COMPLEX:
|
|
case R_HPPA_COMPLEX_PCREL_CALL:
|
|
case R_HPPA_COMPLEX_ABS_CALL:
|
|
assert (n_relocs == 5);
|
|
|
|
for (i = 0; i < n_relocs; i++)
|
|
{
|
|
reloc[i].sym_ptr_ptr = NULL;
|
|
reloc[i].address = 0;
|
|
reloc[i].addend = 0;
|
|
reloc[i].howto = bfd_reloc_type_lookup (stdoutput, *codes[i]);
|
|
assert (reloc[i].howto && *codes[i] == reloc[i].howto->type);
|
|
}
|
|
|
|
reloc[0].sym_ptr_ptr = &fixp->fx_addsy->bsym;
|
|
reloc[1].sym_ptr_ptr = &fixp->fx_subsy->bsym;
|
|
reloc[4].address = fixp->fx_frag->fr_address + fixp->fx_where;
|
|
|
|
if (fixp->fx_r_type == R_HPPA_COMPLEX)
|
|
reloc[3].addend = fixp->fx_addnumber;
|
|
else if (fixp->fx_r_type == R_HPPA_COMPLEX_PCREL_CALL ||
|
|
fixp->fx_r_type == R_HPPA_COMPLEX_ABS_CALL)
|
|
reloc[1].addend = fixp->fx_addnumber;
|
|
|
|
break;
|
|
|
|
default:
|
|
assert (n_relocs == 1);
|
|
|
|
code = *codes[0];
|
|
|
|
reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
|
|
reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
|
|
reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
|
|
reloc->addend = 0; /* default */
|
|
|
|
assert (reloc->howto && code == reloc->howto->type);
|
|
|
|
/* Now, do any processing that is dependent on the relocation type. */
|
|
switch (code)
|
|
{
|
|
case R_HPPA_PLABEL_32:
|
|
case R_HPPA_PLABEL_11:
|
|
case R_HPPA_PLABEL_14:
|
|
case R_HPPA_PLABEL_L21:
|
|
case R_HPPA_PLABEL_R11:
|
|
case R_HPPA_PLABEL_R14:
|
|
/* For plabel relocations, the addend of the
|
|
relocation should be either 0 (no static link) or 2
|
|
(static link required).
|
|
|
|
FIXME: assume that fx_addnumber contains this
|
|
information */
|
|
reloc->addend = fixp->fx_addnumber;
|
|
break;
|
|
|
|
case R_HPPA_ABS_CALL_11:
|
|
case R_HPPA_ABS_CALL_14:
|
|
case R_HPPA_ABS_CALL_17:
|
|
case R_HPPA_ABS_CALL_L21:
|
|
case R_HPPA_ABS_CALL_R11:
|
|
case R_HPPA_ABS_CALL_R14:
|
|
case R_HPPA_ABS_CALL_R17:
|
|
case R_HPPA_ABS_CALL_LS21:
|
|
case R_HPPA_ABS_CALL_RS11:
|
|
case R_HPPA_ABS_CALL_RS14:
|
|
case R_HPPA_ABS_CALL_RS17:
|
|
case R_HPPA_ABS_CALL_LD21:
|
|
case R_HPPA_ABS_CALL_RD11:
|
|
case R_HPPA_ABS_CALL_RD14:
|
|
case R_HPPA_ABS_CALL_RD17:
|
|
case R_HPPA_ABS_CALL_LR21:
|
|
case R_HPPA_ABS_CALL_RR14:
|
|
case R_HPPA_ABS_CALL_RR17:
|
|
|
|
case R_HPPA_PCREL_CALL_11:
|
|
case R_HPPA_PCREL_CALL_14:
|
|
case R_HPPA_PCREL_CALL_17:
|
|
case R_HPPA_PCREL_CALL_L21:
|
|
case R_HPPA_PCREL_CALL_R11:
|
|
case R_HPPA_PCREL_CALL_R14:
|
|
case R_HPPA_PCREL_CALL_R17:
|
|
case R_HPPA_PCREL_CALL_LS21:
|
|
case R_HPPA_PCREL_CALL_RS11:
|
|
case R_HPPA_PCREL_CALL_RS14:
|
|
case R_HPPA_PCREL_CALL_RS17:
|
|
case R_HPPA_PCREL_CALL_LD21:
|
|
case R_HPPA_PCREL_CALL_RD11:
|
|
case R_HPPA_PCREL_CALL_RD14:
|
|
case R_HPPA_PCREL_CALL_RD17:
|
|
case R_HPPA_PCREL_CALL_LR21:
|
|
case R_HPPA_PCREL_CALL_RR14:
|
|
case R_HPPA_PCREL_CALL_RR17:
|
|
/* The constant is stored in the instruction. */
|
|
reloc->addend = HPPA_R_ADDEND (hppa_fixp->fx_arg_reloc, 0);
|
|
break;
|
|
default:
|
|
reloc->addend = fixp->fx_addnumber;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
#else /* OBJ_SOM */
|
|
|
|
/* Preliminary relocation handling for SOM. Needs to handle
|
|
COMPLEX relocations (yes, I've seen them occur) and it will
|
|
need to handle R_ENTRY/R_EXIT relocations in the very near future
|
|
(for generating unwinds). */
|
|
switch (fixp->fx_r_type)
|
|
{
|
|
case R_HPPA_COMPLEX:
|
|
case R_HPPA_COMPLEX_PCREL_CALL:
|
|
case R_HPPA_COMPLEX_ABS_CALL:
|
|
abort ();
|
|
break;
|
|
default:
|
|
assert (n_relocs == 1);
|
|
|
|
code = *codes[0];
|
|
|
|
reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
|
|
reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
|
|
reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
|
|
|
|
switch (code)
|
|
{
|
|
case R_PCREL_CALL:
|
|
case R_ABS_CALL:
|
|
reloc->addend = HPPA_R_ADDEND (hppa_fixp->fx_arg_reloc, 0);
|
|
break;
|
|
|
|
case R_DATA_PLABEL:
|
|
case R_CODE_PLABEL:
|
|
/* For plabel relocations, the addend of the
|
|
relocation should be either 0 (no static link) or 2
|
|
(static link required).
|
|
|
|
FIXME: We always assume no static link! */
|
|
reloc->addend = 0;
|
|
break;
|
|
|
|
default:
|
|
reloc->addend = fixp->fx_addnumber;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
return relocs;
|
|
}
|
|
|
|
/* Process any machine dependent frag types. */
|
|
|
|
void
|
|
md_convert_frag (abfd, sec, fragP)
|
|
register bfd *abfd;
|
|
register asection *sec;
|
|
register fragS *fragP;
|
|
{
|
|
unsigned int address;
|
|
|
|
if (fragP->fr_type == rs_machine_dependent)
|
|
{
|
|
switch ((int) fragP->fr_subtype)
|
|
{
|
|
case 0:
|
|
fragP->fr_type = rs_fill;
|
|
know (fragP->fr_var == 1);
|
|
know (fragP->fr_next);
|
|
address = fragP->fr_address + fragP->fr_fix;
|
|
if (address % fragP->fr_offset)
|
|
{
|
|
fragP->fr_offset =
|
|
fragP->fr_next->fr_address
|
|
- fragP->fr_address
|
|
- fragP->fr_fix;
|
|
}
|
|
else
|
|
fragP->fr_offset = 0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Round up a section size to the appropriate boundary. */
|
|
|
|
valueT
|
|
md_section_align (segment, size)
|
|
asection *segment;
|
|
valueT size;
|
|
{
|
|
int align = bfd_get_section_alignment (stdoutput, segment);
|
|
int align2 = (1 << align) - 1;
|
|
|
|
return (size + align2) & ~align2;
|
|
|
|
}
|
|
|
|
/* Create a short jump from FROM_ADDR to TO_ADDR. Not used on the PA. */
|
|
void
|
|
md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
|
|
char *ptr;
|
|
addressT from_addr, to_addr;
|
|
fragS *frag;
|
|
symbolS *to_symbol;
|
|
{
|
|
fprintf (stderr, "pa_create_short_jmp\n");
|
|
abort ();
|
|
}
|
|
|
|
/* Create a long jump from FROM_ADDR to TO_ADDR. Not used on the PA. */
|
|
void
|
|
md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
|
|
char *ptr;
|
|
addressT from_addr, to_addr;
|
|
fragS *frag;
|
|
symbolS *to_symbol;
|
|
{
|
|
fprintf (stderr, "pa_create_long_jump\n");
|
|
abort ();
|
|
}
|
|
|
|
/* Return the approximate size of a frag before relaxation has occurred. */
|
|
int
|
|
md_estimate_size_before_relax (fragP, segment)
|
|
register fragS *fragP;
|
|
asection *segment;
|
|
{
|
|
int size;
|
|
|
|
size = 0;
|
|
|
|
while ((fragP->fr_fix + size) % fragP->fr_offset)
|
|
size++;
|
|
|
|
return size;
|
|
}
|
|
|
|
/* Parse machine dependent options. There are none on the PA. */
|
|
int
|
|
md_parse_option (argP, cntP, vecP)
|
|
char **argP;
|
|
int *cntP;
|
|
char ***vecP;
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
/* We have no need to default values of symbols. */
|
|
|
|
symbolS *
|
|
md_undefined_symbol (name)
|
|
char *name;
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/* Parse an operand that is machine-specific.
|
|
We just return without modifying the expression as we have nothing
|
|
to do on the PA. */
|
|
|
|
void
|
|
md_operand (expressionP)
|
|
expressionS *expressionP;
|
|
{
|
|
}
|
|
|
|
/* Helper function for md_apply_fix. Actually determine if the fix
|
|
can be applied, and if so, apply it.
|
|
|
|
If a fix is applied, then set fx_addsy to NULL which indicates
|
|
the fix was applied and need not be emitted into the object file. */
|
|
|
|
static void
|
|
md_apply_fix_1 (fixP, val)
|
|
fixS *fixP;
|
|
long val;
|
|
{
|
|
char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
|
|
struct hppa_fix_struct *hppa_fixP = fixP->tc_fix_data;
|
|
long new_val, result;
|
|
unsigned int w1, w2, w;
|
|
|
|
/* SOM uses R_HPPA_ENTRY and R_HPPA_EXIT relocations which can
|
|
never be "applied". They must always be emitted. */
|
|
#ifdef OBJ_SOM
|
|
if (fixP->fx_r_type == R_HPPA_ENTRY
|
|
|| fixP->fx_r_type == R_HPPA_EXIT)
|
|
return;
|
|
#endif
|
|
|
|
/* There should have been an HPPA specific fixup associated
|
|
with the GAS fixup. */
|
|
if (hppa_fixP)
|
|
{
|
|
unsigned long buf_wd = bfd_get_32 (stdoutput, buf);
|
|
unsigned char fmt = bfd_hppa_insn2fmt (buf_wd);
|
|
|
|
if (fixP->fx_r_type == R_HPPA_NONE)
|
|
fmt = 0;
|
|
|
|
/* Remember this value for emit_reloc. FIXME, is this braindamage
|
|
documented anywhere!?! */
|
|
fixP->fx_addnumber = val;
|
|
|
|
/* Check if this is an undefined symbol. No relocation can
|
|
possibly be performed in this case. */
|
|
if ((fixP->fx_addsy && fixP->fx_addsy->bsym->section == &bfd_und_section)
|
|
|| (fixP->fx_subsy
|
|
&& fixP->fx_subsy->bsym->section == &bfd_und_section))
|
|
return;
|
|
|
|
if (fmt != 0 && hppa_fixP->fx_r_field != R_HPPA_PSEL
|
|
&& hppa_fixP->fx_r_field != R_HPPA_LPSEL
|
|
&& hppa_fixP->fx_r_field != R_HPPA_RPSEL)
|
|
new_val = hppa_field_adjust (val, 0, hppa_fixP->fx_r_field);
|
|
else
|
|
new_val = 0;
|
|
|
|
switch (fmt)
|
|
{
|
|
/* Handle all opcodes with the 'j' operand type. */
|
|
case 14:
|
|
CHECK_FIELD (new_val, 8191, -8192, 0);
|
|
|
|
/* Mask off 14 bits to be changed. */
|
|
bfd_put_32 (stdoutput,
|
|
bfd_get_32 (stdoutput, buf) & 0xffffc000,
|
|
buf);
|
|
low_sign_unext (new_val, 14, &result);
|
|
break;
|
|
|
|
/* Handle all opcodes with the 'k' operand type. */
|
|
case 21:
|
|
CHECK_FIELD (new_val, 2097152, 0, 0);
|
|
|
|
/* Mask off 21 bits to be changed. */
|
|
bfd_put_32 (stdoutput,
|
|
bfd_get_32 (stdoutput, buf) & 0xffe00000,
|
|
buf);
|
|
dis_assemble_21 (new_val, &result);
|
|
break;
|
|
|
|
/* Handle all the opcodes with the 'i' operand type. */
|
|
case 11:
|
|
CHECK_FIELD (new_val, 1023, -1023, 0);
|
|
|
|
/* Mask off 11 bits to be changed. */
|
|
bfd_put_32 (stdoutput,
|
|
bfd_get_32 (stdoutput, buf) & 0xffff800,
|
|
buf);
|
|
low_sign_unext (new_val, 11, &result);
|
|
break;
|
|
|
|
/* Handle all the opcodes with the 'w' operand type. */
|
|
case 12:
|
|
CHECK_FIELD (new_val, 8191, -8192, 0)
|
|
|
|
/* Mask off 11 bits to be changed. */
|
|
sign_unext ((new_val - 8) >> 2, 12, &result);
|
|
bfd_put_32 (stdoutput,
|
|
bfd_get_32 (stdoutput, buf) & 0xffffe002,
|
|
buf);
|
|
|
|
dis_assemble_12 (result, &w1, &w);
|
|
result = ((w1 << 2) | w);
|
|
fixP->fx_addsy = NULL;
|
|
break;
|
|
|
|
#define stub_needed(CALLER, CALLEE) \
|
|
((CALLEE) && (CALLER) && ((CALLEE) != (CALLER)))
|
|
|
|
/* Handle some of the opcodes with the 'W' operand type. */
|
|
case 17:
|
|
/* If a long-call stub or argument relocation stub is
|
|
needed, then we can not apply this relocation, instead
|
|
the linker must handle it. */
|
|
if (new_val > 262143 || new_val < -262144
|
|
|| stub_needed (((obj_symbol_type *)
|
|
fixP->fx_addsy->bsym)->tc_data.hppa_arg_reloc,
|
|
hppa_fixP->fx_arg_reloc))
|
|
return;
|
|
|
|
/* No stubs were needed, we can perform this relocation. */
|
|
CHECK_FIELD (new_val, 262143, -262144, 0);
|
|
|
|
/* Mask off 17 bits to be changed. */
|
|
bfd_put_32 (stdoutput,
|
|
bfd_get_32 (stdoutput, buf) & 0xffe0e002,
|
|
buf);
|
|
sign_unext ((new_val - 8) >> 2, 17, &result);
|
|
dis_assemble_17 (result, &w1, &w2, &w);
|
|
result = ((w2 << 2) | (w1 << 16) | w);
|
|
fixP->fx_addsy = NULL;
|
|
break;
|
|
|
|
#undef too_far
|
|
#undef stub_needed
|
|
|
|
case 32:
|
|
#ifdef OBJ_ELF
|
|
/* These are ELF specific relocations. ELF unfortunately
|
|
handles unwinds in a completely different manner. */
|
|
if (hppa_fixP->fx_r_type == R_HPPA_UNWIND_ENTRY
|
|
|| hppa_fixP->fx_r_type == R_HPPA_UNWIND_ENTRIES)
|
|
result = fixP->fx_addnumber;
|
|
else
|
|
#endif
|
|
{
|
|
result = 0;
|
|
fixP->fx_addnumber = fixP->fx_offset;
|
|
bfd_put_32 (stdoutput, 0, buf);
|
|
return;
|
|
}
|
|
break;
|
|
|
|
case 0:
|
|
return;
|
|
|
|
default:
|
|
as_bad ("Unknown relocation encountered in md_apply_fix.");
|
|
return;
|
|
}
|
|
|
|
/* Insert the relocation. */
|
|
bfd_put_32 (stdoutput, bfd_get_32 (stdoutput, buf) | result, buf);
|
|
}
|
|
else
|
|
printf ("no hppa_fixup entry for this fixup (fixP = 0x%x, type = 0x%x)\n",
|
|
(unsigned int) fixP, fixP->fx_r_type);
|
|
}
|
|
|
|
/* Apply a fix into a frag's data (if possible). */
|
|
|
|
int
|
|
md_apply_fix (fixP, valp)
|
|
fixS *fixP;
|
|
valueT *valp;
|
|
{
|
|
md_apply_fix_1 (fixP, (long) *valp);
|
|
return 1;
|
|
}
|
|
|
|
/* Exactly what point is a PC-relative offset relative TO?
