mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-15 04:31:49 +08:00
4144d36a68
>From what I can see, lookup_minimal_symbol doesn't have any dependencies on the global current state other than the single reference to current_program_space. Add a program_space parameter and make that current_program_space reference bubble up one level. Change-Id: I759415e2f9c74c9627a2fe05bd44eb4147eee6fe Reviewed-by: Keith Seitz <keiths@redhat.com> Approved-By: Andrew Burgess <aburgess@redhat.com>
876 lines
26 KiB
C
876 lines
26 KiB
C
/* Generate a core file for the inferior process.
|
|
|
|
Copyright (C) 2001-2024 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#include "elf-bfd.h"
|
|
#include "infcall.h"
|
|
#include "inferior.h"
|
|
#include "gdbcore.h"
|
|
#include "objfiles.h"
|
|
#include "solib.h"
|
|
#include "symfile.h"
|
|
#include "arch-utils.h"
|
|
#include "completer.h"
|
|
#include "gcore.h"
|
|
#include "cli/cli-decode.h"
|
|
#include <fcntl.h>
|
|
#include "regcache.h"
|
|
#include "regset.h"
|
|
#include "gdb_bfd.h"
|
|
#include "readline/tilde.h"
|
|
#include <algorithm>
|
|
#include "gdbsupport/gdb_unlinker.h"
|
|
#include "gdbsupport/byte-vector.h"
|
|
#include "gdbsupport/scope-exit.h"
|
|
|
|
/* To generate sparse cores, we look at the data to write in chunks of
|
|
this size when considering whether to skip the write. Only if we
|
|
have a full block of this size with all zeros do we skip writing
|
|
it. A simpler algorithm that would try to skip all zeros would
|
|
result in potentially many more write/lseek syscalls, as normal
|
|
data is typically sprinkled with many small holes of zeros. Also,
|
|
it's much more efficient to memcmp a block of data against an
|
|
all-zero buffer than to check each and every data byte against zero
|
|
one by one. */
|
|
#define SPARSE_BLOCK_SIZE 0x1000
|
|
|
|
/* The largest amount of memory to read from the target at once. We
|
|
must throttle it to limit the amount of memory used by GDB during
|
|
generate-core-file for programs with large resident data. */
|
|
#define MAX_COPY_BYTES (256 * SPARSE_BLOCK_SIZE)
|
|
|
|
static const char *default_gcore_target (void);
|
|
static enum bfd_architecture default_gcore_arch (void);
|
|
static int gcore_memory_sections (bfd *);
|
|
|
|
/* create_gcore_bfd -- helper for gcore_command (exported).
|
|
Open a new bfd core file for output, and return the handle. */
|
|
|
|
gdb_bfd_ref_ptr
|
|
create_gcore_bfd (const char *filename)
|
|
{
|
|
gdb_bfd_ref_ptr obfd (gdb_bfd_openw (filename, default_gcore_target ()));
|
|
|
|
if (obfd == NULL)
|
|
error (_("Failed to open '%s' for output."), filename);
|
|
bfd_set_format (obfd.get (), bfd_core);
|
|
bfd_set_arch_mach (obfd.get (), default_gcore_arch (), 0);
|
|
return obfd;
|
|
}
|
|
|
|
/* write_gcore_file_1 -- do the actual work of write_gcore_file. */
|
|
|
|
static void
|
|
write_gcore_file_1 (bfd *obfd)
|
|
{
|
|
gdb::unique_xmalloc_ptr<char> note_data;
|
|
int note_size = 0;
|
|
asection *note_sec = NULL;
|
|
gdbarch *arch = current_inferior ()->arch ();
|
|
|
|
/* An external target method must build the notes section. */
|
|
/* FIXME: uweigand/2011-10-06: All architectures that support core file
|
|
generation should be converted to gdbarch_make_corefile_notes; at that
|
|
