mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-27 03:51:15 +08:00
3348747a87
* elf32-arm.c (elf32_arm_final_link_relocate): Skip dynamic relocs in vxworks tls_vars sections. (allocate_dynrelocs, elf32_arm_size_dynamic_sections): Likewise. * elf32-i386.c (allocate_dynrelocs, elf_i386_size_dynamic_sections, elf_i386_relocate_section): Likewise. * elf32-ppc.c (allocate_dynrelocs, ppc_elf_size_dynamic_sections, ppc_elf_relocate_section): Likewise. * elf32-sh.c (allocate_dynrelocs, sh_elf_size_dynamic_sections, sh_elf_relocate_section): Likewise. * elfxx-sparc.c (allocate_dynrelocs, _bfd_sparc_elf_size_dynamic_sections, _bfd_sparc_elf_relocate_section): Likewise. ld/testsuite/ * ld-vxworks/tls-3.s: New. * ld-vxworks/tls-3.d: New.
4179 lines
120 KiB
C
4179 lines
120 KiB
C
/* Intel 80386/80486-specific support for 32-bit ELF
|
||
Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
|
||
2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
|
||
|
||
This file is part of BFD, the Binary File Descriptor library.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
|
||
MA 02110-1301, USA. */
|
||
|
||
#include "sysdep.h"
|
||
#include "bfd.h"
|
||
#include "bfdlink.h"
|
||
#include "libbfd.h"
|
||
#include "elf-bfd.h"
|
||
#include "elf-vxworks.h"
|
||
#include "bfd_stdint.h"
|
||
|
||
/* 386 uses REL relocations instead of RELA. */
|
||
#define USE_REL 1
|
||
|
||
#include "elf/i386.h"
|
||
|
||
static reloc_howto_type elf_howto_table[]=
|
||
{
|
||
HOWTO(R_386_NONE, 0, 0, 0, FALSE, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_386_NONE",
|
||
TRUE, 0x00000000, 0x00000000, FALSE),
|
||
HOWTO(R_386_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_386_32",
|
||
TRUE, 0xffffffff, 0xffffffff, FALSE),
|
||
HOWTO(R_386_PC32, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_386_PC32",
|
||
TRUE, 0xffffffff, 0xffffffff, TRUE),
|
||
HOWTO(R_386_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_386_GOT32",
|
||
TRUE, 0xffffffff, 0xffffffff, FALSE),
|
||
HOWTO(R_386_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_386_PLT32",
|
||
TRUE, 0xffffffff, 0xffffffff, TRUE),
|
||
HOWTO(R_386_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_386_COPY",
|
||
TRUE, 0xffffffff, 0xffffffff, FALSE),
|
||
HOWTO(R_386_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_386_GLOB_DAT",
|
||
TRUE, 0xffffffff, 0xffffffff, FALSE),
|
||
HOWTO(R_386_JUMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_386_JUMP_SLOT",
|
||
TRUE, 0xffffffff, 0xffffffff, FALSE),
|
||
HOWTO(R_386_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_386_RELATIVE",
|
||
TRUE, 0xffffffff, 0xffffffff, FALSE),
|
||
HOWTO(R_386_GOTOFF, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_386_GOTOFF",
|
||
TRUE, 0xffffffff, 0xffffffff, FALSE),
|
||
HOWTO(R_386_GOTPC, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_386_GOTPC",
|
||
TRUE, 0xffffffff, 0xffffffff, TRUE),
|
||
|
||
/* We have a gap in the reloc numbers here.
|
||
R_386_standard counts the number up to this point, and
|
||
R_386_ext_offset is the value to subtract from a reloc type of
|
||
R_386_16 thru R_386_PC8 to form an index into this table. */
|
||
#define R_386_standard (R_386_GOTPC + 1)
|
||
#define R_386_ext_offset (R_386_TLS_TPOFF - R_386_standard)
|
||
|
||
/* These relocs are a GNU extension. */
|
||
HOWTO(R_386_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_386_TLS_TPOFF",
|
||
TRUE, 0xffffffff, 0xffffffff, FALSE),
|
||
HOWTO(R_386_TLS_IE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_386_TLS_IE",
|
||
TRUE, 0xffffffff, 0xffffffff, FALSE),
|
||
HOWTO(R_386_TLS_GOTIE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_386_TLS_GOTIE",
|
||
TRUE, 0xffffffff, 0xffffffff, FALSE),
|
||
HOWTO(R_386_TLS_LE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_386_TLS_LE",
|
||
TRUE, 0xffffffff, 0xffffffff, FALSE),
|
||
HOWTO(R_386_TLS_GD, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_386_TLS_GD",
|
||
TRUE, 0xffffffff, 0xffffffff, FALSE),
|
||
HOWTO(R_386_TLS_LDM, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_386_TLS_LDM",
|
||
TRUE, 0xffffffff, 0xffffffff, FALSE),
|
||
HOWTO(R_386_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_386_16",
|
||
TRUE, 0xffff, 0xffff, FALSE),
|
||
HOWTO(R_386_PC16, 0, 1, 16, TRUE, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_386_PC16",
|
||
TRUE, 0xffff, 0xffff, TRUE),
|
||
HOWTO(R_386_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_386_8",
|
||
TRUE, 0xff, 0xff, FALSE),
|
||
HOWTO(R_386_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
|
||
bfd_elf_generic_reloc, "R_386_PC8",
|
||
TRUE, 0xff, 0xff, TRUE),
|
||
|
||
#define R_386_ext (R_386_PC8 + 1 - R_386_ext_offset)
|
||
#define R_386_tls_offset (R_386_TLS_LDO_32 - R_386_ext)
|
||
/* These are common with Solaris TLS implementation. */
|
||
HOWTO(R_386_TLS_LDO_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_386_TLS_LDO_32",
|
||
TRUE, 0xffffffff, 0xffffffff, FALSE),
|
||
HOWTO(R_386_TLS_IE_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_386_TLS_IE_32",
|
||
TRUE, 0xffffffff, 0xffffffff, FALSE),
|
||
HOWTO(R_386_TLS_LE_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_386_TLS_LE_32",
|
||
TRUE, 0xffffffff, 0xffffffff, FALSE),
|
||
HOWTO(R_386_TLS_DTPMOD32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_386_TLS_DTPMOD32",
|
||
TRUE, 0xffffffff, 0xffffffff, FALSE),
|
||
HOWTO(R_386_TLS_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_386_TLS_DTPOFF32",
|
||
TRUE, 0xffffffff, 0xffffffff, FALSE),
|
||
HOWTO(R_386_TLS_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_386_TLS_TPOFF32",
|
||
TRUE, 0xffffffff, 0xffffffff, FALSE),
|
||
EMPTY_HOWTO (38),
|
||
HOWTO(R_386_TLS_GOTDESC, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_386_TLS_GOTDESC",
|
||
TRUE, 0xffffffff, 0xffffffff, FALSE),
|
||
HOWTO(R_386_TLS_DESC_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont,
|
||
bfd_elf_generic_reloc, "R_386_TLS_DESC_CALL",
|
||
FALSE, 0, 0, FALSE),
|
||
HOWTO(R_386_TLS_DESC, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_386_TLS_DESC",
|
||
TRUE, 0xffffffff, 0xffffffff, FALSE),
|
||
|
||
/* Another gap. */
|
||
#define R_386_tls (R_386_TLS_DESC + 1 - R_386_tls_offset)
|
||
#define R_386_vt_offset (R_386_GNU_VTINHERIT - R_386_tls)
|
||
|
||
/* GNU extension to record C++ vtable hierarchy. */
|
||
HOWTO (R_386_GNU_VTINHERIT, /* type */
|
||
0, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
0, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont, /* complain_on_overflow */
|
||
NULL, /* special_function */
|
||
"R_386_GNU_VTINHERIT", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
/* GNU extension to record C++ vtable member usage. */
|
||
HOWTO (R_386_GNU_VTENTRY, /* type */
|
||
0, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
0, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont, /* complain_on_overflow */
|
||
_bfd_elf_rel_vtable_reloc_fn, /* special_function */
|
||
"R_386_GNU_VTENTRY", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0, /* dst_mask */
|
||
FALSE) /* pcrel_offset */
|
||
|
||
#define R_386_vt (R_386_GNU_VTENTRY + 1 - R_386_vt_offset)
|
||
|
||
};
|
||
|
||
#ifdef DEBUG_GEN_RELOC
|
||
#define TRACE(str) \
|
||
fprintf (stderr, "i386 bfd reloc lookup %d (%s)\n", code, str)
|
||
#else
|
||
#define TRACE(str)
|
||
#endif
|
||
|
||
static reloc_howto_type *
|
||
elf_i386_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
|
||
bfd_reloc_code_real_type code)
|
||
{
|
||
switch (code)
|
||
{
|
||
case BFD_RELOC_NONE:
|
||
TRACE ("BFD_RELOC_NONE");
|
||
return &elf_howto_table[R_386_NONE];
|
||
|
||
case BFD_RELOC_32:
|
||
TRACE ("BFD_RELOC_32");
|
||
return &elf_howto_table[R_386_32];
|
||
|
||
case BFD_RELOC_CTOR:
|
||
TRACE ("BFD_RELOC_CTOR");
|
||
return &elf_howto_table[R_386_32];
|
||
|
||
case BFD_RELOC_32_PCREL:
|
||
TRACE ("BFD_RELOC_PC32");
|
||
return &elf_howto_table[R_386_PC32];
|
||
|
||
case BFD_RELOC_386_GOT32:
|
||
TRACE ("BFD_RELOC_386_GOT32");
|
||
return &elf_howto_table[R_386_GOT32];
|
||
|
||
case BFD_RELOC_386_PLT32:
|
||
TRACE ("BFD_RELOC_386_PLT32");
|
||
return &elf_howto_table[R_386_PLT32];
|
||
|
||
case BFD_RELOC_386_COPY:
|
||
TRACE ("BFD_RELOC_386_COPY");
|
||
return &elf_howto_table[R_386_COPY];
|
||
|
||
case BFD_RELOC_386_GLOB_DAT:
|
||
TRACE ("BFD_RELOC_386_GLOB_DAT");
|
||
return &elf_howto_table[R_386_GLOB_DAT];
|
||
|
||
case BFD_RELOC_386_JUMP_SLOT:
|
||
TRACE ("BFD_RELOC_386_JUMP_SLOT");
|
||
return &elf_howto_table[R_386_JUMP_SLOT];
|
||
|
||
case BFD_RELOC_386_RELATIVE:
|
||
TRACE ("BFD_RELOC_386_RELATIVE");
|
||
return &elf_howto_table[R_386_RELATIVE];
|
||
|
||
case BFD_RELOC_386_GOTOFF:
|
||
TRACE ("BFD_RELOC_386_GOTOFF");
|
||
return &elf_howto_table[R_386_GOTOFF];
|
||
|
||
case BFD_RELOC_386_GOTPC:
|
||
TRACE ("BFD_RELOC_386_GOTPC");
|
||
return &elf_howto_table[R_386_GOTPC];
|
||
|
||
/* These relocs are a GNU extension. */
|
||
case BFD_RELOC_386_TLS_TPOFF:
|
||
TRACE ("BFD_RELOC_386_TLS_TPOFF");
|
||
return &elf_howto_table[R_386_TLS_TPOFF - R_386_ext_offset];
|
||
|
||
case BFD_RELOC_386_TLS_IE:
|
||
TRACE ("BFD_RELOC_386_TLS_IE");
|
||
return &elf_howto_table[R_386_TLS_IE - R_386_ext_offset];
|
||
|
||
case BFD_RELOC_386_TLS_GOTIE:
|
||
TRACE ("BFD_RELOC_386_TLS_GOTIE");
|
||
return &elf_howto_table[R_386_TLS_GOTIE - R_386_ext_offset];
|
||
|
||
case BFD_RELOC_386_TLS_LE:
|
||
TRACE ("BFD_RELOC_386_TLS_LE");
|
||
return &elf_howto_table[R_386_TLS_LE - R_386_ext_offset];
|
||
|
||
case BFD_RELOC_386_TLS_GD:
|
||
TRACE ("BFD_RELOC_386_TLS_GD");
|
||
return &elf_howto_table[R_386_TLS_GD - R_386_ext_offset];
|
||
|
||
case BFD_RELOC_386_TLS_LDM:
|
||
TRACE ("BFD_RELOC_386_TLS_LDM");
|
||
return &elf_howto_table[R_386_TLS_LDM - R_386_ext_offset];
|
||
|
||
case BFD_RELOC_16:
|
||
TRACE ("BFD_RELOC_16");
|
||
return &elf_howto_table[R_386_16 - R_386_ext_offset];
|
||
|
||
case BFD_RELOC_16_PCREL:
|
||
TRACE ("BFD_RELOC_16_PCREL");
|
||
return &elf_howto_table[R_386_PC16 - R_386_ext_offset];
|
||
|
||
case BFD_RELOC_8:
|
||
TRACE ("BFD_RELOC_8");
|
||
return &elf_howto_table[R_386_8 - R_386_ext_offset];
|
||
|
||
case BFD_RELOC_8_PCREL:
|
||
TRACE ("BFD_RELOC_8_PCREL");
|
||
return &elf_howto_table[R_386_PC8 - R_386_ext_offset];
|
||
|
||
/* Common with Sun TLS implementation. */
|
||
case BFD_RELOC_386_TLS_LDO_32:
|
||
TRACE ("BFD_RELOC_386_TLS_LDO_32");
|
||
return &elf_howto_table[R_386_TLS_LDO_32 - R_386_tls_offset];
|
||
|
||
case BFD_RELOC_386_TLS_IE_32:
|
||
TRACE ("BFD_RELOC_386_TLS_IE_32");
|
||
return &elf_howto_table[R_386_TLS_IE_32 - R_386_tls_offset];
|
||
|
||
case BFD_RELOC_386_TLS_LE_32:
|
||
TRACE ("BFD_RELOC_386_TLS_LE_32");
|
||
return &elf_howto_table[R_386_TLS_LE_32 - R_386_tls_offset];
|
||
|
||
case BFD_RELOC_386_TLS_DTPMOD32:
|
||
TRACE ("BFD_RELOC_386_TLS_DTPMOD32");
|
||
return &elf_howto_table[R_386_TLS_DTPMOD32 - R_386_tls_offset];
|
||
|
||
case BFD_RELOC_386_TLS_DTPOFF32:
|
||
TRACE ("BFD_RELOC_386_TLS_DTPOFF32");
|
||
return &elf_howto_table[R_386_TLS_DTPOFF32 - R_386_tls_offset];
|
||
|
||
case BFD_RELOC_386_TLS_TPOFF32:
|
||
TRACE ("BFD_RELOC_386_TLS_TPOFF32");
|
||
return &elf_howto_table[R_386_TLS_TPOFF32 - R_386_tls_offset];
|
||
|
||
case BFD_RELOC_386_TLS_GOTDESC:
|
||
TRACE ("BFD_RELOC_386_TLS_GOTDESC");
|
||
return &elf_howto_table[R_386_TLS_GOTDESC - R_386_tls_offset];
|
||
|
||
case BFD_RELOC_386_TLS_DESC_CALL:
|
||
TRACE ("BFD_RELOC_386_TLS_DESC_CALL");
|
||
return &elf_howto_table[R_386_TLS_DESC_CALL - R_386_tls_offset];
|
||
|
||
case BFD_RELOC_386_TLS_DESC:
|
||
TRACE ("BFD_RELOC_386_TLS_DESC");
|
||
return &elf_howto_table[R_386_TLS_DESC - R_386_tls_offset];
|
||
|
||
case BFD_RELOC_VTABLE_INHERIT:
|
||
TRACE ("BFD_RELOC_VTABLE_INHERIT");
|
||
return &elf_howto_table[R_386_GNU_VTINHERIT - R_386_vt_offset];
|
||
|
||
case BFD_RELOC_VTABLE_ENTRY:
|
||
TRACE ("BFD_RELOC_VTABLE_ENTRY");
|
||
return &elf_howto_table[R_386_GNU_VTENTRY - R_386_vt_offset];
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
TRACE ("Unknown");
|
||
return 0;
|
||
}
|
||
|
||
static reloc_howto_type *
|
||
elf_i386_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
|
||
const char *r_name)
|
||
{
|
||
unsigned int i;
|
||
|
||
for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
|
||
if (elf_howto_table[i].name != NULL
|
||
&& strcasecmp (elf_howto_table[i].name, r_name) == 0)
|
||
return &elf_howto_table[i];
|
||
|
||
return NULL;
|
||
}
|
||
|
||
static reloc_howto_type *
|
||
elf_i386_rtype_to_howto (bfd *abfd, unsigned r_type)
|
||
{
|
||
unsigned int indx;
|
||
|
||
if ((indx = r_type) >= R_386_standard
|
||
&& ((indx = r_type - R_386_ext_offset) - R_386_standard
|
||
>= R_386_ext - R_386_standard)
|
||
&& ((indx = r_type - R_386_tls_offset) - R_386_ext
|
||
>= R_386_tls - R_386_ext)
|
||
&& ((indx = r_type - R_386_vt_offset) - R_386_tls
|
||
>= R_386_vt - R_386_tls))
|
||
{
|
||
(*_bfd_error_handler) (_("%B: invalid relocation type %d"),
|
||
abfd, (int) r_type);
|
||
indx = R_386_NONE;
|
||
}
|
||
BFD_ASSERT (elf_howto_table [indx].type == r_type);
|
||
return &elf_howto_table[indx];
|
||
}
|
||
|
||
static void
|
||
elf_i386_info_to_howto_rel (bfd *abfd ATTRIBUTE_UNUSED,
|
||
arelent *cache_ptr,
|
||
Elf_Internal_Rela *dst)
|
||
{
|
||
unsigned int r_type = ELF32_R_TYPE (dst->r_info);
|
||
cache_ptr->howto = elf_i386_rtype_to_howto (abfd, r_type);
|
||
}
|
||
|
||
/* Return whether a symbol name implies a local label. The UnixWare
|
||
2.1 cc generates temporary symbols that start with .X, so we
|
||
recognize them here. FIXME: do other SVR4 compilers also use .X?.
|
||
If so, we should move the .X recognition into
|
||
_bfd_elf_is_local_label_name. */
|
||
|
||
static bfd_boolean
|
||
elf_i386_is_local_label_name (bfd *abfd, const char *name)
|
||
{
|
||
if (name[0] == '.' && name[1] == 'X')
|
||
return TRUE;
|
||
|
||
return _bfd_elf_is_local_label_name (abfd, name);
|
||
}
|
||
|
||
/* Support for core dump NOTE sections. */
|
||
|
||
static bfd_boolean
|
||
elf_i386_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
|
||
{
|
||
int offset;
|
||
size_t size;
|
||
|
||
if (note->namesz == 8 && strcmp (note->namedata, "FreeBSD") == 0)
|
||
{
|
||
int pr_version = bfd_get_32 (abfd, note->descdata);
|
||
|
||
if (pr_version != 1)
|
||
return FALSE;
|
||
|
||
/* pr_cursig */
|
||
elf_tdata (abfd)->core_signal = bfd_get_32 (abfd, note->descdata + 20);
|
||
|
||
/* pr_pid */
|
||
elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
|
||
|
||
/* pr_reg */
|
||
offset = 28;
|
||
size = bfd_get_32 (abfd, note->descdata + 8);
|
||
}
|
||
else
|
||
{
|
||
switch (note->descsz)
|
||
{
|
||
default:
|
||
return FALSE;
|
||
|
||
case 144: /* Linux/i386 */
|
||
/* pr_cursig */
|
||
elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
|
||
|
||
/* pr_pid */
|
||
elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
|
||
|
||
/* pr_reg */
|
||
offset = 72;
|
||
size = 68;
|
||
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Make a ".reg/999" section. */
|
||
return _bfd_elfcore_make_pseudosection (abfd, ".reg",
|
||
size, note->descpos + offset);
|
||
}
|
||
|
||
static bfd_boolean
|
||
elf_i386_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
|
||
{
|
||
if (note->namesz == 8 && strcmp (note->namedata, "FreeBSD") == 0)
|
||
{
|
||
int pr_version = bfd_get_32 (abfd, note->descdata);
|
||
|
||
if (pr_version != 1)
|
||
return FALSE;
|
||
|
||
elf_tdata (abfd)->core_program
|
||
= _bfd_elfcore_strndup (abfd, note->descdata + 8, 17);
|
||
elf_tdata (abfd)->core_command
|
||
= _bfd_elfcore_strndup (abfd, note->descdata + 25, 81);
|
||
}
|
||
else
|
||
{
|
||
switch (note->descsz)
|
||
{
|
||
default:
|
||
return FALSE;
|
||
|
||
case 124: /* Linux/i386 elf_prpsinfo. */
|
||
elf_tdata (abfd)->core_program
|
||
= _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
|
||
elf_tdata (abfd)->core_command
|
||
= _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
|
||
}
|
||
}
|
||
|
||
/* Note that for some reason, a spurious space is tacked
|
||
onto the end of the args in some (at least one anyway)
|
||
implementations, so strip it off if it exists. */
|
||
{
|
||
char *command = elf_tdata (abfd)->core_command;
|
||
int n = strlen (command);
|
||
|
||
if (0 < n && command[n - 1] == ' ')
|
||
command[n - 1] = '\0';
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Functions for the i386 ELF linker.
