mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-21 04:42:53 +08:00
025b030243
md_number_to_chars, and md_section_align to correctly use valueT and addressT
2160 lines
56 KiB
C
2160 lines
56 KiB
C
/* ns32k.c -- Assemble on the National Semiconductor 32k series
|
||
Copyright (C) 1987, 1992 Free Software Foundation, Inc.
|
||
|
||
This file is part of GAS, the GNU Assembler.
|
||
|
||
GAS is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GAS is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GAS; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
/*#define SHOW_NUM 1*//* uncomment for debugging */
|
||
|
||
#include <stdio.h>
|
||
#include <ctype.h>
|
||
#include "opcode/ns32k.h"
|
||
|
||
#include "as.h"
|
||
|
||
#include "obstack.h"
|
||
|
||
/* Macros */
|
||
#define IIF_ENTRIES 13 /* number of entries in iif */
|
||
#define PRIVATE_SIZE 256 /* size of my garbage memory */
|
||
#define MAX_ARGS 4
|
||
#define DEFAULT -1 /* addr_mode returns this value when plain constant or label is encountered */
|
||
|
||
#define IIF(ptr,a1,c1,e1,g1,i1,k1,m1,o1,q1,s1,u1) \
|
||
iif.iifP[ptr].type= a1; \
|
||
iif.iifP[ptr].size= c1; \
|
||
iif.iifP[ptr].object= e1; \
|
||
iif.iifP[ptr].object_adjust= g1; \
|
||
iif.iifP[ptr].pcrel= i1; \
|
||
iif.iifP[ptr].pcrel_adjust= k1; \
|
||
iif.iifP[ptr].im_disp= m1; \
|
||
iif.iifP[ptr].relax_substate= o1; \
|
||
iif.iifP[ptr].bit_fixP= q1; \
|
||
iif.iifP[ptr].addr_mode= s1; \
|
||
iif.iifP[ptr].bsr= u1;
|
||
|
||
#ifdef SEQUENT_COMPATABILITY
|
||
#define LINE_COMMENT_CHARS "|"
|
||
#define ABSOLUTE_PREFIX '@'
|
||
#define IMMEDIATE_PREFIX '#'
|
||
#endif
|
||
|
||
#ifndef LINE_COMMENT_CHARS
|
||
#define LINE_COMMENT_CHARS "#"
|
||
#endif
|
||
|
||
const char comment_chars[] = "#";
|
||
const char line_comment_chars[] = LINE_COMMENT_CHARS;
|
||
const char line_separator_chars[] = "";
|
||
#if !defined(ABSOLUTE_PREFIX) && !defined(IMMEDIATE_PREFIX)
|
||
#define ABSOLUTE_PREFIX '@' /* One or the other MUST be defined */
|
||
#endif
|
||
|
||
struct addr_mode
|
||
{
|
||
char mode; /* addressing mode of operand (0-31) */
|
||
char scaled_mode; /* mode combined with scaled mode */
|
||
char scaled_reg; /* register used in scaled+1 (1-8) */
|
||
char float_flag; /* set if R0..R7 was F0..F7 ie a floating-point-register */
|
||
char am_size; /* estimated max size of general addr-mode parts*/
|
||
char im_disp; /* if im_disp==1 we have a displacement */
|
||
char pcrel; /* 1 if pcrel, this is really redundant info */
|
||
char disp_suffix[2]; /* length of displacement(s), 0=undefined */
|
||
char *disp[2]; /* pointer(s) at displacement(s)
|
||
or immediates(s) (ascii) */
|
||
char index_byte; /* index byte */
|
||
};
|
||
typedef struct addr_mode addr_modeS;
|
||
|
||
|
||
char *freeptr, *freeptr_static; /* points at some number of free bytes */
|
||
struct hash_control *inst_hash_handle;
|
||
|
||
struct ns32k_opcode *desc; /* pointer at description of instruction */
|
||
addr_modeS addr_modeP;
|
||
const char EXP_CHARS[] = "eE";
|
||
const char FLT_CHARS[] = "fd"; /* we don't want to support lowercase, do we */
|
||
|
||
/* UPPERCASE denotes live names
|
||
* when an instruction is built, IIF is used as an intermidiate form to store
|
||
* the actual parts of the instruction. A ns32k machine instruction can
|
||
* be divided into a couple of sub PARTs. When an instruction is assembled
|
||
* the appropriate PART get an assignment. When an IIF has been completed it's
|
||
* converted to a FRAGment as specified in AS.H */
|
||
|
||
/* internal structs */
|
||
struct option
|
||
{
|
||
char *pattern;
|
||
unsigned long or;
|
||
unsigned long and;
|
||
};
|
||
|
||
typedef struct
|
||
{
|
||
int type; /* how to interpret object */
|
||
int size; /* Estimated max size of object */
|
||
unsigned long object; /* binary data */
|
||
int object_adjust; /* number added to object */
|
||
int pcrel; /* True if object is pcrel */
|
||
int pcrel_adjust; /* length in bytes from the
|
||
instruction start to the
|
||
displacement */
|
||
int im_disp; /* True if the object is a displacement */
|
||
relax_substateT relax_substate; /* Initial relaxsubstate */
|
||
bit_fixS *bit_fixP; /* Pointer at bit_fix struct */
|
||
int addr_mode; /* What addrmode do we associate with this iif-entry */
|
||
char bsr; /* Sequent hack */
|
||
}
|
||
|
||
iif_entryT; /* Internal Instruction Format */
|
||
|
||
struct int_ins_form
|
||
{
|
||
int instr_size; /* Max size of instruction in bytes. */
|
||
iif_entryT iifP[IIF_ENTRIES + 1];
|
||
};
|
||
struct int_ins_form iif;
|
||
expressionS exprP;
|
||
char *input_line_pointer;
|
||
/* description of the PARTs in IIF
|
||
*object[n]:
|
||
* 0 total length in bytes of entries in iif
|
||
* 1 opcode
|
||
* 2 index_byte_a
|
||
* 3 index_byte_b
|
||
* 4 disp_a_1
|
||
* 5 disp_a_2
|
||
* 6 disp_b_1
|
||
* 7 disp_b_2
|
||
* 8 imm_a
|
||
* 9 imm_b
|
||
* 10 implied1
|
||
* 11 implied2
|
||
*
|
||
* For every entry there is a datalength in bytes. This is stored in size[n].
|
||
* 0, the objectlength is not explicitly given by the instruction
|
||
* and the operand is undefined. This is a case for relaxation.
|
||
* Reserve 4 bytes for the final object.
|
||
*
|
||
* 1, the entry contains one byte
|
||
* 2, the entry contains two bytes
|
||
* 3, the entry contains three bytes
|
||
* 4, the entry contains four bytes
|
||
* etc
|
||
*
|
||
* Furthermore, every entry has a data type identifier in type[n].
|
||
*
|
||
* 0, the entry is void, ignore it.
|
||
* 1, the entry is a binary number.
|
||
* 2, the entry is a pointer at an expression.
|
||
* Where expression may be as simple as a single '1',
|
||
* and as complicated as foo-bar+12,
|
||
* foo and bar may be undefined but suffixed by :{b|w|d} to
|
||
* control the length of the object.
|
||
*
|
||
* 3, the entry is a pointer at a bignum struct
|
||
*
|
||
*
|
||
* The low-order-byte coresponds to low physical memory.
|
||
* Obviously a FRAGment must be created for each valid disp in PART whose
|
||
* datalength is undefined (to bad) .
|
||
* The case where just the expression is undefined is less severe and is
|
||
* handled by fix. Here the number of bytes in the objectfile is known.