point, the target vector method can be removed. */
|
|
if (!gdbarch_make_corefile_notes_p (arch))
|
|
note_data = target_make_corefile_notes (obfd, ¬e_size);
|
|
else
|
|
note_data = gdbarch_make_corefile_notes (arch, obfd, ¬e_size);
|
|
|
|
if (note_data == NULL || note_size == 0)
|
|
error (_("Target does not support core file generation."));
|
|
|
|
/* Create the note section. */
|
|
note_sec = bfd_make_section_anyway_with_flags (obfd, "note0",
|
|
SEC_HAS_CONTENTS
|
|
| SEC_READONLY
|
|
| SEC_ALLOC);
|
|
if (note_sec == NULL)
|
|
error (_("Failed to create 'note' section for corefile: %s"),
|
|
bfd_errmsg (bfd_get_error ()));
|
|
|
|
bfd_set_section_vma (note_sec, 0);
|
|
bfd_set_section_alignment (note_sec, 0);
|
|
bfd_set_section_size (note_sec, note_size);
|
|
|
|
/* Now create the memory/load sections. Note
|
|
gcore_memory_sections's sparse logic is assuming that we'll
|
|
always write something afterwards, which we do: just below, we
|
|
write the note section. So there's no need for an ftruncate-like
|
|
call to grow the file to the right size if the last memory
|
|
sections were zeros and we skipped writing them. */
|
|
if (gcore_memory_sections (obfd) == 0)
|
|
error (_("gcore: failed to get corefile memory sections from target."));
|
|
|
|
/* Write out the contents of the note section. */
|
|
if (!bfd_set_section_contents (obfd, note_sec, note_data.get (), 0,
|
|
note_size))
|
|
warning (_("writing note section (%s)"), bfd_errmsg (bfd_get_error ()));
|
|
}
|
|
|
|
/* write_gcore_file -- helper for gcore_command (exported).
|
|
Compose and write the corefile data to the core file. */
|
|
|
|
void
|
|
write_gcore_file (bfd *obfd)
|
|
{
|
|
target_prepare_to_generate_core ();
|
|
SCOPE_EXIT { target_done_generating_core (); };
|
|
write_gcore_file_1 (obfd);
|
|
}
|
|
|
|
/* gcore_command -- implements the 'gcore' command.
|
|
Generate a core file from the inferior process. */
|
|
|
|
static void
|
|
gcore_command (const char *args, int from_tty)
|
|
{
|
|
gdb::unique_xmalloc_ptr<char> corefilename;
|
|
|
|
/* No use generating a corefile without a target process. */
|
|
if (!target_has_execution ())
|
|
noprocess ();
|
|
|
|
if (args && *args)
|
|
corefilename.reset (tilde_expand (args));
|
|
else
|
|
{
|
|
/* Default corefile name is "core.PID". */
|
|
corefilename = xstrprintf ("core.%d", inferior_ptid.pid ());
|
|
}
|
|
|
|
if (info_verbose)
|
|
gdb_printf ("Opening corefile '%s' for output.\n",
|
|
corefilename.get ());
|
|
|
|
if (target_supports_dumpcore ())
|
|
target_dumpcore (corefilename.get ());
|
|
else
|
|
{
|
|
/* Open the output file. */
|
|
gdb_bfd_ref_ptr obfd (create_gcore_bfd (corefilename.get ()));
|
|
|
|
/* Arrange to unlink the file on failure. */
|
|
gdb::unlinker unlink_file (corefilename.get ());
|
|
|
|
/* Call worker function. */
|
|
write_gcore_file (obfd.get ());
|
|
|
|
/* Succeeded. */
|
|
unlink_file.keep ();
|
|
}
|
|
|
|
gdb_printf ("Saved corefile %s\n", corefilename.get ());
|
|
}
|
|
|
|
static enum bfd_architecture
|
|
default_gcore_arch (void)
|
|
{
|
|
const bfd_arch_info *bfdarch
|
|
= gdbarch_bfd_arch_info (current_inferior ()->arch ());
|
|
|
|
if (bfdarch != NULL)
|
|
return bfdarch->arch;
|
|
if (current_program_space->exec_bfd () == NULL)
|
|
error (_("Can't find bfd architecture for corefile (need execfile)."));
