mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-24 12:35:55 +08:00
26457a9cf3
This patch does the following: - Introduces a block range data structure which is accessed via a new field in struct block. - Defines several macros for accessing block ranges. - Defines a new function, make_blockrange, which is responsible for creating the new data structure. It should be noted that some support for non-contiguous ranges already existed in GDB in the form of blockvector addrmaps. This support allowed GDB to quickly find a block containing a particular address even when the block consists of non-contiguous addresses. See find_block_in_blockvector() in block.c, dwarf2_record_block_ranges() in dwarf2read.c, and record_block_range() in buildsym.c. Addrmaps do not provide a convenient way to examine address ranges associated with a particular block. This data structure (and its interface) is set up for quickly finding the value (which in this case is a block) associated with a particular address. The interface does not include a method for doing a reverse mapping from blocks to addresses. A linear time mapping might be attempted via use of the addrmap's foreach method, but this is not as straightforward as it might first appear due to the fact that blocks corresponding to inline function instances and lexical blocks w/ variables end up getting interspersed in in the set of transitions. Note: If this approach is deemed to be too expensive in terms of space, an alternate approach might be to attempt the linear time mapping noted above. find_pc_partial_function() needs to be able to quickly know whether there are discontiguous ranges, so a flag for this property would have to be added to struct block. Also integral to this set of changes is the concept of an "entry pc" which might be different from the block's start address. An entry_pc field would also need to be added to struct block. This does not result in any space savings in struct block though since the space for the flag and entry_pc use more space than the blockranges struct pointer that I've added. There would, however, be some space savings due to the fact that the new data structures that I've added for this patch would not need to be allocated. (I happen to like the approach I've come up with, but I wanted to mention another possibility just in case someone does not.) gdb/ChangeLog: * block.h (blockrange, blockranges): New struct declarations. (struct block): Add new field named `ranges'. (BLOCK_RANGES, BLOCK_NRANGES, BLOCK_RANGE, BLOCK_CONTIGUOUS_P) (BLOCK_RANGE_START, BLOCK_RANGE_END, BLOCK_ENTRY_PC): New macros for accessing ranges in struct block. (make_blockranges): New declaration. block.c (make_blockranges): New function.
831 lines
22 KiB
C
831 lines
22 KiB
C
/* Block-related functions for the GNU debugger, GDB.
|
||
|
||
Copyright (C) 2003-2018 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include "block.h"
|
||
#include "symtab.h"
|
||
#include "symfile.h"
|
||
#include "gdb_obstack.h"
|
||
#include "cp-support.h"
|
||
#include "addrmap.h"
|
||
#include "gdbtypes.h"
|
||
#include "objfiles.h"
|
||
|
||
/* This is used by struct block to store namespace-related info for
|
||
C++ files, namely using declarations and the current namespace in
|
||
scope. */
|
||
|
||
struct block_namespace_info : public allocate_on_obstack
|
||
{
|
||
const char *scope = nullptr;
|
||
struct using_direct *using_decl = nullptr;
|
||
};
|
||
|
||
static void block_initialize_namespace (struct block *block,
|
||
struct obstack *obstack);
|
||
|
||
/* See block.h. */
|
||
|
||
struct objfile *
|
||
block_objfile (const struct block *block)
|
||
{
|
||
const struct global_block *global_block;
|
||
|
||
if (BLOCK_FUNCTION (block) != NULL)
|
||
return symbol_objfile (BLOCK_FUNCTION (block));
|
||
|
||
global_block = (struct global_block *) block_global_block (block);
|
||
return COMPUNIT_OBJFILE (global_block->compunit_symtab);
|
||
}
|
||
|
||
/* See block. */
|
||
|
||
struct gdbarch *
|
||
block_gdbarch (const struct block *block)
|
||
{
|
||
if (BLOCK_FUNCTION (block) != NULL)
|
||
return symbol_arch (BLOCK_FUNCTION (block));
|
||
|
||
return get_objfile_arch (block_objfile (block));
|
||
}
|
||
|
||
/* Return Nonzero if block a is lexically nested within block b,
|
||
or if a and b have the same pc range.