|
|
On the PA, they're relative to the address of the offset. */
|
|
|
|
long
|
|
md_pcrel_from (fixP)
|
|
fixS *fixP;
|
|
{
|
|
return fixP->fx_where + fixP->fx_frag->fr_address;
|
|
}
|
|
|
|
/* Return nonzero if the input line pointer is at the end of
|
|
a statement. */
|
|
|
|
static int
|
|
is_end_of_statement ()
|
|
{
|
|
return ((*input_line_pointer == '\n')
|
|
|| (*input_line_pointer == ';')
|
|
|| (*input_line_pointer == '!'));
|
|
}
|
|
|
|
/* Read a number from S. The number might come in one of many forms,
|
|
the most common will be a hex or decimal constant, but it could be
|
|
a pre-defined register (Yuk!), or an absolute symbol.
|
|
|
|
Return a number or -1 for failure.
|
|
|
|
When parsing PA-89 FP register numbers RESULT will be
|
|
the address of a structure to return information about
|
|
L/R half of FP registers, store results there as appropriate.
|
|
|
|
pa_parse_number can not handle negative constants and will fail
|
|
horribly if it is passed such a constant. */
|
|
|
|
static int
|
|
pa_parse_number (s, result)
|
|
char **s;
|
|
struct pa_89_fp_reg_struct *result;
|
|
{
|
|
int num;
|
|
char *name;
|
|
char c;
|
|
symbolS *sym;
|
|
int status;
|
|
char *p = *s;
|
|
|
|
/* Skip whitespace before the number. */
|
|
while (*p == ' ' || *p == '\t')
|
|
p = p + 1;
|
|
|
|
/* Store info in RESULT if requested by caller. */
|
|
if (result)
|
|
{
|
|
result->number_part = -1;
|
|
result->l_r_select = -1;
|
|
}
|
|
num = -1;
|
|
|
|
if (isdigit (*p))
|
|
{
|
|
/* Looks like a number. */
|
|
num = 0;
|
|
|
|
if (*p == '0' && (*(p + 1) == 'x' || *(p + 1) == 'X'))
|
|
{
|
|
/* The number is specified in hex. */
|
|
p += 2;
|
|
while (isdigit (*p) || ((*p >= 'a') && (*p <= 'f'))
|
|
|| ((*p >= 'A') && (*p <= 'F')))
|
|
{
|
|
if (isdigit (*p))
|
|
num = num * 16 + *p - '0';
|
|
else if (*p >= 'a' && *p <= 'f')
|
|
num = num * 16 + *p - 'a' + 10;
|
|
else
|
|
num = num * 16 + *p - 'A' + 10;
|
|
++p;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* The number is specified in decimal. */
|
|
while (isdigit (*p))
|
|
{
|
|
num = num * 10 + *p - '0';
|
|
++p;
|
|
}
|
|
}
|
|
|
|
/* Store info in RESULT if requested by the caller. */
|
|
if (result)
|
|
{
|
|
result->number_part = num;
|
|
|
|
if (IS_R_SELECT (p))
|
|
{
|
|
result->l_r_select = 1;
|
|
++p;
|
|
}
|
|
else if (IS_L_SELECT (p))
|
|
{
|
|
result->l_r_select = 0;
|
|
++p;
|
|
}
|
|
else
|
|
result->l_r_select = 0;
|
|
}
|
|
}
|
|
else if (*p == '%')
|
|
{
|
|
/* The number might be a predefined register. */
|
|
num = 0;
|
|
name = p;
|
|
p++;
|
|
c = *p;
|
|
/* Tege hack: Special case for general registers as the general
|
|
code makes a binary search with case translation, and is VERY
|
|
slow. */
|
|
if (c == 'r')
|
|
{
|
|
p++;
|
|
if (*p == 'e' && *(p + 1) == 't'
|
|
&& (*(p + 2) == '0' || *(p + 2) == '1'))
|
|
{
|
|
p += 2;
|
|
num = *p - '0' + 28;
|
|
p++;
|
|
}
|
|
else if (*p == 'p')
|
|
{
|
|
num = 2;
|
|
p++;
|
|
}
|
|
else if (!isdigit (*p))
|
|
{
|
|
if (print_errors)
|
|
as_bad ("Undefined register: '%s'.", name);
|
|
num = -1;
|
|
}
|
|
else
|
|
{
|
|
do
|
|
num = num * 10 + *p++ - '0';
|
|
while (isdigit (*p));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Do a normal register search. */
|
|
while (is_part_of_name (c))
|
|
{
|
|
p = p + 1;
|
|
c = *p;
|
|
}
|
|
*p = 0;
|
|
status = reg_name_search (name);
|
|
if (status >= 0)
|
|
num = status;
|
|
else
|
|
{
|
|
if (print_errors)
|
|
as_bad ("Undefined register: '%s'.", name);
|
|
num = -1;
|
|
}
|
|
*p = c;
|
|
}
|
|
|
|
/* Store info in RESULT if requested by caller. */
|
|
if (result)
|
|
{
|
|
result->number_part = num;
|
|
if (IS_R_SELECT (p - 1))
|
|
result->l_r_select = 1;
|
|
else if (IS_L_SELECT (p - 1))
|
|
result->l_r_select = 0;
|
|
else
|
|
result->l_r_select = 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* And finally, it could be a symbol in the absolute section which
|
|
is effectively a constant. */
|
|
num = 0;
|
|
name = p;
|
|
c = *p;
|
|
while (is_part_of_name (c))
|
|
{
|
|
p = p + 1;
|
|
c = *p;
|
|
}
|
|
*p = 0;
|
|
if ((sym = symbol_find (name)) != NULL)
|
|
{
|
|
if (S_GET_SEGMENT (sym) == &bfd_abs_section)
|
|
num = S_GET_VALUE (sym);
|
|
else
|
|
{
|
|
if (print_errors)
|
|
as_bad ("Non-absolute symbol: '%s'.", name);
|
|
num = -1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* There is where we'd come for an undefined symbol
|
|
or for an empty string. For an empty string we
|
|
will return zero. That's a concession made for
|
|
compatability with the braindamaged HP assemblers. */
|
|
if (*name == 0)
|
|
num = 0;
|
|
else
|
|
{
|
|
if (print_errors)
|
|
as_bad ("Undefined absolute constant: '%s'.", name);
|
|
num = -1;
|
|
}
|
|
}
|
|
*p = c;
|
|
|
|
/* Store info in RESULT if requested by caller. */
|
|
if (result)
|
|
{
|
|
result->number_part = num;
|
|
if (IS_R_SELECT (p - 1))
|
|
result->l_r_select = 1;
|
|
else if (IS_L_SELECT (p - 1))
|
|
result->l_r_select = 0;
|
|
else
|
|
result->l_r_select = 0;
|
|
}
|
|
}
|
|
|
|
*s = p;
|
|
return num;
|
|
}
|
|
|
|
#define REG_NAME_CNT (sizeof(pre_defined_registers) / sizeof(struct pd_reg))
|
|
|
|
/* Given NAME, find the register number associated with that name, return
|
|
the integer value associated with the given name or -1 on failure. */
|
|
|
|
static int
|
|
reg_name_search (name)
|
|
char *name;
|
|
{
|
|
int middle, low, high;
|
|
|
|
low = 0;
|
|
high = REG_NAME_CNT - 1;
|
|
|
|
do
|
|
{
|
|
middle = (low + high) / 2;
|
|
if (strcasecmp (name, pre_defined_registers[middle].name) < 0)
|
|
high = middle - 1;
|
|
else
|
|
low = middle + 1;
|
|
}
|
|
while (!((strcasecmp (name, pre_defined_registers[middle].name) == 0) ||
|
|
(low > high)));
|
|
|
|
if (strcasecmp (name, pre_defined_registers[middle].name) == 0)
|
|
return (pre_defined_registers[middle].value);
|
|
else
|
|
return (-1);
|
|
}
|
|
|
|
|
|
/* Return nonzero if the given INSN and L/R information will require
|
|
a new PA-89 opcode. */
|
|
|
|
static int
|
|
need_89_opcode (insn, result)
|
|
struct pa_it *insn;
|
|
struct pa_89_fp_reg_struct *result;
|
|
{
|
|
if (result->l_r_select == 1 && !(insn->fpof1 == DBL && insn->fpof2 == DBL))
|
|
return TRUE;
|
|
else
|
|
return FALSE;
|
|
}
|
|
|
|
/* Parse a condition for a fcmp instruction. Return the numerical
|
|
code associated with the condition. */
|
|
|
|
static int
|
|
pa_parse_fp_cmp_cond (s)
|
|
char **s;
|
|
{
|
|
int cond, i;
|
|
|
|
cond = 0;
|
|
|
|
for (i = 0; i < 32; i++)
|
|
{
|
|
if (strncasecmp (*s, fp_cond_map[i].string,
|
|
strlen (fp_cond_map[i].string)) == 0)
|
|
{
|
|
cond = fp_cond_map[i].cond;
|
|
*s += strlen (fp_cond_map[i].string);
|
|
while (**s == ' ' || **s == '\t')
|
|
*s = *s + 1;
|
|
return cond;
|
|
}
|
|
}
|
|
|
|
as_bad ("Invalid FP Compare Condition: %c", **s);
|
|
return 0;
|
|
}
|
|
|
|
/* Parse an FP operand format completer returning the completer
|
|
type. */
|
|
|
|
static fp_operand_format
|
|
pa_parse_fp_format (s)
|
|
char **s;
|
|
{
|
|
int format;
|
|
|
|
format = SGL;
|
|
if (**s == ',')
|
|
{
|
|
*s += 1;
|
|
if (strncasecmp (*s, "sgl", 3) == 0)
|
|
{
|
|
format = SGL;
|
|
*s += 4;
|
|
}
|
|
else if (strncasecmp (*s, "dbl", 3) == 0)
|
|
{
|
|
format = DBL;
|
|
*s += 4;
|
|
}
|
|
else if (strncasecmp (*s, "quad", 4) == 0)
|
|
{
|
|
format = QUAD;
|
|
*s += 5;
|
|
}
|
|
else
|
|
{
|
|
format = ILLEGAL_FMT;
|
|
as_bad ("Invalid FP Operand Format: %3s", *s);
|
|
}
|
|
}
|
|
|
|
return format;
|
|
}
|
|
|
|
/* Convert from a selector string into a selector type. */
|
|
|
|
static int
|
|
pa_chk_field_selector (str)
|
|
char **str;
|
|
{
|
|
int selector;
|
|
const struct selector_entry *tablep;
|
|
|
|
selector = e_fsel;
|
|
|
|
/* Read past any whitespace. */
|
|
while (**str == ' ' || **str == '\t' || **str == '\n' || **str == '\f')
|
|
*str = *str + 1;
|
|
|
|
/* Yuk. Looks like a linear search through the table. With the
|
|
frequence of some selectors it might make sense to sort the
|
|
table by usage. */
|
|
for (tablep = selector_table; tablep->prefix; tablep++)
|
|
{
|
|
if (strncasecmp (tablep->prefix, *str, strlen (tablep->prefix)) == 0)
|
|
{
|
|
*str += strlen (tablep->prefix);
|
|
selector = tablep->field_selector;
|
|
break;
|
|
}
|
|
}
|
|
return selector;
|
|
}
|
|
|
|
/* Mark (via expr_end) the end of an expression (I think). FIXME. */
|
|
|
|
static int
|
|
get_expression (str)
|
|
char *str;
|
|
{
|
|
char *save_in;
|
|
asection *seg;
|
|
|
|
save_in = input_line_pointer;
|
|
input_line_pointer = str;
|
|
seg = expression (&the_insn.exp);
|
|
if (!(seg == absolute_section
|
|
|| seg == undefined_section
|
|
|| SEG_NORMAL (seg)))
|
|
{
|
|
as_warn ("Bad segment in expression.");
|
|
expr_end = input_line_pointer;
|
|
input_line_pointer = save_in;
|
|
return 1;
|
|
}
|
|
expr_end = input_line_pointer;
|
|
input_line_pointer = save_in;
|
|
return 0;
|
|
}
|
|
|
|
/* Mark (via expr_end) the end of an absolute expression. FIXME. */
|
|
static int
|
|
pa_get_absolute_expression (insn, strp)
|
|
struct pa_it *insn;
|
|
char **strp;
|
|
{
|
|
char *save_in;
|
|
|
|
insn->field_selector = pa_chk_field_selector (strp);
|
|
save_in = input_line_pointer;
|
|
input_line_pointer = *strp;
|
|
expression (&insn->exp);
|
|
if (insn->exp.X_op != O_constant)
|
|
{
|
|
as_bad ("Bad segment (should be absolute).");
|
|
expr_end = input_line_pointer;
|
|
input_line_pointer = save_in;
|
|
return 0;
|
|
}
|
|
expr_end = input_line_pointer;
|
|
input_line_pointer = save_in;
|
|
return evaluate_absolute (insn);
|
|
}
|
|
|
|
/* Evaluate an absolute expression EXP which may be modified by
|
|
the selector FIELD_SELECTOR. Return the value of the expression. */
|
|
static int
|
|
evaluate_absolute (insn)
|
|
struct pa_it *insn;
|
|
{
|
|
int value;
|
|
expressionS exp;
|
|
int field_selector = insn->field_selector;
|
|
|
|
exp = insn->exp;
|
|
value = exp.X_add_number;
|
|
|
|
switch (field_selector)
|
|
{
|
|
/* No change. */
|
|
case e_fsel:
|
|
break;
|
|
|
|
/* If bit 21 is on then add 0x800 and arithmetic shift right 11 bits. */
|
|
case e_lssel:
|
|
if (value & 0x00000400)
|
|
value += 0x800;
|
|
value = (value & 0xfffff800) >> 11;
|
|
break;
|
|
|
|
/* Sign extend from bit 21. */
|
|
case e_rssel:
|
|
if (value & 0x00000400)
|
|
value |= 0xfffff800;
|
|
else
|
|
value &= 0x7ff;
|
|
break;
|
|
|
|
/* Arithmetic shift right 11 bits. */
|
|
case e_lsel:
|
|
value = (value & 0xfffff800) >> 11;
|
|
break;
|
|
|
|
/* Set bits 0-20 to zero. */
|
|
case e_rsel:
|
|
value = value & 0x7ff;
|
|
break;
|
|
|
|
/* Add 0x800 and arithmetic shift right 11 bits. */
|
|
case e_ldsel:
|
|
value += 0x800;
|
|
|
|
|
|
value = (value & 0xfffff800) >> 11;
|
|
break;
|
|
|
|
/* Set bitgs 0-21 to one. */
|
|
case e_rdsel:
|
|
value |= 0xfffff800;
|
|
break;
|
|
|
|
/* This had better get fixed. It looks like we're quickly moving
|
|
to LR/RR. FIXME. */
|
|
case e_rrsel:
|
|
case e_lrsel:
|
|
abort ();
|
|
|
|
default:
|
|
BAD_CASE (field_selector);
|
|
break;
|
|
}
|
|
return value;
|
|
}
|
|
|
|
/* Given an argument location specification return the associated
|
|
argument location number. */
|
|
|
|
static unsigned int
|
|
pa_build_arg_reloc (type_name)
|
|
char *type_name;
|
|
{
|
|
|
|
if (strncasecmp (type_name, "no", 2) == 0)
|
|
return 0;
|
|
if (strncasecmp (type_name, "gr", 2) == 0)
|
|
return 1;
|
|
else if (strncasecmp (type_name, "fr", 2) == 0)
|
|
return 2;
|
|
else if (strncasecmp (type_name, "fu", 2) == 0)
|
|
return 3;
|
|
else
|
|
as_bad ("Invalid argument location: %s\n", type_name);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Encode and return an argument relocation specification for
|
|
the given register in the location specified by arg_reloc. */
|
|
|
|
static unsigned int
|
|
pa_align_arg_reloc (reg, arg_reloc)
|
|
unsigned int reg;
|
|
unsigned int arg_reloc;
|
|
{
|
|
unsigned int new_reloc;
|
|
|
|
new_reloc = arg_reloc;
|
|
switch (reg)
|
|
{
|
|
case 0:
|
|
new_reloc <<= 8;
|
|
break;
|
|
case 1:
|
|
new_reloc <<= 6;
|
|
break;
|
|
case 2:
|
|
new_reloc <<= 4;
|
|
break;
|
|
case 3:
|
|
new_reloc <<= 2;
|
|
break;
|
|
default:
|
|
as_bad ("Invalid argument description: %d", reg);
|
|
}
|
|
|
|
return new_reloc;
|
|
}
|
|
|
|
/* Parse a PA nullification completer (,n). Return nonzero if the
|
|
completer was found; return zero if no completer was found. */
|
|
|
|
static int
|
|
pa_parse_nullif (s)
|
|
char **s;
|
|
{
|
|
int nullif;
|
|
|
|
nullif = 0;
|
|
if (**s == ',')
|
|
{
|
|
*s = *s + 1;
|
|
if (strncasecmp (*s, "n", 1) == 0)
|
|
nullif = 1;
|
|
else
|
|
{
|
|
as_bad ("Invalid Nullification: (%c)", **s);
|
|
nullif = 0;
|
|
}
|
|
*s = *s + 1;
|
|
}
|
|
|
|
return nullif;
|
|
}
|
|
|
|
/* Parse a non-negated compare/subtract completer returning the
|
|
number (for encoding in instrutions) of the given completer.