|
||
* With this representation we simplify the assembly and separates the
|
||
* machine dependent/independent parts in a more clean way (said OE)
|
||
*/
|
||
|
||
struct option opt1[] = /* restore, exit */
|
||
{
|
||
{"r0", 0x80, 0xff},
|
||
{"r1", 0x40, 0xff},
|
||
{"r2", 0x20, 0xff},
|
||
{"r3", 0x10, 0xff},
|
||
{"r4", 0x08, 0xff},
|
||
{"r5", 0x04, 0xff},
|
||
{"r6", 0x02, 0xff},
|
||
{"r7", 0x01, 0xff},
|
||
{0, 0x00, 0xff}
|
||
};
|
||
struct option opt2[] = /* save, enter */
|
||
{
|
||
{"r0", 0x01, 0xff},
|
||
{"r1", 0x02, 0xff},
|
||
{"r2", 0x04, 0xff},
|
||
{"r3", 0x08, 0xff},
|
||
{"r4", 0x10, 0xff},
|
||
{"r5", 0x20, 0xff},
|
||
{"r6", 0x40, 0xff},
|
||
{"r7", 0x80, 0xff},
|
||
{0, 0x00, 0xff}
|
||
};
|
||
struct option opt3[] = /* setcfg */
|
||
{
|
||
{"c", 0x8, 0xff},
|
||
{"m", 0x4, 0xff},
|
||
{"f", 0x2, 0xff},
|
||
{"i", 0x1, 0xff},
|
||
{0, 0x0, 0xff}
|
||
};
|
||
struct option opt4[] = /* cinv */
|
||
{
|
||
{"a", 0x4, 0xff},
|
||
{"i", 0x2, 0xff},
|
||
{"d", 0x1, 0xff},
|
||
{0, 0x0, 0xff}
|
||
};
|
||
struct option opt5[] = /* string inst */
|
||
{
|
||
{"b", 0x2, 0xff},
|
||
{"u", 0xc, 0xff},
|
||
{"w", 0x4, 0xff},
|
||
{0, 0x0, 0xff}
|
||
};
|
||
struct option opt6[] = /* plain reg ext,cvtp etc */
|
||
{
|
||
{"r0", 0x00, 0xff},
|
||
{"r1", 0x01, 0xff},
|
||
{"r2", 0x02, 0xff},
|
||
{"r3", 0x03, 0xff},
|
||
{"r4", 0x04, 0xff},
|
||
{"r5", 0x05, 0xff},
|
||
{"r6", 0x06, 0xff},
|
||
{"r7", 0x07, 0xff},
|
||
{0, 0x00, 0xff}
|
||
};
|
||
|
||
#if !defined(NS32032) && !defined(NS32532)
|
||
#define NS32032
|
||
#endif
|
||
|
||
struct option cpureg_532[] = /* lpr spr */
|
||
{
|
||
{"us", 0x0, 0xff},
|
||
{"dcr", 0x1, 0xff},
|
||
{"bpc", 0x2, 0xff},
|
||
{"dsr", 0x3, 0xff},
|
||
{"car", 0x4, 0xff},
|
||
{"fp", 0x8, 0xff},
|
||
{"sp", 0x9, 0xff},
|
||
{"sb", 0xa, 0xff},
|
||
{"usp", 0xb, 0xff},
|
||
{"cfg", 0xc, 0xff},
|
||
{"psr", 0xd, 0xff},
|
||
{"intbase", 0xe, 0xff},
|
||
{"mod", 0xf, 0xff},
|
||
{0, 0x00, 0xff}
|
||
};
|
||
struct option mmureg_532[] = /* lmr smr */
|
||
{
|
||
{"mcr", 0x9, 0xff},
|
||
{"msr", 0xa, 0xff},
|
||
{"tear", 0xb, 0xff},
|
||
{"ptb0", 0xc, 0xff},
|
||
{"ptb1", 0xd, 0xff},
|
||
{"ivar0", 0xe, 0xff},
|
||
{"ivar1", 0xf, 0xff},
|
||
{0, 0x0, 0xff}
|
||
};
|
||
|
||
struct option cpureg_032[] = /* lpr spr */
|
||
{
|
||
{"upsr", 0x0, 0xff},
|
||
{"fp", 0x8, 0xff},
|
||
{"sp", 0x9, 0xff},
|
||
{"sb", 0xa, 0xff},
|
||
{"psr", 0xd, 0xff},
|
||
{"intbase", 0xe, 0xff},
|
||
{"mod", 0xf, 0xff},
|
||
{0, 0x0, 0xff}
|
||
};
|
||
struct option mmureg_032[] = /* lmr smr */
|
||
{
|
||
{"bpr0", 0x0, 0xff},
|
||
{"bpr1", 0x1, 0xff},
|
||
{"pf0", 0x4, 0xff},
|
||
{"pf1", 0x5, 0xff},
|
||
{"sc", 0x8, 0xff},
|
||
{"msr", 0xa, 0xff},
|
||
{"bcnt", 0xb, 0xff},
|
||
{"ptb0", 0xc, 0xff},
|
||
{"ptb1", 0xd, 0xff},
|
||
{"eia", 0xf, 0xff},
|
||
{0, 0x0, 0xff}
|
||
};
|
||
|
||
#if defined(NS32532)
|
||
struct option *cpureg = cpureg_532;
|
||
struct option *mmureg = mmureg_532;
|
||
#else
|
||
struct option *cpureg = cpureg_032;
|
||
struct option *mmureg = mmureg_032;
|
||
#endif
|
||
|
||
|
||
const pseudo_typeS md_pseudo_table[] =
|
||
{ /* so far empty */
|
||
{0, 0, 0}
|
||
};
|
||
|
||
#define IND(x,y) (((x)<<2)+(y))
|
||
|
||
/* those are index's to relax groups in md_relax_table
|
||
ie it must be multiplied by 4 to point at a group start. Viz IND(x,y)
|
||
Se function relax_segment in write.c for more info */
|
||
|
||
#define BRANCH 1
|
||
#define PCREL 2
|
||
|
||
/* those are index's to entries in a relax group */
|
||
|
||
#define BYTE 0
|
||
#define WORD 1
|
||
#define DOUBLE 2
|
||
#define UNDEF 3
|
||
/* Those limits are calculated from the displacement start in memory.
|
||
The ns32k uses the begining of the instruction as displacement base.
|
||
This type of displacements could be handled here by moving the limit window
|
||
up or down. I choose to use an internal displacement base-adjust as there
|
||
are other routines that must consider this. Also, as we have two various
|
||
offset-adjusts in the ns32k (acb versus br/brs/jsr/bcond), two set of limits
|
||
would have had to be used.
|
||
Now we dont have to think about that. */
|
||
|
||
|
||
const relax_typeS md_relax_table[] =
|
||
{
|
||
{1, 1, 0, 0},
|
||
{1, 1, 0, 0},
|
||
{1, 1, 0, 0},
|
||
{1, 1, 0, 0},
|
||
|
||
{(63), (-64), 1, IND (BRANCH, WORD)},
|
||
{(8192), (-8192), 2, IND (BRANCH, DOUBLE)},
|
||
{0, 0, 4, 0},
|
||
{1, 1, 0, 0}
|
||
};
|
||
|
||
/* Array used to test if mode contains displacements.
|
||
Value is true if mode contains displacement. */
|
||
|
||
char disp_test[] =
|
||
{0, 0, 0, 0, 0, 0, 0, 0,
|
||
1, 1, 1, 1, 1, 1, 1, 1,
|
||
1, 1, 1, 0, 0, 1, 1, 0,
|
||
1, 1, 1, 1, 1, 1, 1, 1};
|
||
|
||
/* Array used to calculate max size of displacements */
|
||
|
||
char disp_size[] =
|
||
{4, 1, 2, 0, 4};
|
||
|
||
|
||
#if __STDC__ == 1
|
||
|
||
static segT evaluate_expr (expressionS * resultP, char *ptr);
|
||
static void md_number_to_disp (char *buf, long val, int n);
|
||
static void md_number_to_imm (char *buf, long val, int n);
|
||
|
||
#else /* not __STDC__ */
|
||
|
||
static segT evaluate_expr ();
|
||
static void md_number_to_disp ();
|
||
static void md_number_to_imm ();
|
||
|
||
#endif /* not __STDC__ */
|
||
|
||
/* Parses a general operand into an addressingmode struct
|
||
|
||
in: pointer at operand in ascii form
|
||
pointer at addr_mode struct for result
|
||
the level of recursion. (always 0 or 1)
|
||
|
||
out: data in addr_mode struct
|
||
*/
|
||
int
|
||
addr_mode (operand, addr_modeP, recursive_level)
|
||
char *operand;
|
||
register addr_modeS *addr_modeP;
|
||
int recursive_level;
|
||
{
|
||
register char *str;
|
||
register int i;
|
||
register int strl;
|
||
register int mode;
|
||
int j;
|
||
mode = DEFAULT; /* default */
|
||
addr_modeP->scaled_mode = 0; /* why not */
|
||
addr_modeP->scaled_reg = 0; /* if 0, not scaled index */
|
||
addr_modeP->float_flag = 0;
|
||
addr_modeP->am_size = 0;
|
||
addr_modeP->im_disp = 0;
|
||
addr_modeP->pcrel = 0; /* not set in this function */
|
||
addr_modeP->disp_suffix[0] = 0;
|
||
addr_modeP->disp_suffix[1] = 0;
|
||
addr_modeP->disp[0] = NULL;
|
||
addr_modeP->disp[1] = NULL;
|
||
str = operand;
|
||
if (str[0] == 0)
|
||
{
|
||
return (0);
|
||
} /* we don't want this */
|
||
strl = strlen (str);
|
||
switch (str[0])
|
||
{
|
||
/* the following three case statements controls the mode-chars
|
||
this is the place to ed if you want to change them */
|
||
#ifdef ABSOLUTE_PREFIX
|
||
case ABSOLUTE_PREFIX:
|
||
if (str[strl - 1] == ']')
|
||
break;
|
||
addr_modeP->mode = 21; /* absolute */
|
||
addr_modeP->disp[0] = str + 1;
|
||
return (-1);
|
||
#endif
|
||
#ifdef IMMEDIATE_PREFIX
|
||
case IMMEDIATE_PREFIX:
|
||
if (str[strl - 1] == ']')
|
||
break;
|
||
addr_modeP->mode = 20; /* immediate */
|
||
addr_modeP->disp[0] = str + 1;
|
||
return (-1);
|
||
#endif
|
||
case '.':
|
||
if (str[strl - 1] != ']')
|
||
{
|
||
switch (str[1])
|
||
{
|
||
case '-':
|
||
case '+':
|
||
if (str[2] != '\000')
|
||
{
|
||
addr_modeP->mode = 27; /* pc-relativ */
|
||
addr_modeP->disp[0] = str + 2;
|
||
return (-1);
|
||
}
|
||
default:
|
||
as_warn ("Invalid syntax in PC-relative addressing mode");
|
||
return (0);
|
||
}
|
||
}
|
||
break;
|
||
case 'e':
|
||
if (str[strl - 1] != ']')
|
||
{
|
||
if ((!strncmp (str, "ext(", 4)) && strl > 7)
|
||
{ /* external */
|
||
addr_modeP->disp[0] = str + 4;
|
||
i = 0;
|
||
j = 2;
|
||
do
|
||
{ /* disp[0]'s termination point */
|
||
j += 1;
|
||
if (str[j] == '(')
|
||
i++;
|
||
if (str[j] == ')')
|
||
i--;
|
||
}
|
||
while (j < strl && i != 0);
|
||
if (i != 0 || !(str[j + 1] == '-' || str[j + 1] == '+'))
|
||
{
|
||
as_warn ("Invalid syntax in External addressing mode");
|
||
return (0);
|
||
}
|
||
str[j] = '\000'; /* null terminate disp[0] */
|
||
addr_modeP->disp[1] = str + j + 2;
|
||
addr_modeP->mode = 22;
|
||
return (-1);
|
||
}
|
||
}
|
||
break;
|
||
default:;
|
||
}
|
||
strl = strlen (str);
|
||
switch (strl)
|
||
{
|
||
case 2:
|
||
switch (str[0])
|
||
{
|
||
case 'f':
|
||
addr_modeP->float_flag = 1;
|
||
case 'r':
|
||
if (str[1] >= '0' && str[1] < '8')
|
||
{
|
||
addr_modeP->mode = str[1] - '0';
|
||
return (-1);
|
||
}
|
||
}
|
||
case 3:
|
||
if (!strncmp (str, "tos", 3))
|
||
{
|
||
addr_modeP->mode = 23;/* TopOfStack */
|
||
return (-1);
|
||
}
|
||
default:;
|
||
}
|
||
if (strl > 4)
|
||
{
|
||
if (str[strl - 1] == ')')
|
||
{
|
||
if (str[strl - 2] == ')')
|
||
{
|
||
if (!strncmp (&str[strl - 5], "(fp", 3))
|
||
{
|
||
mode = 16; /* Memory Relative */
|
||
}
|
||
if (!strncmp (&str[strl - 5], "(sp", 3))
|
||
{
|
||
mode = 17;
|
||
}
|
||
if (!strncmp (&str[strl - 5], "(sb", 3))
|
||
{
|
||
mode = 18;
|
||
}
|
||
if (mode != DEFAULT)
|
||
{ /* memory relative */