|
||
|
||
In order to gain some understanding of code in this file without
|
||
knowing all the intricate details of the linker, note the
|
||
following:
|
||
|
||
Functions named elf_i386_* are called by external routines, other
|
||
functions are only called locally. elf_i386_* functions appear
|
||
in this file more or less in the order in which they are called
|
||
from external routines. eg. elf_i386_check_relocs is called
|
||
early in the link process, elf_i386_finish_dynamic_sections is
|
||
one of the last functions. */
|
||
|
||
|
||
/* The name of the dynamic interpreter. This is put in the .interp
|
||
section. */
|
||
|
||
#define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
|
||
|
||
/* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
|
||
copying dynamic variables from a shared lib into an app's dynbss
|
||
section, and instead use a dynamic relocation to point into the
|
||
shared lib. */
|
||
#define ELIMINATE_COPY_RELOCS 1
|
||
|
||
/* The size in bytes of an entry in the procedure linkage table. */
|
||
|
||
#define PLT_ENTRY_SIZE 16
|
||
|
||
/* The first entry in an absolute procedure linkage table looks like
|
||
this. See the SVR4 ABI i386 supplement to see how this works.
|
||
Will be padded to PLT_ENTRY_SIZE with htab->plt0_pad_byte. */
|
||
|
||
static const bfd_byte elf_i386_plt0_entry[12] =
|
||
{
|
||
0xff, 0x35, /* pushl contents of address */
|
||
0, 0, 0, 0, /* replaced with address of .got + 4. */
|
||
0xff, 0x25, /* jmp indirect */
|
||
0, 0, 0, 0 /* replaced with address of .got + 8. */
|
||
};
|
||
|
||
/* Subsequent entries in an absolute procedure linkage table look like
|
||
this. */
|
||
|
||
static const bfd_byte elf_i386_plt_entry[PLT_ENTRY_SIZE] =
|
||
{
|
||
0xff, 0x25, /* jmp indirect */
|
||
0, 0, 0, 0, /* replaced with address of this symbol in .got. */
|
||
0x68, /* pushl immediate */
|
||
0, 0, 0, 0, /* replaced with offset into relocation table. */
|
||
0xe9, /* jmp relative */
|
||
0, 0, 0, 0 /* replaced with offset to start of .plt. */
|
||
};
|
||
|
||
/* The first entry in a PIC procedure linkage table look like this.
|
||
Will be padded to PLT_ENTRY_SIZE with htab->plt0_pad_byte. */
|
||
|
||
static const bfd_byte elf_i386_pic_plt0_entry[12] =
|
||
{
|
||
0xff, 0xb3, 4, 0, 0, 0, /* pushl 4(%ebx) */
|
||
0xff, 0xa3, 8, 0, 0, 0 /* jmp *8(%ebx) */
|
||
};
|
||
|
||
/* Subsequent entries in a PIC procedure linkage table look like this. */
|
||
|
||
static const bfd_byte elf_i386_pic_plt_entry[PLT_ENTRY_SIZE] =
|
||
{
|
||
0xff, 0xa3, /* jmp *offset(%ebx) */
|
||
0, 0, 0, 0, /* replaced with offset of this symbol in .got. */
|
||
0x68, /* pushl immediate */
|
||
0, 0, 0, 0, /* replaced with offset into relocation table. */
|
||
0xe9, /* jmp relative */
|
||
0, 0, 0, 0 /* replaced with offset to start of .plt. */
|
||
};
|
||
|
||
/* On VxWorks, the .rel.plt.unloaded section has absolute relocations
|
||
for the PLTResolve stub and then for each PLT entry. */
|
||
#define PLTRESOLVE_RELOCS_SHLIB 0
|
||
#define PLTRESOLVE_RELOCS 2
|
||
#define PLT_NON_JUMP_SLOT_RELOCS 2
|
||
|
||
/* The i386 linker needs to keep track of the number of relocs that it
|
||
decides to copy as dynamic relocs in check_relocs for each symbol.
|
||
This is so that it can later discard them if they are found to be
|
||
unnecessary. We store the information in a field extending the
|
||
regular ELF linker hash table. */
|
||
|
||
struct elf_i386_dyn_relocs
|
||
{
|
||
struct elf_i386_dyn_relocs *next;
|
||
|
||
/* The input section of the reloc. */
|
||
asection *sec;
|
||
|
||
/* Total number of relocs copied for the input section. */
|
||
bfd_size_type count;
|
||
|
||
/* Number of pc-relative relocs copied for the input section. */
|
||
bfd_size_type pc_count;
|
||
};
|
||
|
||
/* i386 ELF linker hash entry. */
|
||
|
||
struct elf_i386_link_hash_entry
|
||
{
|
||
struct elf_link_hash_entry elf;
|
||
|
||
/* Track dynamic relocs copied for this symbol. */
|
||
struct elf_i386_dyn_relocs *dyn_relocs;
|
||
|
||
#define GOT_UNKNOWN 0
|
||
#define GOT_NORMAL 1
|
||
#define GOT_TLS_GD 2
|
||
#define GOT_TLS_IE 4
|
||
#define GOT_TLS_IE_POS 5
|
||
#define GOT_TLS_IE_NEG 6
|
||
#define GOT_TLS_IE_BOTH 7
|
||
#define GOT_TLS_GDESC 8
|
||
#define GOT_TLS_GD_BOTH_P(type) \
|
||
((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
|
||
#define GOT_TLS_GD_P(type) \
|
||
((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
|
||
#define GOT_TLS_GDESC_P(type) \
|
||
((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
|
||
#define GOT_TLS_GD_ANY_P(type) \
|
||
(GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
|
||
unsigned char tls_type;
|
||
|
||
/* Offset of the GOTPLT entry reserved for the TLS descriptor,
|
||
starting at the end of the jump table. */
|
||
bfd_vma tlsdesc_got;
|
||
};
|
||
|
||
#define elf_i386_hash_entry(ent) ((struct elf_i386_link_hash_entry *)(ent))
|
||
|
||
struct elf_i386_obj_tdata
|
||
{
|
||
struct elf_obj_tdata root;
|
||
|
||
/* tls_type for each local got entry. */
|
||
char *local_got_tls_type;
|
||
|
||
/* GOTPLT entries for TLS descriptors. */
|
||
bfd_vma *local_tlsdesc_gotent;
|
||
};
|
||
|
||
#define elf_i386_tdata(abfd) \
|
||
((struct elf_i386_obj_tdata *) (abfd)->tdata.any)
|
||
|
||
#define elf_i386_local_got_tls_type(abfd) \
|
||
(elf_i386_tdata (abfd)->local_got_tls_type)
|
||
|
||
#define elf_i386_local_tlsdesc_gotent(abfd) \
|
||
(elf_i386_tdata (abfd)->local_tlsdesc_gotent)
|
||
|
||
#define is_i386_elf(bfd) \
|
||
(bfd_get_flavour (bfd) == bfd_target_elf_flavour \
|
||
&& elf_tdata (bfd) != NULL \
|
||
&& elf_object_id (bfd) == I386_ELF_TDATA)
|
||
|
||
static bfd_boolean
|
||
elf_i386_mkobject (bfd *abfd)
|
||
{
|
||
return bfd_elf_allocate_object (abfd, sizeof (struct elf_i386_obj_tdata),
|
||
I386_ELF_TDATA);
|
||
}
|
||
|
||
/* i386 ELF linker hash table. */
|
||
|
||
struct elf_i386_link_hash_table
|
||
{
|
||
struct elf_link_hash_table elf;
|
||
|
||
/* Short-cuts to get to dynamic linker sections. */
|
||
asection *sgot;
|
||
asection *sgotplt;
|
||
asection *srelgot;
|
||
asection *splt;
|
||
asection *srelplt;
|
||
asection *sdynbss;
|
||
asection *srelbss;
|
||
|
||
/* The (unloaded but important) .rel.plt.unloaded section on VxWorks. */
|
||
asection *srelplt2;
|
||
|
||
/* True if the target system is VxWorks. */
|
||
int is_vxworks;
|
||
|
||
/* Value used to fill the last word of the first plt entry. */
|
||
bfd_byte plt0_pad_byte;
|
||
|
||
/* The index of the next unused R_386_TLS_DESC slot in .rel.plt. */
|
||
bfd_vma next_tls_desc_index;
|
||
|
||
union {
|
||
bfd_signed_vma refcount;
|
||
bfd_vma offset;
|
||
} tls_ldm_got;
|
||
|
||
/* The amount of space used by the reserved portion of the sgotplt
|
||
section, plus whatever space is used by the jump slots. */
|
||
bfd_vma sgotplt_jump_table_size;
|
||
|
||
/* Small local sym to section mapping cache. */
|
||
struct sym_sec_cache sym_sec;
|
||
};
|
||
|
||
/* Get the i386 ELF linker hash table from a link_info structure. */
|
||
|
||
#define elf_i386_hash_table(p) \
|
||
((struct elf_i386_link_hash_table *) ((p)->hash))
|
||
|
||
#define elf_i386_compute_jump_table_size(htab) \
|
||
((htab)->next_tls_desc_index * 4)
|
||
|
||
/* Create an entry in an i386 ELF linker hash table. */
|
||
|
||
static struct bfd_hash_entry *
|
||
link_hash_newfunc (struct bfd_hash_entry *entry,
|
||
struct bfd_hash_table *table,
|
||
const char *string)
|
||
{
|
||
/* Allocate the structure if it has not already been allocated by a
|
||
subclass. */
|
||
if (entry == NULL)
|
||
{
|
||
entry = bfd_hash_allocate (table,
|
||
sizeof (struct elf_i386_link_hash_entry));
|
||
if (entry == NULL)
|
||
return entry;
|
||
}
|
||
|
||
/* Call the allocation method of the superclass. */
|
||
entry = _bfd_elf_link_hash_newfunc (entry, table, string);
|
||
if (entry != NULL)
|
||
{
|
||
struct elf_i386_link_hash_entry *eh;
|
||
|
||
eh = (struct elf_i386_link_hash_entry *) entry;
|
||
eh->dyn_relocs = NULL;
|
||
eh->tls_type = GOT_UNKNOWN;
|
||
eh->tlsdesc_got = (bfd_vma) -1;
|
||
}
|
||
|
||
return entry;
|
||
}
|
||
|
||
/* Create an i386 ELF linker hash table. */
|
||
|
||
static struct bfd_link_hash_table *
|
||
elf_i386_link_hash_table_create (bfd *abfd)
|
||
{
|
||
struct elf_i386_link_hash_table *ret;
|
||
bfd_size_type amt = sizeof (struct elf_i386_link_hash_table);
|
||
|
||
ret = bfd_malloc (amt);
|
||
if (ret == NULL)
|
||
return NULL;
|
||
|
||
if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc,
|
||
sizeof (struct elf_i386_link_hash_entry)))
|
||
{
|
||
free (ret);
|
||
return NULL;
|
||
}
|
||
|
||
ret->sgot = NULL;
|
||
ret->sgotplt = NULL;
|
||
ret->srelgot = NULL;
|
||
ret->splt = NULL;
|
||
ret->srelplt = NULL;
|
||
ret->sdynbss = NULL;
|
||
ret->srelbss = NULL;
|
||
ret->tls_ldm_got.refcount = 0;
|
||
ret->next_tls_desc_index = 0;
|
||
ret->sgotplt_jump_table_size = 0;
|
||
ret->sym_sec.abfd = NULL;
|
||
ret->is_vxworks = 0;
|
||
ret->srelplt2 = NULL;
|
||
ret->plt0_pad_byte = 0;
|
||
|
||
return &ret->elf.root;
|
||
}
|
||
|
||
/* Create .got, .gotplt, and .rel.got sections in DYNOBJ, and set up
|
||
shortcuts to them in our hash table. */
|
||
|
||
static bfd_boolean
|
||
create_got_section (bfd *dynobj, struct bfd_link_info *info)
|
||
{
|
||
struct elf_i386_link_hash_table *htab;
|
||
|
||
if (! _bfd_elf_create_got_section (dynobj, info))
|
||
return FALSE;
|
||
|
||
htab = elf_i386_hash_table (info);
|
||
htab->sgot = bfd_get_section_by_name (dynobj, ".got");
|
||
htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
|
||
if (!htab->sgot || !htab->sgotplt)
|
||
abort ();
|
||
|
||
htab->srelgot = bfd_make_section_with_flags (dynobj, ".rel.got",
|
||
(SEC_ALLOC | SEC_LOAD
|
||
| SEC_HAS_CONTENTS
|
||
| SEC_IN_MEMORY
|
||
| SEC_LINKER_CREATED
|
||
| SEC_READONLY));
|
||
if (htab->srelgot == NULL
|
||
|| ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
|
||
return FALSE;
|
||
return TRUE;
|
||
}
|
||
|
||
/* Create .plt, .rel.plt, .got, .got.plt, .rel.got, .dynbss, and
|
||
.rel.bss sections in DYNOBJ, and set up shortcuts to them in our
|
||
hash table. */
|
||
|
||
static bfd_boolean
|
||
elf_i386_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
|
||
{
|
||
struct elf_i386_link_hash_table *htab;
|
||
|
||
htab = elf_i386_hash_table (info);
|
||
if (!htab->sgot && !create_got_section (dynobj, info))
|
||
return FALSE;
|
||
|
||
if (!_bfd_elf_create_dynamic_sections (dynobj, info))
|
||
return FALSE;
|
||
|
||
htab->splt = bfd_get_section_by_name (dynobj, ".plt");
|
||
htab->srelplt = bfd_get_section_by_name (dynobj, ".rel.plt");
|
||
htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
|
||
if (!info->shared)
|
||
htab->srelbss = bfd_get_section_by_name (dynobj, ".rel.bss");
|
||
|
||
if (!htab->splt || !htab->srelplt || !htab->sdynbss
|
||
|| (!info->shared && !htab->srelbss))
|
||
abort ();
|
||
|
||
if (htab->is_vxworks
|
||
&& !elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
|
||
return FALSE;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Copy the extra info we tack onto an elf_link_hash_entry. */
|
||
|
||
static void
|
||
elf_i386_copy_indirect_symbol (struct bfd_link_info *info,
|
||
struct elf_link_hash_entry *dir,
|
||
struct elf_link_hash_entry *ind)
|
||
{
|
||
struct elf_i386_link_hash_entry *edir, *eind;
|
||
|
||
edir = (struct elf_i386_link_hash_entry *) dir;
|
||
eind = (struct elf_i386_link_hash_entry *) ind;
|
||
|
||
if (eind->dyn_relocs != NULL)
|
||
{
|
||
if (edir->dyn_relocs != NULL)
|
||
{
|
||
struct elf_i386_dyn_relocs **pp;
|
||
struct elf_i386_dyn_relocs *p;
|
||
|
||
/* Add reloc counts against the indirect sym to the direct sym
|
||
list. Merge any entries against the same section. */
|
||
for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
|
||
{
|
||
struct elf_i386_dyn_relocs *q;
|
||
|
||
for (q = edir->dyn_relocs; q != NULL; q = q->next)
|
||
if (q->sec == p->sec)
|
||
{
|
||
q->pc_count += p->pc_count;
|
||
q->count += p->count;
|
||
*pp = p->next;
|
||
break;
|
||
}
|
||
if (q == NULL)
|
||
pp = &p->next;
|
||
}
|
||
*pp = edir->dyn_relocs;
|
||
}
|
||
|
||
edir->dyn_relocs = eind->dyn_relocs;
|
||
eind->dyn_relocs = NULL;
|
||
}
|
||
|
||
if (ind->root.type == bfd_link_hash_indirect
|
||
&& dir->got.refcount <= 0)
|
||
{
|
||
edir->tls_type = eind->tls_type;
|
||
eind->tls_type = GOT_UNKNOWN;
|
||
}
|
||
|
||
if (ELIMINATE_COPY_RELOCS
|
||
&& ind->root.type != bfd_link_hash_indirect
|
||
&& dir->dynamic_adjusted)
|
||
{
|
||
/* If called to transfer flags for a weakdef during processing
|
||
of elf_adjust_dynamic_symbol, don't copy non_got_ref.