|
|
|
|
return bfd_get_arch (current_program_space->exec_bfd ());
|
|
}
|
|
|
|
static const char *
|
|
default_gcore_target (void)
|
|
{
|
|
gdbarch *arch = current_inferior ()->arch ();
|
|
/* The gdbarch may define a target to use for core files. */
|
|
if (gdbarch_gcore_bfd_target_p (arch))
|
|
return gdbarch_gcore_bfd_target (arch);
|
|
|
|
/* Otherwise, try to fall back to the exec target. This will probably
|
|
not work for non-ELF targets. */
|
|
if (current_program_space->exec_bfd () == NULL)
|
|
return NULL;
|
|
else
|
|
return bfd_get_target (current_program_space->exec_bfd ());
|
|
}
|
|
|
|
/* Derive a reasonable stack segment by unwinding the target stack,
|
|
and store its limits in *BOTTOM and *TOP. Return non-zero if
|
|
successful. */
|
|
|
|
static int
|
|
derive_stack_segment (bfd_vma *bottom, bfd_vma *top)
|
|
{
|
|
frame_info_ptr fi, tmp_fi;
|
|
|
|
gdb_assert (bottom);
|
|
gdb_assert (top);
|
|
|
|
/* Can't succeed without stack and registers. */
|
|
if (!target_has_stack () || !target_has_registers ())
|
|
return 0;
|
|
|
|
/* Can't succeed without current frame. */
|
|
fi = get_current_frame ();
|
|
if (fi == NULL)
|
|
return 0;
|
|
|
|
/* Save frame pointer of TOS frame. */
|
|
*top = get_frame_base (fi);
|
|
/* If current stack pointer is more "inner", use that instead. */
|
|
if (gdbarch_inner_than (get_frame_arch (fi), get_frame_sp (fi), *top))
|
|
*top = get_frame_sp (fi);
|
|
|
|
/* Find prev-most frame. */
|
|
while ((tmp_fi = get_prev_frame (fi)) != NULL)
|
|
fi = tmp_fi;
|
|
|
|
/* Save frame pointer of prev-most frame. */
|
|
*bottom = get_frame_base (fi);
|
|
|
|
/* Now canonicalize their order, so that BOTTOM is a lower address
|
|
(as opposed to a lower stack frame). */
|
|
if (*bottom > *top)
|
|
{
|
|
bfd_vma tmp_vma;
|
|
|
|
tmp_vma = *top;
|
|
*top = *bottom;
|
|
*bottom = tmp_vma;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* call_target_sbrk --
|
|
helper function for derive_heap_segment. */
|
|
|
|
static bfd_vma
|
|
call_target_sbrk (int sbrk_arg)
|
|
{
|
|
struct objfile *sbrk_objf;
|
|
struct gdbarch *gdbarch;
|
|
bfd_vma top_of_heap;
|
|
struct value *target_sbrk_arg;
|
|
struct value *sbrk_fn, *ret;
|
|
bfd_vma tmp;
|
|
|
|
if (lookup_minimal_symbol (current_program_space, "sbrk").minsym != nullptr)
|
|
{
|
|
sbrk_fn = find_function_in_inferior ("sbrk", &sbrk_objf);
|
|
if (sbrk_fn == NULL)
|
|
return (bfd_vma) 0;
|
|
}
|
|
else if (lookup_minimal_symbol (current_program_space, "_sbrk").minsym
|
|
!= nullptr)
|
|
{
|
|
sbrk_fn = find_function_in_inferior ("_sbrk", &sbrk_objf);
|
|
if (sbrk_fn == NULL)
|
|
return (bfd_vma) 0;
|
|
}
|
|
else
|
|
return (bfd_vma) 0;
|
|
|
|
gdbarch = sbrk_objf->arch ();
|
|
target_sbrk_arg = value_from_longest (builtin_type (gdbarch)->builtin_int,
|
|
sbrk_arg);
|
|
gdb_assert (target_sbrk_arg);
|
|
ret = call_function_by_hand (sbrk_fn, NULL, target_sbrk_arg);
|
|
if (ret == NULL)
|
|
return (bfd_vma) 0;
|
|
|
|
tmp = value_as_long (ret);
|
|
if ((LONGEST) tmp <= 0 || (LONGEST) tmp == 0xffffffff)
|
|
return (bfd_vma) 0;
|
|
|
|
top_of_heap = tmp;
|
|
return top_of_heap;
|
|
}
|
|
|
|
/* Derive a reasonable heap segment for ABFD by looking at sbrk and
|
|
the static data sections. Store its limits in *BOTTOM and *TOP.