|
||
addr_modeP->mode = mode;
|
||
j = strl - 5; /* temp for end of disp[0] */
|
||
i = 0;
|
||
do
|
||
{
|
||
strl -= 1;
|
||
if (str[strl] == ')')
|
||
i++;
|
||
if (str[strl] == '(')
|
||
i--;
|
||
}
|
||
while (strl > -1 && i != 0);
|
||
if (i != 0)
|
||
{
|
||
as_warn ("Invalid syntax in Memory Relative addressing mode");
|
||
return (0);
|
||
}
|
||
addr_modeP->disp[1] = str;
|
||
addr_modeP->disp[0] = str + strl + 1;
|
||
str[j] = '\000'; /* null terminate disp[0] */
|
||
str[strl] = '\000'; /* null terminate disp[1] */
|
||
return (-1);
|
||
}
|
||
}
|
||
switch (str[strl - 3])
|
||
{
|
||
case 'r':
|
||
case 'R':
|
||
if (str[strl - 2] >= '0' && str[strl - 2] < '8' && str[strl - 4] == '(')
|
||
{
|
||
addr_modeP->mode = str[strl - 2] - '0' + 8;
|
||
addr_modeP->disp[0] = str;
|
||
str[strl - 4] = 0;
|
||
return (-1); /* reg rel */
|
||
}
|
||
default:
|
||
if (!strncmp (&str[strl - 4], "(fp", 3))
|
||
{
|
||
mode = 24;
|
||
}
|
||
if (!strncmp (&str[strl - 4], "(sp", 3))
|
||
{
|
||
mode = 25;
|
||
}
|
||
if (!strncmp (&str[strl - 4], "(sb", 3))
|
||
{
|
||
mode = 26;
|
||
}
|
||
if (!strncmp (&str[strl - 4], "(pc", 3))
|
||
{
|
||
mode = 27;
|
||
}
|
||
if (mode != DEFAULT)
|
||
{
|
||
addr_modeP->mode = mode;
|
||
addr_modeP->disp[0] = str;
|
||
str[strl - 4] = '\0';
|
||
return (-1); /* memory space */
|
||
}
|
||
}
|
||
}
|
||
/* no trailing ')' do we have a ']' ? */
|
||
if (str[strl - 1] == ']')
|
||
{
|
||
switch (str[strl - 2])
|
||
{
|
||
case 'b':
|
||
mode = 28;
|
||
break;
|
||
case 'w':
|
||
mode = 29;
|
||
break;
|
||
case 'd':
|
||
mode = 30;
|
||
break;
|
||
case 'q':
|
||
mode = 31;
|
||
break;
|
||
default:;
|
||
as_warn ("Invalid scaled-indexed mode, use (b,w,d,q)");
|
||
if (str[strl - 3] != ':' || str[strl - 6] != '[' ||
|
||
str[strl - 5] == 'r' || str[strl - 4] < '0' || str[strl - 4] > '7')
|
||
{
|
||
as_warn ("Syntax in scaled-indexed mode, use [Rn:m] where n=[0..7] m={b,w,d,q}");
|
||
}
|
||
} /* scaled index */
|
||
{
|
||
if (recursive_level > 0)
|
||
{
|
||
as_warn ("Scaled-indexed addressing mode combined with scaled-index");
|
||
return (0);
|
||
}
|
||
addr_modeP->am_size += 1; /* scaled index byte */
|
||
j = str[strl - 4] - '0'; /* store temporary */
|
||
str[strl - 6] = '\000'; /* nullterminate for recursive call */
|
||
i = addr_mode (str, addr_modeP, 1);
|
||
if (!i || addr_modeP->mode == 20)
|
||
{
|
||
as_warn ("Invalid or illegal addressing mode combined with scaled-index");
|
||
return (0);
|
||
}
|
||
addr_modeP->scaled_mode = addr_modeP->mode; /* store the inferior mode */
|
||
addr_modeP->mode = mode;
|
||
addr_modeP->scaled_reg = j + 1;
|
||
return (-1);
|
||
}
|
||
}
|
||
}
|
||
addr_modeP->mode = DEFAULT; /* default to whatever */
|
||
addr_modeP->disp[0] = str;
|
||
return (-1);
|
||
}
|
||
|
||
/* ptr points at string
|
||
addr_modeP points at struct with result
|
||
This routine calls addr_mode to determine the general addr.mode of
|
||
the operand. When this is ready it parses the displacements for size
|
||
specifying suffixes and determines size of immediate mode via ns32k-opcode.
|
||
Also builds index bytes if needed.
|
||
*/
|
||
int
|
||
get_addr_mode (ptr, addr_modeP)
|
||
char *ptr;
|
||
addr_modeS *addr_modeP;
|
||
{
|
||
int tmp;
|
||
addr_mode (ptr, addr_modeP, 0);
|
||
if (addr_modeP->mode == DEFAULT || addr_modeP->scaled_mode == -1)
|
||
{
|
||
/* resolve ambigious operands, this shouldn't
|
||
be necessary if one uses standard NSC operand
|
||
syntax. But the sequent compiler doesn't!!!
|
||
This finds a proper addressinging mode if it
|
||
is implicitly stated. See ns32k-opcode.h */
|
||
(void) evaluate_expr (&exprP, ptr); /* this call takes time Sigh! */
|
||
if (addr_modeP->mode == DEFAULT)
|
||
{
|
||
if (exprP.X_add_symbol || exprP.X_subtract_symbol)
|
||
{
|
||
addr_modeP->mode = desc->default_model; /* we have a label */
|
||
}
|
||
else
|
||
{
|
||
addr_modeP->mode = desc->default_modec; /* we have a constant */
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (exprP.X_add_symbol || exprP.X_subtract_symbol)
|
||
{
|
||
addr_modeP->scaled_mode = desc->default_model;
|
||
}
|
||
else
|
||
{
|
||
addr_modeP->scaled_mode = desc->default_modec;
|
||
}
|
||
}
|
||
/* must put this mess down in addr_mode to handle the scaled case better */
|
||
}
|
||
/* It appears as the sequent compiler wants an absolute when we have a
|
||
label without @. Constants becomes immediates besides the addr case.
|
||
Think it does so with local labels too, not optimum, pcrel is better.
|
||
When I have time I will make gas check this and select pcrel when possible
|
||
Actually that is trivial.
|
||
*/
|
||
if (tmp = addr_modeP->scaled_reg)
|
||
{ /* build indexbyte */
|
||
tmp--; /* remember regnumber comes incremented for flagpurpose */
|
||
tmp |= addr_modeP->scaled_mode << 3;
|
||
addr_modeP->index_byte = (char) tmp;
|
||
addr_modeP->am_size += 1;
|
||
}
|
||
if (disp_test[addr_modeP->mode])
|
||
{ /* there was a displacement, probe for length specifying suffix*/
|
||
{
|
||
register char c;
|
||
register char suffix;
|
||
register char suffix_sub;
|
||
register int i;
|
||
register char *toP;
|
||
register char *fromP;
|
||
|
||
addr_modeP->pcrel = 0;
|
||
if (disp_test[addr_modeP->mode])
|
||
{ /* there is a displacement */
|
||
if (addr_modeP->mode == 27 || addr_modeP->scaled_mode == 27)
|
||
{ /* do we have pcrel. mode */
|
||
addr_modeP->pcrel = 1;
|
||
}
|
||
addr_modeP->im_disp = 1;
|
||
for (i = 0; i < 2; i++)
|
||
{
|
||
suffix_sub = suffix = 0;
|
||
if (toP = addr_modeP->disp[i])
|
||
{ /* suffix of expression, the largest size rules */
|
||
fromP = toP;
|
||
while (c = *fromP++)
|
||
{
|
||
*toP++ = c;
|
||
if (c == ':')
|
||
{
|
||
switch (*fromP)
|
||
{
|
||
case '\0':
|
||
as_warn ("Premature end of suffix--Defaulting to d");
|
||
suffix = 4;
|
||
continue;
|
||
case 'b':
|
||
suffix_sub = 1;
|
||
break;
|
||
case 'w':
|
||
suffix_sub = 2;
|
||
break;
|
||
case 'd':
|
||
suffix_sub = 4;
|
||
break;
|
||
default:
|
||
as_warn ("Bad suffix after ':' use {b|w|d} Defaulting to d");
|
||
suffix = 4;
|
||
}
|
||
fromP++;
|
||
toP--; /* So we write over the ':' */
|
||
if (suffix < suffix_sub)
|
||
suffix = suffix_sub;
|
||
}
|
||
}
|
||
*toP = '\0';/* terminate properly */
|
||
addr_modeP->disp_suffix[i] = suffix;
|
||
addr_modeP->am_size += suffix ? suffix : 4;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (addr_modeP->mode == 20)
|
||
{ /* look in ns32k_opcode for size */
|
||
addr_modeP->disp_suffix[0] = addr_modeP->am_size = desc->im_size;
|
||
addr_modeP->im_disp = 0;
|
||
}
|
||
}
|
||
return addr_modeP->mode;
|
||
}
|
||
|
||
|
||
/* read an optionlist */
|
||
void
|
||
optlist (str, optionP, default_map)
|
||
char *str; /* the string to extract options from */
|
||
struct option *optionP; /* how to search the string */
|
||
unsigned long *default_map;/* default pattern and output */
|
||
{
|
||
register int i, j, k, strlen1, strlen2;
|
||
register char *patternP, *strP;
|
||
strlen1 = strlen (str);
|
||
if (strlen1 < 1)
|
||
{
|
||
as_fatal ("Very short instr to option, ie you can't do it on a NULLstr");
|
||
}
|
||
for (i = 0; optionP[i].pattern != 0; i++)
|
||
{
|
||
strlen2 = strlen (optionP[i].pattern);
|
||
for (j = 0; j < strlen1; j++)
|
||
{
|
||
patternP = optionP[i].pattern;
|
||
strP = &str[j];
|
||
for (k = 0; k < strlen2; k++)
|
||
{
|
||
if (*(strP++) != *(patternP++))
|
||
break;
|
||
}
|
||
if (k == strlen2)
|
||
{ /* match */
|
||
*default_map |= optionP[i].or;
|
||
*default_map &= optionP[i].and;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* search struct for symbols
|
||
This function is used to get the short integer form of reg names
|
||
in the instructions lmr, smr, lpr, spr
|
||
return true if str is found in list */
|
||
|
||
int
|
||
list_search (str, optionP, default_map)
|
||
char *str; /* the string to match */
|
||
struct option *optionP; /* list to search */
|
||
unsigned long *default_map;/* default pattern and output */
|
||
{
|
||
register int i;
|
||
for (i = 0; optionP[i].pattern != 0; i++)
|
||
{
|
||
if (!strncmp (optionP[i].pattern, str, 20))
|
||
{ /* use strncmp to be safe */
|
||
*default_map |= optionP[i].or;
|
||
*default_map &= optionP[i].and;
|
||
return -1;
|
||
}
|
||
}
|
||
as_warn ("No such entry in list. (cpu/mmu register)");
|
||
return 0;
|
||
}
|
||
|
||
static segT
|
||
evaluate_expr (resultP, ptr)
|
||
expressionS *resultP;
|
||
char *ptr;
|
||
{
|
||
register char *tmp_line;
|
||
register segT segment;
|
||
tmp_line = input_line_pointer;
|
||
input_line_pointer = ptr;
|
||
segment = expression (&exprP);
|
||
input_line_pointer = tmp_line;
|
||
return (segment);
|
||
}
|
||
|
||
/* Convert operands to iif-format and adds bitfields to the opcode.