|
|
|
|
ISBRANCH specifies whether or not this is parsing a condition
|
|
completer for a branch (vs a nullification completer for a
|
|
computational instruction. */
|
|
|
|
static int
|
|
pa_parse_nonneg_cmpsub_cmpltr (s, isbranch)
|
|
char **s;
|
|
int isbranch;
|
|
{
|
|
int cmpltr;
|
|
char *name = *s + 1;
|
|
char c;
|
|
char *save_s = *s;
|
|
|
|
cmpltr = 0;
|
|
if (**s == ',')
|
|
{
|
|
*s += 1;
|
|
while (**s != ',' && **s != ' ' && **s != '\t')
|
|
*s += 1;
|
|
c = **s;
|
|
**s = 0x00;
|
|
if (strcmp (name, "=") == 0)
|
|
{
|
|
cmpltr = 1;
|
|
}
|
|
else if (strcmp (name, "<") == 0)
|
|
{
|
|
cmpltr = 2;
|
|
}
|
|
else if (strcmp (name, "<=") == 0)
|
|
{
|
|
cmpltr = 3;
|
|
}
|
|
else if (strcmp (name, "<<") == 0)
|
|
{
|
|
cmpltr = 4;
|
|
}
|
|
else if (strcmp (name, "<<=") == 0)
|
|
{
|
|
cmpltr = 5;
|
|
}
|
|
else if (strcasecmp (name, "sv") == 0)
|
|
{
|
|
cmpltr = 6;
|
|
}
|
|
else if (strcasecmp (name, "od") == 0)
|
|
{
|
|
cmpltr = 7;
|
|
}
|
|
/* If we have something like addb,n then there is no condition
|
|
completer. */
|
|
else if (strcasecmp (name, "n") == 0 && isbranch)
|
|
{
|
|
cmpltr = 0;
|
|
}
|
|
else
|
|
{
|
|
cmpltr = -1;
|
|
}
|
|
**s = c;
|
|
}
|
|
|
|
/* Reset pointers if this was really a ,n for a branch instruction. */
|
|
if (cmpltr == 0 && *name == 'n' && isbranch)
|
|
*s = save_s;
|
|
|
|
return cmpltr;
|
|
}
|
|
|
|
/* Parse a negated compare/subtract completer returning the
|
|
number (for encoding in instrutions) of the given completer.
|
|
|
|
ISBRANCH specifies whether or not this is parsing a condition
|
|
completer for a branch (vs a nullification completer for a
|
|
computational instruction. */
|
|
|
|
static int
|
|
pa_parse_neg_cmpsub_cmpltr (s, isbranch)
|
|
char **s;
|
|
int isbranch;
|
|
{
|
|
int cmpltr;
|
|
char *name = *s + 1;
|
|
char c;
|
|
char *save_s = *s;
|
|
|
|
cmpltr = 0;
|
|
if (**s == ',')
|
|
{
|
|
*s += 1;
|
|
while (**s != ',' && **s != ' ' && **s != '\t')
|
|
*s += 1;
|
|
c = **s;
|
|
**s = 0x00;
|
|
if (strcasecmp (name, "tr") == 0)
|
|
{
|
|
cmpltr = 0;
|
|
}
|
|
else if (strcmp (name, "<>") == 0)
|
|
{
|
|
cmpltr = 1;
|
|
}
|
|
else if (strcmp (name, ">=") == 0)
|
|
{
|
|
cmpltr = 2;
|
|
}
|
|
else if (strcmp (name, ">") == 0)
|
|
{
|
|
cmpltr = 3;
|
|
}
|
|
else if (strcmp (name, ">>=") == 0)
|
|
{
|
|
cmpltr = 4;
|
|
}
|
|
else if (strcmp (name, ">>") == 0)
|
|
{
|
|
cmpltr = 5;
|
|
}
|
|
else if (strcasecmp (name, "nsv") == 0)
|
|
{
|
|
cmpltr = 6;
|
|
}
|
|
else if (strcasecmp (name, "ev") == 0)
|
|
{
|
|
cmpltr = 7;
|
|
}
|
|
/* If we have something like addb,n then there is no condition
|
|
completer. */
|
|
else if (strcasecmp (name, "n") == 0 && isbranch)
|
|
{
|
|
cmpltr = 0;
|
|
}
|
|
else
|
|
{
|
|
cmpltr = -1;
|
|
}
|
|
**s = c;
|
|
}
|
|
|
|
/* Reset pointers if this was really a ,n for a branch instruction. */
|
|
if (cmpltr == 0 && *name == 'n' && isbranch)
|
|
*s = save_s;
|
|
|
|
return cmpltr;
|
|
}
|
|
|
|
/* Parse a non-negated addition completer returning the number
|
|
(for encoding in instrutions) of the given completer.
|
|
|
|
ISBRANCH specifies whether or not this is parsing a condition
|
|
completer for a branch (vs a nullification completer for a
|
|
computational instruction. */
|
|
|
|
static int
|
|
pa_parse_nonneg_add_cmpltr (s, isbranch)
|
|
char **s;
|
|
int isbranch;
|
|
{
|
|
int cmpltr;
|
|
char *name = *s + 1;
|
|
char c;
|
|
char *save_s = *s;
|
|
|
|
cmpltr = 0;
|
|
if (**s == ',')
|
|
{
|
|
*s += 1;
|
|
while (**s != ',' && **s != ' ' && **s != '\t')
|
|
*s += 1;
|
|
c = **s;
|
|
**s = 0x00;
|
|
if (strcmp (name, "=") == 0)
|
|
{
|
|
cmpltr = 1;
|
|
}
|
|
else if (strcmp (name, "<") == 0)
|
|
{
|
|
cmpltr = 2;
|
|
}
|
|
else if (strcmp (name, "<=") == 0)
|
|
{
|
|
cmpltr = 3;
|
|
}
|
|
else if (strcasecmp (name, "nuv") == 0)
|
|
{
|
|
cmpltr = 4;
|
|
}
|
|
else if (strcasecmp (name, "znv") == 0)
|
|
{
|
|
cmpltr = 5;
|
|
}
|
|
else if (strcasecmp (name, "sv") == 0)
|
|
{
|
|
cmpltr = 6;
|
|
}
|
|
else if (strcasecmp (name, "od") == 0)
|
|
{
|
|
cmpltr = 7;
|
|
}
|
|
/* If we have something like addb,n then there is no condition
|
|
completer. */
|
|
else if (strcasecmp (name, "n") == 0 && isbranch)
|
|
{
|
|
cmpltr = 0;
|
|
}
|
|
else
|
|
{
|
|
cmpltr = -1;
|
|
}
|
|
**s = c;
|
|
}
|
|
|
|
/* Reset pointers if this was really a ,n for a branch instruction. */
|
|
if (cmpltr == 0 && *name == 'n' && isbranch)
|
|
*s = save_s;
|
|
|
|
return cmpltr;
|
|
}
|
|
|
|
/* Parse a negated addition completer returning the number
|
|
(for encoding in instrutions) of the given completer.
|
|
|
|
ISBRANCH specifies whether or not this is parsing a condition
|
|
completer for a branch (vs a nullification completer for a
|
|
computational instruction. */
|
|
|
|
static int
|
|
pa_parse_neg_add_cmpltr (s, isbranch)
|
|
char **s;
|
|
int isbranch;
|
|
{
|
|
int cmpltr;
|
|
char *name = *s + 1;
|
|
char c;
|
|
char *save_s = *s;
|
|
|
|
cmpltr = 0;
|
|
if (**s == ',')
|
|
{
|
|
*s += 1;
|
|
while (**s != ',' && **s != ' ' && **s != '\t')
|
|
*s += 1;
|
|
c = **s;
|
|
**s = 0x00;
|
|
if (strcasecmp (name, "tr") == 0)
|
|
{
|
|
cmpltr = 0;
|
|
}
|
|
else if (strcmp (name, "<>") == 0)
|
|
{
|
|
cmpltr = 1;
|
|
}
|
|
else if (strcmp (name, ">=") == 0)
|
|
{
|
|
cmpltr = 2;
|
|
}
|
|
else if (strcmp (name, ">") == 0)
|
|
{
|
|
cmpltr = 3;
|
|
}
|
|
else if (strcmp (name, "uv") == 0)
|
|
{
|
|
cmpltr = 4;
|
|
}
|
|
else if (strcmp (name, "vnz") == 0)
|
|
{
|
|
cmpltr = 5;
|
|
}
|
|
else if (strcasecmp (name, "nsv") == 0)
|
|
{
|
|
cmpltr = 6;
|
|
}
|
|
else if (strcasecmp (name, "ev") == 0)
|
|
{
|
|
cmpltr = 7;
|
|
}
|
|
/* If we have something like addb,n then there is no condition
|
|
completer. */
|
|
else if (strcasecmp (name, "n") == 0 && isbranch)
|
|
{
|
|
cmpltr = 0;
|
|
}
|
|
else
|
|
{
|
|
cmpltr = -1;
|
|
}
|
|
**s = c;
|
|
}
|
|
|
|
/* Reset pointers if this was really a ,n for a branch instruction. */
|
|
if (cmpltr == 0 && *name == 'n' && isbranch)
|
|
*s = save_s;
|
|
|
|
return cmpltr;
|
|
}
|
|
|
|
/* Handle a .BLOCK type pseudo-op. */
|
|
|
|
static void
|
|
pa_block (z)
|
|
int z;
|
|
{
|
|
char *p;
|
|
long int temp_fill;
|
|
unsigned int temp_size;
|
|
int i;
|
|
|
|
temp_size = get_absolute_expression ();
|
|
|
|
/* Always fill with zeros, that's what the HP assembler does. */
|
|
temp_fill = 0;
|
|
|
|
p = frag_var (rs_fill, (int) temp_size, (int) temp_size,
|
|
(relax_substateT) 0, (symbolS *) 0, 1, NULL);
|
|
bzero (p, temp_size);
|
|
|
|
/* Convert 2 bytes at a time. */
|
|
|
|
for (i = 0; i < temp_size; i += 2)
|
|
{
|
|
md_number_to_chars (p + i,
|
|
(valueT) temp_fill,
|
|
(int) ((temp_size - i) > 2 ? 2 : (temp_size - i)));
|
|
}
|
|
|
|
pa_undefine_label ();
|
|
demand_empty_rest_of_line ();
|
|
return;
|
|
}
|
|
|
|
/* Handle a .CALL pseudo-op. This involves storing away information
|
|
about where arguments are to be found so the linker can detect
|
|
(and correct) argument location mismatches between caller and callee. */
|
|
|
|
static void
|
|
pa_call (unused)
|
|
int unused;
|
|
{
|
|
pa_call_args (&last_call_desc);
|
|
demand_empty_rest_of_line ();
|
|
return;
|
|
}
|
|
|
|
/* Do the dirty work of building a call descriptor which describes
|
|
where the caller placed arguments to a function call. */
|
|
|
|
static void
|
|
pa_call_args (call_desc)
|
|
struct call_desc *call_desc;
|
|
{
|
|
char *name, c, *p;
|
|
unsigned int temp, arg_reloc;
|
|
|
|
while (!is_end_of_statement ())
|
|
{
|
|
name = input_line_pointer;
|
|
c = get_symbol_end ();
|
|
/* Process a source argument. */
|
|
if ((strncasecmp (name, "argw", 4) == 0))
|
|
{
|
|
temp = atoi (name + 4);
|
|
p = input_line_pointer;
|
|
*p = c;
|
|
input_line_pointer++;
|
|
name = input_line_pointer;
|
|
c = get_symbol_end ();
|
|
arg_reloc = pa_build_arg_reloc (name);
|
|
call_desc->arg_reloc |= pa_align_arg_reloc (temp, arg_reloc);
|
|
}
|
|
/* Process a return value. */
|
|
else if ((strncasecmp (name, "rtnval", 6) == 0))
|
|
{
|
|
p = input_line_pointer;
|
|
*p = c;
|
|
input_line_pointer++;
|
|
name = input_line_pointer;
|
|
c = get_symbol_end ();
|
|
arg_reloc = pa_build_arg_reloc (name);
|
|
call_desc->arg_reloc |= (arg_reloc & 0x3);
|
|
}
|
|
else
|
|
{
|
|
as_bad ("Invalid .CALL argument: %s", name);
|
|
}
|
|
p = input_line_pointer;
|
|
*p = c;
|
|
if (!is_end_of_statement ())
|
|
input_line_pointer++;
|
|
}
|
|
}
|
|
|
|
/* Return TRUE if FRAG1 and FRAG2 are the same. */
|
|
|
|
static int
|
|
is_same_frag (frag1, frag2)
|
|
fragS *frag1;
|
|
fragS *frag2;
|
|
{
|
|
|
|
if (frag1 == NULL)
|
|
return (FALSE);
|
|
else if (frag2 == NULL)
|
|
return (FALSE);
|
|
else if (frag1 == frag2)
|
|
return (TRUE);
|
|
else if (frag2->fr_type == rs_fill && frag2->fr_fix == 0)
|
|
return (is_same_frag (frag1, frag2->fr_next));
|
|
else
|
|
return (FALSE);
|
|
}
|
|
|
|
#ifdef OBJ_ELF
|
|
/* Build an entry in the UNWIND subspace from the given function
|
|
attributes in CALL_INFO. This is not needed for SOM as using
|
|
R_ENTRY and R_EXIT relocations allow the linker to handle building
|
|
of the unwind spaces. */
|
|
|
|
static void
|
|
pa_build_unwind_subspace (call_info)
|
|
struct call_info *call_info;
|
|
{
|
|
char *unwind;
|
|
asection *seg, *save_seg;
|
|
subsegT subseg, save_subseg;
|
|
int i;
|
|
char c, *p;
|
|
|
|
/* Get into the right seg/subseg. This may involve creating
|
|
the seg the first time through. Make sure to have the
|
|
old seg/subseg so that we can reset things when we are done. */
|
|
subseg = SUBSEG_UNWIND;
|
|
seg = bfd_get_section_by_name (stdoutput, UNWIND_SECTION_NAME);
|
|
if (seg == ASEC_NULL)
|
|
{
|
|
seg = bfd_make_section_old_way (stdoutput, UNWIND_SECTION_NAME);
|
|
bfd_set_section_flags (stdoutput, seg,
|
|
SEC_READONLY | SEC_HAS_CONTENTS
|
|
| SEC_LOAD | SEC_RELOC);
|
|
}
|
|
|
|
save_seg = now_seg;
|
|
save_subseg = now_subseg;
|
|
subseg_set (seg, subseg);
|
|
|
|
|
|
/* Get some space to hold relocation information for the unwind
|
|
descriptor. */
|
|
p = frag_more (4);
|
|
call_info->start_offset_frag = frag_now;
|
|
call_info->start_frag_where = p - frag_now->fr_literal;
|
|
|
|
/* Relocation info. for start offset of the function. */
|
|
fix_new_hppa (frag_now, p - frag_now->fr_literal, 4,
|
|
call_info->start_symbol, (offsetT) 0,
|
|
(expressionS *) NULL, 0, R_HPPA_UNWIND, e_fsel, 32, 0,
|
|
(char *) 0);
|
|
|
|
/* We need to search for the first relocation involving the start_symbol of
|
|
this call_info descriptor. */
|
|
{
|
|
fixS *fixP;
|
|
|
|
call_info->start_fix = seg_info (now_seg)->fix_root;
|
|
for (fixP = call_info->start_fix; fixP; fixP = fixP->fx_next)
|
|
{
|
|
if (fixP->fx_addsy == call_info->start_symbol
|
|
|| fixP->fx_subsy == call_info->start_symbol)
|
|
{
|
|
call_info->start_fix = fixP;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
p = frag_more (4);
|
|
call_info->end_offset_frag = frag_now;
|
|
call_info->end_frag_where = p - frag_now->fr_literal;
|
|
|
|
/* Relocation info. for end offset of the function. */
|
|
fix_new_hppa (frag_now, p - frag_now->fr_literal, 4,
|
|
call_info->end_symbol, (offsetT) 0,
|
|
(expressionS *) NULL, 0, R_HPPA_UNWIND, e_fsel, 32, 0,
|
|
(char *) 0);
|
|
|
|
/* We need to search for the first relocation involving the end_symbol of
|
|
this call_info descriptor. */
|
|
{
|
|
fixS *fixP;
|
|
|
|
call_info->end_fix = seg_info (now_seg)->fix_root; /* the default */
|
|