|
||
We clear it ourselves for ELIMINATE_COPY_RELOCS. */
|
||
dir->ref_dynamic |= ind->ref_dynamic;
|
||
dir->ref_regular |= ind->ref_regular;
|
||
dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
|
||
dir->needs_plt |= ind->needs_plt;
|
||
dir->pointer_equality_needed |= ind->pointer_equality_needed;
|
||
}
|
||
else
|
||
_bfd_elf_link_hash_copy_indirect (info, dir, ind);
|
||
}
|
||
|
||
typedef union
|
||
{
|
||
unsigned char c[2];
|
||
uint16_t i;
|
||
}
|
||
i386_opcode16;
|
||
|
||
/* Return TRUE if the TLS access code sequence support transition
|
||
from R_TYPE. */
|
||
|
||
static bfd_boolean
|
||
elf_i386_check_tls_transition (bfd *abfd, asection *sec,
|
||
bfd_byte *contents,
|
||
Elf_Internal_Shdr *symtab_hdr,
|
||
struct elf_link_hash_entry **sym_hashes,
|
||
unsigned int r_type,
|
||
const Elf_Internal_Rela *rel,
|
||
const Elf_Internal_Rela *relend)
|
||
{
|
||
unsigned int val, type;
|
||
unsigned long r_symndx;
|
||
struct elf_link_hash_entry *h;
|
||
bfd_vma offset;
|
||
|
||
/* Get the section contents. */
|
||
if (contents == NULL)
|
||
{
|
||
if (elf_section_data (sec)->this_hdr.contents != NULL)
|
||
contents = elf_section_data (sec)->this_hdr.contents;
|
||
else
|
||
{
|
||
/* FIXME: How to better handle error condition? */
|
||
if (!bfd_malloc_and_get_section (abfd, sec, &contents))
|
||
return FALSE;
|
||
|
||
/* Cache the section contents for elf_link_input_bfd. */
|
||
elf_section_data (sec)->this_hdr.contents = contents;
|
||
}
|
||
}
|
||
|
||
offset = rel->r_offset;
|
||
switch (r_type)
|
||
{
|
||
case R_386_TLS_GD:
|
||
case R_386_TLS_LDM:
|
||
if (offset < 2 || (rel + 1) >= relend)
|
||
return FALSE;
|
||
|
||
type = bfd_get_8 (abfd, contents + offset - 2);
|
||
if (r_type == R_386_TLS_GD)
|
||
{
|
||
/* Check transition from LD access model. Only
|
||
leal foo@tlsgd(,%reg,1), %eax; call ___tls_get_addr
|
||
leal foo@tlsgd(%reg), %eax; call ___tls_get_addr; nop
|
||
can transit to different access model. */
|
||
if ((offset + 10) > sec->size ||
|
||
(type != 0x8d && type != 0x04))
|
||
return FALSE;
|
||
|
||
val = bfd_get_8 (abfd, contents + offset - 1);
|
||
if (type == 0x04)
|
||
{
|
||
/* leal foo@tlsgd(,%reg,1), %eax; call ___tls_get_addr */
|
||
if (offset < 3)
|
||
return FALSE;
|
||
|
||
if (bfd_get_8 (abfd, contents + offset - 3) != 0x8d)
|
||
return FALSE;
|
||
|
||
if ((val & 0xc7) != 0x05 || val == (4 << 3))
|
||
return FALSE;
|
||
}
|
||
else
|
||
{
|
||
/* leal foo@tlsgd(%reg), %eax; call ___tls_get_addr; nop */
|
||
if ((val & 0xf8) != 0x80 || (val & 7) == 4)
|
||
return FALSE;
|
||
|
||
if (bfd_get_8 (abfd, contents + offset + 9) != 0x90)
|
||
return FALSE;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Check transition from LD access model. Only
|
||
leal foo@tlsgd(%reg), %eax; call ___tls_get_addr
|
||
can transit to different access model. */
|
||
if (type != 0x8d || (offset + 9) > sec->size)
|
||
return FALSE;
|
||
|
||
val = bfd_get_8 (abfd, contents + offset - 1);
|
||
if ((val & 0xf8) != 0x80 || (val & 7) == 4)
|
||
return FALSE;
|
||
}
|
||
|
||
if (bfd_get_8 (abfd, contents + offset + 4) != 0xe8)
|
||
return FALSE;
|
||
|
||
r_symndx = ELF32_R_SYM (rel[1].r_info);
|
||
if (r_symndx < symtab_hdr->sh_info)
|
||
return FALSE;
|
||
|
||
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
|
||
return (h != NULL
|
||
&& h->root.root.string != NULL
|
||
&& (ELF32_R_TYPE (rel[1].r_info) == R_386_PC32
|
||
|| ELF32_R_TYPE (rel[1].r_info) == R_386_PLT32)
|
||
&& (strcmp (h->root.root.string, "___tls_get_addr") == 0));
|
||
|
||
case R_386_TLS_IE:
|
||
/* Check transition from IE access model:
|
||
movl foo@indntpoff(%rip), %eax
|
||
movl foo@indntpoff(%rip), %reg
|
||
addl foo@indntpoff(%rip), %reg
|
||
*/
|
||
|
||
if (offset < 1 || (offset + 4) > sec->size)
|
||
return FALSE;
|
||
|
||
/* Check "movl foo@tpoff(%rip), %eax" first. */
|
||
val = bfd_get_8 (abfd, contents + offset - 1);
|
||
if (val == 0xa1)
|
||
return TRUE;
|
||
|
||
if (offset < 2)
|
||
return FALSE;
|
||
|
||
/* Check movl|addl foo@tpoff(%rip), %reg. */
|
||
type = bfd_get_8 (abfd, contents + offset - 2);
|
||
return ((type == 0x8b || type == 0x03)
|
||
&& (val & 0xc7) == 0x05);
|
||
|
||
case R_386_TLS_GOTIE:
|
||
case R_386_TLS_IE_32:
|
||
/* Check transition from {IE_32,GOTIE} access model:
|
||
subl foo@{tpoff,gontoff}(%reg1), %reg2
|
||
movl foo@{tpoff,gontoff}(%reg1), %reg2
|
||
addl foo@{tpoff,gontoff}(%reg1), %reg2
|
||
*/
|
||
|
||
if (offset < 2 || (offset + 4) > sec->size)
|
||
return FALSE;
|
||
|
||
val = bfd_get_8 (abfd, contents + offset - 1);
|
||
if ((val & 0xc0) != 0x80 || (val & 7) == 4)
|
||
return FALSE;
|
||
|
||
type = bfd_get_8 (abfd, contents + offset - 2);
|
||
return type == 0x8b || type == 0x2b || type == 0x03;
|
||
|
||
case R_386_TLS_GOTDESC:
|
||
/* Check transition from GDesc access model:
|
||
leal x@tlsdesc(%ebx), %eax
|
||
|
||
Make sure it's a leal adding ebx to a 32-bit offset
|
||
into any register, although it's probably almost always
|
||
going to be eax. */
|
||
|
||
if (offset < 2 || (offset + 4) > sec->size)
|
||
return FALSE;
|
||
|
||
if (bfd_get_8 (abfd, contents + offset - 2) != 0x8d)
|
||
return FALSE;
|
||
|
||
val = bfd_get_8 (abfd, contents + offset - 1);
|
||
return (val & 0xc7) == 0x83;
|
||
|
||
case R_386_TLS_DESC_CALL:
|
||
/* Check transition from GDesc access model:
|
||
call *x@tlsdesc(%rax)
|
||
*/
|
||
if (offset + 2 <= sec->size)
|
||
{
|
||
/* Make sure that it's a call *x@tlsdesc(%rax). */
|
||
static i386_opcode16 call = { { 0xff, 0x10 } };
|
||
return bfd_get_16 (abfd, contents + offset) == call.i;
|
||
}
|
||
|
||
return FALSE;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
/* Return TRUE if the TLS access transition is OK or no transition
|
||
will be performed. Update R_TYPE if there is a transition. */
|
||
|
||
static bfd_boolean
|
||
elf_i386_tls_transition (struct bfd_link_info *info, bfd *abfd,
|
||
asection *sec, bfd_byte *contents,
|
||
Elf_Internal_Shdr *symtab_hdr,
|
||
struct elf_link_hash_entry **sym_hashes,
|
||
unsigned int *r_type, int tls_type,
|
||
const Elf_Internal_Rela *rel,
|
||
const Elf_Internal_Rela *relend,
|
||
struct elf_link_hash_entry *h)
|
||
{
|
||
unsigned int from_type = *r_type;
|
||
unsigned int to_type = from_type;
|
||
bfd_boolean check = TRUE;
|
||
|
||
switch (from_type)
|
||
{
|
||
case R_386_TLS_GD:
|
||
case R_386_TLS_GOTDESC:
|
||
case R_386_TLS_DESC_CALL:
|
||
case R_386_TLS_IE_32:
|
||
case R_386_TLS_IE:
|
||
case R_386_TLS_GOTIE:
|
||
if (!info->shared)
|
||
{
|
||
if (h == NULL)
|
||
to_type = R_386_TLS_LE_32;
|
||
else if (from_type != R_386_TLS_IE
|
||
&& from_type != R_386_TLS_GOTIE)
|
||
to_type = R_386_TLS_IE_32;
|
||
}
|
||
|
||
/* When we are called from elf_i386_relocate_section, CONTENTS
|
||
isn't NULL and there may be additional transitions based on
|
||
TLS_TYPE. */
|
||
if (contents != NULL)
|
||
{
|
||
unsigned int new_to_type = to_type;
|
||
|
||
if (!info->shared
|
||
&& h != NULL
|
||
&& h->dynindx == -1
|
||
&& (tls_type & GOT_TLS_IE))
|
||
new_to_type = R_386_TLS_LE_32;
|
||
|
||
if (to_type == R_386_TLS_GD
|
||
|| to_type == R_386_TLS_GOTDESC
|
||
|| to_type == R_386_TLS_DESC_CALL)
|
||
{
|
||
if (tls_type == GOT_TLS_IE_POS)
|
||
new_to_type = R_386_TLS_GOTIE;
|
||
else if (tls_type & GOT_TLS_IE)
|
||
new_to_type = R_386_TLS_IE_32;
|
||
}
|
||
|
||
/* We checked the transition before when we were called from
|
||
elf_i386_check_relocs. We only want to check the new
|
||
transition which hasn't been checked before. */
|
||
check = new_to_type != to_type && from_type == to_type;
|
||
to_type = new_to_type;
|
||
}
|
||
|
||
break;
|
||
|
||
case R_386_TLS_LDM:
|
||
if (!info->shared)
|
||
to_type = R_386_TLS_LE_32;
|
||
break;
|
||
|
||
default:
|
||
return TRUE;
|
||
}
|
||
|
||
/* Return TRUE if there is no transition. */
|
||
if (from_type == to_type)
|
||
return TRUE;
|
||
|
||
/* Check if the transition can be performed. */
|
||
if (check
|
||
&& ! elf_i386_check_tls_transition (abfd, sec, contents,
|
||
symtab_hdr, sym_hashes,
|
||
from_type, rel, relend))
|
||
{
|
||
reloc_howto_type *from, *to;
|
||
|
||
from = elf_i386_rtype_to_howto (abfd, from_type);
|
||
to = elf_i386_rtype_to_howto (abfd, to_type);
|
||
|
||
(*_bfd_error_handler)
|
||
(_("%B: TLS transition from %s to %s against `%s' at 0x%lx "
|
||
"in section `%A' failed"),
|
||
abfd, sec, from->name, to->name,
|
||
h ? h->root.root.string : "a local symbol",
|
||
(unsigned long) rel->r_offset);
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return FALSE;
|
||
}
|
||
|
||
*r_type = to_type;
|
||
return TRUE;
|
||
}
|
||
|
||
/* Look through the relocs for a section during the first phase, and
|
||
calculate needed space in the global offset table, procedure linkage
|
||
table, and dynamic reloc sections. */
|
||
|
||
static bfd_boolean
|
||
elf_i386_check_relocs (bfd *abfd,
|
||
struct bfd_link_info *info,
|
||
asection *sec,
|
||
const Elf_Internal_Rela *relocs)
|
||
{
|
||
struct elf_i386_link_hash_table *htab;
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
struct elf_link_hash_entry **sym_hashes;
|
||
const Elf_Internal_Rela *rel;
|
||
const Elf_Internal_Rela *rel_end;
|
||
asection *sreloc;
|
||
|
||
if (info->relocatable)
|
||
return TRUE;
|
||
|
||
BFD_ASSERT (is_i386_elf (abfd));
|
||
|
||
htab = elf_i386_hash_table (info);
|
||
symtab_hdr = &elf_symtab_hdr (abfd);
|
||
sym_hashes = elf_sym_hashes (abfd);
|
||
|
||
sreloc = NULL;
|
||
|
||
rel_end = relocs + sec->reloc_count;
|
||
for (rel = relocs; rel < rel_end; rel++)
|
||
{
|
||
unsigned int r_type;
|
||
unsigned long r_symndx;
|
||
struct elf_link_hash_entry *h;
|
||
|
||
r_symndx = ELF32_R_SYM (rel->r_info);
|
||
r_type = ELF32_R_TYPE (rel->r_info);
|
||
|
||
if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
|
||
{
|
||
(*_bfd_error_handler) (_("%B: bad symbol index: %d"),
|
||
abfd,
|
||
r_symndx);
|
||
return FALSE;
|
||
}
|
||
|
||
if (r_symndx < symtab_hdr->sh_info)
|
||
h = NULL;
|
||
else
|
||
{
|
||
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
|
||
while (h->root.type == bfd_link_hash_indirect
|
||
|| h->root.type == bfd_link_hash_warning)
|
||
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
||
}
|
||
|
||
if (! elf_i386_tls_transition (info, abfd, sec, NULL,
|
||
symtab_hdr, sym_hashes,
|
||
&r_type, GOT_UNKNOWN,
|
||
rel, rel_end, h))
|
||
return FALSE;
|
||
|
||
switch (r_type)
|
||
{
|
||
case R_386_TLS_LDM:
|
||
htab->tls_ldm_got.refcount += 1;
|
||
goto create_got;
|
||
|
||
case R_386_PLT32:
|
||
/* This symbol requires a procedure linkage table entry. We
|
||
actually build the entry in adjust_dynamic_symbol,
|
||
because this might be a case of linking PIC code which is
|
||
never referenced by a dynamic object, in which case we
|
||
don't need to generate a procedure linkage table entry
|
||
after all. */
|
||
|
||
/* If this is a local symbol, we resolve it directly without
|
||
creating a procedure linkage table entry. */
|
||
if (h == NULL)
|
||
continue;
|
||
|
||
h->needs_plt = 1;
|
||
h->plt.refcount += 1;
|
||
break;
|
||
|
||
case R_386_TLS_IE_32:
|
||
case R_386_TLS_IE:
|
||
case R_386_TLS_GOTIE:
|
||
if (info->shared)
|
||
info->flags |= DF_STATIC_TLS;
|
||
/* Fall through */
|
||
|
||
case R_386_GOT32:
|
||
case R_386_TLS_GD:
|
||
case R_386_TLS_GOTDESC:
|
||
case R_386_TLS_DESC_CALL:
|
||
/* This symbol requires a global offset table entry. */
|
||
{
|
||
int tls_type, old_tls_type;
|
||
|
||
switch (r_type)
|
||
{
|
||
default:
|
||
case R_386_GOT32: tls_type = GOT_NORMAL; break;
|
||
case R_386_TLS_GD: tls_type = GOT_TLS_GD; break;
|
||
case R_386_TLS_GOTDESC:
|
||
case R_386_TLS_DESC_CALL:
|
||
tls_type = GOT_TLS_GDESC; break;
|
||
case R_386_TLS_IE_32:
|
||
if (ELF32_R_TYPE (rel->r_info) == r_type)
|
||
tls_type = GOT_TLS_IE_NEG;
|
||
else
|
||
/* If this is a GD->IE transition, we may use either of
|
||
R_386_TLS_TPOFF and R_386_TLS_TPOFF32. */
|
||
tls_type = GOT_TLS_IE;
|
||
break;
|
||
case R_386_TLS_IE:
|
||
case R_386_TLS_GOTIE:
|
||
tls_type = GOT_TLS_IE_POS; break;
|
||
}
|
||
|
||
if (h != NULL)
|
||
{
|
||
h->got.refcount += 1;
|
||
old_tls_type = elf_i386_hash_entry(h)->tls_type;
|
||
}
|
||
else
|
||
{
|
||
bfd_signed_vma *local_got_refcounts;
|
||
|
||
/* This is a global offset table entry for a local symbol. */
|
||
local_got_refcounts = elf_local_got_refcounts (abfd);
|
||
if (local_got_refcounts == NULL)
|
||
{
|
||
bfd_size_type size;
|
||
|
||
size = symtab_hdr->sh_info;
|
||
size *= (sizeof (bfd_signed_vma)
|
||
+ sizeof (bfd_vma) + sizeof(char));
|
||
local_got_refcounts = bfd_zalloc (abfd, size);
|
||
if (local_got_refcounts == NULL)
|
||
return FALSE;
|
||
elf_local_got_refcounts (abfd) = local_got_refcounts;
|
||
elf_i386_local_tlsdesc_gotent (abfd)
|
||
= (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info);
|
||
elf_i386_local_got_tls_type (abfd)
|
||
= (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
|
||
}
|
||
local_got_refcounts[r_symndx] += 1;
|
||
old_tls_type = elf_i386_local_got_tls_type (abfd) [r_symndx];
|
||
}
|
||
|
||
if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE))
|
||
tls_type |= old_tls_type;
|
||
/* If a TLS symbol is accessed using IE at least once,
|
||
there is no point to use dynamic model for it. */
|
||
else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
|
||
&& (! GOT_TLS_GD_ANY_P (old_tls_type)
|
||
|| (tls_type & GOT_TLS_IE) == 0))
|
||
{
|
||
if ((old_tls_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (tls_type))
|
||
tls_type = old_tls_type;
|
||
else if (GOT_TLS_GD_ANY_P (old_tls_type)
|
||
&& GOT_TLS_GD_ANY_P (tls_type))
|
||
tls_type |= old_tls_type;
|
||
else
|
||
{
|
||
(*_bfd_error_handler)
|
||
(_("%B: `%s' accessed both as normal and "
|
||
"thread local symbol"),
|
||
abfd,
|
||
h ? h->root.root.string : "<local>");
|
||
return FALSE;
|
||
}
|
||
}
|
||
|
||
if (old_tls_type != tls_type)
|
||
{
|
||
if (h != NULL)
|
||
elf_i386_hash_entry (h)->tls_type = tls_type;
|
||
else
|
||
elf_i386_local_got_tls_type (abfd) [r_symndx] = tls_type;
|
||
}
|
||
}
|
||
/* Fall through */
|
||
|
||
case R_386_GOTOFF:
|
||
case R_386_GOTPC:
|
||
create_got:
|
||
if (htab->sgot == NULL)
|
||
{
|
||
if (htab->elf.dynobj == NULL)
|
||
htab->elf.dynobj = abfd;
|
||
if (!create_got_section (htab->elf.dynobj, info))
|
||
return FALSE;
|
||
}
|
||
if (r_type != R_386_TLS_IE)
|
||
break;
|
||
/* Fall through */
|
||
|
||
case R_386_TLS_LE_32:
|
||
case R_386_TLS_LE:
|
||
if (!info->shared)
|
||
break;
|
||
info->flags |= DF_STATIC_TLS;
|
||
/* Fall through */
|
||
|
||
case R_386_32:
|
||
case R_386_PC32:
|
||
if (h != NULL && !info->shared)
|
||
{
|
||
/* If this reloc is in a read-only section, we might
|
||
need a copy reloc. We can't check reliably at this
|
||
stage whether the section is read-only, as input
|
||
sections have not yet been mapped to output sections.
|
||
Tentatively set the flag for now, and correct in
|
||
adjust_dynamic_symbol. */
|
||
h->non_got_ref = 1;
|
||
|
||
/* We may need a .plt entry if the function this reloc
|
||
refers to is in a shared lib. */
|
||
h->plt.refcount += 1;
|
||
if (r_type != R_386_PC32)
|
||
h->pointer_equality_needed = 1;
|
||
}
|
||
|
||
/* If we are creating a shared library, and this is a reloc
|
||
against a global symbol, or a non PC relative reloc
|
||
against a local symbol, then we need to copy the reloc
|
||
into the shared library. However, if we are linking with
|
||
-Bsymbolic, we do not need to copy a reloc against a
|
||
global symbol which is defined in an object we are
|
||
including in the link (i.e., DEF_REGULAR is set). At
|
||
this point we have not seen all the input files, so it is
|
||
possible that DEF_REGULAR is not set now but will be set
|
||
later (it is never cleared). In case of a weak definition,
|
||
DEF_REGULAR may be cleared later by a strong definition in
|
||
a shared library. We account for that possibility below by
|
||
storing information in the relocs_copied field of the hash
|
||
table entry. A similar situation occurs when creating
|
||
shared libraries and symbol visibility changes render the
|
||
symbol local.
|
||
|
||
If on the other hand, we are creating an executable, we
|
||
may need to keep relocations for symbols satisfied by a
|
||
dynamic library if we manage to avoid copy relocs for the
|
||
symbol. */
|
||
if ((info->shared
|
||
&& (sec->flags & SEC_ALLOC) != 0
|
||
&& (r_type != R_386_PC32
|
||
|| (h != NULL
|
||
&& (! SYMBOLIC_BIND (info, h)
|
||
|| h->root.type == bfd_link_hash_defweak
|
||
|| !h->def_regular))))
|
||
|| (ELIMINATE_COPY_RELOCS
|
||
&& !info->shared
|
||
&& (sec->flags & SEC_ALLOC) != 0
|
||
&& h != NULL
|
||
&& (h->root.type == bfd_link_hash_defweak
|
||
|| !h->def_regular)))
|
||
{
|
||
struct elf_i386_dyn_relocs *p;
|
||
struct elf_i386_dyn_relocs **head;
|
||
|
||
/* We must copy these reloc types into the output file.
|
||
Create a reloc section in dynobj and make room for
|
||
this reloc. */
|
||
if (sreloc == NULL)
|
||
{
|
||
const char *name;
|
||
bfd *dynobj;
|
||
unsigned int strndx = elf_elfheader (abfd)->e_shstrndx;
|
||
unsigned int shnam = elf_section_data (sec)->rel_hdr.sh_name;
|
||
|
||
name = bfd_elf_string_from_elf_section (abfd, strndx, shnam);
|
||
if (name == NULL)
|
||
return FALSE;
|
||
|
||
if (! CONST_STRNEQ (name, ".rel")
|
||
|| strcmp (bfd_get_section_name (abfd, sec),
|
||
name + 4) != 0)
|
||
{
|
||
(*_bfd_error_handler)
|
||
(_("%B: bad relocation section name `%s\'"),
|
||
abfd, name);
|
||
}
|
||
|
||
if (htab->elf.dynobj == NULL)
|
||
htab->elf.dynobj = abfd;
|
||
|
||
dynobj = htab->elf.dynobj;
|
||
sreloc = bfd_get_section_by_name (dynobj, name);
|
||
if (sreloc == NULL)
|
||
{
|
||
flagword flags;
|
||
|
||
flags = (SEC_HAS_CONTENTS | SEC_READONLY
|
||
| SEC_IN_MEMORY | SEC_LINKER_CREATED);
|
||
if ((sec->flags & SEC_ALLOC) != 0)
|
||
flags |= SEC_ALLOC | SEC_LOAD;
|
||
sreloc = bfd_make_section_with_flags (dynobj,
|
||
name,
|
||
flags);
|
||
if (sreloc == NULL
|
||
|| ! bfd_set_section_alignment (dynobj, sreloc, 2))
|
||
return FALSE;
|
||
}
|
||
elf_section_data (sec)->sreloc = sreloc;
|
||
}
|
||
|
||
/* If this is a global symbol, we count the number of
|
||
relocations we need for this symbol. */
|
||
if (h != NULL)
|
||
{
|
||
head = &((struct elf_i386_link_hash_entry *) h)->dyn_relocs;
|
||
}
|
||
else
|
||
{
|
||
void **vpp;
|
||
/* Track dynamic relocs needed for local syms too.
