mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-06 12:09:26 +08:00
81092a3ee1
whether the name returned by find_pc_partial_function is a null pointer, not whether it is an empty string.
2065 lines
65 KiB
C
2065 lines
65 KiB
C
/* Target-dependent code for HP-UX on PA-RISC.
|
||
|
||
Copyright 2002, 2003, 2004 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
#include "defs.h"
|
||
#include "arch-utils.h"
|
||
#include "gdbcore.h"
|
||
#include "osabi.h"
|
||
#include "frame.h"
|
||
#include "frame-unwind.h"
|
||
#include "trad-frame.h"
|
||
#include "symtab.h"
|
||
#include "objfiles.h"
|
||
#include "inferior.h"
|
||
#include "infcall.h"
|
||
#include "observer.h"
|
||
#include "hppa-tdep.h"
|
||
#include "solib-som.h"
|
||
#include "solib-pa64.h"
|
||
#include "regset.h"
|
||
|
||
#include "gdb_string.h"
|
||
|
||
#include <dl.h>
|
||
#include <machine/save_state.h>
|
||
|
||
#ifndef offsetof
|
||
#define offsetof(TYPE, MEMBER) ((unsigned long) &((TYPE *)0)->MEMBER)
|
||
#endif
|
||
|
||
#define IS_32BIT_TARGET(_gdbarch) \
|
||
((gdbarch_tdep (_gdbarch))->bytes_per_address == 4)
|
||
|
||
/* Forward declarations. */
|
||
extern void _initialize_hppa_hpux_tdep (void);
|
||
extern initialize_file_ftype _initialize_hppa_hpux_tdep;
|
||
|
||
typedef struct
|
||
{
|
||
struct minimal_symbol *msym;
|
||
CORE_ADDR solib_handle;
|
||
CORE_ADDR return_val;
|
||
}
|
||
args_for_find_stub;
|
||
|
||
static int
|
||
in_opd_section (CORE_ADDR pc)
|
||
{
|
||
struct obj_section *s;
|
||
int retval = 0;
|
||
|
||
s = find_pc_section (pc);
|
||
|
||
retval = (s != NULL
|
||
&& s->the_bfd_section->name != NULL
|
||
&& strcmp (s->the_bfd_section->name, ".opd") == 0);
|
||
return (retval);
|
||
}
|
||
|
||
/* Return one if PC is in the call path of a trampoline, else return zero.
|
||
|
||
Note we return one for *any* call trampoline (long-call, arg-reloc), not
|
||
just shared library trampolines (import, export). */
|
||
|
||
static int
|
||
hppa32_hpux_in_solib_call_trampoline (CORE_ADDR pc, char *name)
|
||
{
|
||
struct minimal_symbol *minsym;
|
||
struct unwind_table_entry *u;
|
||
|
||
/* First see if PC is in one of the two C-library trampolines. */
|
||
if (pc == hppa_symbol_address("$$dyncall")
|
||
|| pc == hppa_symbol_address("_sr4export"))
|
||
return 1;
|
||
|
||
minsym = lookup_minimal_symbol_by_pc (pc);
|
||
if (minsym && strcmp (DEPRECATED_SYMBOL_NAME (minsym), ".stub") == 0)
|
||
return 1;
|
||
|
||
/* Get the unwind descriptor corresponding to PC, return zero
|
||
if no unwind was found. */
|
||
u = find_unwind_entry (pc);
|
||
if (!u)
|
||
return 0;
|
||
|
||
/* If this isn't a linker stub, then return now. */
|
||
if (u->stub_unwind.stub_type == 0)
|
||
return 0;
|
||
|
||
/* By definition a long-branch stub is a call stub. */
|
||
if (u->stub_unwind.stub_type == LONG_BRANCH)
|
||
return 1;
|
||
|
||
/* The call and return path execute the same instructions within
|
||
an IMPORT stub! So an IMPORT stub is both a call and return
|
||
trampoline. */
|
||
if (u->stub_unwind.stub_type == IMPORT)
|
||
return 1;
|
||
|
||
/* Parameter relocation stubs always have a call path and may have a
|
||
return path. */
|
||
if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
|
||
|| u->stub_unwind.stub_type == EXPORT)
|
||
{
|
||
CORE_ADDR addr;
|
||
|
||
/* Search forward from the current PC until we hit a branch
|
||
or the end of the stub. */
|
||
for (addr = pc; addr <= u->region_end; addr += 4)
|
||
{
|
||
unsigned long insn;
|
||
|
||
insn = read_memory_integer (addr, 4);
|
||
|
||
/* Does it look like a bl? If so then it's the call path, if
|
||
we find a bv or be first, then we're on the return path. */
|
||
if ((insn & 0xfc00e000) == 0xe8000000)
|
||
return 1;
|
||
else if ((insn & 0xfc00e001) == 0xe800c000
|
||
|| (insn & 0xfc000000) == 0xe0000000)
|
||
return 0;
|
||
}
|
||
|
||
/* Should never happen. */
|
||
warning ("Unable to find branch in parameter relocation stub.\n");
|
||
return 0;
|
||
}
|
||
|
||
/* Unknown stub type. For now, just return zero. */
|
||
return 0;
|
||
}
|
||
|
||
static int
|
||
hppa64_hpux_in_solib_call_trampoline (CORE_ADDR pc, char *name)
|
||
{
|
||
/* PA64 has a completely different stub/trampoline scheme. Is it
|
||
better? Maybe. It's certainly harder to determine with any
|
||
certainty that we are in a stub because we can not refer to the
|
||
unwinders to help.
|
||
|
||
The heuristic is simple. Try to lookup the current PC value in th
|
||
minimal symbol table. If that fails, then assume we are not in a
|
||
stub and return.
|
||
|
||
Then see if the PC value falls within the section bounds for the
|
||
section containing the minimal symbol we found in the first
|
||
step. If it does, then assume we are not in a stub and return.
|
||
|
||
Finally peek at the instructions to see if they look like a stub. */
|
||
struct minimal_symbol *minsym;
|
||
asection *sec;
|
||
CORE_ADDR addr;
|
||
int insn, i;
|
||
|
||
minsym = lookup_minimal_symbol_by_pc (pc);
|
||
if (! minsym)
|
||
return 0;
|
||
|
||
sec = SYMBOL_BFD_SECTION (minsym);
|
||
|
||
if (bfd_get_section_vma (sec->owner, sec) <= pc
|
||
&& pc < (bfd_get_section_vma (sec->owner, sec)
|
||
+ bfd_section_size (sec->owner, sec)))
|
||
return 0;
|
||
|
||
/* We might be in a stub. Peek at the instructions. Stubs are 3
|
||
instructions long. */
|
||
insn = read_memory_integer (pc, 4);
|
||
|
||
/* Find out where we think we are within the stub. */
|
||
if ((insn & 0xffffc00e) == 0x53610000)
|
||
addr = pc;
|
||
else if ((insn & 0xffffffff) == 0xe820d000)
|
||
addr = pc - 4;
|
||
else if ((insn & 0xffffc00e) == 0x537b0000)
|
||
addr = pc - 8;
|
||
else
|
||
return 0;
|
||
|
||
/* Now verify each insn in the range looks like a stub instruction. */
|
||
insn = read_memory_integer (addr, 4);
|
||
if ((insn & 0xffffc00e) != 0x53610000)
|
||
return 0;
|
||
|
||
/* Now verify each insn in the range looks like a stub instruction. */
|
||
insn = read_memory_integer (addr + 4, 4);
|
||
if ((insn & 0xffffffff) != 0xe820d000)
|
||
return 0;
|
||
|
||
/* Now verify each insn in the range looks like a stub instruction. */
|
||
insn = read_memory_integer (addr + 8, 4);
|
||
if ((insn & 0xffffc00e) != 0x537b0000)
|
||
return 0;
|
||
|
||
/* Looks like a stub. */
|
||
return 1;
|
||
}
|
||
|
||
/* Return one if PC is in the return path of a trampoline, else return zero.
|
||
|
||
Note we return one for *any* call trampoline (long-call, arg-reloc), not
|
||
just shared library trampolines (import, export). */
|
||
|
||
static int
|
||
hppa_hpux_in_solib_return_trampoline (CORE_ADDR pc, char *name)
|
||
{
|
||
struct unwind_table_entry *u;
|
||
|
||
/* Get the unwind descriptor corresponding to PC, return zero
|
||
if no unwind was found. */
|
||
u = find_unwind_entry (pc);
|
||
if (!u)
|
||
return 0;
|
||
|
||
/* If this isn't a linker stub or it's just a long branch stub, then
|
||
return zero. */
|
||
if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
|
||
return 0;
|
||
|
||
/* The call and return path execute the same instructions within
|
||
an IMPORT stub! So an IMPORT stub is both a call and return
|
||
trampoline. */
|
||
if (u->stub_unwind.stub_type == IMPORT)
|
||
return 1;
|
||
|
||
/* Parameter relocation stubs always have a call path and may have a
|
||
return path. */
|
||
if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
|
||
|| u->stub_unwind.stub_type == EXPORT)
|
||
{
|
||
CORE_ADDR addr;
|
||
|
||
/* Search forward from the current PC until we hit a branch
|
||
or the end of the stub. */
|
||
for (addr = pc; addr <= u->region_end; addr += 4)
|
||
{
|
||
unsigned long insn;
|
||
|
||
insn = read_memory_integer (addr, 4);
|
||
|
||
/* Does it look like a bl? If so then it's the call path, if
|
||
we find a bv or be first, then we're on the return path. */
|
||
if ((insn & 0xfc00e000) == 0xe8000000)
|
||
return 0;
|
||
else if ((insn & 0xfc00e001) == 0xe800c000
|
||
|| (insn & 0xfc000000) == 0xe0000000)
|
||
return 1;
|
||
}
|
||
|
||
/* Should never happen. */
|
||
warning ("Unable to find branch in parameter relocation stub.\n");
|
||
return 0;
|
||
}
|
||
|
||
/* Unknown stub type. For now, just return zero. */
|
||
return 0;
|
||
|
||
}
|
||
|
||
/* Figure out if PC is in a trampoline, and if so find out where
|
||
the trampoline will jump to. If not in a trampoline, return zero.
|
||
|
||
Simple code examination probably is not a good idea since the code
|
||
sequences in trampolines can also appear in user code.