|
||
Return zero otherwise. */
|
||
|
||
int
|
||
contained_in (const struct block *a, const struct block *b)
|
||
{
|
||
if (!a || !b)
|
||
return 0;
|
||
|
||
do
|
||
{
|
||
if (a == b)
|
||
return 1;
|
||
/* If A is a function block, then A cannot be contained in B,
|
||
except if A was inlined. */
|
||
if (BLOCK_FUNCTION (a) != NULL && !block_inlined_p (a))
|
||
return 0;
|
||
a = BLOCK_SUPERBLOCK (a);
|
||
}
|
||
while (a != NULL);
|
||
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Return the symbol for the function which contains a specified
|
||
lexical block, described by a struct block BL. The return value
|
||
will not be an inlined function; the containing function will be
|
||
returned instead. */
|
||
|
||
struct symbol *
|
||
block_linkage_function (const struct block *bl)
|
||
{
|
||
while ((BLOCK_FUNCTION (bl) == NULL || block_inlined_p (bl))
|
||
&& BLOCK_SUPERBLOCK (bl) != NULL)
|
||
bl = BLOCK_SUPERBLOCK (bl);
|
||
|
||
return BLOCK_FUNCTION (bl);
|
||
}
|
||
|
||
/* Return the symbol for the function which contains a specified
|
||
block, described by a struct block BL. The return value will be
|
||
the closest enclosing function, which might be an inline
|
||
function. */
|
||
|
||
struct symbol *
|
||
block_containing_function (const struct block *bl)
|
||
{
|
||
while (BLOCK_FUNCTION (bl) == NULL && BLOCK_SUPERBLOCK (bl) != NULL)
|
||
bl = BLOCK_SUPERBLOCK (bl);
|
||
|
||
return BLOCK_FUNCTION (bl);
|
||
}
|
||
|
||
/* Return one if BL represents an inlined function. */
|
||
|
||
int
|
||
block_inlined_p (const struct block *bl)
|
||
{
|
||
return BLOCK_FUNCTION (bl) != NULL && SYMBOL_INLINED (BLOCK_FUNCTION (bl));
|
||
}
|
||
|
||
/* A helper function that checks whether PC is in the blockvector BL.
|
||
It returns the containing block if there is one, or else NULL. */
|
||
|
||
static struct block *
|
||
find_block_in_blockvector (const struct blockvector *bl, CORE_ADDR pc)
|
||
{
|
||
struct block *b;
|
||
int bot, top, half;
|
||
|
||
/* If we have an addrmap mapping code addresses to blocks, then use
|
||
that. */
|
||
if (BLOCKVECTOR_MAP (bl))
|
||
return (struct block *) addrmap_find (BLOCKVECTOR_MAP (bl), pc);
|
||
|
||
/* Otherwise, use binary search to find the last block that starts
|
||
before PC.
|
||
Note: GLOBAL_BLOCK is block 0, STATIC_BLOCK is block 1.
|
||
They both have the same START,END values.