|
|
Return non-zero if successful. */
|
|
|
|
static int
|
|
derive_heap_segment (bfd *abfd, bfd_vma *bottom, bfd_vma *top)
|
|
{
|
|
bfd_vma top_of_data_memory = 0;
|
|
bfd_vma top_of_heap = 0;
|
|
bfd_size_type sec_size;
|
|
bfd_vma sec_vaddr;
|
|
asection *sec;
|
|
|
|
gdb_assert (bottom);
|
|
gdb_assert (top);
|
|
|
|
/* This function depends on being able to call a function in the
|
|
inferior. */
|
|
if (!target_has_execution ())
|
|
return 0;
|
|
|
|
/* The following code assumes that the link map is arranged as
|
|
follows (low to high addresses):
|
|
|
|
---------------------------------
|
|
| text sections |
|
|
---------------------------------
|
|
| data sections (including bss) |
|
|
---------------------------------
|
|
| heap |
|
|
--------------------------------- */
|
|
|
|
for (sec = abfd->sections; sec; sec = sec->next)
|
|
{
|
|
if (bfd_section_flags (sec) & SEC_DATA
|
|
|| strcmp (".bss", bfd_section_name (sec)) == 0)
|
|
{
|
|
sec_vaddr = bfd_section_vma (sec);
|
|
sec_size = bfd_section_size (sec);
|
|
if (sec_vaddr + sec_size > top_of_data_memory)
|
|
top_of_data_memory = sec_vaddr + sec_size;
|
|
}
|
|
}
|
|
|
|
top_of_heap = call_target_sbrk (0);
|
|
if (top_of_heap == (bfd_vma) 0)
|
|
return 0;
|
|
|
|
/* Return results. */
|
|
if (top_of_heap > top_of_data_memory)
|
|
{
|
|
*bottom = top_of_data_memory;
|
|
*top = top_of_heap;
|
|
return 1;
|
|
}
|
|
|
|
/* No additional heap space needs to be saved. */
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
make_output_phdrs (bfd *obfd, asection *osec)
|
|
{
|
|
int p_flags = 0;
|
|
int p_type = 0;
|
|
|
|
/* Memory tag segments have already been handled by the architecture, as
|
|
those contain arch-specific information. If we have one of those, just
|
|
return. */
|
|
if (startswith (bfd_section_name (osec), "memtag"))
|
|
return;
|
|
|
|
/* FIXME: these constants may only be applicable for ELF. */
|
|
if (startswith (bfd_section_name (osec), "load"))
|
|
p_type = PT_LOAD;
|
|
else if (startswith (bfd_section_name (osec), "note"))
|
|
p_type = PT_NOTE;
|
|
else
|
|
p_type = PT_NULL;
|
|
|
|
p_flags |= PF_R; /* Segment is readable. */
|
|
if (!(bfd_section_flags (osec) & SEC_READONLY))
|
|
p_flags |= PF_W; /* Segment is writable. */
|
|
if (bfd_section_flags (osec) & SEC_CODE)
|
|
p_flags |= PF_X; /* Segment is executable. */
|
|
|
|
bfd_record_phdr (obfd, p_type, 1, p_flags, 0, 0, 0, 0, 1, &osec);
|
|
}
|
|
|
|
/* find_memory_region_ftype implementation.
|
|
|
|
MEMORY_TAGGED is true if the memory region contains memory tags, false
|
|
otherwise.
|
|
|
|
DATA is 'bfd *' for the core file GDB is creating. */
|
|
|
|
static int
|
|
gcore_create_callback (CORE_ADDR vaddr, unsigned long size, int read,
|
|
int write, int exec, int modified, bool memory_tagged,
|
|
void *data)
|
|
{
|
|
bfd *obfd = (bfd *) data;
|
|
asection *osec;
|
|
flagword flags = SEC_ALLOC | SEC_HAS_CONTENTS | SEC_LOAD;
|
|
|
|
/* If the memory segment has no permissions set, ignore it, otherwise
|
|
when we later try to access it for read/write, we'll get an error
|
|
or jam the kernel. */
|
|
if (read == 0 && write == 0 && exec == 0 && modified == 0)
|
|
{
|
|
if (info_verbose)
|
|
gdb_printf ("Ignore segment, %s bytes at %s\n",
|
|
plongest (size), paddress (current_inferior ()->arch (),
|
|
vaddr));
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (write == 0 && modified == 0 && !solib_keep_data_in_core (vaddr, size))
|
|
{
|
|
/* See if this region of memory lies inside a known file on disk.