|
||
|
||
We use unwinds and information from the minimal symbol table to
|
||
determine when we're in a trampoline. This won't work for ELF
|
||
(yet) since it doesn't create stub unwind entries. Whether or
|
||
not ELF will create stub unwinds or normal unwinds for linker
|
||
stubs is still being debated.
|
||
|
||
This should handle simple calls through dyncall or sr4export,
|
||
long calls, argument relocation stubs, and dyncall/sr4export
|
||
calling an argument relocation stub. It even handles some stubs
|
||
used in dynamic executables. */
|
||
|
||
static CORE_ADDR
|
||
hppa_hpux_skip_trampoline_code (CORE_ADDR pc)
|
||
{
|
||
long orig_pc = pc;
|
||
long prev_inst, curr_inst, loc;
|
||
struct minimal_symbol *msym;
|
||
struct unwind_table_entry *u;
|
||
|
||
/* Addresses passed to dyncall may *NOT* be the actual address
|
||
of the function. So we may have to do something special. */
|
||
if (pc == hppa_symbol_address("$$dyncall"))
|
||
{
|
||
pc = (CORE_ADDR) read_register (22);
|
||
|
||
/* If bit 30 (counting from the left) is on, then pc is the address of
|
||
the PLT entry for this function, not the address of the function
|
||
itself. Bit 31 has meaning too, but only for MPE. */
|
||
if (pc & 0x2)
|
||
pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
|
||
}
|
||
if (pc == hppa_symbol_address("$$dyncall_external"))
|
||
{
|
||
pc = (CORE_ADDR) read_register (22);
|
||
pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
|
||
}
|
||
else if (pc == hppa_symbol_address("_sr4export"))
|
||
pc = (CORE_ADDR) (read_register (22));
|
||
|
||
/* Get the unwind descriptor corresponding to PC, return zero
|
||
if no unwind was found. */
|
||
u = find_unwind_entry (pc);
|
||
if (!u)
|
||
return 0;
|
||
|
||
/* If this isn't a linker stub, then return now. */
|
||
/* elz: attention here! (FIXME) because of a compiler/linker
|
||
error, some stubs which should have a non zero stub_unwind.stub_type
|
||
have unfortunately a value of zero. So this function would return here
|
||
as if we were not in a trampoline. To fix this, we go look at the partial
|
||
symbol information, which reports this guy as a stub.
|
||
(FIXME): Unfortunately, we are not that lucky: it turns out that the
|
||
partial symbol information is also wrong sometimes. This is because
|
||
when it is entered (somread.c::som_symtab_read()) it can happen that
|
||
if the type of the symbol (from the som) is Entry, and the symbol is
|
||
in a shared library, then it can also be a trampoline. This would
|
||
be OK, except that I believe the way they decide if we are ina shared library
|
||
does not work. SOOOO..., even if we have a regular function w/o trampolines
|
||
its minimal symbol can be assigned type mst_solib_trampoline.
|
||
Also, if we find that the symbol is a real stub, then we fix the unwind
|
||
descriptor, and define the stub type to be EXPORT.
|
||
Hopefully this is correct most of the times. */
|
||
if (u->stub_unwind.stub_type == 0)
|
||
{
|
||
|
||
/* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
|
||
we can delete all the code which appears between the lines */
|
||
/*--------------------------------------------------------------------------*/
|
||
msym = lookup_minimal_symbol_by_pc (pc);
|
||
|
||
if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
|
||
return orig_pc == pc ? 0 : pc & ~0x3;
|
||
|
||
else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
|
||
{
|
||
struct objfile *objfile;
|
||
struct minimal_symbol *msymbol;
|
||
int function_found = 0;
|
||
|
||
/* go look if there is another minimal symbol with the same name as
|
||
this one, but with type mst_text. This would happen if the msym
|
||
is an actual trampoline, in which case there would be another
|
||
symbol with the same name corresponding to the real function */
|
||
|
||
ALL_MSYMBOLS (objfile, msymbol)
|
||
{
|
||
if (MSYMBOL_TYPE (msymbol) == mst_text
|
||
&& DEPRECATED_STREQ (DEPRECATED_SYMBOL_NAME (msymbol), DEPRECATED_SYMBOL_NAME (msym)))
|
||
{
|
||
function_found = 1;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (function_found)
|
||
/* the type of msym is correct (mst_solib_trampoline), but
|
||
the unwind info is wrong, so set it to the correct value */
|
||
u->stub_unwind.stub_type = EXPORT;
|
||
else
|
||
/* the stub type info in the unwind is correct (this is not a
|
||
trampoline), but the msym type information is wrong, it
|
||
should be mst_text. So we need to fix the msym, and also
|
||
get out of this function */
|
||
{
|
||
MSYMBOL_TYPE (msym) = mst_text;
|
||
return orig_pc == pc ? 0 : pc & ~0x3;
|
||
}
|
||
}
|
||
|
||
/*--------------------------------------------------------------------------*/
|
||
}
|
||
|
||
/* It's a stub. Search for a branch and figure out where it goes.
|
||
Note we have to handle multi insn branch sequences like ldil;ble.
|
||
Most (all?) other branches can be determined by examining the contents
|
||
of certain registers and the stack. */
|
||
|
||
loc = pc;
|
||
curr_inst = 0;
|
||
prev_inst = 0;
|
||
while (1)
|
||
{
|
||
/* Make sure we haven't walked outside the range of this stub. */
|
||
if (u != find_unwind_entry (loc))
|
||
{
|
||
warning ("Unable to find branch in linker stub");
|
||
return orig_pc == pc ? 0 : pc & ~0x3;
|
||
}
|
||
|
||
prev_inst = curr_inst;
|
||
curr_inst = read_memory_integer (loc, 4);
|
||
|
||
/* Does it look like a branch external using %r1? Then it's the
|
||
branch from the stub to the actual function. */
|
||
if ((curr_inst & 0xffe0e000) == 0xe0202000)
|
||
{
|
||
/* Yup. See if the previous instruction loaded
|
||
a value into %r1. If so compute and return the jump address. */
|
||
if ((prev_inst & 0xffe00000) == 0x20200000)
|
||
return (hppa_extract_21 (prev_inst) + hppa_extract_17 (curr_inst)) & ~0x3;
|
||
else
|
||
{
|
||
warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
|
||
return orig_pc == pc ? 0 : pc & ~0x3;
|
||
}
|
||
}
|
||
|
||
/* Does it look like a be 0(sr0,%r21)? OR
|
||
Does it look like a be, n 0(sr0,%r21)? OR
|
||
Does it look like a bve (r21)? (this is on PA2.0)
|
||
Does it look like a bve, n(r21)? (this is also on PA2.0)
|
||
That's the branch from an
|
||
import stub to an export stub.
|
||
|
||
It is impossible to determine the target of the branch via
|
||
simple examination of instructions and/or data (consider
|
||
that the address in the plabel may be the address of the
|
||
bind-on-reference routine in the dynamic loader).
|
||
|
||
So we have try an alternative approach.
|
||
|
||
Get the name of the symbol at our current location; it should
|
||
be a stub symbol with the same name as the symbol in the
|
||
shared library.
|
||
|
||
Then lookup a minimal symbol with the same name; we should
|
||
get the minimal symbol for the target routine in the shared
|
||
library as those take precedence of import/export stubs. */
|
||
if ((curr_inst == 0xe2a00000) ||
|
||
(curr_inst == 0xe2a00002) ||
|
||
(curr_inst == 0xeaa0d000) ||
|
||
(curr_inst == 0xeaa0d002))
|
||
{
|
||
struct minimal_symbol *stubsym, *libsym;
|
||
|
||
stubsym = lookup_minimal_symbol_by_pc (loc);
|
||
if (stubsym == NULL)
|
||
{
|
||
warning ("Unable to find symbol for 0x%lx", loc);
|
||
return orig_pc == pc ? 0 : pc & ~0x3;
|
||
}
|
||
|
||
libsym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (stubsym), NULL, NULL);
|
||
if (libsym == NULL)
|
||
{
|
||
warning ("Unable to find library symbol for %s\n",
|
||
DEPRECATED_SYMBOL_NAME (stubsym));
|
||
return orig_pc == pc ? 0 : pc & ~0x3;
|
||
}
|
||
|
||
return SYMBOL_VALUE (libsym);
|
||
}
|
||
|
||
/* Does it look like bl X,%rp or bl X,%r0? Another way to do a
|
||
branch from the stub to the actual function. */
|
||
/*elz */
|
||
else if ((curr_inst & 0xffe0e000) == 0xe8400000
|
||
|| (curr_inst & 0xffe0e000) == 0xe8000000
|
||
|| (curr_inst & 0xffe0e000) == 0xe800A000)
|
||
return (loc + hppa_extract_17 (curr_inst) + 8) & ~0x3;
|
||
|
||
/* Does it look like bv (rp)? Note this depends on the
|
||
current stack pointer being the same as the stack
|
||
pointer in the stub itself! This is a branch on from the
|
||
stub back to the original caller. */
|
||
/*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
|
||
else if ((curr_inst & 0xffe0f000) == 0xe840c000)
|
||
{
|
||
/* Yup. See if the previous instruction loaded
|
||
rp from sp - 8. */
|
||
if (prev_inst == 0x4bc23ff1)
|
||
return (read_memory_integer
|
||
(read_register (HPPA_SP_REGNUM) - 8, 4)) & ~0x3;
|
||
else
|
||
{
|
||
warning ("Unable to find restore of %%rp before bv (%%rp).");
|
||
return orig_pc == pc ? 0 : pc & ~0x3;
|
||
}
|
||
}
|
||
|
||
/* elz: added this case to capture the new instruction
|
||
at the end of the return part of an export stub used by
|
||
the PA2.0: BVE, n (rp) */
|
||
else if ((curr_inst & 0xffe0f000) == 0xe840d000)
|
||
{
|
||
return (read_memory_integer
|
||
(read_register (HPPA_SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
|
||
}
|
||
|
||
/* What about be,n 0(sr0,%rp)? It's just another way we return to
|
||
the original caller from the stub. Used in dynamic executables. */
|
||
else if (curr_inst == 0xe0400002)
|
||
{
|
||
/* The value we jump to is sitting in sp - 24. But that's
|
||
loaded several instructions before the be instruction.