|
||
Historically this code would choose STATIC_BLOCK over GLOBAL_BLOCK but the
|
||
fact that this choice was made was subtle, now we make it explicit. */
|
||
gdb_assert (BLOCKVECTOR_NBLOCKS (bl) >= 2);
|
||
bot = STATIC_BLOCK;
|
||
top = BLOCKVECTOR_NBLOCKS (bl);
|
||
|
||
while (top - bot > 1)
|
||
{
|
||
half = (top - bot + 1) >> 1;
|
||
b = BLOCKVECTOR_BLOCK (bl, bot + half);
|
||
if (BLOCK_START (b) <= pc)
|
||
bot += half;
|
||
else
|
||
top = bot + half;
|
||
}
|
||
|
||
/* Now search backward for a block that ends after PC. */
|
||
|
||
while (bot >= STATIC_BLOCK)
|
||
{
|
||
b = BLOCKVECTOR_BLOCK (bl, bot);
|
||
if (BLOCK_END (b) > pc)
|
||
return b;
|
||
bot--;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Return the blockvector immediately containing the innermost lexical
|
||
block containing the specified pc value and section, or 0 if there
|
||
is none. PBLOCK is a pointer to the block. If PBLOCK is NULL, we
|
||
don't pass this information back to the caller. */
|
||
|
||
const struct blockvector *
|
||
blockvector_for_pc_sect (CORE_ADDR pc, struct obj_section *section,
|
||
const struct block **pblock,
|
||
struct compunit_symtab *cust)
|
||
{
|
||
const struct blockvector *bl;
|
||
struct block *b;
|
||
|
||
if (cust == NULL)
|
||
{
|
||
/* First search all symtabs for one whose file contains our pc */
|
||
cust = find_pc_sect_compunit_symtab (pc, section);
|
||
if (cust == NULL)
|
||
return 0;
|
||
}
|
||
|
||
bl = COMPUNIT_BLOCKVECTOR (cust);
|
||
|
||
/* Then search that symtab for the smallest block that wins. */
|
||
b = find_block_in_blockvector (bl, pc);
|
||
if (b == NULL)
|
||
return NULL;
|
||
|
||
if (pblock)
|
||
*pblock = b;
|
||
return bl;
|
||
}
|
||
|
||
/* Return true if the blockvector BV contains PC, false otherwise. */
|
||
|
||
int
|
||
blockvector_contains_pc (const struct blockvector *bv, CORE_ADDR pc)
|
||
{
|
||
return find_block_in_blockvector (bv, pc) != NULL;
|
||
}
|
||
|
||
/* Return call_site for specified PC in GDBARCH. PC must match exactly, it
|
||
must be the next instruction after call (or after tail call jump). Throw
|
||
NO_ENTRY_VALUE_ERROR otherwise. This function never returns NULL. */
|
||
|
||
struct call_site *
|
||
call_site_for_pc (struct gdbarch *gdbarch, CORE_ADDR pc)
|
||
{
|
||
struct compunit_symtab *cust;
|
||
void **slot = NULL;
|
||
|
||
/* -1 as tail call PC can be already after the compilation unit range. */
|
||
cust = find_pc_compunit_symtab (pc - 1);
|
||
|
||
if (cust != NULL && COMPUNIT_CALL_SITE_HTAB (cust) != NULL)
|
||
slot = htab_find_slot (COMPUNIT_CALL_SITE_HTAB (cust), &pc, NO_INSERT);
|
||
|
||
if (slot == NULL)
|
||
{
|
||
struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (pc);
|
||
|
||
/* DW_TAG_gnu_call_site will be missing just if GCC could not determine
|
||
the call target. */
|
||
throw_error (NO_ENTRY_VALUE_ERROR,
|
||
_("DW_OP_entry_value resolving cannot find "
|
||
"DW_TAG_call_site %s in %s"),
|
||
paddress (gdbarch, pc),
|
||
(msym.minsym == NULL ? "???"
|
||
: MSYMBOL_PRINT_NAME (msym.minsym)));
|
||
}
|
||
|
||
return (struct call_site *) *slot;
|
||
}
|
||
|
||
/* Return the blockvector immediately containing the innermost lexical block
|
||
containing the specified pc value, or 0 if there is none.
|
||
Backward compatibility, no section. */
|
||
|
||
const struct blockvector *
|
||
blockvector_for_pc (CORE_ADDR pc, const struct block **pblock)
|
||
{
|
||
return blockvector_for_pc_sect (pc, find_pc_mapped_section (pc),
|
||
pblock, NULL);
|
||
}
|
||
|
||
/* Return the innermost lexical block containing the specified pc value
|
||
in the specified section, or 0 if there is none. */
|
||
|
||
const struct block *
|
||
block_for_pc_sect (CORE_ADDR pc, struct obj_section *section)
|
||
{
|
||
const struct blockvector *bl;
|
||
const struct block *b;
|
||
|
||
bl = blockvector_for_pc_sect (pc, section, &b, NULL);
|
||
if (bl)
|
||
return b;
|
||
return 0;
|
||
}
|
||
|
||
/* Return the innermost lexical block containing the specified pc value,
|
||
or 0 if there is none. Backward compatibility, no section. */
|
||
|
||
const struct block *
|
||
block_for_pc (CORE_ADDR pc)
|
||
{
|
||
return block_for_pc_sect (pc, find_pc_mapped_section (pc));
|
||
}
|
||
|
||
/* Now come some functions designed to deal with C++ namespace issues.