|
|
If so, we can avoid copying its contents by clearing SEC_LOAD. */
|
|
|
|
for (objfile *objfile : current_program_space->objfiles ())
|
|
for (obj_section *objsec : objfile->sections ())
|
|
{
|
|
bfd *abfd = objfile->obfd.get ();
|
|
asection *asec = objsec->the_bfd_section;
|
|
bfd_vma align = (bfd_vma) 1 << bfd_section_alignment (asec);
|
|
bfd_vma start = objsec->addr () & -align;
|
|
bfd_vma end = (objsec->endaddr () + align - 1) & -align;
|
|
|
|
/* Match if either the entire memory region lies inside the
|
|
section (i.e. a mapping covering some pages of a large
|
|
segment) or the entire section lies inside the memory region
|
|
(i.e. a mapping covering multiple small sections).
|
|
|
|
This BFD was synthesized from reading target memory,
|
|
we don't want to omit that. */
|
|
if (objfile->separate_debug_objfile_backlink == NULL
|
|
&& ((vaddr >= start && vaddr + size <= end)
|
|
|| (start >= vaddr && end <= vaddr + size))
|
|
&& !(bfd_get_file_flags (abfd) & BFD_IN_MEMORY))
|
|
{
|
|
flags &= ~(SEC_LOAD | SEC_HAS_CONTENTS);
|
|
goto keep; /* Break out of two nested for loops. */
|
|
}
|
|
}
|
|
|
|
keep:;
|
|
}
|
|
|
|
if (write == 0)
|
|
flags |= SEC_READONLY;
|
|
|
|
if (exec)
|
|
flags |= SEC_CODE;
|
|
else
|
|
flags |= SEC_DATA;
|
|
|
|
osec = bfd_make_section_anyway_with_flags (obfd, "load", flags);
|
|
if (osec == NULL)
|
|
{
|
|
warning (_("Couldn't make gcore segment: %s"),
|
|
bfd_errmsg (bfd_get_error ()));
|
|
return 1;
|
|
}
|
|
|
|
if (info_verbose)
|
|
gdb_printf ("Save segment, %s bytes at %s\n",
|
|
plongest (size), paddress (current_inferior ()->arch (),
|
|
vaddr));
|
|
|
|
bfd_set_section_size (osec, size);
|
|
bfd_set_section_vma (osec, vaddr);
|
|
bfd_set_section_lma (osec, 0);
|
|
return 0;
|
|
}
|
|
|
|
/* gdbarch_find_memory_region callback for creating a memory tag section.
|
|
|
|
MEMORY_TAGGED is true if the memory region contains memory tags, false
|
|
otherwise.
|
|
|
|
DATA is 'bfd *' for the core file GDB is creating. */
|
|
|
|
static int
|
|
gcore_create_memtag_section_callback (CORE_ADDR vaddr, unsigned long size,
|
|
int read, int write, int exec,
|
|
int modified, bool memory_tagged,
|
|
void *data)
|
|
{
|
|
/* Are there memory tags in this particular memory map entry? */
|
|
if (!memory_tagged)
|
|
return 0;
|
|
|
|
bfd *obfd = (bfd *) data;
|
|
|
|
/* Ask the architecture to create a memory tag section for this particular
|
|
memory map entry. It will be populated with contents later, as we can't
|
|
start writing the contents before we have all the sections sorted out. */
|
|
gdbarch *arch = current_inferior ()->arch ();
|
|
asection *memtag_section
|
|
= gdbarch_create_memtag_section (arch, obfd, vaddr, size);
|
|
|
|
if (memtag_section == nullptr)
|
|
{
|
|
warning (_("Couldn't make gcore memory tag segment: %s"),
|
|
bfd_errmsg (bfd_get_error ()));
|
|
return 1;
|
|
}
|
|
|
|
if (info_verbose)
|
|
{
|
|
gdb_printf (gdb_stdout, "Saved memory tag segment, %s bytes "
|
|
"at %s\n",
|
|
plongest (bfd_section_size (memtag_section)),
|
|
paddress (arch, vaddr));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
objfile_find_memory_regions (struct target_ops *self,
|
|
find_memory_region_ftype func, void *obfd)
|
|
{
|
|
/* Use objfile data to create memory sections. */
|
|
bfd_vma temp_bottom = 0, temp_top = 0;
|
|
|
|
/* Call callback function for each objfile section. */
|
|