|
||
We really need local syms available to do this
|
||
easily. Oh well. */
|
||
|
||
asection *s;
|
||
s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
|
||
sec, r_symndx);
|
||
if (s == NULL)
|
||
return FALSE;
|
||
|
||
vpp = &elf_section_data (s)->local_dynrel;
|
||
head = (struct elf_i386_dyn_relocs **)vpp;
|
||
}
|
||
|
||
p = *head;
|
||
if (p == NULL || p->sec != sec)
|
||
{
|
||
bfd_size_type amt = sizeof *p;
|
||
p = bfd_alloc (htab->elf.dynobj, amt);
|
||
if (p == NULL)
|
||
return FALSE;
|
||
p->next = *head;
|
||
*head = p;
|
||
p->sec = sec;
|
||
p->count = 0;
|
||
p->pc_count = 0;
|
||
}
|
||
|
||
p->count += 1;
|
||
if (r_type == R_386_PC32)
|
||
p->pc_count += 1;
|
||
}
|
||
break;
|
||
|
||
/* This relocation describes the C++ object vtable hierarchy.
|
||
Reconstruct it for later use during GC. */
|
||
case R_386_GNU_VTINHERIT:
|
||
if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
|
||
return FALSE;
|
||
break;
|
||
|
||
/* This relocation describes which C++ vtable entries are actually
|
||
used. Record for later use during GC. */
|
||
case R_386_GNU_VTENTRY:
|
||
BFD_ASSERT (h != NULL);
|
||
if (h != NULL
|
||
&& !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
|
||
return FALSE;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Return the section that should be marked against GC for a given
|
||
relocation. */
|
||
|
||
static asection *
|
||
elf_i386_gc_mark_hook (asection *sec,
|
||
struct bfd_link_info *info,
|
||
Elf_Internal_Rela *rel,
|
||
struct elf_link_hash_entry *h,
|
||
Elf_Internal_Sym *sym)
|
||
{
|
||
if (h != NULL)
|
||
switch (ELF32_R_TYPE (rel->r_info))
|
||
{
|
||
case R_386_GNU_VTINHERIT:
|
||
case R_386_GNU_VTENTRY:
|
||
return NULL;
|
||
}
|
||
|
||
return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
|
||
}
|
||
|
||
/* Update the got entry reference counts for the section being removed. */
|
||
|
||
static bfd_boolean
|
||
elf_i386_gc_sweep_hook (bfd *abfd,
|
||
struct bfd_link_info *info,
|
||
asection *sec,
|
||
const Elf_Internal_Rela *relocs)
|
||
{
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
struct elf_link_hash_entry **sym_hashes;
|
||
bfd_signed_vma *local_got_refcounts;
|
||
const Elf_Internal_Rela *rel, *relend;
|
||
|
||
if (info->relocatable)
|
||
return TRUE;
|
||
|
||
elf_section_data (sec)->local_dynrel = NULL;
|
||
|
||
symtab_hdr = &elf_symtab_hdr (abfd);
|
||
sym_hashes = elf_sym_hashes (abfd);
|
||
local_got_refcounts = elf_local_got_refcounts (abfd);
|
||
|
||
relend = relocs + sec->reloc_count;
|
||
for (rel = relocs; rel < relend; rel++)
|
||
{
|
||
unsigned long r_symndx;
|
||
unsigned int r_type;
|
||
struct elf_link_hash_entry *h = NULL;
|
||
|
||
r_symndx = ELF32_R_SYM (rel->r_info);
|
||
if (r_symndx >= symtab_hdr->sh_info)
|
||
{
|
||
struct elf_i386_link_hash_entry *eh;
|
||
struct elf_i386_dyn_relocs **pp;
|
||
struct elf_i386_dyn_relocs *p;
|
||
|
||
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
|
||
while (h->root.type == bfd_link_hash_indirect
|
||
|| h->root.type == bfd_link_hash_warning)
|
||
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
||
eh = (struct elf_i386_link_hash_entry *) h;
|
||
|
||
for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
|
||
if (p->sec == sec)
|
||
{
|
||
/* Everything must go for SEC. */
|
||
*pp = p->next;
|
||
break;
|
||
}
|
||
}
|
||
|
||
r_type = ELF32_R_TYPE (rel->r_info);
|
||
if (! elf_i386_tls_transition (info, abfd, sec, NULL,
|
||
symtab_hdr, sym_hashes,
|
||
&r_type, GOT_UNKNOWN,
|
||
rel, relend, h))
|
||
return FALSE;
|
||
|
||
switch (r_type)
|
||
{
|
||
case R_386_TLS_LDM:
|
||
if (elf_i386_hash_table (info)->tls_ldm_got.refcount > 0)
|
||
elf_i386_hash_table (info)->tls_ldm_got.refcount -= 1;
|
||
break;
|
||
|
||
case R_386_TLS_GD:
|
||
case R_386_TLS_GOTDESC:
|
||
case R_386_TLS_DESC_CALL:
|
||
case R_386_TLS_IE_32:
|
||
case R_386_TLS_IE:
|
||
case R_386_TLS_GOTIE:
|
||
case R_386_GOT32:
|
||
if (h != NULL)
|
||
{
|
||
if (h->got.refcount > 0)
|
||
h->got.refcount -= 1;
|
||
}
|
||
else if (local_got_refcounts != NULL)
|
||
{
|
||
if (local_got_refcounts[r_symndx] > 0)
|
||
local_got_refcounts[r_symndx] -= 1;
|
||
}
|
||
break;
|
||
|
||
case R_386_32:
|
||
case R_386_PC32:
|
||
if (info->shared)
|
||
break;
|
||
/* Fall through */
|
||
|
||
case R_386_PLT32:
|
||
if (h != NULL)
|
||
{
|
||
if (h->plt.refcount > 0)
|
||
h->plt.refcount -= 1;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Adjust a symbol defined by a dynamic object and referenced by a
|
||
regular object. The current definition is in some section of the
|
||
dynamic object, but we're not including those sections. We have to
|
||
change the definition to something the rest of the link can
|
||
understand. */
|
||
|
||
static bfd_boolean
|
||
elf_i386_adjust_dynamic_symbol (struct bfd_link_info *info,
|
||
struct elf_link_hash_entry *h)
|
||
{
|
||
struct elf_i386_link_hash_table *htab;
|
||
asection *s;
|
||
|
||
/* If this is a function, put it in the procedure linkage table. We
|
||
will fill in the contents of the procedure linkage table later,
|
||
when we know the address of the .got section. */
|
||
if (h->type == STT_FUNC
|
||
|| h->needs_plt)
|
||
{
|
||
if (h->plt.refcount <= 0
|
||
|| SYMBOL_CALLS_LOCAL (info, h)
|
||
|| (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
|
||
&& h->root.type == bfd_link_hash_undefweak))
|
||
{
|
||
/* This case can occur if we saw a PLT32 reloc in an input
|
||
file, but the symbol was never referred to by a dynamic
|
||
object, or if all references were garbage collected. In
|
||
such a case, we don't actually need to build a procedure
|
||
linkage table, and we can just do a PC32 reloc instead. */
|
||
h->plt.offset = (bfd_vma) -1;
|
||
h->needs_plt = 0;
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
else
|
||
/* It's possible that we incorrectly decided a .plt reloc was
|
||
needed for an R_386_PC32 reloc to a non-function sym in
|
||
check_relocs. We can't decide accurately between function and
|
||
non-function syms in check-relocs; Objects loaded later in
|
||
the link may change h->type. So fix it now. */
|
||
h->plt.offset = (bfd_vma) -1;
|
||
|
||
/* If this is a weak symbol, and there is a real definition, the
|
||
processor independent code will have arranged for us to see the
|
||
real definition first, and we can just use the same value. */
|
||
if (h->u.weakdef != NULL)
|
||
{
|
||
BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
|
||
|| h->u.weakdef->root.type == bfd_link_hash_defweak);
|
||
h->root.u.def.section = h->u.weakdef->root.u.def.section;
|
||
h->root.u.def.value = h->u.weakdef->root.u.def.value;
|
||
if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
|
||
h->non_got_ref = h->u.weakdef->non_got_ref;
|
||
return TRUE;
|
||
}
|
||
|
||
/* This is a reference to a symbol defined by a dynamic object which
|
||
is not a function. */
|
||
|
||
/* If we are creating a shared library, we must presume that the
|
||
only references to the symbol are via the global offset table.
|
||
For such cases we need not do anything here; the relocations will
|
||
be handled correctly by relocate_section. */
|
||
if (info->shared)
|
||
return TRUE;
|
||
|
||
/* If there are no references to this symbol that do not use the
|
||
GOT, we don't need to generate a copy reloc. */
|
||
if (!h->non_got_ref)
|
||
return TRUE;
|
||
|
||
/* If -z nocopyreloc was given, we won't generate them either. */
|
||
if (info->nocopyreloc)
|
||
{
|
||
h->non_got_ref = 0;
|
||
return TRUE;
|
||
}
|
||
|
||
htab = elf_i386_hash_table (info);
|
||
|
||
/* If there aren't any dynamic relocs in read-only sections, then
|
||
we can keep the dynamic relocs and avoid the copy reloc. This
|
||
doesn't work on VxWorks, where we can not have dynamic relocations
|
||
(other than copy and jump slot relocations) in an executable. */
|
||
if (ELIMINATE_COPY_RELOCS && !htab->is_vxworks)
|
||
{
|
||
struct elf_i386_link_hash_entry * eh;
|
||
struct elf_i386_dyn_relocs *p;
|
||
|
||
eh = (struct elf_i386_link_hash_entry *) h;
|
||
for (p = eh->dyn_relocs; p != NULL; p = p->next)
|
||
{
|
||
s = p->sec->output_section;
|
||
if (s != NULL && (s->flags & SEC_READONLY) != 0)
|
||
break;
|
||
}
|
||
|
||
if (p == NULL)
|
||
{
|
||
h->non_got_ref = 0;
|
||
return TRUE;
|
||
}
|
||
}
|
||
|
||
if (h->size == 0)
|
||
{
|
||
(*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
|
||
h->root.root.string);
|
||
return TRUE;
|
||
}
|
||
|
||
/* We must allocate the symbol in our .dynbss section, which will
|
||
become part of the .bss section of the executable. There will be
|
||
an entry for this symbol in the .dynsym section. The dynamic
|
||
object will contain position independent code, so all references
|
||
from the dynamic object to this symbol will go through the global
|
||
offset table. The dynamic linker will use the .dynsym entry to
|
||
determine the address it must put in the global offset table, so
|
||
both the dynamic object and the regular object will refer to the
|
||
same memory location for the variable. */
|
||
|
||
/* We must generate a R_386_COPY reloc to tell the dynamic linker to
|
||
copy the initial value out of the dynamic object and into the
|
||
runtime process image. */
|
||
if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
|
||
{
|
||
htab->srelbss->size += sizeof (Elf32_External_Rel);
|
||
h->needs_copy = 1;
|
||
}
|
||
|
||
s = htab->sdynbss;
|
||
|
||
return _bfd_elf_adjust_dynamic_copy (h, s);
|
||
}
|
||
|
||
/* Allocate space in .plt, .got and associated reloc sections for
|
||
dynamic relocs. */
|
||
|
||
static bfd_boolean
|
||
allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
|
||
{
|
||
struct bfd_link_info *info;
|
||
struct elf_i386_link_hash_table *htab;
|
||
struct elf_i386_link_hash_entry *eh;
|
||
struct elf_i386_dyn_relocs *p;
|
||
|
||
if (h->root.type == bfd_link_hash_indirect)
|
||
return TRUE;
|
||
|
||
if (h->root.type == bfd_link_hash_warning)
|
||
/* When warning symbols are created, they **replace** the "real"
|
||
entry in the hash table, thus we never get to see the real
|
||
symbol in a hash traversal. So look at it now. */
|
||
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
||
|
||
info = (struct bfd_link_info *) inf;
|
||
htab = elf_i386_hash_table (info);
|
||
|
||
if (htab->elf.dynamic_sections_created
|
||
&& h->plt.refcount > 0)
|
||
{
|
||
/* Make sure this symbol is output as a dynamic symbol.
|
||
Undefined weak syms won't yet be marked as dynamic. */
|
||
if (h->dynindx == -1
|
||
&& !h->forced_local)
|
||
{
|
||
if (! bfd_elf_link_record_dynamic_symbol (info, h))
|
||
return FALSE;
|
||
}
|
||
|
||
if (info->shared
|
||
|| WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
|
||
{
|
||
asection *s = htab->splt;
|
||
|
||
/* If this is the first .plt entry, make room for the special
|
||
first entry. */
|
||
if (s->size == 0)
|
||
s->size += PLT_ENTRY_SIZE;
|
||
|
||
h->plt.offset = s->size;
|
||
|
||
/* If this symbol is not defined in a regular file, and we are
|
||
not generating a shared library, then set the symbol to this
|
||
location in the .plt. This is required to make function
|
||
pointers compare as equal between the normal executable and
|
||
the shared library. */
|
||
if (! info->shared
|
||
&& !h->def_regular)
|
||
{
|
||
h->root.u.def.section = s;
|
||
h->root.u.def.value = h->plt.offset;
|
||
}
|
||
|
||
/* Make room for this entry. */
|
||
s->size += PLT_ENTRY_SIZE;
|
||
|
||
/* We also need to make an entry in the .got.plt section, which
|
||
will be placed in the .got section by the linker script. */
|
||
htab->sgotplt->size += 4;
|
||
|
||
/* We also need to make an entry in the .rel.plt section. */
|
||
htab->srelplt->size += sizeof (Elf32_External_Rel);
|
||
htab->next_tls_desc_index++;
|
||
|
||
if (htab->is_vxworks && !info->shared)
|
||
{
|
||
/* VxWorks has a second set of relocations for each PLT entry
|
||
in executables. They go in a separate relocation section,
|
||
which is processed by the kernel loader. */
|
||
|
||
/* There are two relocations for the initial PLT entry: an
|
||
R_386_32 relocation for _GLOBAL_OFFSET_TABLE_ + 4 and an
|
||
R_386_32 relocation for _GLOBAL_OFFSET_TABLE_ + 8. */
|
||
|
||
if (h->plt.offset == PLT_ENTRY_SIZE)
|
||
htab->srelplt2->size += (sizeof (Elf32_External_Rel) * 2);
|
||
|
||
/* There are two extra relocations for each subsequent PLT entry:
|
||
an R_386_32 relocation for the GOT entry, and an R_386_32
|
||
relocation for the PLT entry. */
|
||
|
||
htab->srelplt2->size += (sizeof (Elf32_External_Rel) * 2);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
h->plt.offset = (bfd_vma) -1;
|
||
h->needs_plt = 0;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
h->plt.offset = (bfd_vma) -1;
|
||
h->needs_plt = 0;
|
||
}
|
||
|
||
eh = (struct elf_i386_link_hash_entry *) h;
|
||
eh->tlsdesc_got = (bfd_vma) -1;
|
||
|
||
/* If R_386_TLS_{IE_32,IE,GOTIE} symbol is now local to the binary,
|
||
make it a R_386_TLS_LE_32 requiring no TLS entry. */
|
||
if (h->got.refcount > 0
|
||
&& !info->shared
|
||
&& h->dynindx == -1
|
||
&& (elf_i386_hash_entry(h)->tls_type & GOT_TLS_IE))
|
||
h->got.offset = (bfd_vma) -1;
|
||
else if (h->got.refcount > 0)
|
||
{
|
||
asection *s;
|
||
bfd_boolean dyn;
|
||
int tls_type = elf_i386_hash_entry(h)->tls_type;
|
||
|
||
/* Make sure this symbol is output as a dynamic symbol.
|
||
Undefined weak syms won't yet be marked as dynamic. */
|
||
if (h->dynindx == -1
|
||
&& !h->forced_local)
|
||
{
|
||
if (! bfd_elf_link_record_dynamic_symbol (info, h))
|
||
return FALSE;
|
||
}
|
||
|
||
s = htab->sgot;
|
||
if (GOT_TLS_GDESC_P (tls_type))
|
||
{
|
||
eh->tlsdesc_got = htab->sgotplt->size
|
||
- elf_i386_compute_jump_table_size (htab);
|
||
htab->sgotplt->size += 8;
|
||
h->got.offset = (bfd_vma) -2;
|
||
}
|
||
if (! GOT_TLS_GDESC_P (tls_type)
|
||
|| GOT_TLS_GD_P (tls_type))
|
||
{
|
||
h->got.offset = s->size;
|
||
s->size += 4;
|
||
/* R_386_TLS_GD needs 2 consecutive GOT slots. */
|
||
if (GOT_TLS_GD_P (tls_type) || tls_type == GOT_TLS_IE_BOTH)
|
||
s->size += 4;
|
||
}
|
||
dyn = htab->elf.dynamic_sections_created;
|
||
/* R_386_TLS_IE_32 needs one dynamic relocation,
|
||
R_386_TLS_IE resp. R_386_TLS_GOTIE needs one dynamic relocation,
|
||
(but if both R_386_TLS_IE_32 and R_386_TLS_IE is present, we
|
||
need two), R_386_TLS_GD needs one if local symbol and two if
|
||
global. */
|
||
if (tls_type == GOT_TLS_IE_BOTH)
|
||
htab->srelgot->size += 2 * sizeof (Elf32_External_Rel);
|
||
else if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1)
|
||
|| (tls_type & GOT_TLS_IE))
|
||
htab->srelgot->size += sizeof (Elf32_External_Rel);
|
||
else if (GOT_TLS_GD_P (tls_type))
|
||
htab->srelgot->size += 2 * sizeof (Elf32_External_Rel);
|
||
else if (! GOT_TLS_GDESC_P (tls_type)
|
||
&& (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
|
||
|| h->root.type != bfd_link_hash_undefweak)
|
||
&& (info->shared
|
||
|| WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
|
||
htab->srelgot->size += sizeof (Elf32_External_Rel);
|
||
if (GOT_TLS_GDESC_P (tls_type))
|
||
htab->srelplt->size += sizeof (Elf32_External_Rel);
|
||
}
|
||
else
|
||
h->got.offset = (bfd_vma) -1;
|
||
|
||
if (eh->dyn_relocs == NULL)
|
||
return TRUE;
|
||
|
||
/* In the shared -Bsymbolic case, discard space allocated for
|
||
dynamic pc-relative relocs against symbols which turn out to be
|
||
defined in regular objects. For the normal shared case, discard
|
||
space for pc-relative relocs that have become local due to symbol
|
||
visibility changes. */
|
||
|
||
if (info->shared)
|
||
{
|
||
/* The only reloc that uses pc_count is R_386_PC32, which will
|
||
appear on a call or on something like ".long foo - .". We
|
||
want calls to protected symbols to resolve directly to the
|
||
function rather than going via the plt. If people want
|
||
function pointer comparisons to work as expected then they
|
||
should avoid writing assembly like ".long foo - .". */
|
||
if (SYMBOL_CALLS_LOCAL (info, h))
|
||
{
|
||
struct elf_i386_dyn_relocs **pp;
|
||
|
||
for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
|
||
{
|
||
p->count -= p->pc_count;
|
||
p->pc_count = 0;
|
||
if (p->count == 0)
|
||
*pp = p->next;
|
||
else
|
||
pp = &p->next;
|
||
}
|
||
}
|
||
|
||
if (htab->is_vxworks)
|
||
{
|
||
struct elf_i386_dyn_relocs **pp;
|
||
for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
|
||
{
|
||
if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
|
||
*pp = p->next;
|
||
else
|
||
pp = &p->next;
|
||
}
|
||
}
|
||
|
||
/* Also discard relocs on undefined weak syms with non-default
|
||
visibility. */
|
||
if (eh->dyn_relocs != NULL
|
||
&& h->root.type == bfd_link_hash_undefweak)
|
||
{
|
||
if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
|
||
eh->dyn_relocs = NULL;
|
||
|
||
/* Make sure undefined weak symbols are output as a dynamic
|
||
symbol in PIEs. */
|
||
else if (h->dynindx == -1
|
||
&& !h->forced_local)
|
||
{
|
||
if (! bfd_elf_link_record_dynamic_symbol (info, h))
|
||
return FALSE;
|
||
}
|
||
}
|
||
}
|
||
else if (ELIMINATE_COPY_RELOCS)
|
||
{
|
||
/* For the non-shared case, discard space for relocs against
|
||
symbols which turn out to need copy relocs or are not
|
||
dynamic. */
|
||
|
||
if (!h->non_got_ref
|
||
&& ((h->def_dynamic
|
||
&& !h->def_regular)
|
||
|| (htab->elf.dynamic_sections_created
|
||
&& (h->root.type == bfd_link_hash_undefweak
|
||
|| h->root.type == bfd_link_hash_undefined))))
|
||
{
|
||
/* Make sure this symbol is output as a dynamic symbol.