|
||
I guess we could check for the previous instruction being
|
||
mtsp %r1,%sr0 if we want to do sanity checking. */
|
||
return (read_memory_integer
|
||
(read_register (HPPA_SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
|
||
}
|
||
|
||
/* Haven't found the branch yet, but we're still in the stub.
|
||
Keep looking. */
|
||
loc += 4;
|
||
}
|
||
}
|
||
|
||
void
|
||
hppa_skip_permanent_breakpoint (void)
|
||
{
|
||
/* To step over a breakpoint instruction on the PA takes some
|
||
fiddling with the instruction address queue.
|
||
|
||
When we stop at a breakpoint, the IA queue front (the instruction
|
||
we're executing now) points at the breakpoint instruction, and
|
||
the IA queue back (the next instruction to execute) points to
|
||
whatever instruction we would execute after the breakpoint, if it
|
||
were an ordinary instruction. This is the case even if the
|
||
breakpoint is in the delay slot of a branch instruction.
|
||
|
||
Clearly, to step past the breakpoint, we need to set the queue
|
||
front to the back. But what do we put in the back? What
|
||
instruction comes after that one? Because of the branch delay
|
||
slot, the next insn is always at the back + 4. */
|
||
write_register (HPPA_PCOQ_HEAD_REGNUM, read_register (HPPA_PCOQ_TAIL_REGNUM));
|
||
write_register (HPPA_PCSQ_HEAD_REGNUM, read_register (HPPA_PCSQ_TAIL_REGNUM));
|
||
|
||
write_register (HPPA_PCOQ_TAIL_REGNUM, read_register (HPPA_PCOQ_TAIL_REGNUM) + 4);
|
||
/* We can leave the tail's space the same, since there's no jump. */
|
||
}
|
||
|
||
/* Exception handling support for the HP-UX ANSI C++ compiler.
|
||
The compiler (aCC) provides a callback for exception events;
|
||
GDB can set a breakpoint on this callback and find out what
|
||
exception event has occurred. */
|
||
|
||
/* The name of the hook to be set to point to the callback function */
|
||
static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook";
|
||
/* The name of the function to be used to set the hook value */
|
||
static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value";
|
||
/* The name of the callback function in end.o */
|
||
static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback";
|
||
/* Name of function in end.o on which a break is set (called by above) */
|
||
static char HP_ACC_EH_break[] = "__d_eh_break";
|
||
/* Name of flag (in end.o) that enables catching throws */
|
||
static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw";
|
||
/* Name of flag (in end.o) that enables catching catching */
|
||
static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch";
|
||
/* The enum used by aCC */
|
||
typedef enum
|
||
{
|
||
__EH_NOTIFY_THROW,
|
||
__EH_NOTIFY_CATCH
|
||
}
|
||
__eh_notification;
|
||
|
||
/* Is exception-handling support available with this executable? */
|
||
static int hp_cxx_exception_support = 0;
|
||
/* Has the initialize function been run? */
|
||
static int hp_cxx_exception_support_initialized = 0;
|
||
/* Address of __eh_notify_hook */
|
||
static CORE_ADDR eh_notify_hook_addr = 0;
|
||
/* Address of __d_eh_notify_callback */
|
||
static CORE_ADDR eh_notify_callback_addr = 0;
|
||
/* Address of __d_eh_break */
|
||
static CORE_ADDR eh_break_addr = 0;
|
||
/* Address of __d_eh_catch_catch */
|
||
static CORE_ADDR eh_catch_catch_addr = 0;
|
||
/* Address of __d_eh_catch_throw */
|
||
static CORE_ADDR eh_catch_throw_addr = 0;
|
||
/* Sal for __d_eh_break */
|
||
static struct symtab_and_line *break_callback_sal = 0;
|
||
|
||
/* Code in end.c expects __d_pid to be set in the inferior,
|
||
otherwise __d_eh_notify_callback doesn't bother to call
|
||
__d_eh_break! So we poke the pid into this symbol
|
||
ourselves.
|
||
0 => success
|
||
1 => failure */
|
||
static int
|
||
setup_d_pid_in_inferior (void)
|
||
{
|
||
CORE_ADDR anaddr;
|
||
struct minimal_symbol *msymbol;
|
||
char buf[4]; /* FIXME 32x64? */
|
||
|
||
/* Slam the pid of the process into __d_pid; failing is only a warning! */
|
||
msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile);
|
||
if (msymbol == NULL)
|
||
{
|
||
warning ("Unable to find __d_pid symbol in object file.");
|
||
warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
|
||
return 1;
|
||
}
|
||
|
||
anaddr = SYMBOL_VALUE_ADDRESS (msymbol);
|
||
store_unsigned_integer (buf, 4, PIDGET (inferior_ptid)); /* FIXME 32x64? */
|
||
if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */
|
||
{
|
||
warning ("Unable to write __d_pid");
|
||
warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* elz: Used to lookup a symbol in the shared libraries.
|
||
This function calls shl_findsym, indirectly through a
|
||
call to __d_shl_get. __d_shl_get is in end.c, which is always
|
||
linked in by the hp compilers/linkers.
|
||
The call to shl_findsym cannot be made directly because it needs
|
||
to be active in target address space.
|
||
inputs: - minimal symbol pointer for the function we want to look up
|
||
- address in target space of the descriptor for the library
|
||
where we want to look the symbol up.
|
||
This address is retrieved using the
|
||
som_solib_get_solib_by_pc function (somsolib.c).
|
||
output: - real address in the library of the function.
|
||
note: the handle can be null, in which case shl_findsym will look for
|
||
the symbol in all the loaded shared libraries.
|
||
files to look at if you need reference on this stuff:
|
||
dld.c, dld_shl_findsym.c
|
||
end.c
|
||
man entry for shl_findsym */
|
||
|
||
static CORE_ADDR
|
||
find_stub_with_shl_get (struct minimal_symbol *function, CORE_ADDR handle)
|
||
{
|
||
struct symbol *get_sym, *symbol2;
|
||
struct minimal_symbol *buff_minsym, *msymbol;
|
||
struct type *ftype;
|
||
struct value **args;
|
||
struct value *funcval;
|
||
struct value *val;
|
||
|
||
int x, namelen, err_value, tmp = -1;
|
||
CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr;
|
||
CORE_ADDR stub_addr;
|
||
|
||
|
||
args = alloca (sizeof (struct value *) * 8); /* 6 for the arguments and one null one??? */
|
||
funcval = find_function_in_inferior ("__d_shl_get");
|
||
get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_DOMAIN, NULL, NULL);
|
||
buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL);
|
||
msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL);
|
||
symbol2 = lookup_symbol ("__shldp", NULL, VAR_DOMAIN, NULL, NULL);
|
||
endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym);
|
||
namelen = strlen (DEPRECATED_SYMBOL_NAME (function));
|
||
value_return_addr = endo_buff_addr + namelen;
|
||
ftype = check_typedef (SYMBOL_TYPE (get_sym));
|
||
|
||
/* do alignment */
|
||
if ((x = value_return_addr % 64) != 0)
|
||
value_return_addr = value_return_addr + 64 - x;
|
||
|
||
errno_return_addr = value_return_addr + 64;
|
||
|
||
|
||
/* set up stuff needed by __d_shl_get in buffer in end.o */
|
||
|
||
target_write_memory (endo_buff_addr, DEPRECATED_SYMBOL_NAME (function), namelen);
|
||
|
||
target_write_memory (value_return_addr, (char *) &tmp, 4);
|
||
|
||
target_write_memory (errno_return_addr, (char *) &tmp, 4);
|
||
|
||
target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
|
||
(char *) &handle, 4);
|
||
|
||
/* now prepare the arguments for the call */
|
||
|
||
args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12);
|
||
args[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol));
|
||
args[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr);
|
||
args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE);
|
||
args[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 4), value_return_addr);
|
||
args[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr);
|
||
|
||
/* now call the function */
|
||
|
||
val = call_function_by_hand (funcval, 6, args);
|
||
|
||
/* now get the results */
|
||
|
||
target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value));
|
||
|
||
target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr));
|
||
if (stub_addr <= 0)
|
||
error ("call to __d_shl_get failed, error code is %d", err_value);
|
||
|
||
return (stub_addr);
|
||
}
|
||
|
||
/* Cover routine for find_stub_with_shl_get to pass to catch_errors */
|
||
static int
|
||
cover_find_stub_with_shl_get (void *args_untyped)
|
||
{
|
||
args_for_find_stub *args = args_untyped;
|
||
args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle);
|
||
return 0;
|
||
}
|
||
|
||
/* Initialize exception catchpoint support by looking for the
|
||
necessary hooks/callbacks in end.o, etc., and set the hook value to
|
||
point to the required debug function
|
||
|
||
Return 0 => failure
|
||
1 => success */
|
||
|
||
static int
|
||
initialize_hp_cxx_exception_support (void)
|
||
{
|
||
struct symtabs_and_lines sals;
|
||
struct cleanup *old_chain;
|
||
struct cleanup *canonical_strings_chain = NULL;
|
||
int i;
|
||
char *addr_start;
|
||
char *addr_end = NULL;
|
||
char **canonical = (char **) NULL;
|
||
int thread = -1;
|
||
struct symbol *sym = NULL;
|
||
struct minimal_symbol *msym = NULL;
|
||
struct objfile *objfile;
|
||
asection *shlib_info;
|
||
|
||
/* Detect and disallow recursion. On HP-UX with aCC, infinite
|
||
recursion is a possibility because finding the hook for exception
|
||
callbacks involves making a call in the inferior, which means
|
||
re-inserting breakpoints which can re-invoke this code */
|
||
|
||
static int recurse = 0;
|
||
if (recurse > 0)
|
||
{
|
||
hp_cxx_exception_support_initialized = 0;
|
||
deprecated_exception_support_initialized = 0;
|
||
return 0;
|
||
}
|
||
|
||
hp_cxx_exception_support = 0;
|
||
|
||
/* First check if we have seen any HP compiled objects; if not,
|
||
it is very unlikely that HP's idiosyncratic callback mechanism
|
||
for exception handling debug support will be available!