|
||
Operands are parsed in such an order that the opcode is updated from
|
||
its most significant bit, that is when the operand need to alter the
|
||
opcode.
|
||
Be carefull not to put to objects in the same iif-slot.
|
||
*/
|
||
|
||
void
|
||
encode_operand (argc, argv, operandsP, suffixP, im_size, opcode_bit_ptr)
|
||
int argc;
|
||
char **argv;
|
||
char *operandsP;
|
||
char *suffixP;
|
||
char im_size;
|
||
char opcode_bit_ptr;
|
||
{
|
||
register int i, j;
|
||
int pcrel, tmp, b, loop, pcrel_adjust;
|
||
for (loop = 0; loop < argc; loop++)
|
||
{
|
||
i = operandsP[loop << 1] - '1'; /* what operand are we supposed to work on */
|
||
if (i > 3)
|
||
as_fatal ("Internal consistency error. check ns32k-opcode.h");
|
||
pcrel = 0;
|
||
pcrel_adjust = 0;
|
||
tmp = 0;
|
||
switch (operandsP[(loop << 1) + 1])
|
||
{
|
||
case 'f': /* operand of sfsr turns out to be a nasty specialcase */
|
||
opcode_bit_ptr -= 5;
|
||
case 'F': /* 32 bit float general form */
|
||
case 'L': /* 64 bit float */
|
||
case 'Q': /* quad-word */
|
||
case 'B': /* byte */
|
||
case 'W': /* word */
|
||
case 'D': /* double-word */
|
||
case 'A': /* double-word gen-address-form ie no regs allowed */
|
||
get_addr_mode (argv[i], &addr_modeP);
|
||
iif.instr_size += addr_modeP.am_size;
|
||
if (opcode_bit_ptr == desc->opcode_size)
|
||
b = 4;
|
||
else
|
||
b = 6;
|
||
for (j = b; j < (b + 2); j++)
|
||
{
|
||
if (addr_modeP.disp[j - b])
|
||
{
|
||
IIF (j,
|
||
2,
|
||
addr_modeP.disp_suffix[j - b],
|
||
(unsigned long) addr_modeP.disp[j - b],
|
||
0,
|
||
addr_modeP.pcrel,
|
||
iif.instr_size - addr_modeP.am_size, /* this aint used (now) */
|
||
addr_modeP.im_disp,
|
||
IND (BRANCH, BYTE),
|
||
NULL,
|
||
addr_modeP.scaled_reg ? addr_modeP.scaled_mode : addr_modeP.mode,
|
||
0);
|
||
}
|
||
}
|
||
opcode_bit_ptr -= 5;
|
||
iif.iifP[1].object |= ((long) addr_modeP.mode) << opcode_bit_ptr;
|
||
if (addr_modeP.scaled_reg)
|
||
{
|
||
j = b / 2;
|
||
IIF (j, 1, 1, (unsigned long) addr_modeP.index_byte, 0, 0, 0, 0, 0, NULL, -1, 0);
|
||
}
|
||
break;
|
||
case 'b': /* multiple instruction disp */
|
||
freeptr++; /* OVE:this is an useful hack */
|
||
tmp = (int) sprintf (freeptr,
|
||
"((%s-1)*%d)\000",
|
||
argv[i], desc->im_size);
|
||
argv[i] = freeptr;
|
||
freeptr = (char *) tmp;
|
||
pcrel -= 1; /* make pcrel 0 inspite of what case 'p': wants */
|
||
/* fall thru */
|
||
case 'p': /* displacement - pc relative addressing */
|
||
pcrel += 1;
|
||
/* fall thru */
|
||
case 'd': /* displacement */
|
||
iif.instr_size += suffixP[i] ? suffixP[i] : 4;
|
||
IIF (12, 2, suffixP[i], (unsigned long) argv[i], 0,
|
||
pcrel, pcrel_adjust, 1, IND (BRANCH, BYTE), NULL, -1, 0);
|
||
break;
|
||
case 'H': /* sequent-hack: the linker wants a bit set when bsr */
|
||
pcrel = 1;
|
||
iif.instr_size += suffixP[i] ? suffixP[i] : 4;
|
||
IIF (12, 2, suffixP[i], (unsigned long) argv[i], 0,
|
||
pcrel, pcrel_adjust, 1, IND (BRANCH, BYTE), NULL, -1, 1);
|
||
break;
|
||
case 'q': /* quick */
|
||
opcode_bit_ptr -= 4;
|
||
IIF (11, 2, 42, (unsigned long) argv[i], 0, 0, 0, 0, 0,
|
||
bit_fix_new (4, opcode_bit_ptr, -8, 7, 0, 1, 0), -1, 0);
|
||
break;
|
||
case 'r': /* register number (3 bits) */
|
||
list_search (argv[i], opt6, &tmp);
|
||
opcode_bit_ptr -= 3;
|
||
iif.iifP[1].object |= tmp << opcode_bit_ptr;
|
||
break;
|
||
case 'O': /* setcfg instruction optionslist */
|
||
optlist (argv[i], opt3, &tmp);
|
||
opcode_bit_ptr -= 4;
|
||
iif.iifP[1].object |= tmp << 15;
|
||
break;
|
||
case 'C': /* cinv instruction optionslist */
|
||
optlist (argv[i], opt4, &tmp);
|
||
opcode_bit_ptr -= 4;
|
||
iif.iifP[1].object |= tmp << 15; /*insert the regtype in opcode */
|
||
break;
|
||
case 'S': /* stringinstruction optionslist */
|
||
optlist (argv[i], opt5, &tmp);
|
||
opcode_bit_ptr -= 4;
|
||
iif.iifP[1].object |= tmp << 15;
|
||
break;
|
||
case 'u':
|
||
case 'U': /* registerlist */
|
||
IIF (10, 1, 1, 0, 0, 0, 0, 0, 0, NULL, -1, 0);
|
||
switch (operandsP[(i << 1) + 1])
|
||
{
|
||
case 'u': /* restore, exit */
|
||
optlist (argv[i], opt1, &iif.iifP[10].object);
|
||
break;
|
||
case 'U': /* save,enter */
|
||
optlist (argv[i], opt2, &iif.iifP[10].object);
|
||
break;
|
||
}
|
||
iif.instr_size += 1;
|
||
break;
|
||
case 'M': /* mmu register */
|
||
list_search (argv[i], mmureg, &tmp);
|
||
opcode_bit_ptr -= 4;
|
||
iif.iifP[1].object |= tmp << opcode_bit_ptr;
|
||
break;
|
||
case 'P': /* cpu register */
|
||
list_search (argv[i], cpureg, &tmp);
|
||
opcode_bit_ptr -= 4;
|
||
iif.iifP[1].object |= tmp << opcode_bit_ptr;
|
||
break;
|
||
case 'g': /* inss exts */
|
||
iif.instr_size += 1; /* 1 byte is allocated after the opcode */
|
||
IIF (10, 2, 1,
|
||
(unsigned long) argv[i], /* i always 2 here */
|
||
0, 0, 0, 0, 0,
|
||
bit_fix_new (3, 5, 0, 7, 0, 0, 0), /* a bit_fix is targeted to the byte */
|
||
-1, 0);
|
||
case 'G':
|
||
IIF (11, 2, 42,
|
||
(unsigned long) argv[i], /* i always 3 here */
|
||
0, 0, 0, 0, 0,
|
||
bit_fix_new (5, 0, 1, 32, -1, 0, -1), -1, 0);
|
||
break;
|
||
case 'i':
|
||
iif.instr_size += 1;
|
||
b = 2 + i; /* put the extension byte after opcode */
|
||
IIF (b, 2, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0);
|
||
default:
|
||
as_fatal ("Bad opcode-table-option, check in file ns32k-opcode.h");
|
||
}
|
||
}
|
||
}
|
||
|
||
/* in: instruction line
|
||
out: internal structure of instruction
|
||
that has been prepared for direct conversion to fragment(s) and
|
||
fixes in a systematical fashion
|
||
Return-value = recursive_level
|
||
*/
|
||
/* build iif of one assembly text line */
|
||
int
|
||
parse (line, recursive_level)
|
||
char *line;
|
||
int recursive_level;
|
||
{
|
||
register char *lineptr, c, suffix_separator;
|
||
register int i;
|
||
int argc, arg_type;
|
||
char sqr, sep;
|
||
char suffix[MAX_ARGS], *argv[MAX_ARGS]; /* no more than 4 operands */
|
||
if (recursive_level <= 0)
|
||
{ /* called from md_assemble */
|
||
for (lineptr = line; (*lineptr) != '\0' && (*lineptr) != ' '; lineptr++);
|
||
c = *lineptr;
|
||
*lineptr = '\0';
|
||
if (!(desc = (struct ns32k_opcode *) hash_find (inst_hash_handle, line)))
|
||
{
|
||
as_fatal ("No such opcode");
|
||
}
|
||
*lineptr = c;
|
||
}
|
||
else
|
||
{
|
||
lineptr = line;
|
||
}
|
||
argc = 0;
|
||
if (*desc->operands)
|
||
{
|
||
if (*lineptr++ != '\0')
|
||
{
|
||
sqr = '[';
|
||
sep = ',';
|
||
while (*lineptr != '\0')
|
||
{
|
||
if (desc->operands[argc << 1])
|
||
{
|
||
suffix[argc] = 0;
|
||
arg_type = desc->operands[(argc << 1) + 1];
|
||
switch (arg_type)
|
||
{
|
||
case 'd':
|
||
case 'b':
|
||
case 'p':
|
||
case 'H': /* the operand is supposed to be a displacement */
|
||
/* Hackwarning: do not forget to update the 4 cases above when editing ns32k-opcode.h */
|
||
suffix_separator = ':';
|
||
break;
|
||
default:
|
||
suffix_separator = '\255'; /* if this char occurs we loose */
|
||
}
|
||
suffix[argc] = 0; /* 0 when no ':' is encountered */
|
||
argv[argc] = freeptr;
|
||
*freeptr = '\0';
|
||
while ((c = *lineptr) != '\0' && c != sep)
|
||
{
|
||
if (c == sqr)
|
||
{
|
||
if (sqr == '[')
|
||
{
|
||
sqr = ']';