|
||
Undefined weak syms won't yet be marked as dynamic. */
|
||
if (h->dynindx == -1
|
||
&& !h->forced_local)
|
||
{
|
||
if (! bfd_elf_link_record_dynamic_symbol (info, h))
|
||
return FALSE;
|
||
}
|
||
|
||
/* If that succeeded, we know we'll be keeping all the
|
||
relocs. */
|
||
if (h->dynindx != -1)
|
||
goto keep;
|
||
}
|
||
|
||
eh->dyn_relocs = NULL;
|
||
|
||
keep: ;
|
||
}
|
||
|
||
/* Finally, allocate space. */
|
||
for (p = eh->dyn_relocs; p != NULL; p = p->next)
|
||
{
|
||
asection *sreloc = elf_section_data (p->sec)->sreloc;
|
||
sreloc->size += p->count * sizeof (Elf32_External_Rel);
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Find any dynamic relocs that apply to read-only sections. */
|
||
|
||
static bfd_boolean
|
||
readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf)
|
||
{
|
||
struct elf_i386_link_hash_entry *eh;
|
||
struct elf_i386_dyn_relocs *p;
|
||
|
||
if (h->root.type == bfd_link_hash_warning)
|
||
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
||
|
||
eh = (struct elf_i386_link_hash_entry *) h;
|
||
for (p = eh->dyn_relocs; p != NULL; p = p->next)
|
||
{
|
||
asection *s = p->sec->output_section;
|
||
|
||
if (s != NULL && (s->flags & SEC_READONLY) != 0)
|
||
{
|
||
struct bfd_link_info *info = (struct bfd_link_info *) inf;
|
||
|
||
info->flags |= DF_TEXTREL;
|
||
|
||
/* Not an error, just cut short the traversal. */
|
||
return FALSE;
|
||
}
|
||
}
|
||
return TRUE;
|
||
}
|
||
|
||
/* Set the sizes of the dynamic sections. */
|
||
|
||
static bfd_boolean
|
||
elf_i386_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
|
||
struct bfd_link_info *info)
|
||
{
|
||
struct elf_i386_link_hash_table *htab;
|
||
bfd *dynobj;
|
||
asection *s;
|
||
bfd_boolean relocs;
|
||
bfd *ibfd;
|
||
|
||
htab = elf_i386_hash_table (info);
|
||
dynobj = htab->elf.dynobj;
|
||
if (dynobj == NULL)
|
||
abort ();
|
||
|
||
if (htab->elf.dynamic_sections_created)
|
||
{
|
||
/* Set the contents of the .interp section to the interpreter. */
|
||
if (info->executable)
|
||
{
|
||
s = bfd_get_section_by_name (dynobj, ".interp");
|
||
if (s == NULL)
|
||
abort ();
|
||
s->size = sizeof ELF_DYNAMIC_INTERPRETER;
|
||
s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
|
||
}
|
||
}
|
||
|
||
/* Set up .got offsets for local syms, and space for local dynamic
|
||
relocs. */
|
||
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
|
||
{
|
||
bfd_signed_vma *local_got;
|
||
bfd_signed_vma *end_local_got;
|
||
char *local_tls_type;
|
||
bfd_vma *local_tlsdesc_gotent;
|
||
bfd_size_type locsymcount;
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
asection *srel;
|
||
|
||
if (! is_i386_elf (ibfd))
|
||
continue;
|
||
|
||
for (s = ibfd->sections; s != NULL; s = s->next)
|
||
{
|
||
struct elf_i386_dyn_relocs *p;
|
||
|
||
for (p = ((struct elf_i386_dyn_relocs *)
|
||
elf_section_data (s)->local_dynrel);
|
||
p != NULL;
|
||
p = p->next)
|
||
{
|
||
if (!bfd_is_abs_section (p->sec)
|
||
&& bfd_is_abs_section (p->sec->output_section))
|
||
{
|
||
/* Input section has been discarded, either because
|
||
it is a copy of a linkonce section or due to
|
||
linker script /DISCARD/, so we'll be discarding
|
||
the relocs too. */
|
||
}
|
||
else if (htab->is_vxworks
|
||
&& strcmp (p->sec->output_section->name,
|
||
".tls_vars") == 0)
|
||
{
|
||
/* Relocations in vxworks .tls_vars sections are
|
||
handled specially by the loader. */
|
||
}
|
||
else if (p->count != 0)
|
||
{
|
||
srel = elf_section_data (p->sec)->sreloc;
|
||
srel->size += p->count * sizeof (Elf32_External_Rel);
|
||
if ((p->sec->output_section->flags & SEC_READONLY) != 0)
|
||
info->flags |= DF_TEXTREL;
|
||
}
|
||
}
|
||
}
|
||
|
||
local_got = elf_local_got_refcounts (ibfd);
|
||
if (!local_got)
|
||
continue;
|
||
|
||
symtab_hdr = &elf_symtab_hdr (ibfd);
|
||
locsymcount = symtab_hdr->sh_info;
|
||
end_local_got = local_got + locsymcount;
|
||
local_tls_type = elf_i386_local_got_tls_type (ibfd);
|
||
local_tlsdesc_gotent = elf_i386_local_tlsdesc_gotent (ibfd);
|
||
s = htab->sgot;
|
||
srel = htab->srelgot;
|
||
for (; local_got < end_local_got;
|
||
++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
|
||
{
|
||
*local_tlsdesc_gotent = (bfd_vma) -1;
|
||
if (*local_got > 0)
|
||
{
|
||
if (GOT_TLS_GDESC_P (*local_tls_type))
|
||
{
|
||
*local_tlsdesc_gotent = htab->sgotplt->size
|
||
- elf_i386_compute_jump_table_size (htab);
|
||
htab->sgotplt->size += 8;
|
||
*local_got = (bfd_vma) -2;
|
||
}
|
||
if (! GOT_TLS_GDESC_P (*local_tls_type)
|
||
|| GOT_TLS_GD_P (*local_tls_type))
|
||
{
|
||
*local_got = s->size;
|
||
s->size += 4;
|
||
if (GOT_TLS_GD_P (*local_tls_type)
|
||
|| *local_tls_type == GOT_TLS_IE_BOTH)
|
||
s->size += 4;
|
||
}
|
||
if (info->shared
|
||
|| GOT_TLS_GD_ANY_P (*local_tls_type)
|
||
|| (*local_tls_type & GOT_TLS_IE))
|
||
{
|
||
if (*local_tls_type == GOT_TLS_IE_BOTH)
|
||
srel->size += 2 * sizeof (Elf32_External_Rel);
|
||
else if (GOT_TLS_GD_P (*local_tls_type)
|
||
|| ! GOT_TLS_GDESC_P (*local_tls_type))
|
||
srel->size += sizeof (Elf32_External_Rel);
|
||
if (GOT_TLS_GDESC_P (*local_tls_type))
|
||
htab->srelplt->size += sizeof (Elf32_External_Rel);
|
||
}
|
||
}
|
||
else
|
||
*local_got = (bfd_vma) -1;
|
||
}
|
||
}
|
||
|
||
if (htab->tls_ldm_got.refcount > 0)
|
||
{
|
||
/* Allocate 2 got entries and 1 dynamic reloc for R_386_TLS_LDM
|
||
relocs. */
|
||
htab->tls_ldm_got.offset = htab->sgot->size;
|
||
htab->sgot->size += 8;
|
||
htab->srelgot->size += sizeof (Elf32_External_Rel);
|
||
}
|
||
else
|
||
htab->tls_ldm_got.offset = -1;
|
||
|
||
/* Allocate global sym .plt and .got entries, and space for global
|
||
sym dynamic relocs. */
|
||
elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info);
|
||
|
||
/* For every jump slot reserved in the sgotplt, reloc_count is
|
||
incremented. However, when we reserve space for TLS descriptors,
|
||
it's not incremented, so in order to compute the space reserved
|
||
for them, it suffices to multiply the reloc count by the jump
|
||
slot size. */
|
||
if (htab->srelplt)
|
||
htab->sgotplt_jump_table_size = htab->next_tls_desc_index * 4;
|
||
|
||
/* We now have determined the sizes of the various dynamic sections.
|
||
Allocate memory for them. */
|
||
relocs = FALSE;
|
||
for (s = dynobj->sections; s != NULL; s = s->next)
|
||
{
|
||
bfd_boolean strip_section = TRUE;
|
||
|
||
if ((s->flags & SEC_LINKER_CREATED) == 0)
|
||
continue;
|
||
|
||
if (s == htab->splt
|
||
|| s == htab->sgot
|
||
|| s == htab->sgotplt
|
||
|| s == htab->sdynbss)
|
||
{
|
||
/* Strip this section if we don't need it; see the
|
||
comment below. */
|
||
/* We'd like to strip these sections if they aren't needed, but if
|
||
we've exported dynamic symbols from them we must leave them.
|
||
It's too late to tell BFD to get rid of the symbols. */
|
||
|
||
if (htab->elf.hplt != NULL)
|
||
strip_section = FALSE;
|
||
}
|
||
else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rel"))
|
||
{
|
||
if (s->size != 0 && s != htab->srelplt && s != htab->srelplt2)
|
||
relocs = TRUE;
|
||
|
||
/* We use the reloc_count field as a counter if we need
|
||
to copy relocs into the output file. */
|
||
s->reloc_count = 0;
|
||
}
|
||
else
|
||
{
|
||
/* It's not one of our sections, so don't allocate space. */
|
||
continue;
|
||
}
|
||
|
||
if (s->size == 0)
|
||
{
|
||
/* If we don't need this section, strip it from the
|
||
output file. This is mostly to handle .rel.bss and
|
||
.rel.plt. We must create both sections in
|
||
create_dynamic_sections, because they must be created
|
||
before the linker maps input sections to output
|
||
sections. The linker does that before
|
||
adjust_dynamic_symbol is called, and it is that
|
||
function which decides whether anything needs to go
|
||
into these sections. */
|
||
if (strip_section)
|
||
s->flags |= SEC_EXCLUDE;
|
||
continue;
|
||
}
|
||
|
||
if ((s->flags & SEC_HAS_CONTENTS) == 0)
|
||
continue;
|
||
|
||
/* Allocate memory for the section contents. We use bfd_zalloc
|
||
here in case unused entries are not reclaimed before the
|
||
section's contents are written out. This should not happen,
|
||
but this way if it does, we get a R_386_NONE reloc instead
|
||
of garbage. */
|
||
s->contents = bfd_zalloc (dynobj, s->size);
|
||
if (s->contents == NULL)
|
||
return FALSE;
|
||
}
|
||
|
||
if (htab->elf.dynamic_sections_created)
|
||
{
|
||
/* Add some entries to the .dynamic section. We fill in the
|
||
values later, in elf_i386_finish_dynamic_sections, but we
|
||
must add the entries now so that we get the correct size for
|
||
the .dynamic section. The DT_DEBUG entry is filled in by the
|
||
dynamic linker and used by the debugger. */
|
||
#define add_dynamic_entry(TAG, VAL) \
|
||
_bfd_elf_add_dynamic_entry (info, TAG, VAL)
|
||
|
||
if (info->executable)
|
||
{
|
||
if (!add_dynamic_entry (DT_DEBUG, 0))
|
||
return FALSE;
|
||
}
|
||
|
||
if (htab->splt->size != 0)
|
||
{
|
||
if (!add_dynamic_entry (DT_PLTGOT, 0)
|
||
|| !add_dynamic_entry (DT_PLTRELSZ, 0)
|
||
|| !add_dynamic_entry (DT_PLTREL, DT_REL)
|
||
|| !add_dynamic_entry (DT_JMPREL, 0))
|
||
return FALSE;
|
||
}
|
||
|
||
if (relocs)
|
||
{
|
||
if (!add_dynamic_entry (DT_REL, 0)
|
||
|| !add_dynamic_entry (DT_RELSZ, 0)
|
||
|| !add_dynamic_entry (DT_RELENT, sizeof (Elf32_External_Rel)))
|
||
return FALSE;
|
||
|
||
/* If any dynamic relocs apply to a read-only section,
|
||
then we need a DT_TEXTREL entry. */
|
||
if ((info->flags & DF_TEXTREL) == 0)
|
||
elf_link_hash_traverse (&htab->elf, readonly_dynrelocs,
|
||
(PTR) info);
|
||
|
||
if ((info->flags & DF_TEXTREL) != 0)
|
||
{
|
||
if (!add_dynamic_entry (DT_TEXTREL, 0))
|
||
return FALSE;
|
||
}
|
||
}
|
||
if (htab->is_vxworks
|
||
&& !elf_vxworks_add_dynamic_entries (output_bfd, info))
|
||
return FALSE;
|
||
}
|
||
#undef add_dynamic_entry
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
static bfd_boolean
|
||
elf_i386_always_size_sections (bfd *output_bfd,
|
||
struct bfd_link_info *info)
|
||
{
|
||
asection *tls_sec = elf_hash_table (info)->tls_sec;
|
||
|
||
if (tls_sec)
|
||
{
|
||
struct elf_link_hash_entry *tlsbase;
|
||
|
||
tlsbase = elf_link_hash_lookup (elf_hash_table (info),
|
||
"_TLS_MODULE_BASE_",
|
||
FALSE, FALSE, FALSE);
|
||
|
||
if (tlsbase && tlsbase->type == STT_TLS)
|
||
{
|
||
struct bfd_link_hash_entry *bh = NULL;
|
||
const struct elf_backend_data *bed
|
||
= get_elf_backend_data (output_bfd);
|
||
|
||
if (!(_bfd_generic_link_add_one_symbol
|
||
(info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
|
||
tls_sec, 0, NULL, FALSE,
|
||
bed->collect, &bh)))
|
||
return FALSE;
|
||
tlsbase = (struct elf_link_hash_entry *)bh;
|
||
tlsbase->def_regular = 1;
|
||
tlsbase->other = STV_HIDDEN;
|
||
(*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Set the correct type for an x86 ELF section. We do this by the
|
||
section name, which is a hack, but ought to work. */
|
||
|
||
static bfd_boolean
|
||
elf_i386_fake_sections (bfd *abfd ATTRIBUTE_UNUSED,
|
||
Elf_Internal_Shdr *hdr,
|
||
asection *sec)
|
||
{
|
||
register const char *name;
|
||
|
||
name = bfd_get_section_name (abfd, sec);
|
||
|
||
/* This is an ugly, but unfortunately necessary hack that is
|
||
needed when producing EFI binaries on x86. It tells
|
||
elf.c:elf_fake_sections() not to consider ".reloc" as a section
|
||
containing ELF relocation info. We need this hack in order to
|
||
be able to generate ELF binaries that can be translated into
|
||
EFI applications (which are essentially COFF objects). Those
|
||
files contain a COFF ".reloc" section inside an ELFNN object,
|
||
which would normally cause BFD to segfault because it would
|
||
attempt to interpret this section as containing relocation
|
||
entries for section "oc". With this hack enabled, ".reloc"
|
||
will be treated as a normal data section, which will avoid the
|
||
segfault. However, you won't be able to create an ELFNN binary
|
||
with a section named "oc" that needs relocations, but that's
|
||
the kind of ugly side-effects you get when detecting section
|
||
types based on their names... In practice, this limitation is
|
||
unlikely to bite. */
|
||
if (strcmp (name, ".reloc") == 0)
|
||
hdr->sh_type = SHT_PROGBITS;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Return the base VMA address which should be subtracted from real addresses
|
||
when resolving @dtpoff relocation.
|
||
This is PT_TLS segment p_vaddr. */
|
||
|
||
static bfd_vma
|
||
dtpoff_base (struct bfd_link_info *info)
|
||
{
|
||
/* If tls_sec is NULL, we should have signalled an error already. */
|
||
if (elf_hash_table (info)->tls_sec == NULL)
|
||
return 0;
|
||
return elf_hash_table (info)->tls_sec->vma;
|
||
}
|
||
|
||
/* Return the relocation value for @tpoff relocation
|
||
if STT_TLS virtual address is ADDRESS. */
|
||
|
||
static bfd_vma
|
||
tpoff (struct bfd_link_info *info, bfd_vma address)
|
||
{
|
||
struct elf_link_hash_table *htab = elf_hash_table (info);
|
||
|
||
/* If tls_sec is NULL, we should have signalled an error already. */
|
||
if (htab->tls_sec == NULL)
|
||
return 0;
|
||
return htab->tls_size + htab->tls_sec->vma - address;
|
||
}
|
||
|
||
/* Relocate an i386 ELF section. */
|
||
|
||
static bfd_boolean
|
||
elf_i386_relocate_section (bfd *output_bfd,
|
||
struct bfd_link_info *info,
|
||
bfd *input_bfd,
|
||
asection *input_section,
|
||
bfd_byte *contents,
|
||
Elf_Internal_Rela *relocs,
|
||
Elf_Internal_Sym *local_syms,
|
||
asection **local_sections)
|
||
{
|
||
struct elf_i386_link_hash_table *htab;
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
struct elf_link_hash_entry **sym_hashes;
|
||
bfd_vma *local_got_offsets;
|
||
bfd_vma *local_tlsdesc_gotents;
|
||
Elf_Internal_Rela *rel;
|
||
Elf_Internal_Rela *relend;
|
||
bfd_boolean is_vxworks_tls;
|
||
|
||
BFD_ASSERT (is_i386_elf (input_bfd));
|
||
|
||
htab = elf_i386_hash_table (info);
|
||
symtab_hdr = &elf_symtab_hdr (input_bfd);
|
||
sym_hashes = elf_sym_hashes (input_bfd);
|
||
local_got_offsets = elf_local_got_offsets (input_bfd);
|
||
local_tlsdesc_gotents = elf_i386_local_tlsdesc_gotent (input_bfd);
|
||
/* We have to handle relocations in vxworks .tls_vars sections
|
||
specially, because the dynamic loader is 'weird'. */
|
||
is_vxworks_tls = (htab->is_vxworks && info->shared
|
||
&& !strcmp (input_section->output_section->name,
|
||
".tls_vars"));
|
||
|
||
rel = relocs;
|
||
relend = relocs + input_section->reloc_count;
|
||
for (; rel < relend; rel++)
|
||
{
|
||
unsigned int r_type;
|
||
reloc_howto_type *howto;
|
||
unsigned long r_symndx;
|
||
struct elf_link_hash_entry *h;
|
||
Elf_Internal_Sym *sym;
|
||
asection *sec;
|
||
bfd_vma off, offplt;
|
||
bfd_vma relocation;
|
||
bfd_boolean unresolved_reloc;
|
||
bfd_reloc_status_type r;
|
||
unsigned int indx;
|
||
int tls_type;
|
||
|
||
r_type = ELF32_R_TYPE (rel->r_info);
|
||
if (r_type == R_386_GNU_VTINHERIT
|
||
|| r_type == R_386_GNU_VTENTRY)
|
||
continue;
|
||
|
||
if ((indx = r_type) >= R_386_standard
|
||
&& ((indx = r_type - R_386_ext_offset) - R_386_standard
|
||
>= R_386_ext - R_386_standard)
|
||
&& ((indx = r_type - R_386_tls_offset) - R_386_ext
|
||
>= R_386_tls - R_386_ext))
|
||
{
|
||
(*_bfd_error_handler)
|
||
(_("%B: unrecognized relocation (0x%x) in section `%A'"),
|
||
input_bfd, input_section, r_type);
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return FALSE;
|
||
}
|
||
howto = elf_howto_table + indx;
|
||
|
||
r_symndx = ELF32_R_SYM (rel->r_info);
|
||
h = NULL;
|
||
sym = NULL;
|
||
sec = NULL;
|
||
unresolved_reloc = FALSE;
|
||
if (r_symndx < symtab_hdr->sh_info)
|
||
{
|
||
sym = local_syms + r_symndx;
|
||
sec = local_sections[r_symndx];
|
||
relocation = (sec->output_section->vma
|
||
+ sec->output_offset
|
||
+ sym->st_value);
|
||
|
||
if (ELF_ST_TYPE (sym->st_info) == STT_SECTION
|
||
&& ((sec->flags & SEC_MERGE) != 0
|
||
|| (info->relocatable
|
||
&& sec->output_offset != 0)))
|
||
{
|
||
bfd_vma addend;
|
||
bfd_byte *where = contents + rel->r_offset;
|
||
|
||
switch (howto->size)
|
||
{
|
||
case 0:
|
||
addend = bfd_get_8 (input_bfd, where);
|
||
if (howto->pc_relative)
|
||
{
|
||
addend = (addend ^ 0x80) - 0x80;
|
||
addend += 1;
|
||
}
|
||
break;
|
||
case 1:
|
||
addend = bfd_get_16 (input_bfd, where);
|
||
if (howto->pc_relative)
|
||
{
|
||
addend = (addend ^ 0x8000) - 0x8000;
|
||
addend += 2;
|
||
}
|
||
break;
|
||
case 2:
|
||
addend = bfd_get_32 (input_bfd, where);
|
||
if (howto->pc_relative)
|
||
{
|
||
addend = (addend ^ 0x80000000) - 0x80000000;
|
||
addend += 4;
|
||
}
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
if (info->relocatable)
|
||
addend += sec->output_offset;
|
||
else
|
||
{
|
||
asection *msec = sec;
|
||
addend = _bfd_elf_rel_local_sym (output_bfd, sym, &msec,
|
||
addend);
|
||
addend -= relocation;
|
||
addend += msec->output_section->vma + msec->output_offset;
|
||
}
|
||
|
||
switch (howto->size)
|
||
{
|
||
case 0:
|
||
/* FIXME: overflow checks. */
|
||
if (howto->pc_relative)
|
||
addend -= 1;
|
||
bfd_put_8 (input_bfd, addend, where);
|
||
break;
|
||
case 1:
|
||
if (howto->pc_relative)
|
||
addend -= 2;
|
||
bfd_put_16 (input_bfd, addend, where);
|
||
break;
|
||
case 2:
|
||
if (howto->pc_relative)
|
||
addend -= 4;
|
||
bfd_put_32 (input_bfd, addend, where);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
bfd_boolean warned;
|
||
|
||
RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
|
||
r_symndx, symtab_hdr, sym_hashes,
|
||
h, sec, relocation,
|
||
unresolved_reloc, warned);
|
||
}
|
||
|
||
if (sec != NULL && elf_discarded_section (sec))
|
||
{
|
||
/* For relocs against symbols from removed linkonce sections,
|
||
or sections discarded by a linker script, we just want the
|
||
section contents zeroed. Avoid any special processing. */
|
||
_bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
|
||
rel->r_info = 0;
|
||
rel->r_addend = 0;
|
||
continue;
|
||
}
|
||
|
||
if (info->relocatable)
|
||
continue;
|
||
|
||
switch (r_type)
|
||
{
|
||
case R_386_GOT32:
|
||
/* Relocation is to the entry for this symbol in the global
|
||
offset table. */
|
||
if (htab->sgot == NULL)
|
||
abort ();
|
||
|
||
if (h != NULL)
|
||
{
|
||
bfd_boolean dyn;
|
||
|
||
off = h->got.offset;
|
||
dyn = htab->elf.dynamic_sections_created;
|
||
if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
|
||
|| (info->shared
|
||
&& SYMBOL_REFERENCES_LOCAL (info, h))
|
||
|| (ELF_ST_VISIBILITY (h->other)
|
||
&& h->root.type == bfd_link_hash_undefweak))
|
||
{
|
||
/* This is actually a static link, or it is a
|
||
-Bsymbolic link and the symbol is defined
|
||
locally, or the symbol was forced to be local
|
||
because of a version file. We must initialize
|
||
this entry in the global offset table. Since the
|
||
offset must always be a multiple of 4, we use the
|
||
least significant bit to record whether we have
|
||
initialized it already.