for (fixP = call_info->end_fix; fixP; fixP = fixP->fx_next)
|
|
{
|
|
if (fixP->fx_addsy == call_info->end_symbol
|
|
|| fixP->fx_subsy == call_info->end_symbol)
|
|
{
|
|
call_info->end_fix = fixP;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Dump it. */
|
|
unwind = (char *) &call_info->ci_unwind;
|
|
for (i = 8; i < sizeof (struct unwind_table); i++)
|
|
{
|
|
c = *(unwind + i);
|
|
{
|
|
FRAG_APPEND_1_CHAR (c);
|
|
}
|
|
}
|
|
|
|
/* Return back to the original segment/subsegment. */
|
|
subseg_set (save_seg, save_subseg);
|
|
}
|
|
#endif
|
|
|
|
/* Process a .CALLINFO pseudo-op. This information is used later
|
|
to build unwind descriptors and maybe one day to support
|
|
.ENTER and .LEAVE. */
|
|
|
|
static void
|
|
pa_callinfo (unused)
|
|
int unused;
|
|
{
|
|
char *name, c, *p;
|
|
int temp;
|
|
|
|
/* .CALLINFO must appear within a procedure definition. */
|
|
if (!within_procedure)
|
|
as_bad (".callinfo is not within a procedure definition");
|
|
|
|
/* Mark the fact that we found the .CALLINFO for the
|
|
current procedure. */
|
|
callinfo_found = TRUE;
|
|
|
|
/* Iterate over the .CALLINFO arguments. */
|
|
while (!is_end_of_statement ())
|
|
{
|
|
name = input_line_pointer;
|
|
c = get_symbol_end ();
|
|
/* Frame size specification. */
|
|
if ((strncasecmp (name, "frame", 5) == 0))
|
|
{
|
|
p = input_line_pointer;
|
|
*p = c;
|
|
input_line_pointer++;
|
|
temp = get_absolute_expression ();
|
|
if ((temp & 0x3) != 0)
|
|
{
|
|
as_bad ("FRAME parameter must be a multiple of 8: %d\n", temp);
|
|
temp = 0;
|
|
}
|
|
|
|
/* callinfo is in bytes and unwind_desc is in 8 byte units. */
|
|
last_call_info->ci_unwind.descriptor.frame_size = temp / 8;
|
|
|
|
}
|
|
/* Entry register (GR, GR and SR) specifications. */
|
|
else if ((strncasecmp (name, "entry_gr", 8) == 0))
|
|
{
|
|
p = input_line_pointer;
|
|
*p = c;
|
|
input_line_pointer++;
|
|
temp = get_absolute_expression ();
|
|
/* The HP assembler accepts 19 as the high bound for ENTRY_GR
|
|
even though %r19 is caller saved. I think this is a bug in
|
|
the HP assembler, and we are not going to emulate it. */
|
|
if (temp < 3 || temp > 18)
|
|
as_bad ("Value for ENTRY_GR must be in the range 3..18\n");
|
|
last_call_info->ci_unwind.descriptor.entry_gr = temp - 2;
|
|
}
|
|
else if ((strncasecmp (name, "entry_fr", 8) == 0))
|
|
{
|
|
p = input_line_pointer;
|
|
*p = c;
|
|
input_line_pointer++;
|
|
temp = get_absolute_expression ();
|
|
/* Similarly the HP assembler takes 31 as the high bound even
|
|
though %fr21 is the last callee saved floating point register. */
|
|
if (temp < 12 || temp > 21)
|
|
as_bad ("Value for ENTRY_FR must be in the range 12..21\n");
|
|
last_call_info->ci_unwind.descriptor.entry_fr = temp - 11;
|
|
}
|
|
else if ((strncasecmp (name, "entry_sr", 8) == 0))
|
|
{
|
|
p = input_line_pointer;
|
|
*p = c;
|
|
input_line_pointer++;
|
|
temp = get_absolute_expression ();
|
|
if (temp != 3)
|
|
as_bad ("Value for ENTRY_SR must be 3\n");
|
|
last_call_info->entry_sr = temp - 2;
|
|
}
|
|
/* Note whether or not this function performs any calls. */
|
|
else if ((strncasecmp (name, "calls", 5) == 0) ||
|
|
(strncasecmp (name, "caller", 6) == 0))
|
|
{
|
|
p = input_line_pointer;
|
|
*p = c;
|
|
last_call_info->makes_calls = 1;
|
|
}
|
|
else if ((strncasecmp (name, "no_calls", 8) == 0))
|
|
{
|
|
p = input_line_pointer;
|
|
*p = c;
|
|
last_call_info->makes_calls = 0;
|
|
}
|
|
/* Should RP be saved into the stack. */
|
|
else if ((strncasecmp (name, "save_rp", 7) == 0))
|
|
{
|
|
p = input_line_pointer;
|
|
*p = c;
|
|
last_call_info->ci_unwind.descriptor.save_rp = 1;
|
|
}
|
|
/* Likewise for SP. */
|
|
else if ((strncasecmp (name, "save_sp", 7) == 0))
|
|
{
|
|
p = input_line_pointer;
|
|
*p = c;
|
|
last_call_info->ci_unwind.descriptor.save_sp = 1;
|
|
}
|
|
/* Is this an unwindable procedure. If so mark it so
|
|
in the unwind descriptor. */
|
|
else if ((strncasecmp (name, "no_unwind", 9) == 0))
|
|
{
|
|
p = input_line_pointer;
|
|
*p = c;
|
|
last_call_info->ci_unwind.descriptor.cannot_unwind = 1;
|
|
}
|
|
/* Is this an interrupt routine. If so mark it in the
|
|
unwind descriptor. */
|
|
else if ((strncasecmp (name, "hpux_int", 7) == 0))
|
|
{
|
|
p = input_line_pointer;
|
|
*p = c;
|
|
last_call_info->ci_unwind.descriptor.hpux_interrupt_marker = 1;
|
|
}
|
|
else
|
|
{
|
|
as_bad ("Invalid .CALLINFO argument: %s", name);
|
|
}
|
|
if (!is_end_of_statement ())
|
|
input_line_pointer++;
|
|
}
|
|
|
|
demand_empty_rest_of_line ();
|
|
return;
|
|
}
|
|
|
|
/* Switch into the code subspace. */
|
|
|
|
static void
|
|
pa_code (unused)
|
|
int unused;
|
|
{
|
|
sd_chain_struct *sdchain;
|
|
|
|
/* First time through it might be necessary to create the
|
|
$TEXT$ space. */
|
|
if ((sdchain = is_defined_space ("$TEXT$")) == NULL)
|
|
{
|
|
sdchain = create_new_space (pa_def_spaces[0].name,
|
|
pa_def_spaces[0].spnum,
|
|
pa_def_spaces[0].loadable,
|
|
pa_def_spaces[0].defined,
|
|
pa_def_spaces[0].private,
|
|
pa_def_spaces[0].sort,
|
|
pa_def_spaces[0].segment, 0);
|
|
}
|
|
|
|
SPACE_DEFINED (sdchain) = 1;
|
|
subseg_set (text_section, SUBSEG_CODE);
|
|
demand_empty_rest_of_line ();
|
|
return;
|
|
}
|
|
|
|
/* This is different than the standard GAS s_comm(). On HP9000/800 machines,
|
|
the .comm pseudo-op has the following symtax:
|
|
|
|
<label> .comm <length>
|
|
|
|
where <label> is optional and is a symbol whose address will be the start of
|
|
a block of memory <length> bytes long. <length> must be an absolute
|
|
expression. <length> bytes will be allocated in the current space
|
|
and subspace. */
|
|
|
|
static void
|
|
pa_comm (unused)
|
|
int unused;
|
|
{
|
|
unsigned int size;
|
|
symbolS *symbol;
|
|
label_symbol_struct *label_symbol = pa_get_label ();
|
|
|
|
if (label_symbol)
|
|
symbol = label_symbol->lss_label;
|
|
else
|
|
symbol = NULL;
|
|
|
|
SKIP_WHITESPACE ();
|
|
size = get_absolute_expression ();
|
|
|
|
if (symbol)
|
|
{
|
|
/* It is incorrect to check S_IS_DEFINED at this point as
|
|
the symbol will *always* be defined. FIXME. How to
|
|
correctly determine when this label really as been
|
|
defined before. */
|
|
if (S_GET_VALUE (symbol))
|
|
{
|
|
if (S_GET_VALUE (symbol) != size)
|
|
{
|
|
as_warn ("Length of .comm \"%s\" is already %d. Not changed.",
|
|
S_GET_NAME (symbol), S_GET_VALUE (symbol));
|
|
return;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
S_SET_VALUE (symbol, size);
|
|
S_SET_SEGMENT (symbol, &bfd_und_section);
|
|
S_SET_EXTERNAL (symbol);
|
|
}
|
|
}
|
|
demand_empty_rest_of_line ();
|
|
}
|
|
|
|
/* Process a .COPYRIGHT pseudo-op. */
|
|
|
|
static void
|
|
pa_copyright (unused)
|
|
int unused;
|
|
{
|
|
char *name;
|
|
char c;
|
|
|
|
SKIP_WHITESPACE ();
|
|
if (*input_line_pointer == '\"')
|
|
{
|
|
++input_line_pointer;
|
|
name = input_line_pointer;
|
|
while ((c = next_char_of_string ()) >= 0)
|
|
;
|
|
c = *input_line_pointer;
|
|
*input_line_pointer = '\0';
|
|
*(input_line_pointer - 1) = '\0';
|
|
{
|
|
/* FIXME. Not supported */
|
|
abort ();
|
|
}
|
|
*input_line_pointer = c;
|
|
}
|
|
else
|
|
{
|
|
as_bad ("Expected \"-ed string");
|
|
}
|
|
pa_undefine_label ();
|
|
demand_empty_rest_of_line ();
|
|
}
|
|
|
|
/* Process a .END pseudo-op. */
|
|
|
|
static void
|
|
pa_end (unused)
|
|
int unused;
|
|
{
|
|
demand_empty_rest_of_line ();
|
|
return;
|
|
}
|
|
|
|
/* Process a .ENTER pseudo-op. This is not supported. */
|
|
static void
|
|
pa_enter (unused)
|
|
int unused;
|
|
{
|
|
abort ();
|
|
return;
|
|
}
|
|
|
|
/* Process a .ENTRY pseudo-op. .ENTRY marks the beginning of the
|
|
procesure. */
|
|
static void
|
|
pa_entry (unused)
|
|
int unused;
|
|
{
|
|
if (!within_procedure)
|
|
as_bad ("Misplaced .entry. Ignored.");
|
|
else
|
|
{
|
|
if (!callinfo_found)
|
|
as_bad ("Missing .callinfo.");
|
|
|
|
last_call_info->start_frag = frag_now;
|
|
}
|
|
demand_empty_rest_of_line ();
|
|
within_entry_exit = TRUE;
|
|
|
|
/* Go back to the last symbol and turn on the BSF_FUNCTION flag.
|
|
It will not be on if no .EXPORT pseudo-op exists (static function). */
|
|
last_call_info->start_symbol->bsym->flags |= BSF_FUNCTION;
|
|
|
|
#ifdef OBJ_SOM
|
|
/* SOM defers building of unwind descriptors until the link phase.
|
|
The assembler is responsible for creating an R_ENTRY relocation
|
|
to mark the beginning of a region and hold the unwind bits, and
|
|
for creating an R_EXIT relocation to mark the end of the region.
|
|
|
|
FIXME. ELF should be using the same conventions! The problem
|
|
is an unwind requires too much relocation space. Hmmm. Maybe
|
|
if we split the unwind bits up between the relocations which
|
|
denote the entry and exit points. */
|
|
{
|
|
char *where = frag_more (0);
|
|
|
|
fix_new_hppa (frag_now, where - frag_now->fr_literal, 0,
|
|
last_call_info->start_symbol, (offsetT) 0, NULL,
|
|
0, R_HPPA_ENTRY, e_fsel, 0, 0,
|
|
(char *) &last_call_info->ci_unwind.descriptor);
|
|
}
|
|
#endif
|
|
|
|
return;
|
|
}
|
|
|
|
/* Handle a .EQU pseudo-op. */
|
|
|
|
static void
|
|
pa_equ (reg)
|
|
int reg;
|
|
{
|
|
label_symbol_struct *label_symbol = pa_get_label ();
|
|
symbolS *symbol;
|
|
|
|
if (label_symbol)
|
|
{
|
|
symbol = label_symbol->lss_label;
|
|
S_SET_VALUE (symbol, (unsigned int) get_absolute_expression ());
|
|
S_SET_SEGMENT (symbol, &bfd_abs_section);
|
|
}
|
|
else
|
|
{
|
|
if (reg)
|
|
as_bad (".REG must use a label");
|
|
else
|
|
as_bad (".EQU must use a label");
|
|
}
|
|
|
|
pa_undefine_label ();
|
|
demand_empty_rest_of_line ();
|
|
return;
|
|
}
|
|
|
|
/* Helper function. Does processing for the end of a function. This
|
|
usually involves creating some relocations or building special
|
|
symbols to mark the end of the function. */
|
|
|
|
static void
|
|
process_exit ()
|
|
{
|
|
char *where;
|
|
|
|
where = frag_more (0);
|
|
|
|
#ifdef OBJ_ELF
|
|
/* ELF does not have EXIT relocations. All we do is create a
|
|
temporary symbol marking the end of the function. */
|
|
{
|
|
char *name = (char *) xmalloc (strlen ("L$\001end_") +
|
|
strlen (S_GET_NAME (last_call_info->start_symbol)) + 1);
|
|
|
|
if (name)
|
|
{
|
|
symbolS *symbolP;
|
|
|
|
strcpy (name, "L$\001end_");
|
|
strcat (name, S_GET_NAME (last_call_info->start_symbol));
|
|
|
|
symbolP = symbol_find (name);
|
|
if (symbolP)
|
|
as_warn ("Symbol '%s' already defined.", name);
|
|
else
|
|
{
|
|
/* symbol value should be the offset of the
|
|
last instruction of the function */
|
|
symbolP = symbol_new (name, now_seg,
|
|
(valueT) (obstack_next_free (&frags)
|
|
- frag_now->fr_literal - 4),
|
|
frag_now);
|
|
|
|
assert (symbolP);
|
|
symbolP->bsym->flags = BSF_LOCAL;
|
|
symbol_table_insert (symbolP);
|
|
}
|
|
if (symbolP)
|
|
last_call_info->end_symbol = symbolP;
|
|
else
|
|
as_bad ("Symbol '%s' could not be created.", name);
|
|
|
|
}
|
|
else
|
|
as_bad ("No memory for symbol name.");
|
|
}
|
|
|
|
/* Stuff away the location of the frag for the end of the function,
|
|
and call pa_build_unwind_subspace to add an entry in the unwind
|
|
table. */
|
|
last_call_info->end_frag = frag_now;
|
|
pa_build_unwind_subspace (last_call_info);
|
|
#else
|
|
/* SOM defers building of unwind descriptors until the link phase.
|
|
The assembler is responsible for creating an R_ENTRY relocation
|
|
to mark the beginning of a region and hold the unwind bits, and
|
|
for creating an R_EXIT relocation to mark the end of the region.