|
||
sep = '\0';
|
||
}
|
||
else
|
||
{
|
||
sqr = '[';
|
||
sep = ',';
|
||
}
|
||
}
|
||
if (c == suffix_separator)
|
||
{ /* ':' - label/suffix separator */
|
||
switch (lineptr[1])
|
||
{
|
||
case 'b':
|
||
suffix[argc] = 1;
|
||
break;
|
||
case 'w':
|
||
suffix[argc] = 2;
|
||
break;
|
||
case 'd':
|
||
suffix[argc] = 4;
|
||
break;
|
||
default:
|
||
as_warn ("Bad suffix, defaulting to d");
|
||
suffix[argc] = 4;
|
||
if (lineptr[1] == '\0' || lineptr[1] == sep)
|
||
{
|
||
lineptr += 1;
|
||
continue;
|
||
}
|
||
}
|
||
lineptr += 2;
|
||
continue;
|
||
}
|
||
*freeptr++ = c;
|
||
lineptr++;
|
||
}
|
||
*freeptr++ = '\0';
|
||
argc += 1;
|
||
if (*lineptr == '\0')
|
||
continue;
|
||
lineptr += 1;
|
||
}
|
||
else
|
||
{
|
||
as_fatal ("Too many operands passed to instruction");
|
||
}
|
||
}
|
||
}
|
||
}
|
||
if (argc != strlen (desc->operands) / 2)
|
||
{
|
||
if (strlen (desc->default_args))
|
||
{ /* we can apply default, dont goof */
|
||
if (parse (desc->default_args, 1) != 1)
|
||
{ /* check error in default */
|
||
as_fatal ("Wrong numbers of operands in default, check ns32k-opcodes.h");
|
||
}
|
||
}
|
||
else
|
||
{
|
||
as_fatal ("Wrong number of operands");
|
||
}
|
||
|
||
}
|
||
for (i = 0; i < IIF_ENTRIES; i++)
|
||
{
|
||
iif.iifP[i].type = 0; /* mark all entries as void*/
|
||
}
|
||
|
||
/* build opcode iif-entry */
|
||
iif.instr_size = desc->opcode_size / 8;
|
||
IIF (1, 1, iif.instr_size, desc->opcode_seed, 0, 0, 0, 0, 0, 0, -1, 0);
|
||
|
||
/* this call encodes operands to iif format */
|
||
if (argc)
|
||
{
|
||
encode_operand (argc,
|
||
argv,
|
||
&desc->operands[0],
|
||
&suffix[0],
|
||
desc->im_size,
|
||
desc->opcode_size);
|
||
}
|
||
return recursive_level;
|
||
}
|
||
|
||
|
||
/* Convert iif to fragments.
|
||
From this point we start to dribble with functions in other files than
|
||
this one.(Except hash.c) So, if it's possible to make an iif for an other
|
||
CPU, you don't need to know what frags, relax, obstacks, etc is in order
|
||
to port this assembler. You only need to know if it's possible to reduce
|
||
your cpu-instruction to iif-format (takes some work) and adopt the other
|
||
md_? parts according to given instructions
|
||
Note that iif was invented for the clean ns32k`s architecure.
|
||
*/
|
||
void
|
||
convert_iif ()
|
||
{
|
||
int i;
|
||
int j;
|
||
fragS *inst_frag;
|
||
char *inst_offset;
|
||
char **inst_opcode;
|
||
char *memP;
|
||
segT segment;
|
||
int l;
|
||
int k;
|
||
int rem_size; /* count the remaining bytes of instruction */
|
||
char type;
|
||
char size = 0;
|
||
int size_so_far = 0; /* used to calculate pcrel_adjust */
|
||
|
||
rem_size = iif.instr_size;
|
||
memP = frag_more (iif.instr_size); /* make sure we have enough bytes for instruction */
|
||
inst_opcode = memP;
|
||
inst_offset = (char *) (memP - frag_now->fr_literal);
|
||
inst_frag = frag_now;
|
||
for (i = 0; i < IIF_ENTRIES; i++)
|
||
{
|
||
if (type = iif.iifP[i].type)
|
||
{ /* the object exist, so handle it */
|
||
switch (size = iif.iifP[i].size)
|
||
{
|
||
case 42:
|
||
size = 0; /* it's a bitfix that operates on an existing object*/
|
||
if (iif.iifP[i].bit_fixP->fx_bit_base)
|
||
{ /* expand fx_bit_base to point at opcode */
|
||
iif.iifP[i].bit_fixP->fx_bit_base = (long) inst_opcode;
|
||
}
|
||
case 8: /* bignum or doublefloat */
|
||
memset (memP, '\0', 8);
|
||
case 1:
|
||
case 2:
|
||
case 3:
|
||
case 4: /* the final size in objectmemory is known */
|
||
j = (unsigned long) iif.iifP[i].bit_fixP;
|
||
switch (type)
|
||
{
|
||
case 1: /* the object is pure binary */
|
||
if (j || iif.iifP[i].pcrel)
|
||
{
|
||
fix_new_ns32k (frag_now,
|
||
(long) (memP - frag_now->fr_literal),
|
||
size,
|
||
0,
|
||
0,
|
||
iif.iifP[i].object,
|
||
iif.iifP[i].pcrel,
|
||
(char) size_so_far, /*iif.iifP[i].pcrel_adjust,*/
|
||
iif.iifP[i].im_disp,
|
||
j,
|
||
iif.iifP[i].bsr); /* sequent hack */
|
||
}
|
||
else
|
||
{ /* good, just put them bytes out */
|
||
switch (iif.iifP[i].im_disp)
|
||
{
|
||
case 0:
|
||
md_number_to_chars (memP, iif.iifP[i].object, size);
|
||
break;
|
||
case 1:
|
||
md_number_to_disp (memP, iif.iifP[i].object, size);
|
||
break;
|
||
default:
|
||
as_fatal ("iif convert internal pcrel/binary");
|
||
}
|
||
}
|
||
memP += size;
|
||
rem_size -= size;
|
||
break;
|
||
case 2: /* the object is a pointer at an expression, so unpack
|
||
it, note that bignums may result from the expression
|
||
*/
|
||
if ((segment = evaluate_expr (&exprP, (char *) iif.iifP[i].object)) == SEG_BIG || size == 8)
|
||
{
|
||
if ((k = exprP.X_add_number) > 0)
|
||
{ /* we have a bignum ie a quad */
|
||
/* this can only happens in a long suffixed instruction */
|
||
memset (memP, '\0', size); /* size normally is 8 */
|
||
if (k * 2 > size)
|
||
as_warn ("Bignum too big for long");
|
||
if (k == 3)
|
||
memP += 2;
|
||
for (l = 0; k > 0; k--, l += 2)
|
||
{
|
||
md_number_to_chars (memP + l, generic_bignum[l >> 1], sizeof (LITTLENUM_TYPE));
|
||
}
|
||
}
|
||
else
|
||
{ /* flonum */
|
||
LITTLENUM_TYPE words[4];
|
||
|
||
switch (size)
|
||
{
|
||
case 4:
|
||
gen_to_words (words, 2, 8);
|
||
md_number_to_imm (memP, (long) words[0], sizeof (LITTLENUM_TYPE));
|
||
md_number_to_imm (memP + sizeof (LITTLENUM_TYPE), (long) words[1], sizeof (LITTLENUM_TYPE));
|
||
break;
|
||
case 8:
|
||
gen_to_words (words, 4, 11);
|
||
md_number_to_imm (memP, (long) words[0], sizeof (LITTLENUM_TYPE));
|
||
md_number_to_imm (memP + sizeof (LITTLENUM_TYPE), (long) words[1], sizeof (LITTLENUM_TYPE));
|
||
md_number_to_imm (memP + 2 * sizeof (LITTLENUM_TYPE), (long) words[2], sizeof (LITTLENUM_TYPE));
|
||
md_number_to_imm (memP + 3 * sizeof (LITTLENUM_TYPE), (long) words[3], sizeof (LITTLENUM_TYPE));
|
||
break;
|
||
}
|
||
}
|
||
memP += size;
|
||
rem_size -= size;
|
||
break;
|
||
}
|
||
if (j ||
|
||
exprP.X_add_symbol ||
|
||
exprP.X_subtract_symbol ||
|
||
iif.iifP[i].pcrel)
|
||
{ /* fixit */
|
||
/* the expression was undefined due to an undefined label */
|
||
/* create a fix so we can fix the object later */
|
||
exprP.X_add_number += iif.iifP[i].object_adjust;
|
||
fix_new_ns32k (frag_now,
|
||
(long) (memP - frag_now->fr_literal),
|
||
size,
|
||
exprP.X_add_symbol,
|
||
exprP.X_subtract_symbol,
|
||
exprP.X_add_number,
|
||
iif.iifP[i].pcrel,
|
||
(char) size_so_far, /*iif.iifP[i].pcrel_adjust,*/
|
||
iif.iifP[i].im_disp,
|
||
j,
|
||
iif.iifP[i].bsr); /* sequent hack */
|
||
|
||
}
|
||
else
|
||
{ /* good, just put them bytes out */
|
||
switch (iif.iifP[i].im_disp)
|
||
{
|
||
case 0:
|
||
md_number_to_imm (memP, exprP.X_add_number, size);
|
||
break;
|
||
case 1:
|
||
md_number_to_disp (memP, exprP.X_add_number, size);
|
||
break;
|
||
default:
|
||
as_fatal ("iif convert internal pcrel/pointer");
|
||
}
|
||
}
|
||
memP += size;
|
||
rem_size -= size;
|
||
break;
|
||
default:
|
||
as_fatal ("Internal logic error in iif.iifP[n].type");
|
||
}
|
||
break;
|
||
case 0: /* To bad, the object may be undefined as far as its final
|
||
nsize in object memory is concerned. The size of the object
|
||
in objectmemory is not explicitly given.