for (objfile *objfile : current_program_space->objfiles ())
|
|
for (obj_section *objsec : objfile->sections ())
|
|
{
|
|
asection *isec = objsec->the_bfd_section;
|
|
flagword flags = bfd_section_flags (isec);
|
|
|
|
/* Separate debug info files are irrelevant for gcore. */
|
|
if (objfile->separate_debug_objfile_backlink != NULL)
|
|
continue;
|
|
|
|
if ((flags & SEC_ALLOC) || (flags & SEC_LOAD))
|
|
{
|
|
int size = bfd_section_size (isec);
|
|
int ret;
|
|
|
|
ret = (*func) (objsec->addr (), size,
|
|
1, /* All sections will be readable. */
|
|
(flags & SEC_READONLY) == 0, /* Writable. */
|
|
(flags & SEC_CODE) != 0, /* Executable. */
|
|
1, /* MODIFIED is unknown, pass it as true. */
|
|
false, /* No memory tags in the object file. */
|
|
obfd);
|
|
if (ret != 0)
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* Make a stack segment. */
|
|
if (derive_stack_segment (&temp_bottom, &temp_top))
|
|
(*func) (temp_bottom, temp_top - temp_bottom,
|
|
1, /* Stack section will be readable. */
|
|
1, /* Stack section will be writable. */
|
|
0, /* Stack section will not be executable. */
|
|
1, /* Stack section will be modified. */
|
|
false, /* No memory tags in the object file. */
|
|
obfd);
|
|
|
|
/* Make a heap segment. */
|
|
if (derive_heap_segment (current_program_space->exec_bfd (), &temp_bottom,
|
|
&temp_top))
|
|
(*func) (temp_bottom, temp_top - temp_bottom,
|
|
1, /* Heap section will be readable. */
|
|
1, /* Heap section will be writable. */
|
|
0, /* Heap section will not be executable. */
|
|
1, /* Heap section will be modified. */
|
|
false, /* No memory tags in the object file. */
|
|
obfd);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Check if we have a block full of zeros at DATA within the [DATA,
|
|
DATA+SIZE) buffer. Returns the size of the all-zero block found.
|
|
Returns at most the minimum between SIZE and SPARSE_BLOCK_SIZE. */
|
|
|
|
static size_t
|
|
get_all_zero_block_size (const gdb_byte *data, size_t size)
|
|
{
|
|
size = std::min (size, (size_t) SPARSE_BLOCK_SIZE);
|
|
|
|
/* A memcmp of a whole block is much faster than a simple for loop.
|
|
This makes a big difference, as with a for loop, this code would
|
|
dominate the performance and result in doubling the time to
|
|
generate a core, at the time of writing. With an optimized
|
|
memcmp, this doesn't even show up in the perf trace. */
|
|
static const gdb_byte all_zero_block[SPARSE_BLOCK_SIZE] = {};
|
|
if (memcmp (data, all_zero_block, size) == 0)
|
|
return size;
|
|
return 0;
|
|
}
|
|
|
|
/* Basically a named-elements pair, used as return type of
|
|
find_next_all_zero_block. */
|
|
|
|
struct offset_and_size
|
|
{
|
|
size_t offset;
|
|
size_t size;
|
|
};
|
|
|
|
/* Find the next all-zero block at DATA+OFFSET within the [DATA,
|
|
DATA+SIZE) buffer. Returns the offset and the size of the all-zero
|
|
block if found, or zero if not found. */
|
|
|
|
static offset_and_size
|
|
find_next_all_zero_block (const gdb_byte *data, size_t offset, size_t size)
|
|
{
|
|
for (; offset < size; offset += SPARSE_BLOCK_SIZE)
|
|
{
|
|
size_t zero_block_size
|
|
= get_all_zero_block_size (data + offset, size - offset);
|
|
if (zero_block_size != 0)
|
|
return {offset, zero_block_size};
|
|
}
|
|
return {0, 0};
|
|
}
|
|
|
|
/* Wrapper around bfd_set_section_contents that avoids writing
|
|
all-zero blocks to disk, so we create a sparse core file.