|
||
This will percolate back up to breakpoint.c, where our callers
|
||
will decide to try the g++ exception-handling support instead. */
|
||
if (!deprecated_hp_som_som_object_present)
|
||
return 0;
|
||
|
||
/* We have a SOM executable with SOM debug info; find the hooks */
|
||
|
||
/* First look for the notify hook provided by aCC runtime libs */
|
||
/* If we find this symbol, we conclude that the executable must
|
||
have HP aCC exception support built in. If this symbol is not
|
||
found, even though we're a HP SOM-SOM file, we may have been
|
||
built with some other compiler (not aCC). This results percolates
|
||
back up to our callers in breakpoint.c which can decide to
|
||
try the g++ style of exception support instead.
|
||
If this symbol is found but the other symbols we require are
|
||
not found, there is something weird going on, and g++ support
|
||
should *not* be tried as an alternative.
|
||
|
||
ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
|
||
ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
|
||
|
||
/* libCsup has this hook; it'll usually be non-debuggable */
|
||
msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL);
|
||
if (msym)
|
||
{
|
||
eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym);
|
||
hp_cxx_exception_support = 1;
|
||
}
|
||
else
|
||
{
|
||
warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook);
|
||
warning ("Executable may not have been compiled debuggable with HP aCC.");
|
||
warning ("GDB will be unable to intercept exception events.");
|
||
eh_notify_hook_addr = 0;
|
||
hp_cxx_exception_support = 0;
|
||
return 0;
|
||
}
|
||
|
||
/* Next look for the notify callback routine in end.o */
|
||
/* This is always available in the SOM symbol dictionary if end.o is linked in */
|
||
msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL);
|
||
if (msym)
|
||
{
|
||
eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym);
|
||
hp_cxx_exception_support = 1;
|
||
}
|
||
else
|
||
{
|
||
warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback);
|
||
warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
|
||
warning ("GDB will be unable to intercept exception events.");
|
||
eh_notify_callback_addr = 0;
|
||
return 0;
|
||
}
|
||
|
||
#ifndef GDB_TARGET_IS_HPPA_20W
|
||
/* Check whether the executable is dynamically linked or archive bound */
|
||
/* With an archive-bound executable we can use the raw addresses we find
|
||
for the callback function, etc. without modification. For an executable
|
||
with shared libraries, we have to do more work to find the plabel, which
|
||
can be the target of a call through $$dyncall from the aCC runtime support
|
||
library (libCsup) which is linked shared by default by aCC. */
|
||
/* This test below was copied from somsolib.c/somread.c. It may not be a very
|
||
reliable one to test that an executable is linked shared. pai/1997-07-18 */
|
||
shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$");
|
||
if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0))
|
||
{
|
||
/* The minsym we have has the local code address, but that's not the
|
||
plabel that can be used by an inter-load-module call. */
|
||
/* Find solib handle for main image (which has end.o), and use that
|
||
and the min sym as arguments to __d_shl_get() (which does the equivalent
|
||
of shl_findsym()) to find the plabel. */
|
||
|
||
args_for_find_stub args;
|
||
static char message[] = "Error while finding exception callback hook:\n";
|
||
|
||
args.solib_handle = gdbarch_tdep (current_gdbarch)->solib_get_solib_by_pc (eh_notify_callback_addr);
|
||
args.msym = msym;
|
||
args.return_val = 0;
|
||
|
||
recurse++;
|
||
catch_errors (cover_find_stub_with_shl_get, &args, message,
|
||
RETURN_MASK_ALL);
|
||
eh_notify_callback_addr = args.return_val;
|
||
recurse--;
|
||
|
||
deprecated_exception_catchpoints_are_fragile = 1;
|
||
|
||
if (!eh_notify_callback_addr)
|
||
{
|
||
/* We can get here either if there is no plabel in the export list
|
||
for the main image, or if something strange happened (?) */
|
||
warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
|
||
warning ("GDB will not be able to intercept exception events.");
|
||
return 0;
|
||
}
|
||
}
|
||
else
|
||
deprecated_exception_catchpoints_are_fragile = 0;
|
||
#endif
|
||
|
||
/* Now, look for the breakpointable routine in end.o */
|
||
/* This should also be available in the SOM symbol dict. if end.o linked in */
|
||
msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL);
|
||
if (msym)
|
||
{
|
||
eh_break_addr = SYMBOL_VALUE_ADDRESS (msym);
|
||
hp_cxx_exception_support = 1;
|
||
}
|
||
else
|
||
{
|
||
warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break);
|
||
warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
|
||
warning ("GDB will be unable to intercept exception events.");
|
||
eh_break_addr = 0;
|
||
return 0;
|
||
}
|
||
|
||
/* Next look for the catch enable flag provided in end.o */
|
||
sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
|
||
VAR_DOMAIN, 0, (struct symtab **) NULL);
|
||
if (sym) /* sometimes present in debug info */
|
||
{
|
||
eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym);
|
||
hp_cxx_exception_support = 1;
|
||
}
|
||
else
|
||
/* otherwise look in SOM symbol dict. */
|
||
{
|
||
msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL);
|
||
if (msym)
|
||
{
|
||
eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym);
|
||
hp_cxx_exception_support = 1;
|
||
}
|
||
else
|
||
{
|
||
warning ("Unable to enable interception of exception catches.");
|
||
warning ("Executable may not have been compiled debuggable with HP aCC.");
|
||
warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Next look for the catch enable flag provided end.o */
|
||
sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
|
||
VAR_DOMAIN, 0, (struct symtab **) NULL);
|
||
if (sym) /* sometimes present in debug info */
|
||
{
|
||
eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym);
|
||
hp_cxx_exception_support = 1;
|
||
}
|
||
else
|
||
/* otherwise look in SOM symbol dict. */
|
||
{
|
||
msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL);
|
||
if (msym)
|
||
{
|
||
eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym);
|
||
hp_cxx_exception_support = 1;
|
||
}
|
||
else
|
||
{
|
||
warning ("Unable to enable interception of exception throws.");
|
||
warning ("Executable may not have been compiled debuggable with HP aCC.");
|
||
warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Set the flags */
|
||
hp_cxx_exception_support = 2; /* everything worked so far */
|
||
hp_cxx_exception_support_initialized = 1;
|
||
deprecated_exception_support_initialized = 1;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Target operation for enabling or disabling interception of
|
||
exception events.
|
||
KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
|
||
ENABLE is either 0 (disable) or 1 (enable).
|
||
Return value is NULL if no support found;
|
||
-1 if something went wrong,
|
||
or a pointer to a symtab/line struct if the breakpointable
|
||
address was found. */
|
||
|
||
struct symtab_and_line *
|
||
child_enable_exception_callback (enum exception_event_kind kind, int enable)
|
||
{
|
||
char buf[4];
|
||
|
||
if (!deprecated_exception_support_initialized
|
||
|| !hp_cxx_exception_support_initialized)
|
||
if (!initialize_hp_cxx_exception_support ())
|
||
return NULL;
|
||
|
||
switch (hp_cxx_exception_support)
|
||
{
|
||
case 0:
|
||
/* Assuming no HP support at all */
|
||
return NULL;
|
||
case 1:
|
||
/* HP support should be present, but something went wrong */
|
||
return (struct symtab_and_line *) -1; /* yuck! */
|
||
/* there may be other cases in the future */
|
||
}
|
||
|
||
/* Set the EH hook to point to the callback routine */
|
||
store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */
|
||
/* pai: (temp) FIXME should there be a pack operation first? */
|
||
if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */
|
||
{
|
||
warning ("Could not write to target memory for exception event callback.");
|
||
warning ("Interception of exception events may not work.");
|
||
return (struct symtab_and_line *) -1;
|
||
}
|
||
if (enable)
|
||
{
|
||
/* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */
|
||
if (PIDGET (inferior_ptid) > 0)
|
||
{
|
||
if (setup_d_pid_in_inferior ())
|
||
return (struct symtab_and_line *) -1;
|
||
}
|
||
else
|
||
{
|
||
warning ("Internal error: Invalid inferior pid? Cannot intercept exception events.");
|
||
return (struct symtab_and_line *) -1;
|
||
}
|
||
}
|
||
|
||
switch (kind)
|
||
{
|
||
case EX_EVENT_THROW:
|
||
store_unsigned_integer (buf, 4, enable ? 1 : 0);
|
||
if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */
|
||
{
|
||
warning ("Couldn't enable exception throw interception.");
|
||
return (struct symtab_and_line *) -1;
|
||
}
|
||
break;
|
||
case EX_EVENT_CATCH:
|
||
store_unsigned_integer (buf, 4, enable ? 1 : 0);
|
||
if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */
|
||
{
|
||
warning ("Couldn't enable exception catch interception.");
|
||
return (struct symtab_and_line *) -1;
|
||
}
|
||
break;
|
||
default:
|
||
error ("Request to enable unknown or unsupported exception event.");
|
||
}
|
||
|
||
/* Copy break address into new sal struct, malloc'ing if needed. */
|
||
if (!break_callback_sal)
|
||
break_callback_sal = XMALLOC (struct symtab_and_line);
|
||
init_sal (break_callback_sal);
|
||
break_callback_sal->symtab = NULL;
|
||
break_callback_sal->pc = eh_break_addr;
|
||
break_callback_sal->line = 0;
|
||
break_callback_sal->end = eh_break_addr;
|
||
|
||
return break_callback_sal;
|
||
}
|
||
|
||
/* Record some information about the current exception event */
|
||
static struct exception_event_record current_ex_event;
|
||
/* Convenience struct */
|
||
static struct symtab_and_line null_symtab_and_line =
|
||
{NULL, 0, 0, 0};
|
||
|
||
/* Report current exception event. Returns a pointer to a record
|
||
that describes the kind of the event, where it was thrown from,
|
||
and where it will be caught. More information may be reported
|
||
in the future */
|
||
struct exception_event_record *
|
||
child_get_current_exception_event (void)
|
||
{
|
||
CORE_ADDR event_kind;
|
||
CORE_ADDR throw_addr;
|
||
CORE_ADDR catch_addr;
|
||
struct frame_info *fi, *curr_frame;
|
||
int level = 1;
|
||
|
||
curr_frame = get_current_frame ();
|
||
if (!curr_frame)
|
||
return (struct exception_event_record *) NULL;
|
||
|
||
/* Go up one frame to __d_eh_notify_callback, because at the
|
||
point when this code is executed, there's garbage in the
|
||
arguments of __d_eh_break. */
|
||
fi = find_relative_frame (curr_frame, &level);
|
||
if (level != 0)
|
||
return (struct exception_event_record *) NULL;
|
||
|
||
select_frame (fi);
|
||
|
||
/* Read in the arguments */
|
||
/* __d_eh_notify_callback() is called with 3 arguments:
|
||
1. event kind catch or throw
|
||
2. the target address if known
|
||
3. a flag -- not sure what this is. pai/1997-07-17 */
|
||
event_kind = read_register (HPPA_ARG0_REGNUM);
|
||
catch_addr = read_register (HPPA_ARG1_REGNUM);
|
||
|
||
/* Now go down to a user frame */
|
||
/* For a throw, __d_eh_break is called by
|
||
__d_eh_notify_callback which is called by
|
||
__notify_throw which is called
|
||
from user code.