|
||
If the object is defined its length can be determined and
|
||
a fix can replace the frag.
|
||
*/
|
||
{
|
||
int temp;
|
||
segment = evaluate_expr (&exprP, (char *) iif.iifP[i].object);
|
||
if ((exprP.X_add_symbol || exprP.X_subtract_symbol) &&
|
||
!iif.iifP[i].pcrel)
|
||
{ /* OVE: hack, clamp to 4 bytes */
|
||
size = 4; /* we dont wan't to frag this, use 4 so it reaches */
|
||
fix_new_ns32k (frag_now,
|
||
(long) (memP - frag_now->fr_literal),
|
||
size,
|
||
exprP.X_add_symbol,
|
||
exprP.X_subtract_symbol,
|
||
exprP.X_add_number,
|
||
0, /* never iif.iifP[i].pcrel, */
|
||
(char) size_so_far, /*iif.iifP[i].pcrel_adjust,*/
|
||
1, /* always iif.iifP[i].im_disp, */
|
||
0, 0);
|
||
memP += size;
|
||
rem_size -= 4;
|
||
break; /* exit this absolute hack */
|
||
}
|
||
|
||
if (exprP.X_add_symbol || exprP.X_subtract_symbol)
|
||
{ /* frag it */
|
||
if (exprP.X_subtract_symbol)
|
||
{ /* We cant relax this case */
|
||
as_fatal ("Can't relax difference");
|
||
}
|
||
else
|
||
{
|
||
/* at this stage we must undo some of the effect caused
|
||
by frag_more, ie we must make sure that frag_var causes
|
||
frag_new to creat a valid fix-size in the frag it`s closing
|
||
*/
|
||
temp = -(rem_size - 4);
|
||
obstack_blank_fast (&frags, temp);
|
||
/* we rewind none, some or all of the requested size we
|
||
requested by the first frag_more for this iif chunk.
|
||
Note: that we allocate 4 bytes to an object we NOT YET
|
||
know the size of, thus rem_size-4.
|
||
*/
|
||
(void) frag_variant (rs_machine_dependent,
|
||
4,
|
||
0,
|
||
IND (BRANCH, UNDEF), /* expecting the worst */
|
||
exprP.X_add_symbol,
|
||
exprP.X_add_number,
|
||
(char *) inst_opcode,
|
||
(char) size_so_far, /*iif.iifP[i].pcrel_adjust);*/
|
||
iif.iifP[i].bsr); /* sequent linker hack */
|
||
rem_size -= 4;
|
||
if (rem_size > 0)
|
||
{
|
||
memP = frag_more (rem_size);
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{ /* Double work, this is done in md_number_to_disp */
|
||
/* exprP.X_add_number; what was this supposed to be?
|
||
xoxorich. */
|
||
if (-64 <= exprP.X_add_number && exprP.X_add_number <= 63)
|
||
{
|
||
size = 1;
|
||
}
|
||
else
|
||
{
|
||
if (-8192 <= exprP.X_add_number && exprP.X_add_number <= 8191)
|
||
{
|
||
size = 2;
|
||
}
|
||
else
|
||
{
|
||
if (-0x1f000000 <= exprP.X_add_number &&
|
||
exprP.X_add_number <= 0x1fffffff)
|
||
/* if (-0x40000000<=exprP.X_add_number &&
|
||
exprP.X_add_number<=0x3fffffff) */
|
||
{
|
||
size = 4;
|
||
}
|
||
else
|
||
{
|
||
as_warn ("Displacement to large for :d");
|
||
size = 4;
|
||
}
|
||
}
|
||
}
|
||
/* rewind the bytes not used */
|
||
temp = -(4 - size);
|
||
md_number_to_disp (memP, exprP.X_add_number, size);
|
||
obstack_blank_fast (&frags, temp);
|
||
memP += size;
|
||
rem_size -= 4; /* we allocated this amount */
|
||
}
|
||
}
|
||
break;
|
||
default:
|
||
as_fatal ("Internal logic error in iif.iifP[].type");
|
||
}
|
||
size_so_far += size;
|
||
size = 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
void
|
||
md_assemble (line)
|
||
char *line;
|
||
{
|
||
freeptr = freeptr_static;
|
||
parse (line, 0); /* explode line to more fix form in iif */
|
||
convert_iif (); /* convert iif to frags, fix's etc */
|
||
#ifdef SHOW_NUM
|
||
printf (" \t\t\t%s\n", line);
|
||
#endif
|
||
}
|
||
|
||
|
||
void
|
||
md_begin ()
|
||
{
|
||
/* build a hashtable of the instructions */
|
||
register const struct ns32k_opcode *ptr;
|
||
register char *stat;
|
||
inst_hash_handle = hash_new ();
|
||
for (ptr = ns32k_opcodes; ptr < endop; ptr++)
|
||
{
|
||
if (*(stat = hash_insert (inst_hash_handle, ptr->name, (char *) ptr)))
|
||
{
|
||
as_fatal ("Can't hash %s: %s", ptr->name, stat); /*fatal*/
|
||
exit (0);
|
||
}
|
||
}
|
||
freeptr_static = (char *) malloc (PRIVATE_SIZE); /* some private space please! */
|
||
}
|
||
|
||
|
||
void
|
||
md_end ()
|
||
{
|
||
free (freeptr_static);
|
||
}
|
||
|
||
/* Must be equal to MAX_PRECISON in atof-ieee.c */
|
||
#define MAX_LITTLENUMS 6
|
||
|
||
/* Turn the string pointed to by litP into a floating point constant of type
|
||
type, and emit the appropriate bytes. The number of LITTLENUMS emitted
|
||
is stored in *sizeP . An error message is returned, or NULL on OK.
|
||
*/
|
||
char *
|
||
md_atof (type, litP, sizeP)
|
||
char type;
|
||
char *litP;
|
||
int *sizeP;
|
||
{
|
||
int prec;
|
||
LITTLENUM_TYPE words[MAX_LITTLENUMS];
|
||
LITTLENUM_TYPE *wordP;
|
||
char *t;
|
||
|
||
switch (type)
|
||
{
|
||
case 'f':
|
||
prec = 2;
|
||
break;
|
||
|
||
case 'd':
|
||
prec = 4;
|
||
break;
|
||
default:
|
||
*sizeP = 0;
|
||
return "Bad call to MD_ATOF()";
|
||
}
|
||
t = atof_ns32k (input_line_pointer, type, words);
|
||
if (t)
|
||
input_line_pointer = t;
|
||
|
||
*sizeP = prec * sizeof (LITTLENUM_TYPE);
|
||
for (wordP = words + prec; prec--;)
|
||
{
|
||
md_number_to_chars (litP, (long) (*--wordP), sizeof (LITTLENUM_TYPE));
|
||
litP += sizeof (LITTLENUM_TYPE);
|
||
}
|
||
return ""; /* Someone should teach Dean about null pointers */
|
||
}
|
||
|
||
/* Convert number to chars in correct order */
|
||
|
||
void
|
||
md_number_to_chars (buf, value, nbytes)
|
||
char *buf;
|
||
valueT value;
|
||
int nbytes;
|
||
{
|
||
while (nbytes--)
|
||
{
|
||
#ifdef SHOW_NUM
|
||
printf ("%x ", value & 0xff);
|
||
#endif
|
||
*buf++ = value; /* Lint wants & MASK_CHAR. */
|
||
value >>= BITS_PER_CHAR;
|
||
}
|
||
} /* md_number_to_chars() */
|
||
|
||
|
||
/* This is a variant of md_numbers_to_chars. The reason for its' existence
|
||
is the fact that ns32k uses Huffman coded displacements. This implies
|
||
that the bit order is reversed in displacements and that they are prefixed
|
||
with a size-tag.
|
||
|
||
binary: msb -> lsb
|
||
0xxxxxxx byte
|
||
10xxxxxx xxxxxxxx word
|
||
11xxxxxx xxxxxxxx xxxxxxxx xxxxxxxx double word
|
||
|
||
This must be taken care of and we do it here!