|
|
|
|
FIXME. ELF should be using the same conventions! The problem
|
|
is an unwind requires too much relocation space. Hmmm. Maybe
|
|
if we split the unwind bits up between the relocations which
|
|
denote the entry and exit points. */
|
|
fix_new_hppa (frag_now, where - frag_now->fr_literal, 0,
|
|
last_call_info->start_symbol, (offsetT) 0,
|
|
NULL, 0, R_HPPA_EXIT, e_fsel, 0, 0, NULL);
|
|
#endif
|
|
|
|
}
|
|
|
|
/* Process a .EXIT pseudo-op. */
|
|
|
|
static void
|
|
pa_exit (unused)
|
|
int unused;
|
|
{
|
|
if (!within_procedure)
|
|
as_bad (".EXIT must appear within a procedure");
|
|
else
|
|
{
|
|
if (!callinfo_found)
|
|
as_bad ("Missing .callinfo");
|
|
else
|
|
{
|
|
if (!within_entry_exit)
|
|
as_bad ("No .ENTRY for this .EXIT");
|
|
else
|
|
{
|
|
within_entry_exit = FALSE;
|
|
process_exit ();
|
|
}
|
|
}
|
|
}
|
|
demand_empty_rest_of_line ();
|
|
return;
|
|
}
|
|
|
|
/* Process a .EXPORT directive. This makes functions external
|
|
and provides information such as argument relocation entries
|
|
to callers. */
|
|
|
|
static void
|
|
pa_export (unused)
|
|
int unused;
|
|
{
|
|
char *name, c, *p;
|
|
symbolS *symbol;
|
|
|
|
name = input_line_pointer;
|
|
c = get_symbol_end ();
|
|
/* Make sure the given symbol exists. */
|
|
if ((symbol = symbol_find_or_make (name)) == NULL)
|
|
{
|
|
as_bad ("Cannot define export symbol: %s\n", name);
|
|
p = input_line_pointer;
|
|
*p = c;
|
|
input_line_pointer++;
|
|
}
|
|
else
|
|
{
|
|
/* OK. Set the external bits and process argument relocations. */
|
|
S_SET_EXTERNAL (symbol);
|
|
p = input_line_pointer;
|
|
*p = c;
|
|
if (!is_end_of_statement ())
|
|
{
|
|
input_line_pointer++;
|
|
pa_type_args (symbol, 1);
|
|
#ifdef OBJ_ELF
|
|
pa_build_symextn_section ();
|
|
#endif
|
|
}
|
|
}
|
|
|
|
demand_empty_rest_of_line ();
|
|
return;
|
|
}
|
|
|
|
/* Helper function to process arguments to a .EXPORT pseudo-op. */
|
|
|
|
static void
|
|
pa_type_args (symbolP, is_export)
|
|
symbolS *symbolP;
|
|
int is_export;
|
|
{
|
|
char *name, c, *p;
|
|
unsigned int temp, arg_reloc;
|
|
pa_symbol_type type = SYMBOL_TYPE_UNKNOWN;
|
|
obj_symbol_type *symbol = (obj_symbol_type *) symbolP->bsym;
|
|
|
|
if (strncasecmp (input_line_pointer, "absolute", 8) == 0)
|
|
|
|
{
|
|
input_line_pointer += 8;
|
|
symbolP->bsym->flags &= ~BSF_FUNCTION;
|
|
S_SET_SEGMENT (symbolP, &bfd_abs_section);
|
|
type = SYMBOL_TYPE_ABSOLUTE;
|
|
}
|
|
else if (strncasecmp (input_line_pointer, "code", 4) == 0)
|
|
{
|
|
input_line_pointer += 4;
|
|
/* IMPORTing/EXPORTing CODE types for functions is meaningless for SOM,
|
|
instead one should be IMPORTing/EXPORTing ENTRY types.
|
|
|
|
Complain if one tries to EXPORT a CODE type since that's never
|
|
done. Both GCC and HP C still try to IMPORT CODE types, so
|
|
silently fix them to be ENTRY types. */
|
|
if (symbolP->bsym->flags & BSF_FUNCTION)
|
|
{
|
|
if (is_export)
|
|
as_tsktsk ("Using ENTRY rather than CODE in export directive for %s", symbolP->bsym->name);
|
|
|
|
symbolP->bsym->flags |= BSF_FUNCTION;
|
|
type = SYMBOL_TYPE_ENTRY;
|
|
}
|
|
else
|
|
{
|
|
symbolP->bsym->flags &= ~BSF_FUNCTION;
|
|
type = SYMBOL_TYPE_CODE;
|
|
}
|
|
}
|
|
else if (strncasecmp (input_line_pointer, "data", 4) == 0)
|
|
{
|
|
input_line_pointer += 4;
|
|
symbolP->bsym->flags &= ~BSF_FUNCTION;
|
|
type = SYMBOL_TYPE_DATA;
|
|
}
|
|
else if ((strncasecmp (input_line_pointer, "entry", 5) == 0))
|
|
{
|
|
input_line_pointer += 5;
|
|
symbolP->bsym->flags |= BSF_FUNCTION;
|
|
type = SYMBOL_TYPE_ENTRY;
|
|
}
|
|
else if (strncasecmp (input_line_pointer, "millicode", 9) == 0)
|
|
{
|
|
input_line_pointer += 9;
|
|
symbolP->bsym->flags |= BSF_FUNCTION;
|
|
type = SYMBOL_TYPE_MILLICODE;
|
|
}
|
|
else if (strncasecmp (input_line_pointer, "plabel", 6) == 0)
|
|
{
|
|
input_line_pointer += 6;
|
|
symbolP->bsym->flags &= ~BSF_FUNCTION;
|
|
type = SYMBOL_TYPE_PLABEL;
|
|
}
|
|
else if (strncasecmp (input_line_pointer, "pri_prog", 8) == 0)
|
|
{
|
|
input_line_pointer += 8;
|
|
symbolP->bsym->flags |= BSF_FUNCTION;
|
|
type = SYMBOL_TYPE_PRI_PROG;
|
|
}
|
|
else if (strncasecmp (input_line_pointer, "sec_prog", 8) == 0)
|
|
{
|
|
input_line_pointer += 8;
|
|
symbolP->bsym->flags |= BSF_FUNCTION;
|
|
type = SYMBOL_TYPE_SEC_PROG;
|
|
}
|
|
|
|
/* SOM requires much more information about symbol types
|
|
than BFD understands. This is how we get this information
|
|
to the SOM BFD backend. */
|
|
#ifdef obj_set_symbol_type
|
|
obj_set_symbol_type (symbolP->bsym, (int) type);
|
|
#endif
|
|
|
|
/* Now that the type of the exported symbol has been handled,
|
|
handle any argument relocation information. */
|
|
while (!is_end_of_statement ())
|
|
{
|
|
if (*input_line_pointer == ',')
|
|
input_line_pointer++;
|
|
name = input_line_pointer;
|
|
c = get_symbol_end ();
|
|
/* Argument sources. */
|
|
if ((strncasecmp (name, "argw", 4) == 0))
|
|
{
|
|
p = input_line_pointer;
|
|
*p = c;
|
|
input_line_pointer++;
|
|
temp = atoi (name + 4);
|
|
name = input_line_pointer;
|
|
c = get_symbol_end ();
|
|
arg_reloc = pa_align_arg_reloc (temp, pa_build_arg_reloc (name));
|
|
symbol->tc_data.hppa_arg_reloc |= arg_reloc;
|
|
*input_line_pointer = c;
|
|
}
|
|
/* The return value. */
|
|
else if ((strncasecmp (name, "rtnval", 6)) == 0)
|
|
{
|
|
p = input_line_pointer;
|
|
*p = c;
|
|
input_line_pointer++;
|
|
name = input_line_pointer;
|
|
c = get_symbol_end ();
|
|
arg_reloc = pa_build_arg_reloc (name);
|
|
symbol->tc_data.hppa_arg_reloc |= arg_reloc;
|
|
*input_line_pointer = c;
|
|
}
|
|
/* Privelege level. */
|
|
else if ((strncasecmp (name, "priv_lev", 8)) == 0)
|
|
{
|
|
p = input_line_pointer;
|
|
*p = c;
|
|
input_line_pointer++;
|
|
temp = atoi (input_line_pointer);
|
|
c = get_symbol_end ();
|
|
*input_line_pointer = c;
|
|
}
|
|
else
|
|
{
|
|
as_bad ("Undefined .EXPORT/.IMPORT argument (ignored): %s", name);
|
|
p = input_line_pointer;
|
|
*p = c;
|
|
}
|
|
if (!is_end_of_statement ())
|
|
input_line_pointer++;
|
|
}
|
|
}
|
|
|
|
/* Handle an .IMPORT pseudo-op. Any symbol referenced in a given
|
|
assembly file must either be defined in the assembly file, or
|
|
explicitly IMPORTED from another. */
|
|
|
|
static void
|
|
pa_import (unused)
|
|
int unused;
|
|
{
|
|
char *name, c, *p;
|
|
symbolS *symbol;
|
|
|
|
name = input_line_pointer;
|
|
c = get_symbol_end ();
|
|
|
|
symbol = symbol_find_or_make (name);
|
|
p = input_line_pointer;
|
|
*p = c;
|
|
|
|
if (!is_end_of_statement ())
|
|
{
|
|
input_line_pointer++;
|
|
pa_type_args (symbol, 0);
|
|
}
|
|
else
|
|
{
|
|
/* Sigh. To be compatable with the HP assembler and to help
|
|
poorly written assembly code, we assign a type based on
|
|
the the current segment. Note only BSF_FUNCTION really
|
|
matters, we do not need to set the full SYMBOL_TYPE_* info here. */
|
|
if (now_seg == text_section)
|
|
symbol->bsym->flags |= BSF_FUNCTION;
|
|
|
|
/* If the section is undefined, then the symbol is undefined
|
|
Since this is an import, leave the section undefined. */
|
|
S_SET_SEGMENT (symbol, &bfd_und_section);
|
|
}
|
|
|
|
demand_empty_rest_of_line ();
|
|
return;
|
|
}
|
|
|
|
/* Handle a .LABEL pseudo-op. */
|
|
|
|
static void
|
|
pa_label (unused)
|
|
int unused;
|
|
{
|
|
char *name, c, *p;
|
|
|
|
name = input_line_pointer;
|
|
c = get_symbol_end ();
|
|
|
|
if (strlen (name) > 0)
|
|
{
|
|
colon (name);
|
|
p = input_line_pointer;
|
|
*p = c;
|
|
}
|
|
else
|
|
{
|
|
as_warn ("Missing label name on .LABEL");
|
|
}
|
|
|
|
if (!is_end_of_statement ())
|
|
{
|
|
as_warn ("extra .LABEL arguments ignored.");
|
|
ignore_rest_of_line ();
|
|
}
|
|
demand_empty_rest_of_line ();
|
|
return;
|
|
}
|
|
|
|
/* Handle a .LEAVE pseudo-op. This is not supported yet. */
|
|
|
|
static void
|
|
pa_leave (unused)
|
|
int unused;
|
|
{
|
|
abort ();
|
|
}
|
|
|
|
/* Handle a .ORIGIN pseudo-op. */
|
|
|
|
static void
|
|
pa_origin (unused)
|
|
int unused;
|
|
{
|
|
s_org (0);
|
|
pa_undefine_label ();
|
|
return;
|
|
}
|
|
|
|
/* Handle a .PARAM pseudo-op. This is much like a .EXPORT, except it
|
|
is for static functions. FIXME. Should share more code with .EXPORT. */
|
|
|
|
static void
|
|
pa_param (unused)
|
|
int unused;
|
|
{
|
|
char *name, c, *p;
|
|
symbolS *symbol;
|
|
|
|
name = input_line_pointer;
|
|
c = get_symbol_end ();
|
|
|
|
if ((symbol = symbol_find_or_make (name)) == NULL)
|
|
{
|
|
as_bad ("Cannot define static symbol: %s\n", name);
|
|
p = input_line_pointer;
|
|
*p = c;
|
|
input_line_pointer++;
|
|
}
|
|
else
|
|
{
|
|
S_CLEAR_EXTERNAL (symbol);
|
|
p = input_line_pointer;
|
|
*p = c;
|
|
if (!is_end_of_statement ())
|
|
{
|
|
input_line_pointer++;
|
|
pa_type_args (symbol, 0);
|
|
}
|
|
}
|
|
|
|
demand_empty_rest_of_line ();
|
|
return;
|
|
}
|
|
|
|
/* Handle a .PROC pseudo-op. It is used to mark the beginning
|
|
of a procedure from a syntatical point of view. */
|
|
|
|
static void
|
|
pa_proc (unused)
|
|
int unused;
|
|
{
|
|
struct call_info *call_info;
|
|
|
|
if (within_procedure)
|
|
as_fatal ("Nested procedures");
|
|
|
|
/* Reset global variables for new procedure. */
|
|
callinfo_found = FALSE;
|
|
within_procedure = TRUE;
|
|
|
|
/* Create another call_info structure. */
|
|
call_info = (struct call_info *) xmalloc (sizeof (struct call_info));
|
|
|
|
if (!call_info)
|
|
as_fatal ("Cannot allocate unwind descriptor\n");
|
|
|
|
bzero (call_info, sizeof (struct call_info));
|
|
|
|
call_info->ci_next = NULL;
|
|
|
|
if (call_info_root == NULL)
|
|
{
|
|
call_info_root = call_info;
|
|
last_call_info = call_info;
|
|
}
|
|
else
|
|
{
|
|
last_call_info->ci_next = call_info;
|
|
last_call_info = call_info;
|
|
}
|
|
|
|
/* set up defaults on call_info structure */
|
|
|
|
call_info->ci_unwind.descriptor.cannot_unwind = 0;
|
|
call_info->ci_unwind.descriptor.region_desc = 1;
|
|
call_info->ci_unwind.descriptor.hpux_interrupt_marker = 0;
|
|
call_info->entry_sr = ~0;
|
|
call_info->makes_calls = 1;
|
|
|
|
/* If we got a .PROC pseudo-op, we know that the function is defined
|
|
locally. Make sure it gets into the symbol table. */
|
|
{
|
|
label_symbol_struct *label_symbol = pa_get_label ();
|
|
|
|
if (label_symbol)
|
|
{
|
|
if (label_symbol->lss_label)
|
|
{
|
|
last_call_info->start_symbol = label_symbol->lss_label;
|
|
label_symbol->lss_label->bsym->flags |= BSF_FUNCTION;
|
|
}
|
|
else
|
|
as_bad ("Missing function name for .PROC (corrupted label)");
|
|
}
|
|
else
|
|
as_bad ("Missing function name for .PROC");
|
|
}
|
|
|
|
demand_empty_rest_of_line ();
|
|
return;
|
|
}
|
|
|
|
/* Process the syntatical end of a procedure. Make sure all the
|
|
appropriate pseudo-ops were found within the procedure. */
|
|
|
|
static void
|
|
pa_procend (unused)
|
|
int unused;
|
|
{
|
|
|
|
if (!within_procedure)
|
|
as_bad ("misplaced .procend");
|
|
|
|
if (!callinfo_found)
|
|
as_bad ("Missing .callinfo for this procedure");
|
|
|
|
if (within_entry_exit)
|
|
as_bad ("Missing .EXIT for a .ENTRY");
|
|
|
|
within_procedure = FALSE;
|
|
demand_empty_rest_of_line ();
|
|
return;
|
|
}
|
|
|
|
/* Parse the parameters to a .SPACE directive; if CREATE_FLAG is nonzero,
|
|
then create a new space entry to hold the information specified
|
|
by the parameters to the .SPACE directive. */
|
|
|
|
static sd_chain_struct *
|
|
pa_parse_space_stmt (space_name, create_flag)
|
|
char *space_name;
|
|
int create_flag;
|
|
{
|
|
char *name, *ptemp, c;
|
|
char loadable, defined, private, sort;
|
|
int spnum;
|
|
asection *seg = NULL;
|
|
sd_chain_struct *space;
|
|
|
|
/* load default values */
|
|
spnum = 0;
|
|
sort = 0;
|
|
loadable = TRUE;
|
|
defined = TRUE;
|
|
private = FALSE;
|
|
if (strcasecmp (space_name, "$TEXT$") == 0)
|
|
{
|
|
seg = pa_def_spaces[0].segment;
|
|
sort = pa_def_spaces[0].sort;
|
|
}
|
|
else if (strcasecmp (space_name, "$PRIVATE$") == 0)
|
|
{
|
|
seg = pa_def_spaces[1].segment;
|
|
sort = pa_def_spaces[1].sort;
|
|
}
|
|
|
|
if (!is_end_of_statement ())
|
|
{
|
|
print_errors = FALSE;
|
|
ptemp = input_line_pointer + 1;
|
|
/* First see if the space was specified as a number rather than
|
|
as a name. According to the PA assembly manual the rest of
|
|
the line should be ignored. */
|
|
if ((spnum = pa_parse_number (&ptemp, 0)) >= 0)
|
|
input_line_pointer = ptemp;
|
|
else
|
|
{
|
|
while (!is_end_of_statement ())
|
|
{
|
|
input_line_pointer++;
|
|
name = input_line_pointer;
|
|
c = get_symbol_end ();
|
|
if ((strncasecmp (name, "SPNUM", 5) == 0))
|
|
{
|
|
*input_line_pointer = c;
|
|