|
||
For a catch, __d_eh_break is called by
|
||
__d_eh_notify_callback which is called by
|
||
<stackwalking stuff> which is called by
|
||
__throw__<stuff> or __rethrow_<stuff> which is called
|
||
from user code. */
|
||
/* FIXME: Don't use such magic numbers; search for the frames */
|
||
level = (event_kind == EX_EVENT_THROW) ? 3 : 4;
|
||
fi = find_relative_frame (curr_frame, &level);
|
||
if (level != 0)
|
||
return (struct exception_event_record *) NULL;
|
||
|
||
select_frame (fi);
|
||
throw_addr = get_frame_pc (fi);
|
||
|
||
/* Go back to original (top) frame */
|
||
select_frame (curr_frame);
|
||
|
||
current_ex_event.kind = (enum exception_event_kind) event_kind;
|
||
current_ex_event.throw_sal = find_pc_line (throw_addr, 1);
|
||
current_ex_event.catch_sal = find_pc_line (catch_addr, 1);
|
||
|
||
return ¤t_ex_event;
|
||
}
|
||
|
||
/* Signal frames. */
|
||
struct hppa_hpux_sigtramp_unwind_cache
|
||
{
|
||
CORE_ADDR base;
|
||
struct trad_frame_saved_reg *saved_regs;
|
||
};
|
||
|
||
static int hppa_hpux_tramp_reg[] = {
|
||
HPPA_SAR_REGNUM,
|
||
HPPA_PCOQ_HEAD_REGNUM,
|
||
HPPA_PCSQ_HEAD_REGNUM,
|
||
HPPA_PCOQ_TAIL_REGNUM,
|
||
HPPA_PCSQ_TAIL_REGNUM,
|
||
HPPA_EIEM_REGNUM,
|
||
HPPA_IIR_REGNUM,
|
||
HPPA_ISR_REGNUM,
|
||
HPPA_IOR_REGNUM,
|
||
HPPA_IPSW_REGNUM,
|
||
-1,
|
||
HPPA_SR4_REGNUM,
|
||
HPPA_SR4_REGNUM + 1,
|
||
HPPA_SR4_REGNUM + 2,
|
||
HPPA_SR4_REGNUM + 3,
|
||
HPPA_SR4_REGNUM + 4,
|
||
HPPA_SR4_REGNUM + 5,
|
||
HPPA_SR4_REGNUM + 6,
|
||
HPPA_SR4_REGNUM + 7,
|
||
HPPA_RCR_REGNUM,
|
||
HPPA_PID0_REGNUM,
|
||
HPPA_PID1_REGNUM,
|
||
HPPA_CCR_REGNUM,
|
||
HPPA_PID2_REGNUM,
|
||
HPPA_PID3_REGNUM,
|
||
HPPA_TR0_REGNUM,
|
||
HPPA_TR0_REGNUM + 1,
|
||
HPPA_TR0_REGNUM + 2,
|
||
HPPA_CR27_REGNUM
|
||
};
|
||
|
||
static struct hppa_hpux_sigtramp_unwind_cache *
|
||
hppa_hpux_sigtramp_frame_unwind_cache (struct frame_info *next_frame,
|
||
void **this_cache)
|
||
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (next_frame);
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
struct hppa_hpux_sigtramp_unwind_cache *info;
|
||
unsigned int flag;
|
||
CORE_ADDR sp, scptr;
|
||
int i, incr, off, szoff;
|
||
|
||
if (*this_cache)
|
||
return *this_cache;
|
||
|
||
info = FRAME_OBSTACK_ZALLOC (struct hppa_hpux_sigtramp_unwind_cache);
|
||
*this_cache = info;
|
||
info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
|
||
|
||
sp = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
|
||
|
||
scptr = sp - 1352;
|
||
off = scptr;
|
||
|
||
/* See /usr/include/machine/save_state.h for the structure of the save_state_t
|
||
structure. */
|
||
|
||
flag = read_memory_unsigned_integer(scptr, 4);
|
||
|
||
if (!(flag & 0x40))
|
||
{
|
||
/* Narrow registers. */
|
||
off = scptr + offsetof (save_state_t, ss_narrow);
|
||
incr = 4;
|
||
szoff = 0;
|
||
}
|
||
else
|
||
{
|
||
/* Wide registers. */
|
||
off = scptr + offsetof (save_state_t, ss_wide) + 8;
|
||
incr = 8;
|
||
szoff = (tdep->bytes_per_address == 4 ? 4 : 0);
|
||
}
|
||
|
||
for (i = 1; i < 32; i++)
|
||
{
|
||
info->saved_regs[HPPA_R0_REGNUM + i].addr = off + szoff;
|
||
off += incr;
|
||
}
|
||
|
||
for (i = 0; i < ARRAY_SIZE (hppa_hpux_tramp_reg); i++)
|
||
{
|
||
if (hppa_hpux_tramp_reg[i] > 0)
|
||
info->saved_regs[hppa_hpux_tramp_reg[i]].addr = off + szoff;
|
||
off += incr;
|
||
}
|
||
|
||
/* TODO: fp regs */
|
||
|
||
info->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
|
||
|
||
return info;
|
||
}
|
||
|
||
static void
|
||
hppa_hpux_sigtramp_frame_this_id (struct frame_info *next_frame,
|
||
void **this_prologue_cache,
|
||
struct frame_id *this_id)
|
||
{
|
||
struct hppa_hpux_sigtramp_unwind_cache *info
|
||
= hppa_hpux_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
|
||
*this_id = frame_id_build (info->base, frame_pc_unwind (next_frame));
|
||
}
|
||
|
||
static void
|
||
hppa_hpux_sigtramp_frame_prev_register (struct frame_info *next_frame,
|
||
void **this_prologue_cache,
|
||
int regnum, int *optimizedp,
|
||
enum lval_type *lvalp,
|
||
CORE_ADDR *addrp,
|
||
int *realnump, void *valuep)
|
||
{
|
||
struct hppa_hpux_sigtramp_unwind_cache *info
|
||
= hppa_hpux_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
|
||
hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
|
||
optimizedp, lvalp, addrp, realnump, valuep);
|
||
}
|
||
|
||
static const struct frame_unwind hppa_hpux_sigtramp_frame_unwind = {
|
||
SIGTRAMP_FRAME,
|
||
hppa_hpux_sigtramp_frame_this_id,
|
||
hppa_hpux_sigtramp_frame_prev_register
|
||
};
|
||
|
||
static const struct frame_unwind *
|
||
hppa_hpux_sigtramp_unwind_sniffer (struct frame_info *next_frame)
|
||
{
|
||
CORE_ADDR pc = frame_pc_unwind (next_frame);
|
||
char *name;
|
||
|
||
find_pc_partial_function (pc, &name, NULL, NULL);
|
||
|
||
if (name && strcmp(name, "_sigreturn") == 0)
|
||
return &hppa_hpux_sigtramp_frame_unwind;
|
||
|
||
return NULL;
|
||
}
|
||
|
||
static CORE_ADDR
|
||
hppa32_hpux_find_global_pointer (struct value *function)
|
||
{
|
||
CORE_ADDR faddr;
|
||
|
||
faddr = value_as_address (function);
|
||
|
||
/* Is this a plabel? If so, dereference it to get the gp value. */
|
||
if (faddr & 2)
|
||
{
|
||
int status;
|
||
char buf[4];
|
||
|
||
faddr &= ~3;
|
||
|
||
status = target_read_memory (faddr + 4, buf, sizeof (buf));
|
||
if (status == 0)
|
||
return extract_unsigned_integer (buf, sizeof (buf));
|
||
}
|
||
|
||
return gdbarch_tdep (current_gdbarch)->solib_get_got_by_pc (faddr);
|
||
}
|
||
|
||
static CORE_ADDR
|
||
hppa64_hpux_find_global_pointer (struct value *function)
|
||
{
|
||
CORE_ADDR faddr;
|
||
char buf[32];
|
||
|
||
faddr = value_as_address (function);
|
||
|
||
if (in_opd_section (faddr))
|
||
{
|
||
target_read_memory (faddr, buf, sizeof (buf));
|
||
return extract_unsigned_integer (&buf[24], 8);
|
||
}
|
||
else
|
||
{
|
||
return gdbarch_tdep (current_gdbarch)->solib_get_got_by_pc (faddr);
|
||
}
|
||
}
|
||
|
||
static unsigned int ldsid_pattern[] = {
|
||
0x000010a0, /* ldsid (rX),rY */
|
||
0x00001820, /* mtsp rY,sr0 */
|
||
0xe0000000 /* be,n (sr0,rX) */
|
||
};
|
||
|
||
static CORE_ADDR
|
||
hppa_hpux_search_pattern (CORE_ADDR start, CORE_ADDR end,
|
||
unsigned int *patterns, int count)
|
||
{
|
||
unsigned int *buf;
|
||
int offset, i;
|
||
int region, insns;
|
||
|
||
region = end - start + 4;
|
||
insns = region / 4;
|
||
buf = (unsigned int *) alloca (region);
|
||
|
||
read_memory (start, (char *) buf, region);
|
||
|
||
for (i = 0; i < insns; i++)
|
||
buf[i] = extract_unsigned_integer (&buf[i], 4);
|
||
|
||
for (offset = 0; offset <= insns - count; offset++)
|
||
{
|
||
for (i = 0; i < count; i++)
|
||
{
|
||
if ((buf[offset + i] & patterns[i]) != patterns[i])
|
||
break;
|
||
}
|
||
if (i == count)
|
||
break;
|
||
}
|
||
|
||
if (offset <= insns - count)
|
||
return start + offset * 4;
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