|
|
SKIP_ALIGN is a recursion helper -- if true, we'll skip aligning
|
|
the file position to SPARSE_BLOCK_SIZE. */
|
|
|
|
static bool
|
|
sparse_bfd_set_section_contents (bfd *obfd, asection *osec,
|
|
const gdb_byte *data,
|
|
size_t sec_offset,
|
|
size_t size,
|
|
bool skip_align = false)
|
|
{
|
|
/* Note, we don't have to have special handling for the case of the
|
|
last memory region ending with zeros, because our caller always
|
|
writes out the note section after the memory/load sections. If
|
|
it didn't, we'd have to seek+write the last byte to make the file
|
|
size correct. (Or add an ftruncate abstraction to bfd and call
|
|
that.) */
|
|
|
|
if (size == 0)
|
|
return true;
|
|
|
|
size_t data_offset = 0;
|
|
|
|
if (!skip_align)
|
|
{
|
|
/* Align the all-zero block search with SPARSE_BLOCK_SIZE, to
|
|
better align with filesystem blocks. If we find we're
|
|
misaligned, then write/skip the bytes needed to make us
|
|
aligned. We do that with (one level) recursion. */
|
|
|
|
/* We need to know the section's file offset on disk. We can
|
|
only look at it after the bfd's 'output_has_begun' flag has
|
|
been set, as bfd hasn't computed the file offsets
|
|
otherwise. */
|
|
if (!obfd->output_has_begun)
|
|
{
|
|
gdb_byte dummy = 0;
|
|
|
|
/* A write forces BFD to compute the bfd's section file
|
|
positions. Zero size works for that too. */
|
|
if (!bfd_set_section_contents (obfd, osec, &dummy, 0, 0))
|
|
return false;
|
|
|
|
gdb_assert (obfd->output_has_begun);
|
|
}
|
|
|
|
/* How much after the last aligned offset are we writing at. */
|
|
size_t aligned_offset_remainder
|
|
= (osec->filepos + sec_offset) % SPARSE_BLOCK_SIZE;
|
|
|
|
/* Do we need to align? */
|
|
if (aligned_offset_remainder != 0)
|
|
{
|
|
/* How much we need to advance in order to find the next
|
|
SPARSE_BLOCK_SIZE filepos-aligned block. */
|
|
size_t distance_to_next_aligned
|
|
= SPARSE_BLOCK_SIZE - aligned_offset_remainder;
|
|
|
|
/* How much we'll actually write in the recursion call. The
|
|
caller may want us to write fewer bytes than
|
|
DISTANCE_TO_NEXT_ALIGNED. */
|
|
size_t align_write_size = std::min (size, distance_to_next_aligned);
|
|
|
|
/* Recurse, skipping the alignment code. */
|
|
if (!sparse_bfd_set_section_contents (obfd, osec, data,
|
|
sec_offset,
|
|
align_write_size, true))
|
|
return false;
|
|
|
|
/* Skip over what we've written, and proceed with
|
|
assumes-aligned logic. */
|
|
data_offset += align_write_size;
|
|
}
|
|
}
|
|
|
|
while (data_offset < size)
|
|
{
|
|
size_t all_zero_block_size
|
|
= get_all_zero_block_size (data + data_offset, size - data_offset);
|
|
if (all_zero_block_size != 0)
|
|
{
|
|
/* Skip writing all-zero blocks. */
|
|
data_offset += all_zero_block_size;
|
|
continue;
|
|
}
|
|
|
|
/* We have some non-zero data to write to file. Find the next
|
|
all-zero block within the data, and only write up to it. */
|
|
|
|
offset_and_size next_all_zero_block
|
|
= find_next_all_zero_block (data,
|
|
data_offset + SPARSE_BLOCK_SIZE,
|
|
size);
|
|
size_t next_data_offset = (next_all_zero_block.offset == 0
|
|
? size
|
|
: next_all_zero_block.offset);
|
|
|
|
if (!bfd_set_section_contents (obfd, osec, data + data_offset,
|
|
sec_offset + data_offset,
|
|
next_data_offset - data_offset))
|
|
return false;
|
|
|
|
data_offset = next_data_offset;
|
|
|
|
/* If we already know we have an all-zero block at the next
|
|
offset, we can skip calling get_all_zero_block_size for
|
|
it again. */
|
|
if (next_all_zero_block.offset != 0)
|
|
data_offset += next_all_zero_block.size;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void
|
|
gcore_copy_callback (bfd *obfd, asection *osec)
|
|
{
|
|
bfd_size_type size, total_size = bfd_section_size (osec);