|
||
The accessors are safe to use even in the non-C++ case. */
|
||
|
||
/* This returns the namespace that BLOCK is enclosed in, or "" if it
|
||
isn't enclosed in a namespace at all. This travels the chain of
|
||
superblocks looking for a scope, if necessary. */
|
||
|
||
const char *
|
||
block_scope (const struct block *block)
|
||
{
|
||
for (; block != NULL; block = BLOCK_SUPERBLOCK (block))
|
||
{
|
||
if (BLOCK_NAMESPACE (block) != NULL
|
||
&& BLOCK_NAMESPACE (block)->scope != NULL)
|
||
return BLOCK_NAMESPACE (block)->scope;
|
||
}
|
||
|
||
return "";
|
||
}
|
||
|
||
/* Set BLOCK's scope member to SCOPE; if needed, allocate memory via
|
||
OBSTACK. (It won't make a copy of SCOPE, however, so that already
|
||
has to be allocated correctly.) */
|
||
|
||
void
|
||
block_set_scope (struct block *block, const char *scope,
|
||
struct obstack *obstack)
|
||
{
|
||
block_initialize_namespace (block, obstack);
|
||
|
||
BLOCK_NAMESPACE (block)->scope = scope;
|
||
}
|
||
|
||
/* This returns the using directives list associated with BLOCK, if
|
||
any. */
|
||
|
||
struct using_direct *
|
||
block_using (const struct block *block)
|
||
{
|
||
if (block == NULL || BLOCK_NAMESPACE (block) == NULL)
|
||
return NULL;
|
||
else
|
||
return BLOCK_NAMESPACE (block)->using_decl;
|
||
}
|
||
|
||
/* Set BLOCK's using member to USING; if needed, allocate memory via
|
||
OBSTACK. (It won't make a copy of USING, however, so that already
|
||
has to be allocated correctly.) */
|
||
|
||
void
|
||
block_set_using (struct block *block,
|
||
struct using_direct *using_decl,
|
||
struct obstack *obstack)
|
||
{
|
||
block_initialize_namespace (block, obstack);
|
||
|
||
BLOCK_NAMESPACE (block)->using_decl = using_decl;
|
||
}
|
||
|
||
/* If BLOCK_NAMESPACE (block) is NULL, allocate it via OBSTACK and
|
||
ititialize its members to zero. */
|
||
|
||
static void
|
||
block_initialize_namespace (struct block *block, struct obstack *obstack)
|
||
{
|
||
if (BLOCK_NAMESPACE (block) == NULL)
|
||
BLOCK_NAMESPACE (block) = new (obstack) struct block_namespace_info ();
|
||
}
|
||
|
||
/* Return the static block associated to BLOCK. Return NULL if block
|
||
is NULL or if block is a global block. */
|
||
|
||
const struct block *
|
||
block_static_block (const struct block *block)
|
||
{
|
||
if (block == NULL || BLOCK_SUPERBLOCK (block) == NULL)
|
||
return NULL;
|
||
|
||
while (BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) != NULL)
|
||
block = BLOCK_SUPERBLOCK (block);
|
||
|
||
return block;
|
||
}
|
||
|
||
/* Return the static block associated to BLOCK. Return NULL if block
|
||
is NULL. */
|
||
|
||
const struct block *
|
||
block_global_block (const struct block *block)
|
||
{
|
||
if (block == NULL)
|
||
return NULL;
|
||
|
||
while (BLOCK_SUPERBLOCK (block) != NULL)
|
||
block = BLOCK_SUPERBLOCK (block);
|
||
|
||
return block;
|
||
}
|
||
|
||
/* Allocate a block on OBSTACK, and initialize its elements to
|
||
zero/NULL. This is useful for creating "dummy" blocks that don't
|
||
correspond to actual source files.