static CORE_ADDR
|
||
hppa32_hpux_search_dummy_call_sequence (struct gdbarch *gdbarch, CORE_ADDR pc,
|
||
int *argreg)
|
||
{
|
||
struct objfile *obj;
|
||
struct obj_section *sec;
|
||
struct hppa_objfile_private *priv;
|
||
struct frame_info *frame;
|
||
struct unwind_table_entry *u;
|
||
CORE_ADDR addr, rp;
|
||
char buf[4];
|
||
unsigned int insn;
|
||
|
||
sec = find_pc_section (pc);
|
||
obj = sec->objfile;
|
||
priv = objfile_data (obj, hppa_objfile_priv_data);
|
||
|
||
if (!priv)
|
||
priv = hppa_init_objfile_priv_data (obj);
|
||
if (!priv)
|
||
error ("Internal error creating objfile private data.\n");
|
||
|
||
/* Use the cached value if we have one. */
|
||
if (priv->dummy_call_sequence_addr != 0)
|
||
{
|
||
*argreg = priv->dummy_call_sequence_reg;
|
||
return priv->dummy_call_sequence_addr;
|
||
}
|
||
|
||
/* First try a heuristic; if we are in a shared library call, our return
|
||
pointer is likely to point at an export stub. */
|
||
frame = get_current_frame ();
|
||
rp = frame_unwind_register_unsigned (frame, 2);
|
||
u = find_unwind_entry (rp);
|
||
if (u && u->stub_unwind.stub_type == EXPORT)
|
||
{
|
||
addr = hppa_hpux_search_pattern (u->region_start, u->region_end,
|
||
ldsid_pattern,
|
||
ARRAY_SIZE (ldsid_pattern));
|
||
if (addr)
|
||
goto found_pattern;
|
||
}
|
||
|
||
/* Next thing to try is to look for an export stub. */
|
||
if (priv->unwind_info)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < priv->unwind_info->last; i++)
|
||
{
|
||
struct unwind_table_entry *u;
|
||
u = &priv->unwind_info->table[i];
|
||
if (u->stub_unwind.stub_type == EXPORT)
|
||
{
|
||
addr = hppa_hpux_search_pattern (u->region_start, u->region_end,
|
||
ldsid_pattern,
|
||
ARRAY_SIZE (ldsid_pattern));
|
||
if (addr)
|
||
{
|
||
goto found_pattern;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Finally, if this is the main executable, try to locate a sequence
|
||
from noshlibs */
|
||
addr = hppa_symbol_address ("noshlibs");
|
||
sec = find_pc_section (addr);
|
||
|
||
if (sec && sec->objfile == obj)
|
||
{
|
||
CORE_ADDR start, end;
|
||
|
||
find_pc_partial_function (addr, NULL, &start, &end);
|
||
if (start != 0 && end != 0)
|
||
{
|
||
addr = hppa_hpux_search_pattern (start, end, ldsid_pattern,
|
||
ARRAY_SIZE (ldsid_pattern));
|
||
if (addr)
|
||
goto found_pattern;
|
||
}
|
||
}
|
||
|
||
/* Can't find a suitable sequence. */
|
||
return 0;
|
||
|
||
found_pattern:
|
||
target_read_memory (addr, buf, sizeof (buf));
|
||
insn = extract_unsigned_integer (buf, sizeof (buf));
|
||
priv->dummy_call_sequence_addr = addr;
|
||
priv->dummy_call_sequence_reg = (insn >> 21) & 0x1f;
|
||
|
||
*argreg = priv->dummy_call_sequence_reg;
|
||
return priv->dummy_call_sequence_addr;
|
||
}
|
||
|
||
static CORE_ADDR
|
||
hppa64_hpux_search_dummy_call_sequence (struct gdbarch *gdbarch, CORE_ADDR pc,
|
||
int *argreg)
|
||
{
|
||
struct objfile *obj;
|
||
struct obj_section *sec;
|
||
struct hppa_objfile_private *priv;
|
||
CORE_ADDR addr;
|
||
struct minimal_symbol *msym;
|
||
int i;
|
||
|
||
sec = find_pc_section (pc);
|
||
obj = sec->objfile;
|
||
priv = objfile_data (obj, hppa_objfile_priv_data);
|
||
|
||
if (!priv)
|
||
priv = hppa_init_objfile_priv_data (obj);
|
||
if (!priv)
|
||
error ("Internal error creating objfile private data.\n");
|
||
|
||
/* Use the cached value if we have one. */
|
||
if (priv->dummy_call_sequence_addr != 0)
|
||
{
|
||
*argreg = priv->dummy_call_sequence_reg;
|
||
return priv->dummy_call_sequence_addr;
|
||
}
|
||
|
||
/* FIXME: Without stub unwind information, locating a suitable sequence is
|
||
fairly difficult. For now, we implement a very naive and inefficient
|
||
scheme; try to read in blocks of code, and look for a "bve,n (rp)"
|
||
instruction. These are likely to occur at the end of functions, so
|
||
we only look at the last two instructions of each function. */
|
||
for (i = 0, msym = obj->msymbols; i < obj->minimal_symbol_count; i++, msym++)
|
||
{
|
||
CORE_ADDR begin, end;
|
||
char *name;
|
||
unsigned int insns[2];
|
||
int offset;
|
||
|
||
find_pc_partial_function (SYMBOL_VALUE_ADDRESS (msym), &name,
|
||
&begin, &end);
|
||
|
||
if (name == NULL || begin == 0 || end == 0)
|
||
continue;
|
||
|
||
if (target_read_memory (end - sizeof (insns), (char *)insns, sizeof (insns)) == 0)
|
||
{
|
||
for (offset = 0; offset < ARRAY_SIZE (insns); offset++)
|
||
{
|
||
unsigned int insn;
|
||
|
||
insn = extract_unsigned_integer (&insns[offset], 4);
|
||
if (insn == 0xe840d002) /* bve,n (rp) */
|
||
{
|
||
addr = (end - sizeof (insns)) + (offset * 4);
|
||
goto found_pattern;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Can't find a suitable sequence. */
|
||
return 0;
|
||
|
||
found_pattern:
|
||
priv->dummy_call_sequence_addr = addr;
|
||
/* Right now we only look for a "bve,l (rp)" sequence, so the register is
|
||
always HPPA_RP_REGNUM. */
|
||
priv->dummy_call_sequence_reg = HPPA_RP_REGNUM;
|
||
|
||
*argreg = priv->dummy_call_sequence_reg;
|
||
return priv->dummy_call_sequence_addr;
|
||
}
|
||
|
||
static CORE_ADDR
|
||
hppa_hpux_find_import_stub_for_addr (CORE_ADDR funcaddr)
|
||
{
|
||
struct objfile *objfile;
|
||
struct minimal_symbol *funsym, *stubsym;
|
||
CORE_ADDR stubaddr;
|
||
|
||
funsym = lookup_minimal_symbol_by_pc (funcaddr);
|
||
stubaddr = 0;
|
||
|
||
ALL_OBJFILES (objfile)
|
||
{
|
||
stubsym = lookup_minimal_symbol_solib_trampoline
|
||
(SYMBOL_LINKAGE_NAME (funsym), objfile);
|
||
|
||
if (stubsym)
|
||
{
|
||
struct unwind_table_entry *u;
|
||
|
||
u = find_unwind_entry (SYMBOL_VALUE (stubsym));
|
||
if (u == NULL
|
||
|| (u->stub_unwind.stub_type != IMPORT
|
||
&& u->stub_unwind.stub_type != IMPORT_SHLIB))
|
||
continue;
|
||
|
||
stubaddr = SYMBOL_VALUE (stubsym);
|
||
|
||
/* If we found an IMPORT stub, then we can stop searching;
|
||
if we found an IMPORT_SHLIB, we want to continue the search
|
||
in the hopes that we will find an IMPORT stub. */
|
||
if (u->stub_unwind.stub_type == IMPORT)
|
||
break;
|
||
}
|
||
}
|
||
|
||
return stubaddr;
|
||
}
|
||
|
||
static int
|
||
hppa_hpux_sr_for_addr (CORE_ADDR addr)
|
||
{
|
||
int sr;
|
||
/* The space register to use is encoded in the top 2 bits of the address. */
|
||
sr = addr >> (gdbarch_tdep (current_gdbarch)->bytes_per_address * 8 - 2);
|
||
return sr + 4;
|
||
}
|
||
|
||
static CORE_ADDR
|
||
hppa_hpux_find_dummy_bpaddr (CORE_ADDR addr)
|
||
{
|
||
/* In order for us to restore the space register to its starting state,
|
||
we need the dummy trampoline to return to the an instruction address in
|
||
the same space as where we started the call. We used to place the
|
||
breakpoint near the current pc, however, this breaks nested dummy calls
|
||
as the nested call will hit the breakpoint address and terminate
|
||
prematurely. Instead, we try to look for an address in the same space to
|
||
put the breakpoint.