|
|
file_ptr offset = 0;
|
|
|
|
/* Read-only sections are marked; we don't have to copy their contents. */
|
|
if ((bfd_section_flags (osec) & SEC_LOAD) == 0)
|
|
return;
|
|
|
|
/* Only interested in "load" sections. */
|
|
if (!startswith (bfd_section_name (osec), "load"))
|
|
return;
|
|
|
|
size = std::min (total_size, (bfd_size_type) MAX_COPY_BYTES);
|
|
gdb::byte_vector memhunk (size);
|
|
|
|
while (total_size > 0)
|
|
{
|
|
if (size > total_size)
|
|
size = total_size;
|
|
|
|
if (target_read_memory (bfd_section_vma (osec) + offset,
|
|
memhunk.data (), size) != 0)
|
|
{
|
|
warning (_("Memory read failed for corefile "
|
|
"section, %s bytes at %s."),
|
|
plongest (size),
|
|
paddress (current_inferior ()->arch (),
|
|
bfd_section_vma (osec)));
|
|
break;
|
|
}
|
|
|
|
if (!sparse_bfd_set_section_contents (obfd, osec, memhunk.data (),
|
|
offset, size))
|
|
{
|
|
warning (_("Failed to write corefile contents (%s)."),
|
|
bfd_errmsg (bfd_get_error ()));
|
|
break;
|
|
}
|
|
|
|
total_size -= size;
|
|
offset += size;
|
|
}
|
|
}
|
|
|
|
/* Callback to copy contents to a particular memory tag section. */
|
|
|
|
static void
|
|
gcore_copy_memtag_section_callback (bfd *obfd, asection *osec)
|
|
{
|
|
/* We are only interested in "memtag" sections. */
|
|
if (!startswith (bfd_section_name (osec), "memtag"))
|
|
return;
|
|
|
|
/* Fill the section with memory tag contents. */
|
|
if (!gdbarch_fill_memtag_section (current_inferior ()->arch (), osec))
|
|
error (_("Failed to fill memory tag section for core file."));
|
|
}
|
|
|
|
static int
|
|
gcore_memory_sections (bfd *obfd)
|
|
{
|
|
/* Try gdbarch method first, then fall back to target method. */
|
|
gdbarch *arch = current_inferior ()->arch ();
|
|
if (!gdbarch_find_memory_regions_p (arch)
|
|
|| gdbarch_find_memory_regions (arch, gcore_create_callback, obfd) != 0)
|
|
{
|
|
if (target_find_memory_regions (gcore_create_callback, obfd) != 0)
|
|
return 0; /* FIXME: error return/msg? */
|
|
}
|
|
|
|
/* Take care of dumping memory tags, if there are any. */
|
|
if (!gdbarch_find_memory_regions_p (arch)
|
|
|| gdbarch_find_memory_regions (arch, gcore_create_memtag_section_callback,
|
|
obfd) != 0)
|
|
{
|
|
if (target_find_memory_regions (gcore_create_memtag_section_callback,
|
|
obfd) != 0)
|
|
return 0;
|
|
}
|
|
|
|
/* Record phdrs for section-to-segment mapping. */
|
|
for (asection *sect : gdb_bfd_sections (obfd))
|
|
make_output_phdrs (obfd, sect);
|
|
|
|
/* Copy memory region and memory tag contents. */
|
|
for (asection *sect : gdb_bfd_sections (obfd))
|
|
{
|
|
gcore_copy_callback (obfd, sect);
|
|
gcore_copy_memtag_section_callback (obfd, sect);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* See gcore.h. */
|
|
|
|
thread_info *
|
|
gcore_find_signalled_thread ()
|
|
{
|
|
thread_info *curr_thr = inferior_thread ();
|
|
if (curr_thr->state != THREAD_EXITED
|
|
&& curr_thr->stop_signal () != GDB_SIGNAL_0)
|
|
return curr_thr;
|
|
|
|
for (thread_info *thr : current_inferior ()->non_exited_threads ())
|
|
if (thr->stop_signal () != GDB_SIGNAL_0)
|
|
return thr;
|
|
|
|
/* Default to the current thread, unless it has exited. */
|
|
if (curr_thr->state != THREAD_EXITED)
|
|
return curr_thr;
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
void _initialize_gcore ();
|
|
void
|
|
_initialize_gcore ()
|
|
{
|
|
cmd_list_element *generate_core_file_cmd
|
|
= add_com ("generate-core-file", class_files, gcore_command, _("\
|
|
Save a core file with the current state of the debugged process.\n\
|
|
Usage: generate-core-file [FILENAME]\n\
|
|
Argument is optional filename. Default filename is 'core.PROCESS_ID'."));
|
|
|
|
add_com_alias ("gcore", generate_core_file_cmd, class_files, 1);
|
|
}
|