|
||
|
||
Warning: it sets the block's BLOCK_DICT to NULL, which isn't a
|
||
valid value. If you really don't want the block to have a
|
||
dictionary, then you should subsequently set its BLOCK_DICT to
|
||
dict_create_linear (obstack, NULL). */
|
||
|
||
struct block *
|
||
allocate_block (struct obstack *obstack)
|
||
{
|
||
struct block *bl = OBSTACK_ZALLOC (obstack, struct block);
|
||
|
||
return bl;
|
||
}
|
||
|
||
/* Allocate a global block. */
|
||
|
||
struct block *
|
||
allocate_global_block (struct obstack *obstack)
|
||
{
|
||
struct global_block *bl = OBSTACK_ZALLOC (obstack, struct global_block);
|
||
|
||
return &bl->block;
|
||
}
|
||
|
||
/* Set the compunit of the global block. */
|
||
|
||
void
|
||
set_block_compunit_symtab (struct block *block, struct compunit_symtab *cu)
|
||
{
|
||
struct global_block *gb;
|
||
|
||
gdb_assert (BLOCK_SUPERBLOCK (block) == NULL);
|
||
gb = (struct global_block *) block;
|
||
gdb_assert (gb->compunit_symtab == NULL);
|
||
gb->compunit_symtab = cu;
|
||
}
|
||
|
||
/* See block.h. */
|
||
|
||
struct dynamic_prop *
|
||
block_static_link (const struct block *block)
|
||
{
|
||
struct objfile *objfile = block_objfile (block);
|
||
|
||
/* Only objfile-owned blocks that materialize top function scopes can have
|
||
static links. */
|
||
if (objfile == NULL || BLOCK_FUNCTION (block) == NULL)
|
||
return NULL;
|
||
|
||
return (struct dynamic_prop *) objfile_lookup_static_link (objfile, block);
|
||
}
|
||
|
||
/* Return the compunit of the global block. */
|
||
|
||
static struct compunit_symtab *
|
||
get_block_compunit_symtab (const struct block *block)
|
||
{
|
||
struct global_block *gb;
|
||
|
||
gdb_assert (BLOCK_SUPERBLOCK (block) == NULL);
|
||
gb = (struct global_block *) block;
|
||
gdb_assert (gb->compunit_symtab != NULL);
|
||
return gb->compunit_symtab;
|
||
}
|
||
|
||
|
||
|
||
/* Initialize a block iterator, either to iterate over a single block,
|
||
or, for static and global blocks, all the included symtabs as
|
||
well. */
|
||
|
||
static void
|
||
initialize_block_iterator (const struct block *block,
|
||
struct block_iterator *iter)
|
||
{
|
||
enum block_enum which;
|
||
struct compunit_symtab *cu;
|
||
|
||
iter->idx = -1;
|
||
|
||
if (BLOCK_SUPERBLOCK (block) == NULL)
|
||
{
|
||
which = GLOBAL_BLOCK;
|
||
cu = get_block_compunit_symtab (block);
|
||
}
|
||
else if (BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) == NULL)
|
||
{
|
||
which = STATIC_BLOCK;
|
||
cu = get_block_compunit_symtab (BLOCK_SUPERBLOCK (block));
|
||
}
|
||
else
|
||
{
|
||
iter->d.block = block;
|
||
/* A signal value meaning that we're iterating over a single
|
||
block. */
|
||
iter->which = FIRST_LOCAL_BLOCK;
|
||
return;
|
||
}
|
||
|
||
/* If this is an included symtab, find the canonical includer and
|
||
use it instead. */
|
||
while (cu->user != NULL)
|
||
cu = cu->user;
|
||
|
||
/* Putting this check here simplifies the logic of the iterator
|
||
functions. If there are no included symtabs, we only need to
|
||
search a single block, so we might as well just do that
|
||