|
||
|
||
This is similar in spirit to putting the breakpoint at the "entry point"
|
||
of an executable. */
|
||
|
||
struct obj_section *sec;
|
||
struct unwind_table_entry *u;
|
||
struct minimal_symbol *msym;
|
||
CORE_ADDR func;
|
||
int i;
|
||
|
||
sec = find_pc_section (addr);
|
||
if (sec)
|
||
{
|
||
/* First try the lowest address in the section; we can use it as long
|
||
as it is "regular" code (i.e. not a stub) */
|
||
u = find_unwind_entry (sec->addr);
|
||
if (!u || u->stub_unwind.stub_type == 0)
|
||
return sec->addr;
|
||
|
||
/* Otherwise, we need to find a symbol for a regular function. We
|
||
do this by walking the list of msymbols in the objfile. The symbol
|
||
we find should not be the same as the function that was passed in. */
|
||
|
||
/* FIXME: this is broken, because we can find a function that will be
|
||
called by the dummy call target function, which will still not
|
||
work. */
|
||
|
||
find_pc_partial_function (addr, NULL, &func, NULL);
|
||
for (i = 0, msym = sec->objfile->msymbols;
|
||
i < sec->objfile->minimal_symbol_count;
|
||
i++, msym++)
|
||
{
|
||
u = find_unwind_entry (SYMBOL_VALUE_ADDRESS (msym));
|
||
if (func != SYMBOL_VALUE_ADDRESS (msym)
|
||
&& (!u || u->stub_unwind.stub_type == 0))
|
||
return SYMBOL_VALUE_ADDRESS (msym);
|
||
}
|
||
}
|
||
|
||
warning ("Cannot find suitable address to place dummy breakpoint; nested "
|
||
"calls may fail.\n");
|
||
return addr - 4;
|
||
}
|
||
|
||
static CORE_ADDR
|
||
hppa_hpux_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
|
||
CORE_ADDR funcaddr, int using_gcc,
|
||
struct value **args, int nargs,
|
||
struct type *value_type,
|
||
CORE_ADDR *real_pc, CORE_ADDR *bp_addr)
|
||
{
|
||
CORE_ADDR pc, stubaddr;
|
||
int argreg;
|
||
|
||
pc = read_pc ();
|
||
|
||
/* Note: we don't want to pass a function descriptor here; push_dummy_call
|
||
fills in the PIC register for us. */
|
||
funcaddr = gdbarch_convert_from_func_ptr_addr (gdbarch, funcaddr, NULL);
|
||
|
||
/* The simple case is where we call a function in the same space that we are
|
||
currently in; in that case we don't really need to do anything. */
|
||
if (hppa_hpux_sr_for_addr (pc) == hppa_hpux_sr_for_addr (funcaddr))
|
||
{
|
||
/* Intraspace call. */
|
||
*bp_addr = hppa_hpux_find_dummy_bpaddr (pc);
|
||
*real_pc = funcaddr;
|
||
regcache_cooked_write_unsigned (current_regcache, HPPA_RP_REGNUM, *bp_addr);
|
||
|
||
return sp;
|
||
}
|
||
|
||
/* In order to make an interspace call, we need to go through a stub.
|
||
gcc supplies an appropriate stub called "__gcc_plt_call", however, if
|
||
an application is compiled with HP compilers then this stub is not
|
||
available. We used to fallback to "__d_plt_call", however that stub
|
||
is not entirely useful for us because it doesn't do an interspace
|
||
return back to the caller. Also, on hppa64-hpux, there is no
|
||
__gcc_plt_call available. In order to keep the code uniform, we
|
||
instead don't use either of these stubs, but instead write our own
|
||
onto the stack.
|
||
|
||
A problem arises since the stack is located in a different space than
|
||
code, so in order to branch to a stack stub, we will need to do an
|
||
interspace branch. Previous versions of gdb did this by modifying code
|
||
at the current pc and doing single-stepping to set the pcsq. Since this
|
||
is highly undesirable, we use a different scheme:
|
||
|
||
All we really need to do the branch to the stub is a short instruction
|
||
sequence like this:
|
||
|
||
PA1.1:
|
||
ldsid (rX),r1
|
||
mtsp r1,sr0
|
||
be,n (sr0,rX)
|
||
|
||
PA2.0:
|
||
bve,n (sr0,rX)
|
||
|
||
Instead of writing these sequences ourselves, we can find it in
|
||
the instruction stream that belongs to the current space. While this
|
||
seems difficult at first, we are actually guaranteed to find the sequences
|
||
in several places:
|
||
|
||
For 32-bit code:
|
||
- in export stubs for shared libraries
|
||
- in the "noshlibs" routine in the main module
|
||
|
||
For 64-bit code:
|
||
- at the end of each "regular" function
|
||
|
||
We cache the address of these sequences in the objfile's private data
|
||
since these operations can potentially be quite expensive.
|
||
|
||
So, what we do is:
|
||
- write a stack trampoline
|
||
- look for a suitable instruction sequence in the current space
|
||
- point the sequence at the trampoline
|
||
- set the return address of the trampoline to the current space
|
||
(see hppa_hpux_find_dummy_call_bpaddr)
|
||
- set the continuing address of the "dummy code" as the sequence.
|
||
|
||
*/
|
||
|
||
if (IS_32BIT_TARGET (gdbarch))
|
||
{
|
||
static unsigned int hppa32_tramp[] = {
|
||
0x0fdf1291, /* stw r31,-8(,sp) */
|
||
0x02c010a1, /* ldsid (,r22),r1 */
|
||
0x00011820, /* mtsp r1,sr0 */
|
||
0xe6c00000, /* be,l 0(sr0,r22),%sr0,%r31 */
|
||
0x081f0242, /* copy r31,rp */
|
||
0x0fd11082, /* ldw -8(,sp),rp */
|
||
0x004010a1, /* ldsid (,rp),r1 */
|
||
0x00011820, /* mtsp r1,sr0 */
|
||
0xe0400000, /* be 0(sr0,rp) */
|
||
0x08000240 /* nop */
|
||
};
|
||
|
||
/* for hppa32, we must call the function through a stub so that on
|
||
return it can return to the space of our trampoline. */
|
||
stubaddr = hppa_hpux_find_import_stub_for_addr (funcaddr);
|
||
if (stubaddr == 0)
|
||
error ("Cannot call external function not referenced by application "
|
||
"(no import stub).\n");
|
||
regcache_cooked_write_unsigned (current_regcache, 22, stubaddr);
|
||
|
||
write_memory (sp, (char *)&hppa32_tramp, sizeof (hppa32_tramp));
|
||
|
||
*bp_addr = hppa_hpux_find_dummy_bpaddr (pc);
|
||
regcache_cooked_write_unsigned (current_regcache, 31, *bp_addr);
|
||
|
||
*real_pc = hppa32_hpux_search_dummy_call_sequence (gdbarch, pc, &argreg);
|
||
if (*real_pc == 0)
|
||
error ("Cannot make interspace call from here.\n");
|
||
|
||
regcache_cooked_write_unsigned (current_regcache, argreg, sp);
|
||
|
||
sp += sizeof (hppa32_tramp);
|
||
}
|
||
else
|
||
{
|
||
static unsigned int hppa64_tramp[] = {
|
||
0xeac0f000, /* bve,l (r22),%r2 */
|
||
0x0fdf12d1, /* std r31,-8(,sp) */
|
||
0x0fd110c2, /* ldd -8(,sp),rp */
|
||
0xe840d002, /* bve,n (rp) */
|
||
0x08000240 /* nop */
|
||
};
|
||
|
||
/* for hppa64, we don't need to call through a stub; all functions
|
||
return via a bve. */
|
||
regcache_cooked_write_unsigned (current_regcache, 22, funcaddr);
|
||
write_memory (sp, (char *)&hppa64_tramp, sizeof (hppa64_tramp));
|
||
|
||
*bp_addr = pc - 4;
|
||
regcache_cooked_write_unsigned (current_regcache, 31, *bp_addr);
|
||
|
||
*real_pc = hppa64_hpux_search_dummy_call_sequence (gdbarch, pc, &argreg);
|
||
if (*real_pc == 0)
|
||
error ("Cannot make interspace call from here.\n");
|
||
|
||
regcache_cooked_write_unsigned (current_regcache, argreg, sp);
|
||
|
||
sp += sizeof (hppa64_tramp);
|
||
}
|
||
|
||
sp = gdbarch_frame_align (gdbarch, sp);
|
||
|
||
return sp;
|
||
}
|
||
|
||
|
||
|
||
/* Bit in the `ss_flag' member of `struct save_state' that indicates
|
||
that the 64-bit register values are live. From
|
||
<machine/save_state.h>. */
|
||
#define HPPA_HPUX_SS_WIDEREGS 0x40
|
||
|
||
/* Offsets of various parts of `struct save_state'. From
|
||
<machine/save_state.h>. */
|
||
#define HPPA_HPUX_SS_FLAGS_OFFSET 0
|
||
#define HPPA_HPUX_SS_NARROW_OFFSET 4
|
||
#define HPPA_HPUX_SS_FPBLOCK_OFFSET 256
|
||
#define HPPA_HPUX_SS_WIDE_OFFSET 640
|
||
|
||
/* The size of `struct save_state. */
|
||
#define HPPA_HPUX_SAVE_STATE_SIZE 1152
|
||
|
||
/* The size of `struct pa89_save_state', which corresponds to PA-RISC
|
||
1.1, the lowest common denominator that we support. */
|
||
#define HPPA_HPUX_PA89_SAVE_STATE_SIZE 512
|
||
|
||
static void
|
||
hppa_hpux_supply_ss_narrow (struct regcache *regcache,
|
||
int regnum, const char *save_state)
|
||
{
|
||
const char *ss_narrow = save_state + HPPA_HPUX_SS_NARROW_OFFSET;
|
||
int i, offset = 0;
|
||
|
||
for (i = HPPA_R1_REGNUM; i < HPPA_FP0_REGNUM; i++)
|
||
{
|
||
if (regnum == i || regnum == -1)
|
||
regcache_raw_supply (regcache, i, ss_narrow + offset);
|
||
|
||
offset += 4;
|
||
}
|
||
}
|
||
|
||
static void
|
||
hppa_hpux_supply_ss_fpblock (struct regcache *regcache,
|
||
int regnum, const char *save_state)
|
||
{
|
||
const char *ss_fpblock = save_state + HPPA_HPUX_SS_FPBLOCK_OFFSET;
|
||
int i, offset = 0;
|
||
|
||
/* FIXME: We view the floating-point state as 64 single-precision
|
||
registers for 32-bit code, and 32 double-precision register for