|
||
|
||
When doing a dynamic link, we create a .rel.got
|
||
relocation entry to initialize the value. This
|
||
is done in the finish_dynamic_symbol routine. */
|
||
if ((off & 1) != 0)
|
||
off &= ~1;
|
||
else
|
||
{
|
||
bfd_put_32 (output_bfd, relocation,
|
||
htab->sgot->contents + off);
|
||
h->got.offset |= 1;
|
||
}
|
||
}
|
||
else
|
||
unresolved_reloc = FALSE;
|
||
}
|
||
else
|
||
{
|
||
if (local_got_offsets == NULL)
|
||
abort ();
|
||
|
||
off = local_got_offsets[r_symndx];
|
||
|
||
/* The offset must always be a multiple of 4. We use
|
||
the least significant bit to record whether we have
|
||
already generated the necessary reloc. */
|
||
if ((off & 1) != 0)
|
||
off &= ~1;
|
||
else
|
||
{
|
||
bfd_put_32 (output_bfd, relocation,
|
||
htab->sgot->contents + off);
|
||
|
||
if (info->shared)
|
||
{
|
||
asection *s;
|
||
Elf_Internal_Rela outrel;
|
||
bfd_byte *loc;
|
||
|
||
s = htab->srelgot;
|
||
if (s == NULL)
|
||
abort ();
|
||
|
||
outrel.r_offset = (htab->sgot->output_section->vma
|
||
+ htab->sgot->output_offset
|
||
+ off);
|
||
outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
|
||
loc = s->contents;
|
||
loc += s->reloc_count++ * sizeof (Elf32_External_Rel);
|
||
bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
|
||
}
|
||
|
||
local_got_offsets[r_symndx] |= 1;
|
||
}
|
||
}
|
||
|
||
if (off >= (bfd_vma) -2)
|
||
abort ();
|
||
|
||
relocation = htab->sgot->output_section->vma
|
||
+ htab->sgot->output_offset + off
|
||
- htab->sgotplt->output_section->vma
|
||
- htab->sgotplt->output_offset;
|
||
break;
|
||
|
||
case R_386_GOTOFF:
|
||
/* Relocation is relative to the start of the global offset
|
||
table. */
|
||
|
||
/* Check to make sure it isn't a protected function symbol
|
||
for shared library since it may not be local when used
|
||
as function address. We also need to make sure that a
|
||
symbol is defined locally. */
|
||
if (info->shared && h)
|
||
{
|
||
if (!h->def_regular)
|
||
{
|
||
const char *v;
|
||
|
||
switch (ELF_ST_VISIBILITY (h->other))
|
||
{
|
||
case STV_HIDDEN:
|
||
v = _("hidden symbol");
|
||
break;
|
||
case STV_INTERNAL:
|
||
v = _("internal symbol");
|
||
break;
|
||
case STV_PROTECTED:
|
||
v = _("protected symbol");
|
||
break;
|
||
default:
|
||
v = _("symbol");
|
||
break;
|
||
}
|
||
|
||
(*_bfd_error_handler)
|
||
(_("%B: relocation R_386_GOTOFF against undefined %s `%s' can not be used when making a shared object"),
|
||
input_bfd, v, h->root.root.string);
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return FALSE;
|
||
}
|
||
else if (!info->executable
|
||
&& h->type == STT_FUNC
|
||
&& ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
|
||
{
|
||
(*_bfd_error_handler)
|
||
(_("%B: relocation R_386_GOTOFF against protected function `%s' can not be used when making a shared object"),
|
||
input_bfd, h->root.root.string);
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return FALSE;
|
||
}
|
||
}
|
||
|
||
/* Note that sgot is not involved in this
|
||
calculation. We always want the start of .got.plt. If we
|
||
defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
|
||
permitted by the ABI, we might have to change this
|
||
calculation. */
|
||
relocation -= htab->sgotplt->output_section->vma
|
||
+ htab->sgotplt->output_offset;
|
||
break;
|
||
|
||
case R_386_GOTPC:
|
||
/* Use global offset table as symbol value. */
|
||
relocation = htab->sgotplt->output_section->vma
|
||
+ htab->sgotplt->output_offset;
|
||
unresolved_reloc = FALSE;
|
||
break;
|
||
|
||
case R_386_PLT32:
|
||
/* Relocation is to the entry for this symbol in the
|
||
procedure linkage table. */
|
||
|
||
/* Resolve a PLT32 reloc against a local symbol directly,
|
||
without using the procedure linkage table. */
|
||
if (h == NULL)
|
||
break;
|
||
|
||
if (h->plt.offset == (bfd_vma) -1
|
||
|| htab->splt == NULL)
|
||
{
|
||
/* We didn't make a PLT entry for this symbol. This
|
||
happens when statically linking PIC code, or when
|
||
using -Bsymbolic. */
|
||
break;
|
||
}
|
||
|
||
relocation = (htab->splt->output_section->vma
|
||
+ htab->splt->output_offset
|
||
+ h->plt.offset);
|
||
unresolved_reloc = FALSE;
|
||
break;
|
||
|
||
case R_386_32:
|
||
case R_386_PC32:
|
||
if ((input_section->flags & SEC_ALLOC) == 0
|
||
|| is_vxworks_tls)
|
||
break;
|
||
|
||
if ((info->shared
|
||
&& (h == NULL
|
||
|| ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
|
||
|| h->root.type != bfd_link_hash_undefweak)
|
||
&& (r_type != R_386_PC32
|
||
|| !SYMBOL_CALLS_LOCAL (info, h)))
|
||
|| (ELIMINATE_COPY_RELOCS
|
||
&& !info->shared
|
||
&& h != NULL
|
||
&& h->dynindx != -1
|
||
&& !h->non_got_ref
|
||
&& ((h->def_dynamic
|
||
&& !h->def_regular)
|
||
|| h->root.type == bfd_link_hash_undefweak
|
||
|| h->root.type == bfd_link_hash_undefined)))
|
||
{
|
||
Elf_Internal_Rela outrel;
|
||
bfd_byte *loc;
|
||
bfd_boolean skip, relocate;
|
||
asection *sreloc;
|
||
|
||
/* When generating a shared object, these relocations
|
||
are copied into the output file to be resolved at run
|
||
time. */
|
||
|
||
skip = FALSE;
|
||
relocate = FALSE;
|
||
|
||
outrel.r_offset =
|
||
_bfd_elf_section_offset (output_bfd, info, input_section,
|
||
rel->r_offset);
|
||
if (outrel.r_offset == (bfd_vma) -1)
|
||
skip = TRUE;
|
||
else if (outrel.r_offset == (bfd_vma) -2)
|
||
skip = TRUE, relocate = TRUE;
|
||
outrel.r_offset += (input_section->output_section->vma
|
||
+ input_section->output_offset);
|
||
|
||
if (skip)
|
||
memset (&outrel, 0, sizeof outrel);
|
||
else if (h != NULL
|
||
&& h->dynindx != -1
|
||
&& (r_type == R_386_PC32
|
||
|| !info->shared
|
||
|| !SYMBOLIC_BIND (info, h)
|
||
|| !h->def_regular))
|
||
outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
|
||
else
|
||
{
|
||
/* This symbol is local, or marked to become local. */
|
||
relocate = TRUE;
|
||
outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
|
||
}
|
||
|
||
sreloc = elf_section_data (input_section)->sreloc;
|
||
if (sreloc == NULL)
|
||
abort ();
|
||
|
||
loc = sreloc->contents;
|
||
loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rel);
|
||
bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
|
||
|
||
/* If this reloc is against an external symbol, we do
|
||
not want to fiddle with the addend. Otherwise, we
|
||
need to include the symbol value so that it becomes
|
||
an addend for the dynamic reloc. */
|
||
if (! relocate)
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
case R_386_TLS_IE:
|
||
if (info->shared)
|
||
{
|
||
Elf_Internal_Rela outrel;
|
||
bfd_byte *loc;
|
||
asection *sreloc;
|
||
|
||
outrel.r_offset = rel->r_offset
|
||
+ input_section->output_section->vma
|
||
+ input_section->output_offset;
|
||
outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
|
||
sreloc = elf_section_data (input_section)->sreloc;
|
||
if (sreloc == NULL)
|
||
abort ();
|
||
loc = sreloc->contents;
|
||
loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rel);
|
||
bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
|
||
}
|
||
/* Fall through */
|
||
|
||
case R_386_TLS_GD:
|
||
case R_386_TLS_GOTDESC:
|
||
case R_386_TLS_DESC_CALL:
|
||
case R_386_TLS_IE_32:
|
||
case R_386_TLS_GOTIE:
|
||
tls_type = GOT_UNKNOWN;
|
||
if (h == NULL && local_got_offsets)
|
||
tls_type = elf_i386_local_got_tls_type (input_bfd) [r_symndx];
|
||
else if (h != NULL)
|
||
tls_type = elf_i386_hash_entry(h)->tls_type;
|
||
if (tls_type == GOT_TLS_IE)
|
||
tls_type = GOT_TLS_IE_NEG;
|
||
|
||
if (! elf_i386_tls_transition (info, input_bfd,
|
||
input_section, contents,
|
||
symtab_hdr, sym_hashes,
|
||
&r_type, tls_type, rel,
|
||
relend, h))
|
||
return FALSE;
|
||
|
||
if (r_type == R_386_TLS_LE_32)
|
||
{
|
||
BFD_ASSERT (! unresolved_reloc);
|
||
if (ELF32_R_TYPE (rel->r_info) == R_386_TLS_GD)
|
||
{
|
||
unsigned int type;
|
||
bfd_vma roff;
|
||
|
||
/* GD->LE transition. */
|
||
type = bfd_get_8 (input_bfd, contents + rel->r_offset - 2);
|
||
if (type == 0x04)
|
||
{
|
||
/* leal foo(,%reg,1), %eax; call ___tls_get_addr
|
||
Change it into:
|
||
movl %gs:0, %eax; subl $foo@tpoff, %eax
|
||
(6 byte form of subl). */
|
||
memcpy (contents + rel->r_offset - 3,
|
||
"\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
|
||
roff = rel->r_offset + 5;
|
||
}
|
||
else
|
||
{
|
||
/* leal foo(%reg), %eax; call ___tls_get_addr; nop
|
||
Change it into:
|
||
movl %gs:0, %eax; subl $foo@tpoff, %eax
|
||
(6 byte form of subl). */
|
||
memcpy (contents + rel->r_offset - 2,
|
||
"\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
|
||
roff = rel->r_offset + 6;
|
||
}
|
||
bfd_put_32 (output_bfd, tpoff (info, relocation),
|
||
contents + roff);
|
||
/* Skip R_386_PC32/R_386_PLT32. */
|
||
rel++;
|
||
continue;
|
||
}
|
||
else if (ELF32_R_TYPE (rel->r_info) == R_386_TLS_GOTDESC)
|
||
{
|
||
/* GDesc -> LE transition.
|
||
It's originally something like:
|
||
leal x@tlsdesc(%ebx), %eax
|
||
|
||
leal x@ntpoff, %eax
|
||
|
||
Registers other than %eax may be set up here. */
|
||
|
||
unsigned int val;
|
||
bfd_vma roff;
|
||
|
||
roff = rel->r_offset;
|
||
val = bfd_get_8 (input_bfd, contents + roff - 1);
|
||
|
||
/* Now modify the instruction as appropriate. */
|
||
/* aoliva FIXME: remove the above and xor the byte
|
||
below with 0x86. */
|
||
bfd_put_8 (output_bfd, val ^ 0x86,
|
||
contents + roff - 1);
|
||
bfd_put_32 (output_bfd, -tpoff (info, relocation),
|
||
contents + roff);
|
||
continue;
|
||
}
|
||
else if (ELF32_R_TYPE (rel->r_info) == R_386_TLS_DESC_CALL)
|
||
{
|
||
/* GDesc -> LE transition.