directly. */
|
||
if (cu->includes == NULL)
|
||
{
|
||
iter->d.block = block;
|
||
/* A signal value meaning that we're iterating over a single
|
||
block. */
|
||
iter->which = FIRST_LOCAL_BLOCK;
|
||
}
|
||
else
|
||
{
|
||
iter->d.compunit_symtab = cu;
|
||
iter->which = which;
|
||
}
|
||
}
|
||
|
||
/* A helper function that finds the current compunit over whose static
|
||
or global block we should iterate. */
|
||
|
||
static struct compunit_symtab *
|
||
find_iterator_compunit_symtab (struct block_iterator *iterator)
|
||
{
|
||
if (iterator->idx == -1)
|
||
return iterator->d.compunit_symtab;
|
||
return iterator->d.compunit_symtab->includes[iterator->idx];
|
||
}
|
||
|
||
/* Perform a single step for a plain block iterator, iterating across
|
||
symbol tables as needed. Returns the next symbol, or NULL when
|
||
iteration is complete. */
|
||
|
||
static struct symbol *
|
||
block_iterator_step (struct block_iterator *iterator, int first)
|
||
{
|
||
struct symbol *sym;
|
||
|
||
gdb_assert (iterator->which != FIRST_LOCAL_BLOCK);
|
||
|
||
while (1)
|
||
{
|
||
if (first)
|
||
{
|
||
struct compunit_symtab *cust
|
||
= find_iterator_compunit_symtab (iterator);
|
||
const struct block *block;
|
||
|
||
/* Iteration is complete. */
|
||
if (cust == NULL)
|
||
return NULL;
|
||
|
||
block = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
|
||
iterator->which);
|
||
sym = dict_iterator_first (BLOCK_DICT (block), &iterator->dict_iter);
|
||
}
|
||
else
|
||
sym = dict_iterator_next (&iterator->dict_iter);
|
||
|
||
if (sym != NULL)
|
||
return sym;
|
||
|
||
/* We have finished iterating the appropriate block of one
|
||
symtab. Now advance to the next symtab and begin iteration
|
||
there. */
|
||
++iterator->idx;
|
||
first = 1;
|
||
}
|
||
}
|
||
|
||
/* See block.h. */
|
||
|
||
struct symbol *
|
||
block_iterator_first (const struct block *block,
|
||
struct block_iterator *iterator)
|
||
{
|
||
initialize_block_iterator (block, iterator);
|
||
|
||
if (iterator->which == FIRST_LOCAL_BLOCK)
|
||
return dict_iterator_first (block->dict, &iterator->dict_iter);
|
||
|
||
return block_iterator_step (iterator, 1);
|
||
}
|
||
|
||
/* See block.h. */
|
||
|
||
struct symbol *
|
||
block_iterator_next (struct block_iterator *iterator)
|
||
{
|
||
if (iterator->which == FIRST_LOCAL_BLOCK)
|
||
return dict_iterator_next (&iterator->dict_iter);
|
||
|
||
return block_iterator_step (iterator, 0);
|
||
}
|
||
|
||
/* Perform a single step for a "match" block iterator, iterating
|
||
across symbol tables as needed. Returns the next symbol, or NULL
|
||
when iteration is complete. */
|
||
|
||
static struct symbol *
|
||
block_iter_match_step (struct block_iterator *iterator,
|
||
const lookup_name_info &name,
|
||
int first)
|
||
{
|
||
struct symbol *sym;
|
||
|
||
gdb_assert (iterator->which != FIRST_LOCAL_BLOCK);
|
||
|
||
while (1)
|
||
{
|
||
if (first)
|
||
{
|
||
struct compunit_symtab *cust
|
||
= find_iterator_compunit_symtab (iterator);
|
||
const struct block *block;
|
||
|
||
/* Iteration is complete. */
|
||
if (cust == NULL)