|
||
64-bit code. This distinction is artificial and should be
|
||
eliminated. If that ever happens, we should remove the if-clause
|
||
below. */
|
||
|
||
if (register_size (get_regcache_arch (regcache), HPPA_FP0_REGNUM) == 4)
|
||
{
|
||
for (i = HPPA_FP0_REGNUM; i < HPPA_FP0_REGNUM + 64; i++)
|
||
{
|
||
if (regnum == i || regnum == -1)
|
||
regcache_raw_supply (regcache, i, ss_fpblock + offset);
|
||
|
||
offset += 4;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
for (i = HPPA_FP0_REGNUM; i < HPPA_FP0_REGNUM + 32; i++)
|
||
{
|
||
if (regnum == i || regnum == -1)
|
||
regcache_raw_supply (regcache, i, ss_fpblock + offset);
|
||
|
||
offset += 8;
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
hppa_hpux_supply_ss_wide (struct regcache *regcache,
|
||
int regnum, const char *save_state)
|
||
{
|
||
const char *ss_wide = save_state + HPPA_HPUX_SS_WIDE_OFFSET;
|
||
int i, offset = 8;
|
||
|
||
if (register_size (get_regcache_arch (regcache), HPPA_R1_REGNUM) == 4)
|
||
offset += 4;
|
||
|
||
for (i = HPPA_R1_REGNUM; i < HPPA_FP0_REGNUM; i++)
|
||
{
|
||
if (regnum == i || regnum == -1)
|
||
regcache_raw_supply (regcache, i, ss_wide + offset);
|
||
|
||
offset += 8;
|
||
}
|
||
}
|
||
|
||
static void
|
||
hppa_hpux_supply_save_state (const struct regset *regset,
|
||
struct regcache *regcache,
|
||
int regnum, const void *regs, size_t len)
|
||
{
|
||
const char *proc_info = regs;
|
||
const char *save_state = proc_info + 8;
|
||
ULONGEST flags;
|
||
|
||
flags = extract_unsigned_integer (save_state + HPPA_HPUX_SS_FLAGS_OFFSET, 4);
|
||
if (regnum == -1 || regnum == HPPA_FLAGS_REGNUM)
|
||
{
|
||
struct gdbarch *arch = get_regcache_arch (regcache);
|
||
size_t size = register_size (arch, HPPA_FLAGS_REGNUM);
|
||
char buf[8];
|
||
|
||
store_unsigned_integer (buf, size, flags);
|
||
regcache_raw_supply (regcache, HPPA_FLAGS_REGNUM, buf);
|
||
}
|
||
|
||
/* If the SS_WIDEREGS flag is set, we really do need the full
|
||
`struct save_state'. */
|
||
if (flags & HPPA_HPUX_SS_WIDEREGS && len < HPPA_HPUX_SAVE_STATE_SIZE)
|
||
error ("Register set contents too small");
|
||
|
||
if (flags & HPPA_HPUX_SS_WIDEREGS)
|
||
hppa_hpux_supply_ss_wide (regcache, regnum, save_state);
|
||
else
|
||
hppa_hpux_supply_ss_narrow (regcache, regnum, save_state);
|
||
|
||
hppa_hpux_supply_ss_fpblock (regcache, regnum, save_state);
|
||
}
|
||
|
||
/* HP-UX register set. */
|
||
|
||
static struct regset hppa_hpux_regset =
|
||
{
|
||
NULL,
|
||
hppa_hpux_supply_save_state
|
||
};
|
||
|
||
static const struct regset *
|
||
hppa_hpux_regset_from_core_section (struct gdbarch *gdbarch,
|
||
const char *sect_name, size_t sect_size)
|
||
{
|
||
if (strcmp (sect_name, ".reg") == 0
|
||
&& sect_size >= HPPA_HPUX_PA89_SAVE_STATE_SIZE + 8)
|
||
return &hppa_hpux_regset;
|
||
|
||
return NULL;
|
||
}
|
||
|
||
|
||
/* Bit in the `ss_flag' member of `struct save_state' that indicates
|
||
the state was saved from a system call. From
|
||
<machine/save_state.h>. */
|
||
#define HPPA_HPUX_SS_INSYSCALL 0x02
|
||
|
||
static CORE_ADDR
|
||
hppa_hpux_read_pc (ptid_t ptid)
|
||
{
|
||
ULONGEST flags;
|
||
|
||
/* If we're currently in a system call return the contents of %r31. */
|
||
flags = read_register_pid (HPPA_FLAGS_REGNUM, ptid);
|
||
if (flags & HPPA_HPUX_SS_INSYSCALL)
|
||
return read_register_pid (HPPA_R31_REGNUM, ptid) & ~0x3;
|
||
|
||
return hppa_read_pc (ptid);
|
||
}
|
||
|
||
static void
|
||
hppa_hpux_write_pc (CORE_ADDR pc, ptid_t ptid)
|
||
{
|
||
ULONGEST flags;
|
||
|
||
/* If we're currently in a system call also write PC into %r31. */
|
||
flags = read_register_pid (HPPA_FLAGS_REGNUM, ptid);
|
||
if (flags & HPPA_HPUX_SS_INSYSCALL)
|
||
write_register_pid (HPPA_R31_REGNUM, pc | 0x3, ptid);
|
||
|
||
return hppa_write_pc (pc, ptid);
|
||
}
|
||
|
||
static CORE_ADDR
|
||
hppa_hpux_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
||
{
|
||
ULONGEST flags;
|
||
|
||
/* If we're currently in a system call return the contents of %r31. */
|
||
flags = frame_unwind_register_unsigned (next_frame, HPPA_FLAGS_REGNUM);
|
||
if (flags & HPPA_HPUX_SS_INSYSCALL)
|
||
return frame_unwind_register_unsigned (next_frame, HPPA_R31_REGNUM) & ~0x3;
|
||
|
||
return hppa_unwind_pc (gdbarch, next_frame);
|
||
}
|
||
|
||
|
||
static void
|
||
hppa_hpux_inferior_created (struct target_ops *objfile, int from_tty)
|
||
{
|
||
/* Some HP-UX related globals to clear when a new "main"
|
||
symbol file is loaded. HP-specific. */
|
||
deprecated_hp_som_som_object_present = 0;
|
||
hp_cxx_exception_support_initialized = 0;
|
||
}
|
||
|
||
/* Given the current value of the pc, check to see if it is inside a stub, and
|
||
if so, change the value of the pc to point to the caller of the stub.
|
||
NEXT_FRAME is the next frame in the current list of frames.
|
||
BASE contains to stack frame base of the current frame.
|
||
SAVE_REGS is the register file stored in the frame cache. */
|
||
static void
|
||
hppa_hpux_unwind_adjust_stub (struct frame_info *next_frame, CORE_ADDR base,
|
||
struct trad_frame_saved_reg *saved_regs)
|
||
{
|
||
int optimized, realreg;
|
||
enum lval_type lval;
|
||
CORE_ADDR addr;
|
||
char buffer[sizeof(ULONGEST)];
|
||
ULONGEST val;
|
||
CORE_ADDR stubpc;
|
||
struct unwind_table_entry *u;
|
||
|
||
trad_frame_get_prev_register (next_frame, saved_regs,
|
||
HPPA_PCOQ_HEAD_REGNUM,
|
||
&optimized, &lval, &addr, &realreg, buffer);
|
||
val = extract_unsigned_integer (buffer,
|
||
register_size (get_frame_arch (next_frame),
|
||
HPPA_PCOQ_HEAD_REGNUM));
|
||
|
||
u = find_unwind_entry (val);
|
||
if (u && u->stub_unwind.stub_type == EXPORT)
|
||
{
|
||
stubpc = read_memory_integer (base - 24, TARGET_PTR_BIT / 8);
|
||
trad_frame_set_value (saved_regs, HPPA_PCOQ_HEAD_REGNUM, stubpc);
|
||
}
|
||
else if (hppa_symbol_address ("__gcc_plt_call")
|
||
== get_pc_function_start (val))
|
||
{
|
||
stubpc = read_memory_integer (base - 8, TARGET_PTR_BIT / 8);
|
||
trad_frame_set_value (saved_regs, HPPA_PCOQ_HEAD_REGNUM, stubpc);
|
||
}
|
||
}
|
||
|
||
static void
|
||
hppa_hpux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
if (IS_32BIT_TARGET (gdbarch))
|
||
tdep->in_solib_call_trampoline = hppa32_hpux_in_solib_call_trampoline;
|
||
else
|
||
tdep->in_solib_call_trampoline = hppa64_hpux_in_solib_call_trampoline;
|
||
|
||
tdep->unwind_adjust_stub = hppa_hpux_unwind_adjust_stub;
|
||
|
||
set_gdbarch_in_solib_return_trampoline
|
||
(gdbarch, hppa_hpux_in_solib_return_trampoline);
|
||
set_gdbarch_skip_trampoline_code (gdbarch, hppa_hpux_skip_trampoline_code);
|
||
|
||
set_gdbarch_push_dummy_code (gdbarch, hppa_hpux_push_dummy_code);
|
||
set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
|
||
|
||
set_gdbarch_read_pc (gdbarch, hppa_hpux_read_pc);
|
||
set_gdbarch_write_pc (gdbarch, hppa_hpux_write_pc);
|
||
set_gdbarch_unwind_pc (gdbarch, hppa_hpux_unwind_pc);
|
||
|
||
set_gdbarch_regset_from_core_section
|
||
(gdbarch, hppa_hpux_regset_from_core_section);
|
||
|
||
frame_unwind_append_sniffer (gdbarch, hppa_hpux_sigtramp_unwind_sniffer);
|
||
|
||
observer_attach_inferior_created (hppa_hpux_inferior_created);
|
||
}
|
||
|
||
static void
|
||
hppa_hpux_som_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
tdep->is_elf = 0;
|
||
|
||
tdep->find_global_pointer = hppa32_hpux_find_global_pointer;
|
||
|
||
hppa_hpux_init_abi (info, gdbarch);
|
||
som_solib_select (tdep);
|
||
}
|
||
|
||
static void
|
||
hppa_hpux_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
tdep->is_elf = 1;
|
||
tdep->find_global_pointer = hppa64_hpux_find_global_pointer;
|
||
|
||
hppa_hpux_init_abi (info, gdbarch);
|
||
pa64_solib_select (tdep);
|
||
}
|
||
|
||
static enum gdb_osabi
|
||
hppa_hpux_core_osabi_sniffer (bfd *abfd)
|
||
{
|
||
if (strcmp (bfd_get_target (abfd), "hpux-core") == 0)
|
||
return GDB_OSABI_HPUX_SOM;
|
||
|
||
return GDB_OSABI_UNKNOWN;
|
||
}
|
||
|
||
void
|
||
_initialize_hppa_hpux_tdep (void)
|
||
{
|
||
/* BFD doesn't set a flavour for HP-UX style core files. It doesn't
|
||
set the architecture either. */
|
||
gdbarch_register_osabi_sniffer (bfd_arch_unknown,
|
||
bfd_target_unknown_flavour,
|
||
hppa_hpux_core_osabi_sniffer);
|
||
|
||
gdbarch_register_osabi (bfd_arch_hppa, 0, GDB_OSABI_HPUX_SOM,
|
||
hppa_hpux_som_init_abi);
|
||
gdbarch_register_osabi (bfd_arch_hppa, bfd_mach_hppa20w, GDB_OSABI_HPUX_ELF,
|
||
hppa_hpux_elf_init_abi);
|
||
}
|