input_line_pointer++;
|
|
spnum = get_absolute_expression ();
|
|
}
|
|
else if ((strncasecmp (name, "SORT", 4) == 0))
|
|
{
|
|
*input_line_pointer = c;
|
|
input_line_pointer++;
|
|
sort = get_absolute_expression ();
|
|
}
|
|
else if ((strncasecmp (name, "UNLOADABLE", 10) == 0))
|
|
{
|
|
*input_line_pointer = c;
|
|
loadable = FALSE;
|
|
}
|
|
else if ((strncasecmp (name, "NOTDEFINED", 10) == 0))
|
|
{
|
|
*input_line_pointer = c;
|
|
defined = FALSE;
|
|
}
|
|
else if ((strncasecmp (name, "PRIVATE", 7) == 0))
|
|
{
|
|
*input_line_pointer = c;
|
|
private = TRUE;
|
|
}
|
|
else
|
|
{
|
|
as_bad ("Invalid .SPACE argument");
|
|
*input_line_pointer = c;
|
|
if (!is_end_of_statement ())
|
|
input_line_pointer++;
|
|
}
|
|
}
|
|
}
|
|
print_errors = TRUE;
|
|
}
|
|
|
|
if (create_flag && seg == NULL)
|
|
seg = subseg_new (space_name, 0);
|
|
|
|
/* If create_flag is nonzero, then create the new space with
|
|
the attributes computed above. Else set the values in
|
|
an already existing space -- this can only happen for
|
|
the first occurence of a built-in space. */
|
|
if (create_flag)
|
|
space = create_new_space (space_name, spnum, loadable, defined,
|
|
private, sort, seg, 1);
|
|
else
|
|
{
|
|
space = is_defined_space (space_name);
|
|
SPACE_SPNUM (space) = spnum;
|
|
SPACE_LOADABLE (space) = loadable & 1;
|
|
SPACE_DEFINED (space) = defined & 1;
|
|
SPACE_USER_DEFINED (space) = 1;
|
|
SPACE_PRIVATE (space) = private & 1;
|
|
SPACE_SORT (space) = sort & 0xff;
|
|
space->sd_seg = seg;
|
|
}
|
|
|
|
#ifdef obj_set_section_attributes
|
|
obj_set_section_attributes (seg, defined, private, sort, spnum);
|
|
#endif
|
|
|
|
return space;
|
|
}
|
|
|
|
/* Adjust the frag's alignment according to the alignment needs
|
|
of the given subspace/subsegment. */
|
|
|
|
static void
|
|
pa_align_subseg (seg, subseg)
|
|
asection *seg;
|
|
subsegT subseg;
|
|
{
|
|
ssd_chain_struct *now_subspace;
|
|
int alignment;
|
|
int shift = 0;
|
|
|
|
now_subspace = pa_subsegment_to_subspace (seg, subseg);
|
|
if (now_subspace)
|
|
{
|
|
if (SUBSPACE_ALIGN (now_subspace) == 0)
|
|
alignment = now_subspace->ssd_last_align;
|
|
else if (now_subspace->ssd_last_align > SUBSPACE_ALIGN (now_subspace))
|
|
alignment = now_subspace->ssd_last_align;
|
|
else
|
|
alignment = SUBSPACE_ALIGN (now_subspace);
|
|
|
|
while ((1 << shift) < alignment)
|
|
shift++;
|
|
}
|
|
else
|
|
shift = bfd_get_section_alignment (stdoutput, seg);
|
|
|
|
frag_align (shift, 0);
|
|
}
|
|
|
|
/* Handle a .SPACE pseudo-op; this switches the current space to the
|
|
given space, creating the new space if necessary. */
|
|
|
|
static void
|
|
pa_space (unused)
|
|
int unused;
|
|
{
|
|
char *name, c, *space_name, *save_s;
|
|
int temp;
|
|
sd_chain_struct *sd_chain;
|
|
|
|
if (within_procedure)
|
|
{
|
|
as_bad ("Can\'t change spaces within a procedure definition. Ignored");
|
|
ignore_rest_of_line ();
|
|
}
|
|
else
|
|
{
|
|
/* Check for some of the predefined spaces. FIXME: most of the code
|
|
below is repeated several times, can we extract the common parts
|
|
and place them into a subroutine or something similar? */
|
|
if (strncasecmp (input_line_pointer, "$text$", 6) == 0)
|
|
{
|
|
input_line_pointer += 6;
|
|
sd_chain = is_defined_space ("$TEXT$");
|
|
if (sd_chain == NULL)
|
|
sd_chain = pa_parse_space_stmt ("$TEXT$", 1);
|
|
else if (SPACE_USER_DEFINED (sd_chain) == 0)
|
|
sd_chain = pa_parse_space_stmt ("$TEXT$", 0);
|
|
|
|
current_space = sd_chain;
|
|
|
|
/* No need to align if we are already there. */
|
|
if (now_seg != text_section)
|
|
pa_align_subseg (now_seg, now_subseg);
|
|
|
|
subseg_set (text_section, sd_chain->sd_last_subseg);
|
|
|
|
current_subspace
|
|
= pa_subsegment_to_subspace (text_section,
|
|
sd_chain->sd_last_subseg);
|
|
demand_empty_rest_of_line ();
|
|
return;
|
|
}
|
|
if (strncasecmp (input_line_pointer, "$private$", 9) == 0)
|
|
{
|
|
input_line_pointer += 9;
|
|
sd_chain = is_defined_space ("$PRIVATE$");
|
|
if (sd_chain == NULL)
|
|
sd_chain = pa_parse_space_stmt ("$PRIVATE$", 1);
|
|
else if (SPACE_USER_DEFINED (sd_chain) == 0)
|
|
sd_chain = pa_parse_space_stmt ("$PRIVATE$", 0);
|
|
|
|
current_space = sd_chain;
|
|
|
|
/* No need to align if we are already there. */
|
|
if (now_seg != data_section)
|
|
pa_align_subseg (now_seg, now_subseg);
|
|
|
|
subseg_set (data_section, sd_chain->sd_last_subseg);
|
|
current_subspace
|
|
= pa_subsegment_to_subspace (data_section,
|
|
sd_chain->sd_last_subseg);
|
|
demand_empty_rest_of_line ();
|
|
return;
|
|
}
|
|
if (!strncasecmp (input_line_pointer,
|
|
GDB_DEBUG_SPACE_NAME,
|
|
strlen (GDB_DEBUG_SPACE_NAME)))
|
|
{
|
|
input_line_pointer += strlen (GDB_DEBUG_SPACE_NAME);
|
|
sd_chain = is_defined_space (GDB_DEBUG_SPACE_NAME);
|
|
if (sd_chain == NULL)
|
|
sd_chain = pa_parse_space_stmt (GDB_DEBUG_SPACE_NAME, 1);
|
|
else if (SPACE_USER_DEFINED (sd_chain) == 0)
|
|
sd_chain = pa_parse_space_stmt (GDB_DEBUG_SPACE_NAME, 0);
|
|
|
|
current_space = sd_chain;
|
|
|
|
{
|
|
asection *gdb_section
|
|
= bfd_make_section_old_way (stdoutput, GDB_DEBUG_SPACE_NAME);
|
|
|
|
/* No need to align if we are already there. */
|
|
if (strcmp (segment_name (now_seg), GDB_DEBUG_SPACE_NAME) != 0)
|
|
pa_align_subseg (now_seg, now_subseg);
|
|
|
|
subseg_set (gdb_section, sd_chain->sd_last_subseg);
|
|
current_subspace
|
|
= pa_subsegment_to_subspace (gdb_section,
|
|
sd_chain->sd_last_subseg);
|
|
}
|
|
demand_empty_rest_of_line ();
|
|
return;
|
|
}
|
|
|
|
/* It could be a space specified by number. */
|
|
print_errors = 0;
|
|
save_s = input_line_pointer;
|
|
if ((temp = pa_parse_number (&input_line_pointer, 0)) >= 0)
|
|
{
|
|
if (sd_chain = pa_find_space_by_number (temp))
|
|
{
|
|
current_space = sd_chain;
|
|
|
|
if (now_seg != sd_chain->sd_seg)
|
|
pa_align_subseg (now_seg, now_subseg);
|
|
subseg_set (sd_chain->sd_seg, sd_chain->sd_last_subseg);
|
|
current_subspace
|
|
= pa_subsegment_to_subspace (sd_chain->sd_seg,
|
|
sd_chain->sd_last_subseg);
|
|
demand_empty_rest_of_line ();
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Not a number, attempt to create a new space. */
|
|
print_errors = 1;
|
|
input_line_pointer = save_s;
|
|
name = input_line_pointer;
|
|
c = get_symbol_end ();
|
|
space_name = xmalloc (strlen (name) + 1);
|
|
strcpy (space_name, name);
|
|
*input_line_pointer = c;
|
|
|
|
sd_chain = pa_parse_space_stmt (space_name, 1);
|
|
current_space = sd_chain;
|
|
|
|
if (now_seg != sd_chain->sd_seg)
|
|
pa_align_subseg (now_seg, now_subseg);
|
|
subseg_set (sd_chain->sd_seg, sd_chain->sd_last_subseg);
|
|
current_subspace = pa_subsegment_to_subspace (sd_chain->sd_seg,
|
|
sd_chain->sd_last_subseg);
|
|
demand_empty_rest_of_line ();
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Switch to a new space. (I think). FIXME. */
|
|
|
|
static void
|
|
pa_spnum (unused)
|
|
int unused;
|
|
{
|
|
char *name;
|
|
char c;
|
|
char *p;
|
|
sd_chain_struct *space;
|
|
|
|
name = input_line_pointer;
|
|
c = get_symbol_end ();
|
|
space = is_defined_space (name);
|
|
if (space)
|
|
{
|
|
p = frag_more (4);
|
|
md_number_to_chars (p, SPACE_SPNUM (space), 4);
|
|
}
|
|
else
|
|
as_warn ("Undefined space: '%s' Assuming space number = 0.", name);
|
|
|
|
*input_line_pointer = c;
|
|
demand_empty_rest_of_line ();
|
|
return;
|
|
}
|
|
|
|
/* If VALUE is an exact power of two between zero and 2^31, then
|
|
return log2 (VALUE). Else return -1. */
|
|
|
|
static int
|
|
log2 (value)
|
|
int value;
|
|
{
|
|
int shift = 0;
|
|
|
|
while ((1 << shift) != value && shift < 32)
|
|
shift++;
|
|
|
|
if (shift >= 32)
|
|
return -1;
|
|
else
|
|
return shift;
|
|
}
|
|
|
|
/* Handle a .SUBSPACE pseudo-op; this switches the current subspace to the
|
|
given subspace, creating the new subspace if necessary.
|
|
|
|
FIXME. Should mirror pa_space more closely, in particular how
|
|
they're broken up into subroutines. */
|
|
|
|
static void
|
|
pa_subspace (unused)
|
|
int unused;
|
|
{
|
|
char *name, *ss_name, *alias, c;
|
|
char loadable, code_only, common, dup_common, zero, sort;
|
|
int i, access, space_index, alignment, quadrant, applicable, flags;
|
|
sd_chain_struct *space;
|
|
ssd_chain_struct *ssd;
|
|
asection *section;
|
|
|
|
if (within_procedure)
|
|
{
|
|
as_bad ("Can\'t change subspaces within a procedure definition. Ignored");
|
|
ignore_rest_of_line ();
|
|
}
|
|
else
|
|
{
|
|
name = input_line_pointer;
|
|
c = get_symbol_end ();
|
|
ss_name = xmalloc (strlen (name) + 1);
|
|
strcpy (ss_name, name);
|
|
*input_line_pointer = c;
|
|
|
|
/* Load default values. */
|
|
sort = 0;
|
|
access = 0x7f;
|
|
loadable = 1;
|
|
common = 0;
|
|
dup_common = 0;
|
|
code_only = 0;
|
|
zero = 0;
|
|
space_index = ~0;
|
|
alignment = 0;
|
|
quadrant = 0;
|
|
alias = NULL;
|
|
|
|
space = current_space;
|
|
ssd = is_defined_subspace (ss_name);
|
|
/* Allow user to override the builtin attributes of subspaces. But
|
|
only allow the attributes to be changed once! */
|
|
if (ssd && SUBSPACE_DEFINED (ssd))
|
|
{
|
|
subseg_set (ssd->ssd_seg, ssd->ssd_subseg);
|
|
if (!is_end_of_statement ())
|
|
as_warn ("Parameters of an existing subspace can\'t be modified");
|
|
demand_empty_rest_of_line ();
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
/* A new subspace. Load default values if it matches one of
|
|
the builtin subspaces. */
|
|
i = 0;
|
|
while (pa_def_subspaces[i].name)
|
|
{
|
|
if (strcasecmp (pa_def_subspaces[i].name, ss_name) == 0)
|
|
{
|
|
loadable = pa_def_subspaces[i].loadable;
|
|
common = pa_def_subspaces[i].common;
|
|
dup_common = pa_def_subspaces[i].dup_common;
|
|
code_only = pa_def_subspaces[i].code_only;
|
|
zero = pa_def_subspaces[i].zero;
|
|
space_index = pa_def_subspaces[i].space_index;
|
|
alignment = pa_def_subspaces[i].alignment;
|
|
quadrant = pa_def_subspaces[i].quadrant;
|
|
access = pa_def_subspaces[i].access;
|
|
sort = pa_def_subspaces[i].sort;
|
|
if (USE_ALIASES && pa_def_subspaces[i].alias)
|
|
alias = pa_def_subspaces[i].alias;
|
|
break;
|
|
}
|
|
i++;
|
|
}
|
|
}
|
|
|
|
/* We should be working with a new subspace now. Fill in
|
|
any information as specified by the user. */
|
|
if (!is_end_of_statement ())
|
|
{
|
|
input_line_pointer++;
|
|
while (!is_end_of_statement ())
|
|
{
|
|
name = input_line_pointer;
|
|
c = get_symbol_end ();
|
|
if ((strncasecmp (name, "QUAD", 4) == 0))
|
|
{
|
|
*input_line_pointer = c;
|
|
input_line_pointer++;
|
|
quadrant = get_absolute_expression ();
|
|
}
|
|
else if ((strncasecmp (name, "ALIGN", 5) == 0))
|
|
{
|
|
*input_line_pointer = c;
|
|
input_line_pointer++;
|
|
alignment = get_absolute_expression ();
|
|
if (log2 (alignment) == -1)
|
|
{
|
|
as_bad ("Alignment must be a power of 2");
|
|
alignment = 1;
|
|
}
|
|
}
|
|
else if ((strncasecmp (name, "ACCESS", 6) == 0))
|
|
{
|
|
*input_line_pointer = c;
|
|
input_line_pointer++;
|
|
access = get_absolute_expression ();
|
|
}
|
|
else if ((strncasecmp (name, "SORT", 4) == 0))
|
|
{
|
|
*input_line_pointer = c;
|
|
input_line_pointer++;
|
|
sort = get_absolute_expression ();
|
|
}
|
|
else if ((strncasecmp (name, "CODE_ONLY", 9) == 0))
|
|
{
|
|
*input_line_pointer = c;
|
|
code_only = 1;
|
|
}
|
|
else if ((strncasecmp (name, "UNLOADABLE", 10) == 0))
|
|
{
|
|
*input_line_pointer = c;
|
|
loadable = 0;
|
|
}
|
|
else if ((strncasecmp (name, "COMMON", 6) == 0))
|
|
{
|
|
*input_line_pointer = c;
|
|
common = 1;
|
|
}
|
|
else if ((strncasecmp (name, "DUP_COMM", 8) == 0))
|
|
{
|
|
*input_line_pointer = c;
|
|
dup_common = 1;
|
|
}
|
|
else if ((strncasecmp (name, "ZERO", 4) == 0))
|
|
{
|
|
*input_line_pointer = c;
|
|
zero = 1;
|
|
}
|
|
else if ((strncasecmp (name, "FIRST", 5) == 0))
|
|
as_bad ("FIRST not supported as a .SUBSPACE argument");
|
|
else
|
|
as_bad ("Invalid .SUBSPACE argument");
|
|
if (!is_end_of_statement ())
|
|
input_line_pointer++;
|
|
}
|
|
}
|
|
|
|
/* Compute a reasonable set of BFD flags based on the information
|
|
in the .subspace directive. */
|
|
applicable = bfd_applicable_section_flags (stdoutput);
|
|
flags = 0;
|
|
if (loadable)
|
|
flags |= (SEC_ALLOC | SEC_LOAD);
|
|
if (code_only)
|
|
flags |= SEC_CODE;
|
|
if (common || dup_common)
|
|
flags |= SEC_IS_COMMON;
|
|
|
|
/* This is a zero-filled subspace (eg BSS). */
|
|
if (zero)
|
|
flags &= ~SEC_LOAD;
|
|
|
|
flags |= SEC_RELOC | SEC_HAS_CONTENTS;
|
|
applicable &= flags;
|
|
|
|
/* If this is an existing subspace, then we want to use the
|
|
segment already associated with the subspace.