|
||
*/
|
||
static void
|
||
md_number_to_disp (buf, val, n)
|
||
char *buf;
|
||
long val;
|
||
char n;
|
||
{
|
||
switch (n)
|
||
{
|
||
case 1:
|
||
if (val < -64 || val > 63)
|
||
as_warn ("Byte displacement out of range. line number not valid");
|
||
val &= 0x7f;
|
||
#ifdef SHOW_NUM
|
||
printf ("%x ", val & 0xff);
|
||
#endif
|
||
*buf++ = val;
|
||
break;
|
||
case 2:
|
||
if (val < -8192 || val > 8191)
|
||
as_warn ("Word displacement out of range. line number not valid");
|
||
val &= 0x3fff;
|
||
val |= 0x8000;
|
||
#ifdef SHOW_NUM
|
||
printf ("%x ", val >> 8 & 0xff);
|
||
#endif
|
||
*buf++ = (val >> 8);
|
||
#ifdef SHOW_NUM
|
||
printf ("%x ", val & 0xff);
|
||
#endif
|
||
*buf++ = val;
|
||
break;
|
||
case 4:
|
||
if (val < -0x1f000000 || val >= 0x20000000)
|
||
/* if (val < -0x20000000 || val >= 0x20000000) */
|
||
as_warn ("Double word displacement out of range");
|
||
val |= 0xc0000000;
|
||
#ifdef SHOW_NUM
|
||
printf ("%x ", val >> 24 & 0xff);
|
||
#endif
|
||
*buf++ = (val >> 24);
|
||
#ifdef SHOW_NUM
|
||
printf ("%x ", val >> 16 & 0xff);
|
||
#endif
|
||
*buf++ = (val >> 16);
|
||
#ifdef SHOW_NUM
|
||
printf ("%x ", val >> 8 & 0xff);
|
||
#endif
|
||
*buf++ = (val >> 8);
|
||
#ifdef SHOW_NUM
|
||
printf ("%x ", val & 0xff);
|
||
#endif
|
||
*buf++ = val;
|
||
break;
|
||
default:
|
||
as_fatal ("Internal logic error. line %s, file \"%s\"", __LINE__, __FILE__);
|
||
}
|
||
}
|
||
|
||
static void
|
||
md_number_to_imm (buf, val, n)
|
||
char *buf;
|
||
long val;
|
||
char n;
|
||
{
|
||
switch (n)
|
||
{
|
||
case 1:
|
||
#ifdef SHOW_NUM
|
||
printf ("%x ", val & 0xff);
|
||
#endif
|
||
*buf++ = val;
|
||
break;
|
||
case 2:
|
||
#ifdef SHOW_NUM
|
||
printf ("%x ", val >> 8 & 0xff);
|
||
#endif
|
||
*buf++ = (val >> 8);
|
||
#ifdef SHOW_NUM
|
||
printf ("%x ", val & 0xff);
|
||
#endif
|
||
*buf++ = val;
|
||
break;
|
||
case 4:
|
||
#ifdef SHOW_NUM
|
||
printf ("%x ", val >> 24 & 0xff);
|
||
#endif
|
||
*buf++ = (val >> 24);
|
||
#ifdef SHOW_NUM
|
||
printf ("%x ", val >> 16 & 0xff);
|
||
#endif
|
||
*buf++ = (val >> 16);
|
||
#ifdef SHOW_NUM
|
||
printf ("%x ", val >> 8 & 0xff);
|
||
#endif
|
||
*buf++ = (val >> 8);
|
||
#ifdef SHOW_NUM
|
||
printf ("%x ", val & 0xff);
|
||
#endif
|
||
*buf++ = val;
|
||
break;
|
||
default:
|
||
as_fatal ("Internal logic error. line %s, file \"%s\"", __LINE__, __FILE__);
|
||
}
|
||
}
|
||
|
||
/* Translate internal representation of relocation info into target format.
|
||
|
||
OVE: on a ns32k the twiddling continues at an even deeper level
|
||
here we have to distinguish between displacements and immediates.
|
||
|
||
The sequent has a bit for this. It also has a bit for relocobjects that
|
||
points at the target for a bsr (BranchSubRoutine) !?!?!?!
|
||
|
||
This md_ri.... is tailored for sequent.
|
||
*/
|
||
|
||
#ifdef comment
|
||
void
|
||
md_ri_to_chars (the_bytes, ri)
|
||
char *the_bytes;
|
||
struct reloc_info_generic *ri;
|
||
{
|
||
if (ri->r_bsr)
|
||
{
|
||
ri->r_pcrel = 0;
|
||
} /* sequent seems to want this */
|
||
md_number_to_chars (the_bytes, ri->r_address, sizeof (ri->r_address));
|
||
md_number_to_chars (the_bytes + 4, ((long) (ri->r_symbolnum)
|
||
| (long) (ri->r_pcrel << 24)
|
||
| (long) (ri->r_length << 25)
|
||
| (long) (ri->r_extern << 27)
|
||
| (long) (ri->r_bsr << 28)
|
||
| (long) (ri->r_disp << 29)),
|
||
4);
|
||
/* the first and second md_number_to_chars never overlaps (32bit cpu case) */
|
||
}
|
||
|
||
#endif /* comment */
|
||
|
||
#ifdef OBJ_AOUT
|
||
void
|
||
tc_aout_fix_to_chars (where, fixP, segment_address_in_file)
|
||
char *where;
|
||
struct fix *fixP;
|
||
relax_addressT segment_address_in_file;
|
||
{
|
||
/*
|
||
* In: length of relocation (or of address) in chars: 1, 2 or 4.
|
||
* Out: GNU LD relocation length code: 0, 1, or 2.
|
||
*/
|
||
|
||
static unsigned char nbytes_r_length[] = {42, 0, 1, 42, 2};
|
||
long r_symbolnum;
|
||
|
||
know (fixP->fx_addsy != NULL);
|
||
|
||
md_number_to_chars (where,
|
||
fixP->fx_frag->fr_address + fixP->fx_where - segment_address_in_file,
|
||
4);
|
||
|
||
r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
|
||
? S_GET_TYPE (fixP->fx_addsy)
|
||
: fixP->fx_addsy->sy_number);
|
||
|
||
md_number_to_chars (where,
|
||
((long) (r_symbolnum)
|
||
| (long) (fixP->fx_pcrel << 24)
|
||
| (long) (nbytes_r_length[fixP->fx_size] << 25)
|
||
| (long) ((!S_IS_DEFINED (fixP->fx_addsy)) << 27)
|
||
| (long) (fixP->fx_bsr << 28)
|
||
| (long) (fixP->fx_im_disp << 29)),
|
||
4);
|
||
}
|
||
|
||
#endif /* OBJ_AOUT */
|
||
|
||
/* fast bitfiddling support */
|
||
/* mask used to zero bitfield before oring in the true field */
|
||
|
||
static unsigned long l_mask[] =
|
||
{
|
||
0xffffffff, 0xfffffffe, 0xfffffffc, 0xfffffff8,
|
||
0xfffffff0, 0xffffffe0, 0xffffffc0, 0xffffff80,
|
||
0xffffff00, 0xfffffe00, 0xfffffc00, 0xfffff800,
|
||
0xfffff000, 0xffffe000, 0xffffc000, 0xffff8000,
|
||
0xffff0000, 0xfffe0000, 0xfffc0000, 0xfff80000,
|
||
0xfff00000, 0xffe00000, 0xffc00000, 0xff800000,
|
||
0xff000000, 0xfe000000, 0xfc000000, 0xf8000000,
|
||
0xf0000000, 0xe0000000, 0xc0000000, 0x80000000,
|
||
};
|
||
static unsigned long r_mask[] =
|
||
{
|
||
0x00000000, 0x00000001, 0x00000003, 0x00000007,
|
||
0x0000000f, 0x0000001f, 0x0000003f, 0x0000007f,
|
||
0x000000ff, 0x000001ff, 0x000003ff, 0x000007ff,
|
||
0x00000fff, 0x00001fff, 0x00003fff, 0x00007fff,
|
||
0x0000ffff, 0x0001ffff, 0x0003ffff, 0x0007ffff,
|
||
0x000fffff, 0x001fffff, 0x003fffff, 0x007fffff,
|
||
0x00ffffff, 0x01ffffff, 0x03ffffff, 0x07ffffff,
|
||
0x0fffffff, 0x1fffffff, 0x3fffffff, 0x7fffffff,
|
||
};
|
||
#define MASK_BITS 31
|
||
/* Insert bitfield described by field_ptr and val at buf
|
||
This routine is written for modification of the first 4 bytes pointed
|
||
to by buf, to yield speed.
|
||
The ifdef stuff is for selection between a ns32k-dependent routine
|
||
and a general version. (My advice: use the general version!)
|
||
*/
|
||
|
||
static void
|
||
md_number_to_field (buf, val, field_ptr)
|
||
register char *buf;
|
||
register long val;
|
||
register bit_fixS *field_ptr;
|
||
{
|
||
register unsigned long object;
|
||
register unsigned long mask;
|
||
/* define ENDIAN on a ns32k machine */
|
||
#ifdef ENDIAN
|
||
register unsigned long *mem_ptr;
|
||
#else
|
||
register char *mem_ptr;
|
||
#endif
|
||
if (field_ptr->fx_bit_min <= val && val <= field_ptr->fx_bit_max)
|
||
{
|
||
#ifdef ENDIAN
|
||
if (field_ptr->fx_bit_base)
|
||
{ /* override buf */
|
||
mem_ptr = (unsigned long *) field_ptr->fx_bit_base;
|
||
}
|
||
else
|
||
{
|
||
mem_ptr = (unsigned long *) buf;
|
||
}
|
||
#else
|
||
if (field_ptr->fx_bit_base)
|
||
{ /* override buf */
|
||
mem_ptr = (char *) field_ptr->fx_bit_base;
|
||
}
|
||
else
|
||
{
|
||
mem_ptr = buf;
|
||
}
|
||
#endif
|
||
mem_ptr += field_ptr->fx_bit_base_adj;
|
||
#ifdef ENDIAN /* we have a nice ns32k machine with lowbyte at low-physical mem */
|
||
object = *mem_ptr; /* get some bytes */
|
||
#else /* OVE Goof! the machine is a m68k or dito */
|
||
/* That takes more byte fiddling */
|
||
object = 0;
|
||
object |= mem_ptr[3] & 0xff;
|
||
object <<= 8;
|
||
object |= mem_ptr[2] & 0xff;
|
||
object <<= 8;
|
||
object |= mem_ptr[1] & 0xff;
|
||
object <<= 8;
|
||
object |= mem_ptr[0] & 0xff;
|
||
#endif
|
||
mask = 0;
|
||
mask |= (r_mask[field_ptr->fx_bit_offset]);
|
||
mask |= (l_mask[field_ptr->fx_bit_offset + field_ptr->fx_bit_size]);
|
||
object &= mask;
|
||
val += field_ptr->fx_bit_add;
|
||
object |= ((val << field_ptr->fx_bit_offset) & (mask ^ 0xffffffff));
|
||
#ifdef ENDIAN
|
||
*mem_ptr = object;
|
||
#else
|
||
mem_ptr[0] = (char) object;
|
||
object >>= 8;
|
||
mem_ptr[1] = (char) object;
|
||
object >>= 8;
|
||
mem_ptr[2] = (char) object;
|
||
object >>= 8;
|
||
mem_ptr[3] = (char) object;
|
||
#endif
|
||
}
|
||
else
|
||
{
|
||
as_warn ("Bit field out of range");
|
||
}
|
||
}
|
||
|
||
/* Apply a fixS (fixup of an instruction or data that we didn't have
|
||
enough info to complete immediately) to the data in a frag.
|
||
|
||
On the ns32k, everything is in a different format, so we have broken
|
||
out separate functions for each kind of thing we could be fixing.