|
||
return NULL;
|
||
|
||
block = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
|
||
iterator->which);
|
||
sym = dict_iter_match_first (BLOCK_DICT (block), name,
|
||
&iterator->dict_iter);
|
||
}
|
||
else
|
||
sym = dict_iter_match_next (name, &iterator->dict_iter);
|
||
|
||
if (sym != NULL)
|
||
return sym;
|
||
|
||
/* We have finished iterating the appropriate block of one
|
||
symtab. Now advance to the next symtab and begin iteration
|
||
there. */
|
||
++iterator->idx;
|
||
first = 1;
|
||
}
|
||
}
|
||
|
||
/* See block.h. */
|
||
|
||
struct symbol *
|
||
block_iter_match_first (const struct block *block,
|
||
const lookup_name_info &name,
|
||
struct block_iterator *iterator)
|
||
{
|
||
initialize_block_iterator (block, iterator);
|
||
|
||
if (iterator->which == FIRST_LOCAL_BLOCK)
|
||
return dict_iter_match_first (block->dict, name, &iterator->dict_iter);
|
||
|
||
return block_iter_match_step (iterator, name, 1);
|
||
}
|
||
|
||
/* See block.h. */
|
||
|
||
struct symbol *
|
||
block_iter_match_next (const lookup_name_info &name,
|
||
struct block_iterator *iterator)
|
||
{
|
||
if (iterator->which == FIRST_LOCAL_BLOCK)
|
||
return dict_iter_match_next (name, &iterator->dict_iter);
|
||
|
||
return block_iter_match_step (iterator, name, 0);
|
||
}
|
||
|
||
/* See block.h.
|
||
|
||
Note that if NAME is the demangled form of a C++ symbol, we will fail
|
||
to find a match during the binary search of the non-encoded names, but
|
||
for now we don't worry about the slight inefficiency of looking for
|
||
a match we'll never find, since it will go pretty quick. Once the
|
||
binary search terminates, we drop through and do a straight linear
|
||
search on the symbols. Each symbol which is marked as being a ObjC/C++
|
||
symbol (language_cplus or language_objc set) has both the encoded and
|
||
non-encoded names tested for a match. */
|
||
|
||
struct symbol *
|
||
block_lookup_symbol (const struct block *block, const char *name,
|
||
symbol_name_match_type match_type,
|
||
const domain_enum domain)
|
||
{
|
||
struct block_iterator iter;
|
||
struct symbol *sym;
|
||
|
||
lookup_name_info lookup_name (name, match_type);
|
||
|
||
if (!BLOCK_FUNCTION (block))
|
||
{
|
||
struct symbol *other = NULL;
|
||
|
||
ALL_BLOCK_SYMBOLS_WITH_NAME (block, lookup_name, iter, sym)
|
||
{
|
||
if (SYMBOL_DOMAIN (sym) == domain)
|
||
return sym;
|
||
/* This is a bit of a hack, but symbol_matches_domain might ignore
|
||
STRUCT vs VAR domain symbols. So if a matching symbol is found,
|
||
make sure there is no "better" matching symbol, i.e., one with
|
||
exactly the same domain. PR 16253. */
|
||
if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
|
||
SYMBOL_DOMAIN (sym), domain))
|
||
other = sym;
|
||
}
|
||
return other;
|
||
}
|
||
else
|
||
{
|
||
/* Note that parameter symbols do not always show up last in the
|
||
list; this loop makes sure to take anything else other than
|
||
parameter symbols first; it only uses parameter symbols as a
|
||
last resort. Note that this only takes up extra computation
|
||
time on a match.