|
|
|
|
FIXME NOW! ELF BFD doesn't appear to be ready to deal with
|
|
lots of sections. It might be a problem in the PA ELF
|
|
code, I do not know yet. For now avoid creating anything
|
|
but the "standard" sections for ELF. */
|
|
if (ssd)
|
|
section = ssd->ssd_seg;
|
|
else if (alias)
|
|
section = subseg_new (alias, 0);
|
|
else if (!alias && USE_ALIASES)
|
|
{
|
|
as_warn ("Ignoring subspace decl due to ELF BFD bugs.");
|
|
demand_empty_rest_of_line ();
|
|
return;
|
|
}
|
|
else
|
|
section = subseg_new (ss_name, 0);
|
|
|
|
/* Now set the flags. */
|
|
bfd_set_section_flags (stdoutput, section, applicable);
|
|
|
|
/* Record any alignment request for this section. */
|
|
record_alignment (section, log2 (alignment));
|
|
|
|
/* Set the starting offset for this section. */
|
|
bfd_set_section_vma (stdoutput, section,
|
|
pa_subspace_start (space, quadrant));
|
|
|
|
/* Now that all the flags are set, update an existing subspace,
|
|
or create a new one. */
|
|
if (ssd)
|
|
|
|
current_subspace = update_subspace (space, ss_name, loadable,
|
|
code_only, common, dup_common,
|
|
sort, zero, access, space_index,
|
|
alignment, quadrant,
|
|
section);
|
|
else
|
|
current_subspace = create_new_subspace (space, ss_name, loadable,
|
|
code_only, common,
|
|
dup_common, zero, sort,
|
|
access, space_index,
|
|
alignment, quadrant, section);
|
|
|
|
demand_empty_rest_of_line ();
|
|
current_subspace->ssd_seg = section;
|
|
subseg_set (current_subspace->ssd_seg, current_subspace->ssd_subseg);
|
|
}
|
|
SUBSPACE_DEFINED (current_subspace) = 1;
|
|
return;
|
|
}
|
|
|
|
|
|
/* Create default space and subspace dictionaries. */
|
|
|
|
static void
|
|
pa_spaces_begin ()
|
|
{
|
|
int i;
|
|
|
|
space_dict_root = NULL;
|
|
space_dict_last = NULL;
|
|
|
|
i = 0;
|
|
while (pa_def_spaces[i].name)
|
|
{
|
|
char *name;
|
|
|
|
/* Pick the right name to use for the new section. */
|
|
if (pa_def_spaces[i].alias && USE_ALIASES)
|
|
name = pa_def_spaces[i].alias;
|
|
else
|
|
name = pa_def_spaces[i].name;
|
|
|
|
pa_def_spaces[i].segment = subseg_new (name, 0);
|
|
create_new_space (pa_def_spaces[i].name, pa_def_spaces[i].spnum,
|
|
pa_def_spaces[i].loadable, pa_def_spaces[i].defined,
|
|
pa_def_spaces[i].private, pa_def_spaces[i].sort,
|
|
pa_def_spaces[i].segment, 0);
|
|
i++;
|
|
}
|
|
|
|
i = 0;
|
|
while (pa_def_subspaces[i].name)
|
|
{
|
|
char *name;
|
|
int applicable, subsegment;
|
|
asection *segment = NULL;
|
|
sd_chain_struct *space;
|
|
|
|
/* Pick the right name for the new section and pick the right
|
|
subsegment number. */
|
|
if (pa_def_subspaces[i].alias && USE_ALIASES)
|
|
{
|
|
name = pa_def_subspaces[i].alias;
|
|
subsegment = pa_def_subspaces[i].subsegment;
|
|
}
|
|
else
|
|
{
|
|
name = pa_def_subspaces[i].name;
|
|
subsegment = 0;
|
|
}
|
|
|
|
/* Create the new section. */
|
|
segment = subseg_new (name, subsegment);
|
|
|
|
|
|
/* For SOM we want to replace the standard .text, .data, and .bss
|
|
sections with our own. */
|
|
if (!strcmp (pa_def_subspaces[i].name, "$CODE$") && !USE_ALIASES)
|
|
{
|
|
text_section = segment;
|
|
applicable = bfd_applicable_section_flags (stdoutput);
|
|
bfd_set_section_flags (stdoutput, text_section,
|
|
applicable & (SEC_ALLOC | SEC_LOAD
|
|
| SEC_RELOC | SEC_CODE
|
|
| SEC_READONLY
|
|
| SEC_HAS_CONTENTS));
|
|
}
|
|
else if (!strcmp (pa_def_subspaces[i].name, "$DATA$") && !USE_ALIASES)
|
|
{
|
|
data_section = segment;
|
|
applicable = bfd_applicable_section_flags (stdoutput);
|
|
bfd_set_section_flags (stdoutput, data_section,
|
|
applicable & (SEC_ALLOC | SEC_LOAD
|
|
| SEC_RELOC
|
|
| SEC_HAS_CONTENTS));
|
|
|
|
|
|
}
|
|
else if (!strcmp (pa_def_subspaces[i].name, "$BSS$") && !USE_ALIASES)
|
|
{
|
|
bss_section = segment;
|
|
applicable = bfd_applicable_section_flags (stdoutput);
|
|
bfd_set_section_flags (stdoutput, bss_section,
|
|
applicable & SEC_ALLOC);
|
|
}
|
|
|
|
/* Find the space associated with this subspace. */
|
|
space = pa_segment_to_space (pa_def_spaces[pa_def_subspaces[i].
|
|
def_space_index].segment);
|
|
if (space == NULL)
|
|
{
|
|
as_fatal ("Internal error: Unable to find containing space for %s.",
|
|
pa_def_subspaces[i].name);
|
|
}
|
|
|
|
create_new_subspace (space, name,
|
|
pa_def_subspaces[i].loadable,
|
|
pa_def_subspaces[i].code_only,
|
|
pa_def_subspaces[i].common,
|
|
pa_def_subspaces[i].dup_common,
|
|
pa_def_subspaces[i].zero,
|
|
pa_def_subspaces[i].sort,
|
|
pa_def_subspaces[i].access,
|
|
pa_def_subspaces[i].space_index,
|
|
pa_def_subspaces[i].alignment,
|
|
pa_def_subspaces[i].quadrant,
|
|
segment);
|
|
i++;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/* Create a new space NAME, with the appropriate flags as defined
|
|
by the given parameters.
|
|
|
|
Add the new space to the space dictionary chain in numerical
|
|
order as defined by the SORT entries. */
|
|
|
|
static sd_chain_struct *
|
|
create_new_space (name, spnum, loadable, defined, private,
|
|
sort, seg, user_defined)
|
|
char *name;
|
|
int spnum;
|
|
char loadable;
|
|
char defined;
|
|
char private;
|
|
char sort;
|
|
asection *seg;
|
|
int user_defined;
|
|
{
|
|
sd_chain_struct *chain_entry;
|
|
|
|
chain_entry = (sd_chain_struct *) xmalloc (sizeof (sd_chain_struct));
|
|
if (!chain_entry)
|
|
as_fatal ("Out of memory: could not allocate new space chain entry: %s\n",
|
|
name);
|
|
|
|
SPACE_NAME (chain_entry) = (char *) xmalloc (strlen (name) + 1);
|
|
strcpy (SPACE_NAME (chain_entry), name);
|
|
SPACE_NAME_INDEX (chain_entry) = 0;
|
|
SPACE_LOADABLE (chain_entry) = loadable;
|
|
SPACE_DEFINED (chain_entry) = defined;
|
|
SPACE_USER_DEFINED (chain_entry) = user_defined;
|
|
SPACE_PRIVATE (chain_entry) = private;
|
|
SPACE_SPNUM (chain_entry) = spnum;
|
|
SPACE_SORT (chain_entry) = sort;
|
|
|
|
chain_entry->sd_seg = seg;
|
|
chain_entry->sd_last_subseg = -1;
|
|
chain_entry->sd_next = NULL;
|
|
|
|
/* Find spot for the new space based on its sort key. */
|
|
if (!space_dict_last)
|
|
space_dict_last = chain_entry;
|
|
|
|
if (space_dict_root == NULL)
|
|
space_dict_root = chain_entry;
|
|
else
|
|
{
|
|
sd_chain_struct *chain_pointer;
|
|
sd_chain_struct *prev_chain_pointer;
|
|
|
|
chain_pointer = space_dict_root;
|
|
prev_chain_pointer = NULL;
|
|
|
|
while (chain_pointer)
|
|
{
|
|
if (SPACE_SORT (chain_pointer) <= SPACE_SORT (chain_entry))
|
|
{
|
|
prev_chain_pointer = chain_pointer;
|
|
chain_pointer = chain_pointer->sd_next;
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
|
|
/* At this point we've found the correct place to add the new
|
|
entry. So add it and update the linked lists as appropriate. */
|
|
if (prev_chain_pointer)
|
|
{
|
|
chain_entry->sd_next = chain_pointer;
|
|
prev_chain_pointer->sd_next = chain_entry;
|
|
}
|
|
else
|
|
{
|
|
space_dict_root = chain_entry;
|
|
chain_entry->sd_next = chain_pointer;
|
|
}
|
|
|
|
if (chain_entry->sd_next == NULL)
|
|
space_dict_last = chain_entry;
|
|
}
|
|
|
|
/* This is here to catch predefined spaces which do not get
|
|
modified by the user's input. Another call is found at
|
|
the bottom of pa_parse_space_stmt to handle cases where
|
|
the user modifies a predefined space. */
|
|
#ifdef obj_set_section_attributes
|
|
obj_set_section_attributes (seg, defined, private, sort, spnum);
|
|
#endif
|
|
|
|
return chain_entry;
|
|
}
|
|
|
|
/* Create a new subspace NAME, with the appropriate flags as defined
|
|
by the given parameters.
|
|
|
|
Add the new subspace to the subspace dictionary chain in numerical
|
|
order as defined by the SORT entries. */
|
|
|
|
static ssd_chain_struct *
|
|
create_new_subspace (space, name, loadable, code_only, common,
|
|
dup_common, is_zero, sort, access, space_index,
|
|
alignment, quadrant, seg)
|
|
sd_chain_struct *space;
|
|
char *name;
|
|
char loadable, code_only, common, dup_common, is_zero;
|
|
char sort;
|
|
int access;
|
|
int space_index;
|
|
int alignment;
|
|
int quadrant;
|
|
asection *seg;
|
|
{
|
|
ssd_chain_struct *chain_entry;
|
|
|
|
chain_entry = (ssd_chain_struct *) xmalloc (sizeof (ssd_chain_struct));
|
|
if (!chain_entry)
|
|
as_fatal ("Out of memory: could not allocate new subspace chain entry: %s\n", name);
|
|
|
|
SUBSPACE_NAME (chain_entry) = (char *) xmalloc (strlen (name) + 1);
|
|
strcpy (SUBSPACE_NAME (chain_entry), name);
|
|
|
|
SUBSPACE_ACCESS (chain_entry) = access;
|
|
SUBSPACE_LOADABLE (chain_entry) = loadable;
|
|
SUBSPACE_COMMON (chain_entry) = common;
|
|
SUBSPACE_DUP_COMM (chain_entry) = dup_common;
|
|
SUBSPACE_SORT (chain_entry) = sort;
|
|
SUBSPACE_CODE_ONLY (chain_entry) = code_only;
|
|
SUBSPACE_ALIGN (chain_entry) = alignment;
|
|
SUBSPACE_QUADRANT (chain_entry) = quadrant;
|
|
SUBSPACE_SUBSPACE_START (chain_entry) = pa_subspace_start (space, quadrant);
|
|
SUBSPACE_SPACE_INDEX (chain_entry) = space_index;
|
|
SUBSPACE_ZERO (chain_entry) = is_zero;
|
|
|
|
/* Initialize subspace_defined. When we hit a .subspace directive
|
|
we'll set it to 1 which "locks-in" the subspace attributes. */
|
|
SUBSPACE_DEFINED (chain_entry) = 0;
|
|
|
|
chain_entry->ssd_subseg = USE_ALIASES ? pa_next_subseg (space) : 0;
|
|
chain_entry->ssd_seg = seg;
|
|
chain_entry->ssd_last_align = 1;
|
|
chain_entry->ssd_next = NULL;
|
|
|
|
/* Find spot for the new subspace based on its sort key. */
|
|
if (space->sd_subspaces == NULL)
|
|
space->sd_subspaces = chain_entry;
|
|
else
|
|
{
|
|
ssd_chain_struct *chain_pointer;
|
|
ssd_chain_struct *prev_chain_pointer;
|
|
|
|
chain_pointer = space->sd_subspaces;
|
|
prev_chain_pointer = NULL;
|
|
|
|
while (chain_pointer)
|
|
{
|
|
if (SUBSPACE_SORT (chain_pointer) <= SUBSPACE_SORT (chain_entry))
|
|
{
|
|
prev_chain_pointer = chain_pointer;
|
|
chain_pointer = chain_pointer->ssd_next;
|
|
}
|
|
else
|
|
break;
|
|
|
|
}
|
|
|
|
/* Now we have somewhere to put the new entry. Insert it and update
|
|
the links. */
|
|
if (prev_chain_pointer)
|
|
{
|
|
chain_entry->ssd_next = chain_pointer;
|
|
prev_chain_pointer->ssd_next = chain_entry;
|
|
}
|
|
else
|
|
{
|
|
space->sd_subspaces = chain_entry;
|
|
chain_entry->ssd_next = chain_pointer;
|
|
}
|
|
}
|
|
|
|
#ifdef obj_set_subsection_attributes
|
|
obj_set_subsection_attributes (seg, space->sd_seg, access,
|
|
sort, quadrant);
|
|
#endif
|
|
|
|
return chain_entry;
|
|
|
|
}
|
|
|
|
/* Update the information for the given subspace based upon the
|
|
various arguments. Return the modified subspace chain entry. */
|
|
|
|
static ssd_chain_struct *
|
|
update_subspace (space, name, loadable, code_only, common, dup_common, sort,
|
|
zero, access, space_index, alignment, quadrant, section)
|
|
sd_chain_struct *space;
|
|
char *name;
|
|
char loadable;
|
|
char code_only;
|
|
char common;
|
|
char dup_common;
|
|
char zero;
|
|
char sort;
|
|
int access;
|
|
int space_index;
|
|
int alignment;
|
|
int quadrant;
|
|
asection *section;
|
|
{
|
|
ssd_chain_struct *chain_entry;
|
|
|
|
if ((chain_entry = is_defined_subspace (name)))
|
|
{
|
|
SUBSPACE_ACCESS (chain_entry) = access;
|
|
SUBSPACE_LOADABLE (chain_entry) = loadable;
|
|
SUBSPACE_COMMON (chain_entry) = common;
|
|
SUBSPACE_DUP_COMM (chain_entry) = dup_common;
|
|
SUBSPACE_CODE_ONLY (chain_entry) = 1;
|
|
SUBSPACE_SORT (chain_entry) = sort;
|
|
SUBSPACE_ALIGN (chain_entry) = alignment;
|
|
SUBSPACE_QUADRANT (chain_entry) = quadrant;
|
|
SUBSPACE_SPACE_INDEX (chain_entry) = space_index;
|
|
SUBSPACE_ZERO (chain_entry) = zero;
|
|
}
|
|
else
|
|
chain_entry = NULL;
|
|
|
|
#ifdef obj_set_subsection_attributes
|
|
obj_set_subsection_attributes (section, space->sd_seg, access,
|
|
sort, quadrant);
|
|
#endif
|
|
|
|
return chain_entry;
|
|
|
|
}
|
|
|
|
/* Return the space chain entry for the space with the name NAME or
|
|
NULL if no such space exists. */
|
|
|
|
static sd_chain_struct *
|
|
is_defined_space (name)
|
|
char *name;
|
|
{
|
|
sd_chain_struct *chain_pointer;
|
|
|
|
for (chain_pointer = space_dict_root;
|
|
chain_pointer;
|
|
chain_pointer = chain_pointer->sd_next)
|
|
{
|
|
if (strcmp (SPACE_NAME (chain_pointer), name) == 0)
|
|
return chain_pointer;
|
|
}
|
|
|
|
/* No mapping from segment to space was found. Return NULL. */
|
|
return NULL;
|
|
}
|
|
|
|
/* Find and return the space associated with the given seg. If no mapping
|
|
from the given seg to a space is found, then return NULL.
|
|
|
|
Unlike subspaces, the number of spaces is not expected to grow much,
|
|
so a linear exhaustive search is OK here. */
|
|
|
|
static sd_chain_struct *
|
|
pa_segment_to_space (seg)
|
|
asection *seg;
|
|
{
|
|
sd_chain_struct *space_chain;
|
|
|
|
/* Walk through each space looking for the correct mapping. */
|
|
for (space_chain = space_dict_root;
|
|
space_chain;
|
|
space_chain = space_chain->sd_next)
|
|
{
|
|
if (space_chain->sd_seg == seg)
|
|
return space_chain;
|
|
}
|
|
|
|
/* Mapping was not found. Return NULL. */
|
|
return NULL;
|
|
}
|
|
|
|
/* Return the space chain entry for the subspace with the name NAME or
|
|
NULL if no such subspace exists.
|
|
|
|
Uses a linear search through all the spaces and subspaces, this may
|
|
not be appropriate if we ever being placing each function in its
|
|
own subspace. */
|
|
|
|
static ssd_chain_struct *
|
|
is_defined_subspace (name)
|
|
char *name;
|
|
{
|
|
sd_chain_struct *space_chain;
|
|
ssd_chain_struct *subspace_chain;
|
|
|
|
/* Walk through each space. */
|
|
for (space_chain = space_dict_root;
|
|
space_chain;
|
|
space_chain = space_chain->sd_next)
|
|
{
|
|
/* Walk through each subspace looking for a name which matches. */
|
|
for (subspace_chain = space_chain->sd_subspaces;
|
|
subspace_chain;
|
|
subspace_chain = subspace_chain->ssd_next)
|
|
if (strcmp (SUBSPACE_NAME (subspace_chain), name) == 0)
|
|
return subspace_chain;
|
|
}
|
|
|
|
/* Subspace wasn't found. Return NULL. */
|
|
return NULL;
|
|
}
|
|
|
|
/* Find and return the subspace associated with the given seg. If no
|
|
mapping from the given seg to a subspace is found, then return NULL.