|
||
They all get called from here. */
|
||
|
||
void
|
||
md_apply_fix (fixP, val)
|
||
fixS *fixP;
|
||
long val;
|
||
{
|
||
char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
|
||
|
||
if (fixP->fx_bit_fixP)
|
||
{ /* Bitfields to fix, sigh */
|
||
md_number_to_field (buf, val, fixP->fx_bit_fixP);
|
||
}
|
||
else
|
||
switch (fixP->fx_im_disp)
|
||
{
|
||
|
||
case 0: /* Immediate field */
|
||
md_number_to_imm (buf, val, fixP->fx_size);
|
||
break;
|
||
|
||
case 1: /* Displacement field */
|
||
md_number_to_disp (buf,
|
||
fixP->fx_pcrel ? val + fixP->fx_pcrel_adjust : val,
|
||
fixP->fx_size);
|
||
break;
|
||
|
||
case 2: /* Pointer in a data object */
|
||
md_number_to_chars (buf, val, fixP->fx_size);
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Convert a relaxed displacement to ditto in final output */
|
||
|
||
void
|
||
md_convert_frag (headers, fragP)
|
||
object_headers *headers;
|
||
register fragS *fragP;
|
||
{
|
||
long disp;
|
||
long ext = 0;
|
||
|
||
/* Address in gas core of the place to store the displacement. */
|
||
register char *buffer_address = fragP->fr_fix + fragP->fr_literal;
|
||
/* Address in object code of the displacement. */
|
||
register int object_address = fragP->fr_fix + fragP->fr_address;
|
||
|
||
know (fragP->fr_symbol);
|
||
|
||
/* The displacement of the address, from current location. */
|
||
disp = (S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset) - object_address;
|
||
disp += fragP->fr_pcrel_adjust;
|
||
|
||
switch (fragP->fr_subtype)
|
||
{
|
||
case IND (BRANCH, BYTE):
|
||
ext = 1;
|
||
break;
|
||
case IND (BRANCH, WORD):
|
||
ext = 2;
|
||
break;
|
||
case IND (BRANCH, DOUBLE):
|
||
ext = 4;
|
||
break;
|
||
}
|
||
if (ext)
|
||
{
|
||
md_number_to_disp (buffer_address, (long) disp, (int) ext);
|
||
fragP->fr_fix += ext;
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/* This function returns the estimated size a variable object will occupy,
|
||
one can say that we tries to guess the size of the objects before we
|
||
actually know it */
|
||
|
||
int
|
||
md_estimate_size_before_relax (fragP, segment)
|
||
register fragS *fragP;
|
||
segT segment;
|
||
{
|
||
int old_fix;
|
||
old_fix = fragP->fr_fix;
|
||
switch (fragP->fr_subtype)
|
||
{
|
||
case IND (BRANCH, UNDEF):
|
||
if (S_GET_SEGMENT (fragP->fr_symbol) == segment)
|
||
{
|
||
/* the symbol has been assigned a value */
|
||
fragP->fr_subtype = IND (BRANCH, BYTE);
|
||
}
|
||
else
|
||
{
|
||
/* we don't relax symbols defined in an other segment
|
||
the thing to do is to assume the object will occupy 4 bytes */
|
||
fix_new_ns32k (fragP,
|
||
(int) (fragP->fr_fix),
|
||
4,
|
||
fragP->fr_symbol,
|
||
(symbolS *) 0,
|
||
fragP->fr_offset,
|
||
1,
|
||
fragP->fr_pcrel_adjust,
|
||
1,
|
||
0,
|
||
fragP->fr_bsr); /*sequent hack */
|
||
fragP->fr_fix += 4;
|
||
/* fragP->fr_opcode[1]=0xff; */
|
||
frag_wane (fragP);
|
||
break;
|
||
}
|
||
case IND (BRANCH, BYTE):
|
||
fragP->fr_var += 1;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
return fragP->fr_var + fragP->fr_fix - old_fix;
|
||
}
|
||
|
||
int md_short_jump_size = 3;
|
||
int md_long_jump_size = 5;
|
||
const int md_reloc_size = 8; /* Size of relocation record */
|
||
|
||
void
|
||
md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
|
||
char *ptr;
|
||
addressT from_addr, to_addr;
|
||
fragS *frag;
|
||
symbolS *to_symbol;
|
||
{
|
||
valueT offset;
|
||
|
||
offset = to_addr - from_addr;
|
||
md_number_to_chars (ptr, (valueT) 0xEA, 1);
|
||
md_number_to_disp (ptr + 1, (valueT) offset, 2);
|
||
}
|
||
|
||
void
|
||
md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
|
||
char *ptr;
|
||
addressT from_addr, to_addr;
|
||
fragS *frag;
|
||
symbolS *to_symbol;
|
||
{
|
||
valueT offset;
|
||
|
||
offset = to_addr - from_addr;
|
||
md_number_to_chars (ptr, (valueT) 0xEA, 2);
|
||
md_number_to_disp (ptr + 2, (valueT) offset, 4);
|
||
}
|
||
|
||
/* JF this is a new function to parse machine-dep options */
|
||
int
|
||
md_parse_option (argP, cntP, vecP)
|
||
char **argP;
|
||
int *cntP;
|
||
char ***vecP;
|
||
{
|
||
switch (**argP)
|
||
{
|
||
case 'm':
|
||
(*argP)++;
|
||
|
||
if (!strcmp (*argP, "32032"))
|
||
{
|
||
cpureg = cpureg_032;
|
||
mmureg = mmureg_032;
|
||
}
|
||
else if (!strcmp (*argP, "32532"))
|
||
{
|
||
cpureg = cpureg_532;
|
||
mmureg = mmureg_532;
|
||
}
|
||
else
|
||
as_warn ("Unknown -m option ignored");
|
||
|
||
while (**argP)
|
||
(*argP)++;
|
||
break;
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/*
|
||
* bit_fix_new()
|
||
*
|
||
* Create a bit_fixS in obstack 'notes'.
|
||
* This struct is used to profile the normal fix. If the bit_fixP is a
|
||
* valid pointer (not NULL) the bit_fix data will be used to format the fix.
|
||
*/
|
||
bit_fixS *
|
||
bit_fix_new (size, offset, min, max, add, base_type, base_adj)
|
||
char size; /* Length of bitfield */
|
||
char offset; /* Bit offset to bitfield */
|
||
long base_type; /* 0 or 1, if 1 it's exploded to opcode ptr */
|
||
long base_adj;
|
||
long min; /* Signextended min for bitfield */
|
||
long max; /* Signextended max for bitfield */
|
||
long add; /* Add mask, used for huffman prefix */
|
||
{
|
||
register bit_fixS *bit_fixP;
|
||
|
||
bit_fixP = (bit_fixS *) obstack_alloc (¬es, sizeof (bit_fixS));
|
||
|
||
bit_fixP->fx_bit_size = size;
|
||
bit_fixP->fx_bit_offset = offset;
|
||
bit_fixP->fx_bit_base = base_type;
|
||
bit_fixP->fx_bit_base_adj = base_adj;
|
||
bit_fixP->fx_bit_max = max;
|
||
bit_fixP->fx_bit_min = min;
|
||
bit_fixP->fx_bit_add = add;
|
||
|
||
return (bit_fixP);
|
||
}
|
||
|
||
void
|
||
fix_new_ns32k (frag, where, size, add_symbol, sub_symbol, offset, pcrel,
|
||
pcrel_adjust, im_disp, bit_fixP, bsr)
|
||
fragS *frag; /* Which frag? */
|
||
int where; /* Where in that frag? */
|
||
int size; /* 1, 2 or 4 usually. */
|
||
symbolS *add_symbol; /* X_add_symbol. */
|
||
symbolS *sub_symbol; /* X_subtract_symbol. */
|
||
long offset; /* X_add_number. */
|
||
int pcrel; /* TRUE if PC-relative relocation. */
|
||
char pcrel_adjust; /* not zero if adjustment of pcrel offset is needed */
|
||
char im_disp; /* true if the value to write is a displacement */
|
||
bit_fixS *bit_fixP; /* pointer at struct of bit_fix's, ignored if NULL */
|
||
char bsr; /* sequent-linker-hack: 1 when relocobject is a bsr */
|
||
|
||
{
|
||
fixS *fixP = fix_new (frag, where, size, add_symbol, sub_symbol,
|
||
offset, pcrel, NO_RELOC);
|
||
|
||
fixP->fx_pcrel_adjust = pcrel_adjust;
|
||
fixP->fx_im_disp = im_disp;
|
||
fixP->fx_bit_fixP = bit_fixP;
|
||
fixP->fx_bsr = bsr;
|
||
} /* fix_new_ns32k() */
|
||
|
||
/* This is TC_CONS_FIX_NEW, called by emit_expr in read.c. */
|
||
|
||
void
|
||
cons_fix_new_ns32k (frag, where, size, exp)
|
||
fragS *frag; /* Which frag? */
|
||
int where; /* Where in that frag? */
|
||
int size; /* 1, 2 or 4 usually. */
|
||
expressionS *exp; /* Expression. */
|
||
{
|
||
fix_new_ns32k (frag, where, size, exp->X_add_symbol,
|
||
exp->X_subtract_symbol, exp->X_add_number,
|
||
0, 0, 2, 0, 0);
|
||
}
|
||
|
||
/* We have no need to default values of symbols. */
|
||
|
||
symbolS *
|
||
md_undefined_symbol (name)
|
||
char *name;
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
/* Parse an operand that is machine-specific.
|
||
We just return without modifying the expression if we have nothing
|
||
to do. */
|
||
|
||
/* ARGSUSED */
|
||
void
|
||
md_operand (expressionP)
|
||
expressionS *expressionP;
|
||
{
|
||
}
|
||
|
||
/* Round up a section size to the appropriate boundary. */
|
||
valueT
|
||
md_section_align (segment, size)
|
||
segT segment;
|
||
valueT size;
|
||
{
|
||
return size; /* Byte alignment is fine */
|
||
}
|
||
|
||
/* Exactly what point is a PC-relative offset relative TO?
|
||
On the National warts, they're relative to the address of the offset,
|
||
with some funny adjustments in some circumstances during blue moons.
|
||
(??? Is this right? FIXME-SOON) */
|
||
long
|
||
md_pcrel_from (fixP)
|
||
fixS *fixP;
|
||
{
|
||
long res;
|
||
res = fixP->fx_where + fixP->fx_frag->fr_address;
|
||
#ifdef SEQUENT_COMPATABILITY
|
||
if (fixP->fx_frag->fr_bsr)
|
||
res += 0x12 /* FOO Kludge alert! */
|
||
#endif
|
||
return res;
|
||
}
|
||
|
||
/*
|
||
* Local Variables:
|
||
* comment-column: 0
|
||
* End:
|
||
*/
|
||
|
||
/* end of tc-ns32k.c */
|