|
||
It's originally:
|
||
call *(%eax)
|
||
Turn it into:
|
||
xchg %ax,%ax */
|
||
|
||
bfd_vma roff;
|
||
|
||
roff = rel->r_offset;
|
||
bfd_put_8 (output_bfd, 0x66, contents + roff);
|
||
bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
|
||
continue;
|
||
}
|
||
else if (ELF32_R_TYPE (rel->r_info) == R_386_TLS_IE)
|
||
{
|
||
unsigned int val;
|
||
|
||
/* IE->LE transition:
|
||
Originally it can be one of:
|
||
movl foo, %eax
|
||
movl foo, %reg
|
||
addl foo, %reg
|
||
We change it into:
|
||
movl $foo, %eax
|
||
movl $foo, %reg
|
||
addl $foo, %reg. */
|
||
val = bfd_get_8 (input_bfd, contents + rel->r_offset - 1);
|
||
if (val == 0xa1)
|
||
{
|
||
/* movl foo, %eax. */
|
||
bfd_put_8 (output_bfd, 0xb8,
|
||
contents + rel->r_offset - 1);
|
||
}
|
||
else
|
||
{
|
||
unsigned int type;
|
||
|
||
type = bfd_get_8 (input_bfd,
|
||
contents + rel->r_offset - 2);
|
||
switch (type)
|
||
{
|
||
case 0x8b:
|
||
/* movl */
|
||
bfd_put_8 (output_bfd, 0xc7,
|
||
contents + rel->r_offset - 2);
|
||
bfd_put_8 (output_bfd,
|
||
0xc0 | ((val >> 3) & 7),
|
||
contents + rel->r_offset - 1);
|
||
break;
|
||
case 0x03:
|
||
/* addl */
|
||
bfd_put_8 (output_bfd, 0x81,
|
||
contents + rel->r_offset - 2);
|
||
bfd_put_8 (output_bfd,
|
||
0xc0 | ((val >> 3) & 7),
|
||
contents + rel->r_offset - 1);
|
||
break;
|
||
default:
|
||
BFD_FAIL ();
|
||
break;
|
||
}
|
||
}
|
||
bfd_put_32 (output_bfd, -tpoff (info, relocation),
|
||
contents + rel->r_offset);
|
||
continue;
|
||
}
|
||
else
|
||
{
|
||
unsigned int val, type;
|
||
|
||
/* {IE_32,GOTIE}->LE transition:
|
||
Originally it can be one of:
|
||
subl foo(%reg1), %reg2
|
||
movl foo(%reg1), %reg2
|
||
addl foo(%reg1), %reg2
|
||
We change it into:
|
||
subl $foo, %reg2
|
||
movl $foo, %reg2 (6 byte form)
|
||
addl $foo, %reg2. */
|
||
type = bfd_get_8 (input_bfd, contents + rel->r_offset - 2);
|
||
val = bfd_get_8 (input_bfd, contents + rel->r_offset - 1);
|
||
if (type == 0x8b)
|
||
{
|
||
/* movl */
|
||
bfd_put_8 (output_bfd, 0xc7,
|
||
contents + rel->r_offset - 2);
|
||
bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
|
||
contents + rel->r_offset - 1);
|
||
}
|
||
else if (type == 0x2b)
|
||
{
|
||
/* subl */
|
||
bfd_put_8 (output_bfd, 0x81,
|
||
contents + rel->r_offset - 2);
|
||
bfd_put_8 (output_bfd, 0xe8 | ((val >> 3) & 7),
|
||
contents + rel->r_offset - 1);
|
||
}
|
||
else if (type == 0x03)
|
||
{
|
||
/* addl */
|
||
bfd_put_8 (output_bfd, 0x81,
|
||
contents + rel->r_offset - 2);
|
||
bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
|
||
contents + rel->r_offset - 1);
|
||
}
|
||
else
|
||
BFD_FAIL ();
|
||
if (ELF32_R_TYPE (rel->r_info) == R_386_TLS_GOTIE)
|
||
bfd_put_32 (output_bfd, -tpoff (info, relocation),
|
||
contents + rel->r_offset);
|
||
else
|
||
bfd_put_32 (output_bfd, tpoff (info, relocation),
|
||
contents + rel->r_offset);
|
||
continue;
|
||
}
|
||
}
|
||
|
||
if (htab->sgot == NULL)
|
||
abort ();
|
||
|
||
if (h != NULL)
|
||
{
|
||
off = h->got.offset;
|
||
offplt = elf_i386_hash_entry (h)->tlsdesc_got;
|
||
}
|
||
else
|
||
{
|
||
if (local_got_offsets == NULL)
|
||
abort ();
|
||
|
||
off = local_got_offsets[r_symndx];
|
||
offplt = local_tlsdesc_gotents[r_symndx];
|
||
}
|
||
|
||
if ((off & 1) != 0)
|
||
off &= ~1;
|
||
else
|
||
{
|
||
Elf_Internal_Rela outrel;
|
||
bfd_byte *loc;
|
||
int dr_type, indx;
|
||
asection *sreloc;
|
||
|
||
if (htab->srelgot == NULL)
|
||
abort ();
|
||
|
||
indx = h && h->dynindx != -1 ? h->dynindx : 0;
|
||
|
||
if (GOT_TLS_GDESC_P (tls_type))
|
||
{
|
||
outrel.r_info = ELF32_R_INFO (indx, R_386_TLS_DESC);
|
||
BFD_ASSERT (htab->sgotplt_jump_table_size + offplt + 8
|
||
<= htab->sgotplt->size);
|
||
outrel.r_offset = (htab->sgotplt->output_section->vma
|
||
+ htab->sgotplt->output_offset
|
||
+ offplt
|
||
+ htab->sgotplt_jump_table_size);
|
||
sreloc = htab->srelplt;
|
||
loc = sreloc->contents;
|
||
loc += (htab->next_tls_desc_index++
|
||
* sizeof (Elf32_External_Rel));
|
||
BFD_ASSERT (loc + sizeof (Elf32_External_Rel)
|
||
<= sreloc->contents + sreloc->size);
|
||
bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
|
||
if (indx == 0)
|
||
{
|
||
BFD_ASSERT (! unresolved_reloc);
|
||
bfd_put_32 (output_bfd,
|
||
relocation - dtpoff_base (info),
|
||
htab->sgotplt->contents + offplt
|
||
+ htab->sgotplt_jump_table_size + 4);
|
||
}
|
||
else
|
||
{
|
||
bfd_put_32 (output_bfd, 0,
|
||
htab->sgotplt->contents + offplt
|
||
+ htab->sgotplt_jump_table_size + 4);
|
||
}
|
||
}
|
||
|
||
sreloc = htab->srelgot;
|
||
|
||
outrel.r_offset = (htab->sgot->output_section->vma
|
||
+ htab->sgot->output_offset + off);
|
||
|
||
if (GOT_TLS_GD_P (tls_type))
|
||
dr_type = R_386_TLS_DTPMOD32;
|
||
else if (GOT_TLS_GDESC_P (tls_type))
|
||
goto dr_done;
|
||
else if (tls_type == GOT_TLS_IE_POS)
|
||
dr_type = R_386_TLS_TPOFF;
|
||
else
|
||
dr_type = R_386_TLS_TPOFF32;
|
||
|
||
if (dr_type == R_386_TLS_TPOFF && indx == 0)
|
||
bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
|
||
htab->sgot->contents + off);
|
||
else if (dr_type == R_386_TLS_TPOFF32 && indx == 0)
|
||
bfd_put_32 (output_bfd, dtpoff_base (info) - relocation,
|
||
htab->sgot->contents + off);
|
||
else if (dr_type != R_386_TLS_DESC)
|
||
bfd_put_32 (output_bfd, 0,
|
||
htab->sgot->contents + off);
|
||
outrel.r_info = ELF32_R_INFO (indx, dr_type);
|
||
|
||
loc = sreloc->contents;
|
||
loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rel);
|
||
BFD_ASSERT (loc + sizeof (Elf32_External_Rel)
|
||
<= sreloc->contents + sreloc->size);
|
||
bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
|
||
|
||
if (GOT_TLS_GD_P (tls_type))
|
||
{
|
||
if (indx == 0)
|
||
{
|
||
BFD_ASSERT (! unresolved_reloc);
|
||
bfd_put_32 (output_bfd,
|
||
relocation - dtpoff_base (info),
|
||
htab->sgot->contents + off + 4);
|
||
}
|
||
else
|
||
{
|
||
bfd_put_32 (output_bfd, 0,
|
||
htab->sgot->contents + off + 4);
|
||
outrel.r_info = ELF32_R_INFO (indx,
|
||
R_386_TLS_DTPOFF32);
|
||
outrel.r_offset += 4;
|
||
sreloc->reloc_count++;
|
||
loc += sizeof (Elf32_External_Rel);
|
||
BFD_ASSERT (loc + sizeof (Elf32_External_Rel)
|
||
<= sreloc->contents + sreloc->size);
|
||
bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
|
||
}
|
||
}
|
||
else if (tls_type == GOT_TLS_IE_BOTH)
|
||
{
|
||
bfd_put_32 (output_bfd,
|
||
indx == 0 ? relocation - dtpoff_base (info) : 0,
|
||
htab->sgot->contents + off + 4);
|
||
outrel.r_info = ELF32_R_INFO (indx, R_386_TLS_TPOFF);
|
||
outrel.r_offset += 4;
|
||
sreloc->reloc_count++;
|
||
loc += sizeof (Elf32_External_Rel);
|
||
bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
|
||
}
|
||
|
||
dr_done:
|
||
if (h != NULL)
|
||
h->got.offset |= 1;
|
||
else
|
||
local_got_offsets[r_symndx] |= 1;
|
||
}
|
||
|
||
if (off >= (bfd_vma) -2
|
||
&& ! GOT_TLS_GDESC_P (tls_type))
|
||
abort ();
|
||
if (r_type == R_386_TLS_GOTDESC
|
||
|| r_type == R_386_TLS_DESC_CALL)
|
||
{
|
||
relocation = htab->sgotplt_jump_table_size + offplt;
|
||
unresolved_reloc = FALSE;
|
||
}
|
||
else if (r_type == ELF32_R_TYPE (rel->r_info))
|
||
{
|
||
bfd_vma g_o_t = htab->sgotplt->output_section->vma
|
||
+ htab->sgotplt->output_offset;
|
||
relocation = htab->sgot->output_section->vma
|
||
+ htab->sgot->output_offset + off - g_o_t;
|
||
if ((r_type == R_386_TLS_IE || r_type == R_386_TLS_GOTIE)
|
||
&& tls_type == GOT_TLS_IE_BOTH)
|
||
relocation += 4;
|
||
if (r_type == R_386_TLS_IE)
|
||
relocation += g_o_t;
|
||
unresolved_reloc = FALSE;
|
||
}
|
||
else if (ELF32_R_TYPE (rel->r_info) == R_386_TLS_GD)
|
||
{
|
||
unsigned int val, type;
|
||
bfd_vma roff;
|
||
|
||
/* GD->IE transition. */
|
||
type = bfd_get_8 (input_bfd, contents + rel->r_offset - 2);
|
||
val = bfd_get_8 (input_bfd, contents + rel->r_offset - 1);
|
||
if (type == 0x04)
|
||
{
|
||
/* leal foo(,%reg,1), %eax; call ___tls_get_addr
|
||
Change it into:
|
||
movl %gs:0, %eax; subl $foo@gottpoff(%reg), %eax. */
|
||
val >>= 3;
|
||
roff = rel->r_offset - 3;
|
||
}
|
||
else
|
||
{
|
||
/* leal foo(%reg), %eax; call ___tls_get_addr; nop
|
||
Change it into:
|
||
movl %gs:0, %eax; subl $foo@gottpoff(%reg), %eax. */
|
||
roff = rel->r_offset - 2;
|
||
}
|
||
memcpy (contents + roff,
|
||
"\x65\xa1\0\0\0\0\x2b\x80\0\0\0", 12);
|
||
contents[roff + 7] = 0x80 | (val & 7);
|
||
/* If foo is used only with foo@gotntpoff(%reg) and
|
||
foo@indntpoff, but not with foo@gottpoff(%reg), change
|
||
subl $foo@gottpoff(%reg), %eax
|
||
into:
|
||
addl $foo@gotntpoff(%reg), %eax. */
|
||
if (tls_type == GOT_TLS_IE_POS)
|
||
contents[roff + 6] = 0x03;
|
||
bfd_put_32 (output_bfd,
|
||
htab->sgot->output_section->vma
|
||
+ htab->sgot->output_offset + off
|
||
- htab->sgotplt->output_section->vma
|
||
- htab->sgotplt->output_offset,
|
||
contents + roff + 8);
|
||
/* Skip R_386_PLT32. */
|
||
rel++;
|
||
continue;
|
||
}
|
||
else if (ELF32_R_TYPE (rel->r_info) == R_386_TLS_GOTDESC)
|
||
{
|
||
/* GDesc -> IE transition.
|
||
It's originally something like:
|
||
leal x@tlsdesc(%ebx), %eax
|
||
|
||
Change it to:
|
||
movl x@gotntpoff(%ebx), %eax # before xchg %ax,%ax
|
||
or:
|
||
movl x@gottpoff(%ebx), %eax # before negl %eax
|
||
|
||
Registers other than %eax may be set up here. */
|
||
|
||
bfd_vma roff;
|
||
|
||
/* First, make sure it's a leal adding ebx to a 32-bit
|
||
offset into any register, although it's probably
|
||
almost always going to be eax. */
|
||
roff = rel->r_offset;
|
||
|
||
/* Now modify the instruction as appropriate. */
|
||
/* To turn a leal into a movl in the form we use it, it
|
||
suffices to change the first byte from 0x8d to 0x8b.
|
||
aoliva FIXME: should we decide to keep the leal, all
|
||
we have to do is remove the statement below, and
|
||
adjust the relaxation of R_386_TLS_DESC_CALL. */
|
||
bfd_put_8 (output_bfd, 0x8b, contents + roff - 2);
|
||
|
||
if (tls_type == GOT_TLS_IE_BOTH)
|
||
off += 4;
|
||
|
||
bfd_put_32 (output_bfd,
|
||
htab->sgot->output_section->vma
|
||
+ htab->sgot->output_offset + off
|
||
- htab->sgotplt->output_section->vma
|
||
- htab->sgotplt->output_offset,
|
||
contents + roff);
|
||
continue;
|
||
}
|
||
else if (ELF32_R_TYPE (rel->r_info) == R_386_TLS_DESC_CALL)
|
||
{
|
||
/* GDesc -> IE transition.
|
||
It's originally:
|
||
call *(%eax)
|
||
|
||
Change it to:
|
||
xchg %ax,%ax
|
||
or
|
||
negl %eax
|
||
depending on how we transformed the TLS_GOTDESC above.
|
||
*/
|
||
|
||
bfd_vma roff;
|
||
|
||
roff = rel->r_offset;
|
||
|
||
/* Now modify the instruction as appropriate. */
|
||
if (tls_type != GOT_TLS_IE_NEG)
|
||
{
|
||
/* xchg %ax,%ax */
|
||
bfd_put_8 (output_bfd, 0x66, contents + roff);
|
||
bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
|
||
}
|
||
else
|
||
{
|
||
/* negl %eax */
|
||
bfd_put_8 (output_bfd, 0xf7, contents + roff);
|
||
bfd_put_8 (output_bfd, 0xd8, contents + roff + 1);
|
||
}
|
||
|
||
continue;
|
||
}
|
||
else
|
||
BFD_ASSERT (FALSE);
|
||
break;
|
||
|
||
case R_386_TLS_LDM:
|
||
if (! elf_i386_tls_transition (info, input_bfd,
|
||
input_section, contents,
|
||
symtab_hdr, sym_hashes,
|
||
&r_type, GOT_UNKNOWN, rel,
|
||
relend, h))
|
||
return FALSE;
|
||
|
||
if (r_type != R_386_TLS_LDM)
|
||
{
|
||
/* LD->LE transition:
|
||
leal foo(%reg), %eax; call ___tls_get_addr.
|
||
We change it into:
|
||
movl %gs:0, %eax; nop; leal 0(%esi,1), %esi. */
|
||
BFD_ASSERT (r_type == R_386_TLS_LE_32);
|
||
memcpy (contents + rel->r_offset - 2,
|
||
"\x65\xa1\0\0\0\0\x90\x8d\x74\x26", 11);
|
||
/* Skip R_386_PC32/R_386_PLT32. */
|
||
rel++;
|
||
continue;
|
||
}
|
||
|
||
if (htab->sgot == NULL)
|
||
abort ();
|
||
|
||
off = htab->tls_ldm_got.offset;
|
||
if (off & 1)
|
||
off &= ~1;
|
||
else
|
||
{
|
||
Elf_Internal_Rela outrel;
|
||
bfd_byte *loc;
|
||
|
||
if (htab->srelgot == NULL)
|
||
abort ();
|
||
|
||
outrel.r_offset = (htab->sgot->output_section->vma
|
||
+ htab->sgot->output_offset + off);
|
||
|
||
bfd_put_32 (output_bfd, 0,
|
||
htab->sgot->contents + off);
|
||
bfd_put_32 (output_bfd, 0,
|
||
htab->sgot->contents + off + 4);
|
||
outrel.r_info = ELF32_R_INFO (0, R_386_TLS_DTPMOD32);
|
||
loc = htab->srelgot->contents;
|
||
loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rel);
|
||
bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
|
||
htab->tls_ldm_got.offset |= 1;
|
||
}
|
||
relocation = htab->sgot->output_section->vma
|
||
+ htab->sgot->output_offset + off
|
||
- htab->sgotplt->output_section->vma
|
||
- htab->sgotplt->output_offset;
|
||
unresolved_reloc = FALSE;
|
||
break;
|
||
|
||
case R_386_TLS_LDO_32:
|
||
if (info->shared || (input_section->flags & SEC_CODE) == 0)
|
||
relocation -= dtpoff_base (info);
|
||
else
|
||
/* When converting LDO to LE, we must negate. */
|
||
relocation = -tpoff (info, relocation);
|
||
break;
|
||
|
||
case R_386_TLS_LE_32:
|
||
case R_386_TLS_LE:
|
||
if (info->shared)
|
||
{
|
||
Elf_Internal_Rela outrel;
|
||
asection *sreloc;
|
||
bfd_byte *loc;
|
||
int indx;
|
||
|
||
outrel.r_offset = rel->r_offset
|
||
+ input_section->output_section->vma
|
||
+ input_section->output_offset;
|
||
if (h != NULL && h->dynindx != -1)
|
||
indx = h->dynindx;
|
||
else
|
||
indx = 0;
|
||
if (r_type == R_386_TLS_LE_32)
|
||
outrel.r_info = ELF32_R_INFO (indx, R_386_TLS_TPOFF32);
|
||
else
|
||
outrel.r_info = ELF32_R_INFO (indx, R_386_TLS_TPOFF);
|
||
sreloc = elf_section_data (input_section)->sreloc;
|
||
if (sreloc == NULL)
|
||
abort ();
|
||
loc = sreloc->contents;
|
||
loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rel);
|
||
bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
|
||
if (indx)
|
||
continue;
|
||
else if (r_type == R_386_TLS_LE_32)
|
||
relocation = dtpoff_base (info) - relocation;
|
||
else
|
||
relocation -= dtpoff_base (info);
|
||
}
|
||
else if (r_type == R_386_TLS_LE_32)
|
||
relocation = tpoff (info, relocation);
|
||
else
|
||
relocation = -tpoff (info, relocation);
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* Dynamic relocs are not propagated for SEC_DEBUGGING sections
|
||
because such sections are not SEC_ALLOC and thus ld.so will
|
||
not process them. */
|
||
if (unresolved_reloc
|
||
&& !((input_section->flags & SEC_DEBUGGING) != 0
|
||
&& h->def_dynamic))
|
||
{
|
||
(*_bfd_error_handler)
|
||
(_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
|
||
input_bfd,
|
||
input_section,
|
||
(long) rel->r_offset,
|
||
howto->name,
|
||
h->root.root.string);
|
||
return FALSE;
|
||
}
|
||
|
||
r = _bfd_final_link_relocate (howto, input_bfd, input_section,
|
||
contents, rel->r_offset,
|
||
relocation, 0);
|
||
|
||
if (r != bfd_reloc_ok)
|
||
{
|
||
const char *name;
|
||
|
||
if (h != NULL)
|
||
name = h->root.root.string;
|
||
else
|
||
{
|
||
name = bfd_elf_string_from_elf_section (input_bfd,
|
||
symtab_hdr->sh_link,
|
||
sym->st_name);
|
||
if (name == NULL)
|
||
return FALSE;
|
||
if (*name == '\0')
|
||
name = bfd_section_name (input_bfd, sec);
|
||
}
|
||
|
||
if (r == bfd_reloc_overflow)
|
||
{
|
||
if (! ((*info->callbacks->reloc_overflow)
|
||
(info, (h ? &h->root : NULL), name, howto->name,
|
||
(bfd_vma) 0, input_bfd, input_section,
|
||
rel->r_offset)))
|
||
return FALSE;
|
||
}
|
||
else
|
||
{
|
||
(*_bfd_error_handler)
|
||
(_("%B(%A+0x%lx): reloc against `%s': error %d"),
|
||
input_bfd, input_section,
|
||
(long) rel->r_offset, name, (int) r);
|
||
return FALSE;
|
||
}
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Finish up dynamic symbol handling. We set the contents of various
|
||
dynamic sections here. */
|
||
|
||
static bfd_boolean
|
||
elf_i386_finish_dynamic_symbol (bfd *output_bfd,
|
||
struct bfd_link_info *info,
|
||
struct elf_link_hash_entry *h,
|
||
Elf_Internal_Sym *sym)
|
||
{
|
||
struct elf_i386_link_hash_table *htab;
|
||
|
||
htab = elf_i386_hash_table (info);
|
||
|
||
if (h->plt.offset != (bfd_vma) -1)
|
||
{
|
||
bfd_vma plt_index;
|
||
bfd_vma got_offset;
|
||
Elf_Internal_Rela rel;
|
||
bfd_byte *loc;
|
||
|
||
/* This symbol has an entry in the procedure linkage table. Set
|
||
it up. */
|
||
|
||
if (h->dynindx == -1
|
||
|| htab->splt == NULL
|
||
|| htab->sgotplt == NULL
|
||
|| htab->srelplt == NULL)
|
||
abort ();
|
||
|
||
/* Get the index in the procedure linkage table which
|
||
corresponds to this symbol. This is the index of this symbol
|
||
in all the symbols for which we are making plt entries. The
|
||
first entry in the procedure linkage table is reserved. */
|
||
plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
|
||
|
||
/* Get the offset into the .got table of the entry that
|
||
corresponds to this function. Each .got entry is 4 bytes.
|
||
The first three are reserved. */
|
||
got_offset = (plt_index + 3) * 4;
|
||
|
||
/* Fill in the entry in the procedure linkage table. */
|
||
if (! info->shared)
|
||
{
|
||
memcpy (htab->splt->contents + h->plt.offset, elf_i386_plt_entry,
|
||
PLT_ENTRY_SIZE);
|
||
bfd_put_32 (output_bfd,
|
||
(htab->sgotplt->output_section->vma
|
||
+ htab->sgotplt->output_offset
|
||
+ got_offset),
|
||
htab->splt->contents + h->plt.offset + 2);
|
||
|
||
if (htab->is_vxworks)
|
||
{
|
||
int s, k, reloc_index;
|
||
|
||
/* Create the R_386_32 relocation referencing the GOT
|
||
for this PLT entry. */
|
||
|
||
/* S: Current slot number (zero-based). */
|
||
s = (h->plt.offset - PLT_ENTRY_SIZE) / PLT_ENTRY_SIZE;
|
||
/* K: Number of relocations for PLTResolve. */
|
||
if (info->shared)
|
||
k = PLTRESOLVE_RELOCS_SHLIB;
|
||
else
|
||
k = PLTRESOLVE_RELOCS;
|
||
/* Skip the PLTresolve relocations, and the relocations for
|
||
the other PLT slots. */
|
||
reloc_index = k + s * PLT_NON_JUMP_SLOT_RELOCS;
|
||
loc = (htab->srelplt2->contents + reloc_index
|
||
* sizeof (Elf32_External_Rel));
|
||
|
||
rel.r_offset = (htab->splt->output_section->vma
|
||
+ htab->splt->output_offset
|
||
+ h->plt.offset + 2),
|
||
rel.r_info = ELF32_R_INFO (htab->elf.hgot->indx, R_386_32);
|
||
bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
|
||
|
||
/* Create the R_386_32 relocation referencing the beginning of
|
||
the PLT for this GOT entry. */
|
||
rel.r_offset = (htab->sgotplt->output_section->vma
|
||
+ htab->sgotplt->output_offset
|
||
+ got_offset);
|
||
rel.r_info = ELF32_R_INFO (htab->elf.hplt->indx, R_386_32);
|
||
bfd_elf32_swap_reloc_out (output_bfd, &rel,
|
||
loc + sizeof (Elf32_External_Rel));
|
||
}
|
||
}
|
||
else
|
||
{
|
||
memcpy (htab->splt->contents + h->plt.offset, elf_i386_pic_plt_entry,
|
||
PLT_ENTRY_SIZE);
|
||
bfd_put_32 (output_bfd, got_offset,
|
||
htab->splt->contents + h->plt.offset + 2);
|
||
}
|
||
|
||
bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rel),
|
||
htab->splt->contents + h->plt.offset + 7);
|
||
bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
|
||
htab->splt->contents + h->plt.offset + 12);
|
||
|
||
/* Fill in the entry in the global offset table. */
|
||
bfd_put_32 (output_bfd,
|
||
(htab->splt->output_section->vma
|
||
+ htab->splt->output_offset
|
||
+ h->plt.offset
|
||
+ 6),
|
||
htab->sgotplt->contents + got_offset);
|
||
|
||
/* Fill in the entry in the .rel.plt section. */
|
||
rel.r_offset = (htab->sgotplt->output_section->vma
|
||
+ htab->sgotplt->output_offset
|
||
+ got_offset);
|
||
rel.r_info = ELF32_R_INFO (h->dynindx, R_386_JUMP_SLOT);
|
||
loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rel);
|
||
bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
|
||
|
||
if (!h->def_regular)
|
||
{
|
||
/* Mark the symbol as undefined, rather than as defined in
|
||
the .plt section. Leave the value if there were any
|
||
relocations where pointer equality matters (this is a clue
|
||
for the dynamic linker, to make function pointer
|
||
comparisons work between an application and shared
|
||
library), otherwise set it to zero. If a function is only
|
||
called from a binary, there is no need to slow down
|
||
shared libraries because of that. */
|
||
sym->st_shndx = SHN_UNDEF;
|
||
if (!h->pointer_equality_needed)
|
||
sym->st_value = 0;
|
||
}
|
||
}
|
||
|
||
if (h->got.offset != (bfd_vma) -1
|
||
&& ! GOT_TLS_GD_ANY_P (elf_i386_hash_entry(h)->tls_type)
|
||
&& (elf_i386_hash_entry(h)->tls_type & GOT_TLS_IE) == 0)
|
||
{
|
||
Elf_Internal_Rela rel;
|
||
bfd_byte *loc;
|
||
|
||
/* This symbol has an entry in the global offset table. Set it
|
||
up. */
|
||
|
||
if (htab->sgot == NULL || htab->srelgot == NULL)
|
||
abort ();
|
||
|
||
rel.r_offset = (htab->sgot->output_section->vma
|
||
+ htab->sgot->output_offset
|
||
+ (h->got.offset & ~(bfd_vma) 1));
|
||
|
||
/* If this is a static link, or it is a -Bsymbolic link and the
|
||
symbol is defined locally or was forced to be local because
|
||
of a version file, we just want to emit a RELATIVE reloc.