|
|
|
|
If we ever put each procedure/function within its own subspace
|
|
(to make life easier on the compiler and linker), then this will have
|
|
to become more efficient. */
|
|
|
|
static ssd_chain_struct *
|
|
pa_subsegment_to_subspace (seg, subseg)
|
|
asection *seg;
|
|
subsegT subseg;
|
|
{
|
|
sd_chain_struct *space_chain;
|
|
ssd_chain_struct *subspace_chain;
|
|
|
|
/* Walk through each space. */
|
|
for (space_chain = space_dict_root;
|
|
space_chain;
|
|
space_chain = space_chain->sd_next)
|
|
{
|
|
if (space_chain->sd_seg == seg)
|
|
{
|
|
/* Walk through each subspace within each space looking for
|
|
the correct mapping. */
|
|
for (subspace_chain = space_chain->sd_subspaces;
|
|
subspace_chain;
|
|
subspace_chain = subspace_chain->ssd_next)
|
|
if (subspace_chain->ssd_subseg == (int) subseg)
|
|
return subspace_chain;
|
|
}
|
|
}
|
|
|
|
/* No mapping from subsegment to subspace found. Return NULL. */
|
|
return NULL;
|
|
}
|
|
|
|
/* Given a number, try and find a space with the name number.
|
|
|
|
Return a pointer to a space dictionary chain entry for the space
|
|
that was found or NULL on failure. */
|
|
|
|
static sd_chain_struct *
|
|
pa_find_space_by_number (number)
|
|
int number;
|
|
{
|
|
sd_chain_struct *space_chain;
|
|
|
|
for (space_chain = space_dict_root;
|
|
space_chain;
|
|
space_chain = space_chain->sd_next)
|
|
{
|
|
if (SPACE_SPNUM (space_chain) == number)
|
|
return space_chain;
|
|
}
|
|
|
|
/* No appropriate space found. Return NULL. */
|
|
return NULL;
|
|
}
|
|
|
|
/* Return the starting address for the given subspace. If the starting
|
|
address is unknown then return zero. */
|
|
|
|
static unsigned int
|
|
pa_subspace_start (space, quadrant)
|
|
sd_chain_struct *space;
|
|
int quadrant;
|
|
{
|
|
/* FIXME. Assumes everyone puts read/write data at 0x4000000, this
|
|
is not correct for the PA OSF1 port. */
|
|
if ((strcasecmp (SPACE_NAME (space), "$PRIVATE$") == 0) && quadrant == 1)
|
|
return 0x40000000;
|
|
else if (space->sd_seg == data_section && quadrant == 1)
|
|
return 0x40000000;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/* FIXME. Needs documentation. */
|
|
static int
|
|
pa_next_subseg (space)
|
|
sd_chain_struct *space;
|
|
{
|
|
|
|
space->sd_last_subseg++;
|
|
return space->sd_last_subseg;
|
|
}
|
|
|
|
/* Helper function for pa_stringer. Used to find the end of
|
|
a string. */
|
|
|
|
static unsigned int
|
|
pa_stringer_aux (s)
|
|
char *s;
|
|
{
|
|
unsigned int c = *s & CHAR_MASK;
|
|
switch (c)
|
|
{
|
|
case '\"':
|
|
c = NOT_A_CHAR;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return c;
|
|
}
|
|
|
|
/* Handle a .STRING type pseudo-op. */
|
|
|
|
static void
|
|
pa_stringer (append_zero)
|
|
int append_zero;
|
|
{
|
|
char *s, num_buf[4];
|
|
unsigned int c;
|
|
int i;
|
|
|
|
/* Preprocess the string to handle PA-specific escape sequences.
|
|
For example, \xDD where DD is a hexidecimal number should be
|
|
changed to \OOO where OOO is an octal number. */
|
|
|
|
/* Skip the opening quote. */
|
|
s = input_line_pointer + 1;
|
|
|
|
while (is_a_char (c = pa_stringer_aux (s++)))
|
|
{
|
|
if (c == '\\')
|
|
{
|
|
c = *s;
|
|
switch (c)
|
|
{
|
|
/* Handle \x<num>. */
|
|
case 'x':
|
|
{
|
|
unsigned int number;
|
|
int num_digit;
|
|
char dg;
|
|
char *s_start = s;
|
|
|
|
/* Get pas the 'x'. */
|
|
s++;
|
|
for (num_digit = 0, number = 0, dg = *s;
|
|
num_digit < 2
|
|
&& (isdigit (dg) || (dg >= 'a' && dg <= 'f')
|
|
|| (dg >= 'A' && dg <= 'F'));
|
|
num_digit++)
|
|
{
|
|
if (isdigit (dg))
|
|
number = number * 16 + dg - '0';
|
|
else if (dg >= 'a' && dg <= 'f')
|
|
number = number * 16 + dg - 'a' + 10;
|
|
else
|
|
number = number * 16 + dg - 'A' + 10;
|
|
|
|
s++;
|
|
dg = *s;
|
|
}
|
|
if (num_digit > 0)
|
|
{
|
|
switch (num_digit)
|
|
{
|
|
case 1:
|
|
sprintf (num_buf, "%02o", number);
|
|
break;
|
|
case 2:
|
|
sprintf (num_buf, "%03o", number);
|
|
break;
|
|
}
|
|
for (i = 0; i <= num_digit; i++)
|
|
s_start[i] = num_buf[i];
|
|
}
|
|
break;
|
|
}
|
|
/* This might be a "\"", skip over the escaped char. */
|
|
default:
|
|
s++;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
stringer (append_zero);
|
|
pa_undefine_label ();
|
|
}
|
|
|
|
/* Handle a .VERSION pseudo-op. */
|
|
|
|
static void
|
|
pa_version (unused)
|
|
int unused;
|
|
{
|
|
obj_version (0);
|
|
pa_undefine_label ();
|
|
}
|
|
|
|
/* Just like a normal cons, but when finished we have to undefine
|
|
the latest space label. */
|
|
|
|
static void
|
|
pa_cons (nbytes)
|
|
int nbytes;
|
|
{
|
|
cons (nbytes);
|
|
pa_undefine_label ();
|
|
}
|
|
|
|
/* Switch to the data space. As usual delete our label. */
|
|
|
|
static void
|
|
pa_data (unused)
|
|
int unused;
|
|
{
|
|
s_data (0);
|
|
pa_undefine_label ();
|
|
}
|
|
|
|
/* FIXME. What's the purpose of this pseudo-op? */
|
|
|
|
static void
|
|
pa_desc (unused)
|
|
int unused;
|
|
{
|
|
pa_undefine_label ();
|
|
}
|
|
|
|
/* Like float_cons, but we need to undefine our label. */
|
|
|
|
static void
|
|
pa_float_cons (float_type)
|
|
int float_type;
|
|
{
|
|
float_cons (float_type);
|
|
pa_undefine_label ();
|
|
}
|
|
|
|
/* Like s_fill, but delete our label when finished. */
|
|
|
|
static void
|
|
pa_fill (unused)
|
|
int unused;
|
|
{
|
|
s_fill (0);
|
|
pa_undefine_label ();
|
|
}
|
|
|
|
/* Like lcomm, but delete our label when finished. */
|
|
|
|
static void
|
|
pa_lcomm (needs_align)
|
|
int needs_align;
|
|
{
|
|
s_lcomm (needs_align);
|
|
pa_undefine_label ();
|
|
}
|
|
|
|
/* Like lsym, but delete our label when finished. */
|
|
|
|
static void
|
|
pa_lsym (unused)
|
|
int unused;
|
|
{
|
|
s_lsym (0);
|
|
pa_undefine_label ();
|
|
}
|
|
|
|
/* Switch to the text space. Like s_text, but delete our
|
|
label when finished. */
|
|
static void
|
|
pa_text (unused)
|
|
int unused;
|
|
{
|
|
s_text (0);
|
|
pa_undefine_label ();
|
|
}
|
|
|
|
/* On the PA relocations which involve function symbols must not be
|
|
adjusted. This so that the linker can know when/how to create argument
|
|
relocation stubs for indirect calls and calls to static functions.
|
|
|
|
FIXME. Also reject R_HPPA relocations which are 32 bits
|
|
wide. Helps with code lables in arrays for SOM. (SOM BFD code
|
|
needs to generate relocations to push the addend and symbol value
|
|
onto the stack, add them, then pop the value off the stack and
|
|
use it in a relocation -- yuk. */
|
|
|
|
int
|
|
hppa_fix_adjustable (fixp)
|
|
fixS *fixp;
|
|
{
|
|
struct hppa_fix_struct *hppa_fix;
|
|
|
|
hppa_fix = fixp->tc_fix_data;
|
|
|
|
if (fixp->fx_r_type == R_HPPA && hppa_fix->fx_r_format == 32)
|
|
return 0;
|
|
|
|
if (fixp->fx_addsy == 0
|
|
|| (fixp->fx_addsy->bsym->flags & BSF_FUNCTION) == 0)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Now for some ELF specific code. FIXME. */
|
|
#ifdef OBJ_ELF
|
|
static symext_chainS *symext_rootP;
|
|
static symext_chainS *symext_lastP;
|
|
|
|
/* Do any symbol processing requested by the target-cpu or target-format. */
|
|
|
|
void
|
|
hppa_tc_symbol (abfd, symbolP, sym_idx)
|
|
bfd *abfd;
|
|
elf_symbol_type *symbolP;
|
|
int sym_idx;
|
|
{
|
|
symext_chainS *symextP;
|
|
unsigned int arg_reloc;
|
|
|
|
/* Only functions can have argument relocations. */
|
|
if (!(symbolP->symbol.flags & BSF_FUNCTION))
|
|
return;
|
|
|
|
arg_reloc = symbolP->tc_data.hppa_arg_reloc;
|
|
|
|
/* If there are no argument relocation bits, then no relocation is
|
|
necessary. Do not add this to the symextn section. */
|
|
if (arg_reloc == 0)
|
|
return;
|
|
|
|
symextP = (symext_chainS *) bfd_alloc (abfd, sizeof (symext_chainS) * 2);
|
|
|
|
symextP[0].entry = ELF32_HPPA_SX_WORD (HPPA_SXT_SYMNDX, sym_idx);
|
|
symextP[0].next = &symextP[1];
|
|
|
|
symextP[1].entry = ELF32_HPPA_SX_WORD (HPPA_SXT_ARG_RELOC, arg_reloc);
|
|
symextP[1].next = NULL;
|
|
|
|
if (symext_rootP == NULL)
|
|
{
|
|
symext_rootP = &symextP[0];
|
|
symext_lastP = &symextP[1];
|
|
}
|
|
else
|
|
{
|
|
symext_lastP->next = &symextP[0];
|
|
symext_lastP = &symextP[1];
|
|
}
|
|
}
|
|
|
|
/* Make sections needed by the target cpu and/or target format. */
|
|
void
|
|
hppa_tc_make_sections (abfd)
|
|
bfd *abfd;
|
|
{
|
|
symext_chainS *symextP;
|
|
int size, n;
|
|
asection *symextn_sec;
|
|
segT save_seg = now_seg;
|
|
subsegT save_subseg = now_subseg;
|
|
|
|
/* Build the symbol extension section. */
|
|
hppa_tc_make_symextn_section ();
|
|
|
|
/* Force some calculation to occur. */
|
|
bfd_set_section_contents (stdoutput, stdoutput->sections, "", 0, 0);
|
|
|
|
hppa_elf_stub_finish (abfd);
|
|
|
|
/* If no symbols for the symbol extension section, then stop now. */
|
|
if (symext_rootP == NULL)
|
|
return;
|
|
|
|
/* Count the number of symbols for the symbol extension section. */
|
|
for (n = 0, symextP = symext_rootP; symextP; symextP = symextP->next, ++n)
|
|
;
|
|
|
|
size = sizeof (symext_entryS) * n;
|
|
|
|
/* Switch to the symbol extension section. */
|
|
symextn_sec = subseg_new (SYMEXTN_SECTION_NAME, 0);
|
|
|
|
frag_wane (frag_now);
|
|
frag_new (0);
|
|
|
|
for (symextP = symext_rootP; symextP; symextP = symextP->next)
|
|
{
|
|
char *ptr;
|
|
int *symtab_map = elf_sym_extra (abfd);
|
|
int idx;
|
|
|
|
/* First, patch the symbol extension record to reflect the true
|
|
symbol table index. */
|
|
|
|
if (ELF32_HPPA_SX_TYPE (symextP->entry) == HPPA_SXT_SYMNDX)
|
|
{
|
|
idx = ELF32_HPPA_SX_VAL (symextP->entry) - 1;
|
|
symextP->entry = ELF32_HPPA_SX_WORD (HPPA_SXT_SYMNDX,
|
|
symtab_map[idx]);
|
|
}
|
|
|
|
ptr = frag_more (sizeof (symextP->entry));
|
|
md_number_to_chars (ptr, symextP->entry, sizeof (symextP->entry));
|
|
}
|
|
|
|
frag_now->fr_fix = obstack_next_free (&frags) - frag_now->fr_literal;
|
|
frag_wane (frag_now);
|
|
|
|
/* Switch back to the original segment. */
|
|
subseg_set (save_seg, save_subseg);
|
|
|
|
return;
|
|
}
|
|
|
|
/* Make the symbol extension section. */
|
|
|
|
static void
|
|
hppa_tc_make_symextn_section ()
|
|
{
|
|
if (symext_rootP)
|
|
{
|
|
symext_chainS *symextP;
|
|
int n;
|
|
unsigned int size;
|
|
segT symextn_sec;
|
|
segT save_seg = now_seg;
|
|
subsegT save_subseg = now_subseg;
|
|
|
|
for (n = 0, symextP = symext_rootP; symextP; symextP = symextP->next, ++n)
|
|
;
|
|
|
|
size = sizeof (symext_entryS) * n;
|
|
|
|
symextn_sec = subseg_new (SYMEXTN_SECTION_NAME, 0);
|
|
|
|
bfd_set_section_flags (stdoutput, symextn_sec,
|
|
SEC_LOAD | SEC_HAS_CONTENTS | SEC_DATA);
|
|
bfd_set_section_size (stdoutput, symextn_sec, size);
|
|
|
|
/* Now, switch back to the original segment. */
|
|
subseg_set (save_seg, save_subseg);
|
|
}
|
|
}
|
|
|
|
/* Build the symbol extension section. */
|
|
|
|
static void
|
|
pa_build_symextn_section ()
|
|
{
|
|
segT seg;
|
|
asection *save_seg = now_seg;
|
|
subsegT subseg = (subsegT) 0;
|
|
subsegT save_subseg = now_subseg;
|
|
|
|
seg = subseg_new (".hppa_symextn", subseg);
|
|
bfd_set_section_flags (stdoutput,
|
|
seg,
|
|
SEC_HAS_CONTENTS | SEC_READONLY
|
|
| SEC_ALLOC | SEC_LOAD);
|
|
|
|
subseg_set (save_seg, save_subseg);
|
|
|
|
}
|
|
|
|
/* For ELF, this function serves one purpose: to setup the st_size
|
|
field of STT_FUNC symbols. To do this, we need to scan the
|
|
call_info structure list, determining st_size in one of two possible
|
|
ways:
|
|
|
|
1. call_info->start_frag->fr_fix has the size of the fragment.
|
|
This approach assumes that the function was built into a
|
|
single fragment. This works for most cases, but might fail.
|
|
For example, if there was a segment change in the middle of
|
|
the function.
|
|
|
|
2. The st_size field is the difference in the addresses of the
|
|
call_info->start_frag->fr_address field and the fr_address
|
|
field of the next fragment with fr_type == rs_fill and
|
|
fr_fix != 0. */
|
|
|
|
void
|
|
elf_hppa_final_processing ()
|
|
{
|
|
struct call_info *call_info_pointer;
|
|
|
|
for (call_info_pointer = call_info_root;
|
|
call_info_pointer;
|
|
call_info_pointer = call_info_pointer->ci_next)
|
|
{
|
|
elf_symbol_type *esym
|
|
= (elf_symbol_type *) call_info_pointer->start_symbol->bsym;
|
|
esym->internal_elf_sym.st_size =
|
|
S_GET_VALUE (call_info_pointer->end_symbol)
|
|
- S_GET_VALUE (call_info_pointer->start_symbol) + 4;
|
|
}
|
|
}
|
|
#endif
|