|
||
It's hard to define types in the parameter list (at least in
|
||
C/C++) so we don't do the same PR 16253 hack here that is done
|
||
for the !BLOCK_FUNCTION case. */
|
||
|
||
struct symbol *sym_found = NULL;
|
||
|
||
ALL_BLOCK_SYMBOLS_WITH_NAME (block, lookup_name, iter, sym)
|
||
{
|
||
if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
|
||
SYMBOL_DOMAIN (sym), domain))
|
||
{
|
||
sym_found = sym;
|
||
if (!SYMBOL_IS_ARGUMENT (sym))
|
||
{
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
return (sym_found); /* Will be NULL if not found. */
|
||
}
|
||
}
|
||
|
||
/* See block.h. */
|
||
|
||
struct symbol *
|
||
block_lookup_symbol_primary (const struct block *block, const char *name,
|
||
const domain_enum domain)
|
||
{
|
||
struct symbol *sym, *other;
|
||
struct dict_iterator dict_iter;
|
||
|
||
lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
|
||
|
||
/* Verify BLOCK is STATIC_BLOCK or GLOBAL_BLOCK. */
|
||
gdb_assert (BLOCK_SUPERBLOCK (block) == NULL
|
||
|| BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) == NULL);
|
||
|
||
other = NULL;
|
||
for (sym = dict_iter_match_first (block->dict, lookup_name, &dict_iter);
|
||
sym != NULL;
|
||
sym = dict_iter_match_next (lookup_name, &dict_iter))
|
||
{
|
||
if (SYMBOL_DOMAIN (sym) == domain)
|
||
return sym;
|
||
|
||
/* This is a bit of a hack, but symbol_matches_domain might ignore
|
||
STRUCT vs VAR domain symbols. So if a matching symbol is found,
|
||
make sure there is no "better" matching symbol, i.e., one with
|
||
exactly the same domain. PR 16253. */
|
||
if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
|
||
SYMBOL_DOMAIN (sym), domain))
|
||
other = sym;
|
||
}
|
||
|
||
return other;
|
||
}
|
||
|
||
/* See block.h. */
|
||
|
||
struct symbol *
|
||
block_find_symbol (const struct block *block, const char *name,
|
||
const domain_enum domain,
|
||
block_symbol_matcher_ftype *matcher, void *data)
|
||
{
|
||
struct block_iterator iter;
|
||
struct symbol *sym;
|
||
|
||
lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
|
||
|
||
/* Verify BLOCK is STATIC_BLOCK or GLOBAL_BLOCK. */
|
||
gdb_assert (BLOCK_SUPERBLOCK (block) == NULL
|
||
|| BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) == NULL);
|
||
|
||
ALL_BLOCK_SYMBOLS_WITH_NAME (block, lookup_name, iter, sym)
|
||
{
|
||
/* MATCHER is deliberately called second here so that it never sees
|
||
a non-domain-matching symbol. */
|
||
if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
|
||
SYMBOL_DOMAIN (sym), domain)
|
||
&& matcher (sym, data))
|
||
return sym;
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
/* See block.h. */
|
||
|
||
int
|
||
block_find_non_opaque_type (struct symbol *sym, void *data)
|
||
{
|
||
return !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym));
|
||
}
|
||
|
||
/* See block.h. */
|
||
|
||
int
|
||
block_find_non_opaque_type_preferred (struct symbol *sym, void *data)
|
||
{
|
||
struct symbol **best = (struct symbol **) data;
|
||
|
||
if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
|
||
return 1;
|
||
*best = sym;
|
||
return 0;
|
||
}
|
||
|
||
/* See block.h. */
|
||
|
||
struct blockranges *
|
||
make_blockranges (struct objfile *objfile,
|
||
const std::vector<blockrange> &rangevec)
|
||
{
|
||
struct blockranges *blr;
|
||
size_t n = rangevec.size();
|
||
|
||
blr = (struct blockranges *)
|
||
obstack_alloc (&objfile->objfile_obstack,
|
||
sizeof (struct blockranges)
|
||
+ (n - 1) * sizeof (struct blockrange));
|
||
|
||
blr->nranges = n;
|
||
for (int i = 0; i < n; i++)
|
||
blr->range[i] = rangevec[i];
|
||
return blr;
|
||
}
|
||
|