|
||
The entry in the global offset table will already have been
|
||
initialized in the relocate_section function. */
|
||
if (info->shared
|
||
&& SYMBOL_REFERENCES_LOCAL (info, h))
|
||
{
|
||
BFD_ASSERT((h->got.offset & 1) != 0);
|
||
rel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
|
||
}
|
||
else
|
||
{
|
||
BFD_ASSERT((h->got.offset & 1) == 0);
|
||
bfd_put_32 (output_bfd, (bfd_vma) 0,
|
||
htab->sgot->contents + h->got.offset);
|
||
rel.r_info = ELF32_R_INFO (h->dynindx, R_386_GLOB_DAT);
|
||
}
|
||
|
||
loc = htab->srelgot->contents;
|
||
loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rel);
|
||
bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
|
||
}
|
||
|
||
if (h->needs_copy)
|
||
{
|
||
Elf_Internal_Rela rel;
|
||
bfd_byte *loc;
|
||
|
||
/* This symbol needs a copy reloc. Set it up. */
|
||
|
||
if (h->dynindx == -1
|
||
|| (h->root.type != bfd_link_hash_defined
|
||
&& h->root.type != bfd_link_hash_defweak)
|
||
|| htab->srelbss == NULL)
|
||
abort ();
|
||
|
||
rel.r_offset = (h->root.u.def.value
|
||
+ h->root.u.def.section->output_section->vma
|
||
+ h->root.u.def.section->output_offset);
|
||
rel.r_info = ELF32_R_INFO (h->dynindx, R_386_COPY);
|
||
loc = htab->srelbss->contents;
|
||
loc += htab->srelbss->reloc_count++ * sizeof (Elf32_External_Rel);
|
||
bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
|
||
}
|
||
|
||
/* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.
|
||
On VxWorks, the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it
|
||
is relative to the ".got" section. */
|
||
if (strcmp (h->root.root.string, "_DYNAMIC") == 0
|
||
|| (!htab->is_vxworks && h == htab->elf.hgot))
|
||
sym->st_shndx = SHN_ABS;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Used to decide how to sort relocs in an optimal manner for the
|
||
dynamic linker, before writing them out. */
|
||
|
||
static enum elf_reloc_type_class
|
||
elf_i386_reloc_type_class (const Elf_Internal_Rela *rela)
|
||
{
|
||
switch (ELF32_R_TYPE (rela->r_info))
|
||
{
|
||
case R_386_RELATIVE:
|
||
return reloc_class_relative;
|
||
case R_386_JUMP_SLOT:
|
||
return reloc_class_plt;
|
||
case R_386_COPY:
|
||
return reloc_class_copy;
|
||
default:
|
||
return reloc_class_normal;
|
||
}
|
||
}
|
||
|
||
/* Finish up the dynamic sections. */
|
||
|
||
static bfd_boolean
|
||
elf_i386_finish_dynamic_sections (bfd *output_bfd,
|
||
struct bfd_link_info *info)
|
||
{
|
||
struct elf_i386_link_hash_table *htab;
|
||
bfd *dynobj;
|
||
asection *sdyn;
|
||
|
||
htab = elf_i386_hash_table (info);
|
||
dynobj = htab->elf.dynobj;
|
||
sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
|
||
|
||
if (htab->elf.dynamic_sections_created)
|
||
{
|
||
Elf32_External_Dyn *dyncon, *dynconend;
|
||
|
||
if (sdyn == NULL || htab->sgot == NULL)
|
||
abort ();
|
||
|
||
dyncon = (Elf32_External_Dyn *) sdyn->contents;
|
||
dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
|
||
for (; dyncon < dynconend; dyncon++)
|
||
{
|
||
Elf_Internal_Dyn dyn;
|
||
asection *s;
|
||
|
||
bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
|
||
|
||
switch (dyn.d_tag)
|
||
{
|
||
default:
|
||
if (htab->is_vxworks
|
||
&& elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
|
||
break;
|
||
continue;
|
||
|
||
case DT_PLTGOT:
|
||
s = htab->sgotplt;
|
||
dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
|
||
break;
|
||
|
||
case DT_JMPREL:
|
||
s = htab->srelplt;
|
||
dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
|
||
break;
|
||
|
||
case DT_PLTRELSZ:
|
||
s = htab->srelplt;
|
||
dyn.d_un.d_val = s->size;
|
||
break;
|
||
|
||
case DT_RELSZ:
|
||
/* My reading of the SVR4 ABI indicates that the
|
||
procedure linkage table relocs (DT_JMPREL) should be
|
||
included in the overall relocs (DT_REL). This is
|
||
what Solaris does. However, UnixWare can not handle
|
||
that case. Therefore, we override the DT_RELSZ entry
|
||
here to make it not include the JMPREL relocs. */
|
||
s = htab->srelplt;
|
||
if (s == NULL)
|
||
continue;
|
||
dyn.d_un.d_val -= s->size;
|
||
break;
|
||
|
||
case DT_REL:
|
||
/* We may not be using the standard ELF linker script.
|
||
If .rel.plt is the first .rel section, we adjust
|
||
DT_REL to not include it. */
|
||
s = htab->srelplt;
|
||
if (s == NULL)
|
||
continue;
|
||
if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
|
||
continue;
|
||
dyn.d_un.d_ptr += s->size;
|
||
break;
|
||
}
|
||
|
||
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
|
||
}
|
||
|
||
/* Fill in the first entry in the procedure linkage table. */
|
||
if (htab->splt && htab->splt->size > 0)
|
||
{
|
||
if (info->shared)
|
||
{
|
||
memcpy (htab->splt->contents, elf_i386_pic_plt0_entry,
|
||
sizeof (elf_i386_pic_plt0_entry));
|
||
memset (htab->splt->contents + sizeof (elf_i386_pic_plt0_entry),
|
||
htab->plt0_pad_byte,
|
||
PLT_ENTRY_SIZE - sizeof (elf_i386_pic_plt0_entry));
|
||
}
|
||
else
|
||
{
|
||
memcpy (htab->splt->contents, elf_i386_plt0_entry,
|
||
sizeof(elf_i386_plt0_entry));
|
||
memset (htab->splt->contents + sizeof (elf_i386_plt0_entry),
|
||
htab->plt0_pad_byte,
|
||
PLT_ENTRY_SIZE - sizeof (elf_i386_plt0_entry));
|
||
bfd_put_32 (output_bfd,
|
||
(htab->sgotplt->output_section->vma
|
||
+ htab->sgotplt->output_offset
|
||
+ 4),
|
||
htab->splt->contents + 2);
|
||
bfd_put_32 (output_bfd,
|
||
(htab->sgotplt->output_section->vma
|
||
+ htab->sgotplt->output_offset
|
||
+ 8),
|
||
htab->splt->contents + 8);
|
||
|
||
if (htab->is_vxworks)
|
||
{
|
||
Elf_Internal_Rela rel;
|
||
|
||
/* Generate a relocation for _GLOBAL_OFFSET_TABLE_ + 4.
|
||
On IA32 we use REL relocations so the addend goes in
|
||
the PLT directly. */
|
||
rel.r_offset = (htab->splt->output_section->vma
|
||
+ htab->splt->output_offset
|
||
+ 2);
|
||
rel.r_info = ELF32_R_INFO (htab->elf.hgot->indx, R_386_32);
|
||
bfd_elf32_swap_reloc_out (output_bfd, &rel,
|
||
htab->srelplt2->contents);
|
||
/* Generate a relocation for _GLOBAL_OFFSET_TABLE_ + 8. */
|
||
rel.r_offset = (htab->splt->output_section->vma
|
||
+ htab->splt->output_offset
|
||
+ 8);
|
||
rel.r_info = ELF32_R_INFO (htab->elf.hgot->indx, R_386_32);
|
||
bfd_elf32_swap_reloc_out (output_bfd, &rel,
|
||
htab->srelplt2->contents +
|
||
sizeof (Elf32_External_Rel));
|
||
}
|
||
}
|
||
|
||
/* UnixWare sets the entsize of .plt to 4, although that doesn't
|
||
really seem like the right value. */
|
||
elf_section_data (htab->splt->output_section)
|
||
->this_hdr.sh_entsize = 4;
|
||
|
||
/* Correct the .rel.plt.unloaded relocations. */
|
||
if (htab->is_vxworks && !info->shared)
|
||
{
|
||
int num_plts = (htab->splt->size / PLT_ENTRY_SIZE) - 1;
|
||
unsigned char *p;
|
||
|
||
p = htab->srelplt2->contents;
|
||
if (info->shared)
|
||
p += PLTRESOLVE_RELOCS_SHLIB * sizeof (Elf32_External_Rel);
|
||
else
|
||
p += PLTRESOLVE_RELOCS * sizeof (Elf32_External_Rel);
|
||
|
||
for (; num_plts; num_plts--)
|
||
{
|
||
Elf_Internal_Rela rel;
|
||
bfd_elf32_swap_reloc_in (output_bfd, p, &rel);
|
||
rel.r_info = ELF32_R_INFO (htab->elf.hgot->indx, R_386_32);
|
||
bfd_elf32_swap_reloc_out (output_bfd, &rel, p);
|
||
p += sizeof (Elf32_External_Rel);
|
||
|
||
bfd_elf32_swap_reloc_in (output_bfd, p, &rel);
|
||
rel.r_info = ELF32_R_INFO (htab->elf.hplt->indx, R_386_32);
|
||
bfd_elf32_swap_reloc_out (output_bfd, &rel, p);
|
||
p += sizeof (Elf32_External_Rel);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if (htab->sgotplt)
|
||
{
|
||
/* Fill in the first three entries in the global offset table. */
|
||
if (htab->sgotplt->size > 0)
|
||
{
|
||
bfd_put_32 (output_bfd,
|
||
(sdyn == NULL ? 0
|
||
: sdyn->output_section->vma + sdyn->output_offset),
|
||
htab->sgotplt->contents);
|
||
bfd_put_32 (output_bfd, 0, htab->sgotplt->contents + 4);
|
||
bfd_put_32 (output_bfd, 0, htab->sgotplt->contents + 8);
|
||
}
|
||
|
||
elf_section_data (htab->sgotplt->output_section)->this_hdr.sh_entsize = 4;
|
||
}
|
||
|
||
if (htab->sgot && htab->sgot->size > 0)
|
||
elf_section_data (htab->sgot->output_section)->this_hdr.sh_entsize = 4;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Return address for Ith PLT stub in section PLT, for relocation REL
|
||
or (bfd_vma) -1 if it should not be included. */
|
||
|
||
static bfd_vma
|
||
elf_i386_plt_sym_val (bfd_vma i, const asection *plt,
|
||
const arelent *rel ATTRIBUTE_UNUSED)
|
||
{
|
||
return plt->vma + (i + 1) * PLT_ENTRY_SIZE;
|
||
}
|
||
|
||
/* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
|
||
|
||
static bfd_boolean
|
||
elf_i386_hash_symbol (struct elf_link_hash_entry *h)
|
||
{
|
||
if (h->plt.offset != (bfd_vma) -1
|
||
&& !h->def_regular
|
||
&& !h->pointer_equality_needed)
|
||
return FALSE;
|
||
|
||
return _bfd_elf_hash_symbol (h);
|
||
}
|
||
|
||
#define TARGET_LITTLE_SYM bfd_elf32_i386_vec
|
||
#define TARGET_LITTLE_NAME "elf32-i386"
|
||
#define ELF_ARCH bfd_arch_i386
|
||
#define ELF_MACHINE_CODE EM_386
|
||
#define ELF_MAXPAGESIZE 0x1000
|
||
|
||
#define elf_backend_can_gc_sections 1
|
||
#define elf_backend_can_refcount 1
|
||
#define elf_backend_want_got_plt 1
|
||
#define elf_backend_plt_readonly 1
|
||
#define elf_backend_want_plt_sym 0
|
||
#define elf_backend_got_header_size 12
|
||
|
||
/* Support RELA for objdump of prelink objects. */
|
||
#define elf_info_to_howto elf_i386_info_to_howto_rel
|
||
#define elf_info_to_howto_rel elf_i386_info_to_howto_rel
|
||
|
||
#define bfd_elf32_mkobject elf_i386_mkobject
|
||
|
||
#define bfd_elf32_bfd_is_local_label_name elf_i386_is_local_label_name
|
||
#define bfd_elf32_bfd_link_hash_table_create elf_i386_link_hash_table_create
|
||
#define bfd_elf32_bfd_reloc_type_lookup elf_i386_reloc_type_lookup
|
||
#define bfd_elf32_bfd_reloc_name_lookup elf_i386_reloc_name_lookup
|
||
|
||
#define elf_backend_adjust_dynamic_symbol elf_i386_adjust_dynamic_symbol
|
||
#define elf_backend_relocs_compatible _bfd_elf_relocs_compatible
|
||
#define elf_backend_check_relocs elf_i386_check_relocs
|
||
#define elf_backend_copy_indirect_symbol elf_i386_copy_indirect_symbol
|
||
#define elf_backend_create_dynamic_sections elf_i386_create_dynamic_sections
|
||
#define elf_backend_fake_sections elf_i386_fake_sections
|
||
#define elf_backend_finish_dynamic_sections elf_i386_finish_dynamic_sections
|
||
#define elf_backend_finish_dynamic_symbol elf_i386_finish_dynamic_symbol
|
||
#define elf_backend_gc_mark_hook elf_i386_gc_mark_hook
|
||
#define elf_backend_gc_sweep_hook elf_i386_gc_sweep_hook
|
||
#define elf_backend_grok_prstatus elf_i386_grok_prstatus
|
||
#define elf_backend_grok_psinfo elf_i386_grok_psinfo
|
||
#define elf_backend_reloc_type_class elf_i386_reloc_type_class
|
||
#define elf_backend_relocate_section elf_i386_relocate_section
|
||
#define elf_backend_size_dynamic_sections elf_i386_size_dynamic_sections
|
||
#define elf_backend_always_size_sections elf_i386_always_size_sections
|
||
#define elf_backend_omit_section_dynsym \
|
||
((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
|
||
#define elf_backend_plt_sym_val elf_i386_plt_sym_val
|
||
#define elf_backend_hash_symbol elf_i386_hash_symbol
|
||
|
||
#include "elf32-target.h"
|
||
|
||
/* FreeBSD support. */
|
||
|
||
#undef TARGET_LITTLE_SYM
|
||
#define TARGET_LITTLE_SYM bfd_elf32_i386_freebsd_vec
|
||
#undef TARGET_LITTLE_NAME
|
||
#define TARGET_LITTLE_NAME "elf32-i386-freebsd"
|
||
#undef ELF_OSABI
|
||
#define ELF_OSABI ELFOSABI_FREEBSD
|
||
|
||
/* The kernel recognizes executables as valid only if they carry a
|
||
"FreeBSD" label in the ELF header. So we put this label on all
|
||
executables and (for simplicity) also all other object files. */
|
||
|
||
static void
|
||
elf_i386_post_process_headers (bfd *abfd,
|
||
struct bfd_link_info *info ATTRIBUTE_UNUSED)
|
||
{
|
||
Elf_Internal_Ehdr *i_ehdrp;
|
||
|
||
i_ehdrp = elf_elfheader (abfd);
|
||
|
||
/* Put an ABI label supported by FreeBSD >= 4.1. */
|
||
i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
|
||
#ifdef OLD_FREEBSD_ABI_LABEL
|
||
/* The ABI label supported by FreeBSD <= 4.0 is quite nonstandard. */
|
||
memcpy (&i_ehdrp->e_ident[EI_ABIVERSION], "FreeBSD", 8);
|
||
#endif
|
||
}
|
||
|
||
#undef elf_backend_post_process_headers
|
||
#define elf_backend_post_process_headers elf_i386_post_process_headers
|
||
#undef elf32_bed
|
||
#define elf32_bed elf32_i386_fbsd_bed
|
||
|
||
#include "elf32-target.h"
|
||
|
||
/* VxWorks support. */
|
||
|
||
#undef TARGET_LITTLE_SYM
|
||
#define TARGET_LITTLE_SYM bfd_elf32_i386_vxworks_vec
|
||
#undef TARGET_LITTLE_NAME
|
||
#define TARGET_LITTLE_NAME "elf32-i386-vxworks"
|
||
#undef ELF_OSABI
|
||
|
||
/* Like elf_i386_link_hash_table_create but with tweaks for VxWorks. */
|
||
|
||
static struct bfd_link_hash_table *
|
||
elf_i386_vxworks_link_hash_table_create (bfd *abfd)
|
||
{
|
||
struct bfd_link_hash_table *ret;
|
||
struct elf_i386_link_hash_table *htab;
|
||
|
||
ret = elf_i386_link_hash_table_create (abfd);
|
||
if (ret)
|
||
{
|
||
htab = (struct elf_i386_link_hash_table *) ret;
|
||
htab->is_vxworks = 1;
|
||
htab->plt0_pad_byte = 0x90;
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
|
||
#undef elf_backend_relocs_compatible
|
||
#undef elf_backend_post_process_headers
|
||
#undef bfd_elf32_bfd_link_hash_table_create
|
||
#define bfd_elf32_bfd_link_hash_table_create \
|
||
elf_i386_vxworks_link_hash_table_create
|
||
#undef elf_backend_add_symbol_hook
|
||
#define elf_backend_add_symbol_hook \
|
||
elf_vxworks_add_symbol_hook
|
||
#undef elf_backend_link_output_symbol_hook
|
||
#define elf_backend_link_output_symbol_hook \
|
||
elf_vxworks_link_output_symbol_hook
|
||
#undef elf_backend_emit_relocs
|
||
#define elf_backend_emit_relocs elf_vxworks_emit_relocs
|
||
#undef elf_backend_final_write_processing
|
||
#define elf_backend_final_write_processing \
|
||
elf_vxworks_final_write_processing
|
||
|
||
/* On VxWorks, we emit relocations against _PROCEDURE_LINKAGE_TABLE_, so
|
||
define it. */
|
||
#undef elf_backend_want_plt_sym
|
||
#define elf_backend_want_plt_sym 1
|
||
|
||
#undef elf32_bed
|
||
#define elf32_bed elf32_i386_vxworks_bed
|
||
|
||
#include "elf32-target.h"
|