mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-18 12:24:38 +08:00
e2882c8578
gdb/ChangeLog: Update copyright year range in all GDB files
1487 lines
43 KiB
C
1487 lines
43 KiB
C
/* Target-dependent code for the NEC V850 for GDB, the GNU debugger.
|
|
|
|
Copyright (C) 1996-2018 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#include "defs.h"
|
|
#include "frame.h"
|
|
#include "frame-base.h"
|
|
#include "trad-frame.h"
|
|
#include "frame-unwind.h"
|
|
#include "dwarf2-frame.h"
|
|
#include "gdbtypes.h"
|
|
#include "inferior.h"
|
|
#include "gdbcore.h"
|
|
#include "arch-utils.h"
|
|
#include "regcache.h"
|
|
#include "dis-asm.h"
|
|
#include "osabi.h"
|
|
#include "elf-bfd.h"
|
|
#include "elf/v850.h"
|
|
|
|
enum
|
|
{
|
|
/* General purpose registers. */
|
|
E_R0_REGNUM,
|
|
E_R1_REGNUM,
|
|
E_R2_REGNUM,
|
|
E_R3_REGNUM, E_SP_REGNUM = E_R3_REGNUM,
|
|
E_R4_REGNUM,
|
|
E_R5_REGNUM,
|
|
E_R6_REGNUM, E_ARG0_REGNUM = E_R6_REGNUM,
|
|
E_R7_REGNUM,
|
|
E_R8_REGNUM,
|
|
E_R9_REGNUM, E_ARGLAST_REGNUM = E_R9_REGNUM,
|
|
E_R10_REGNUM, E_V0_REGNUM = E_R10_REGNUM,
|
|
E_R11_REGNUM, E_V1_REGNUM = E_R11_REGNUM,
|
|
E_R12_REGNUM,
|
|
E_R13_REGNUM,
|
|
E_R14_REGNUM,
|
|
E_R15_REGNUM,
|
|
E_R16_REGNUM,
|
|
E_R17_REGNUM,
|
|
E_R18_REGNUM,
|
|
E_R19_REGNUM,
|
|
E_R20_REGNUM,
|
|
E_R21_REGNUM,
|
|
E_R22_REGNUM,
|
|
E_R23_REGNUM,
|
|
E_R24_REGNUM,
|
|
E_R25_REGNUM,
|
|
E_R26_REGNUM,
|
|
E_R27_REGNUM,
|
|
E_R28_REGNUM,
|
|
E_R29_REGNUM, E_FP_REGNUM = E_R29_REGNUM,
|
|
E_R30_REGNUM, E_EP_REGNUM = E_R30_REGNUM,
|
|
E_R31_REGNUM, E_LP_REGNUM = E_R31_REGNUM,
|
|
|
|
/* System registers - main banks. */
|
|
E_R32_REGNUM, E_SR0_REGNUM = E_R32_REGNUM,
|
|
E_R33_REGNUM,
|
|
E_R34_REGNUM,
|
|
E_R35_REGNUM,
|
|
E_R36_REGNUM,
|
|
E_R37_REGNUM, E_PS_REGNUM = E_R37_REGNUM,
|
|
E_R38_REGNUM,
|
|
E_R39_REGNUM,
|
|
E_R40_REGNUM,
|
|
E_R41_REGNUM,
|
|
E_R42_REGNUM,
|
|
E_R43_REGNUM,
|
|
E_R44_REGNUM,
|
|
E_R45_REGNUM,
|
|
E_R46_REGNUM,
|
|
E_R47_REGNUM,
|
|
E_R48_REGNUM,
|
|
E_R49_REGNUM,
|
|
E_R50_REGNUM,
|
|
E_R51_REGNUM,
|
|
E_R52_REGNUM, E_CTBP_REGNUM = E_R52_REGNUM,
|
|
E_R53_REGNUM,
|
|
E_R54_REGNUM,
|
|
E_R55_REGNUM,
|
|
E_R56_REGNUM,
|
|
E_R57_REGNUM,
|
|
E_R58_REGNUM,
|
|
E_R59_REGNUM,
|
|
E_R60_REGNUM,
|
|
E_R61_REGNUM,
|
|
E_R62_REGNUM,
|
|
E_R63_REGNUM,
|
|
|
|
/* PC. */
|
|
E_R64_REGNUM, E_PC_REGNUM = E_R64_REGNUM,
|
|
E_R65_REGNUM,
|
|
E_NUM_OF_V850_REGS,
|
|
E_NUM_OF_V850E_REGS = E_NUM_OF_V850_REGS,
|
|
|
|
/* System registers - MPV (PROT00) bank. */
|
|
E_R66_REGNUM = E_NUM_OF_V850_REGS,
|
|
E_R67_REGNUM,
|
|
E_R68_REGNUM,
|
|
E_R69_REGNUM,
|
|
E_R70_REGNUM,
|
|
E_R71_REGNUM,
|
|
E_R72_REGNUM,
|
|
E_R73_REGNUM,
|
|
E_R74_REGNUM,
|
|
E_R75_REGNUM,
|
|
E_R76_REGNUM,
|
|
E_R77_REGNUM,
|
|
E_R78_REGNUM,
|
|
E_R79_REGNUM,
|
|
E_R80_REGNUM,
|
|
E_R81_REGNUM,
|
|
E_R82_REGNUM,
|
|
E_R83_REGNUM,
|
|
E_R84_REGNUM,
|
|
E_R85_REGNUM,
|
|
E_R86_REGNUM,
|
|
E_R87_REGNUM,
|
|
E_R88_REGNUM,
|
|
E_R89_REGNUM,
|
|
E_R90_REGNUM,
|
|
E_R91_REGNUM,
|
|
E_R92_REGNUM,
|
|
E_R93_REGNUM,
|
|
|
|
/* System registers - MPU (PROT01) bank. */
|
|
E_R94_REGNUM,
|
|
E_R95_REGNUM,
|
|
E_R96_REGNUM,
|
|
E_R97_REGNUM,
|
|
E_R98_REGNUM,
|
|
E_R99_REGNUM,
|
|
E_R100_REGNUM,
|
|
E_R101_REGNUM,
|
|
E_R102_REGNUM,
|
|
E_R103_REGNUM,
|
|
E_R104_REGNUM,
|
|
E_R105_REGNUM,
|
|
E_R106_REGNUM,
|
|
E_R107_REGNUM,
|
|
E_R108_REGNUM,
|
|
E_R109_REGNUM,
|
|
E_R110_REGNUM,
|
|
E_R111_REGNUM,
|
|
E_R112_REGNUM,
|
|
E_R113_REGNUM,
|
|
E_R114_REGNUM,
|
|
E_R115_REGNUM,
|
|
E_R116_REGNUM,
|
|
E_R117_REGNUM,
|
|
E_R118_REGNUM,
|
|
E_R119_REGNUM,
|
|
E_R120_REGNUM,
|
|
E_R121_REGNUM,
|
|
|
|
/* FPU system registers. */
|
|
E_R122_REGNUM,
|
|
E_R123_REGNUM,
|
|
E_R124_REGNUM,
|
|
E_R125_REGNUM,
|
|
E_R126_REGNUM,
|
|
E_R127_REGNUM,
|
|
E_R128_REGNUM, E_FPSR_REGNUM = E_R128_REGNUM,
|
|
E_R129_REGNUM, E_FPEPC_REGNUM = E_R129_REGNUM,
|
|
E_R130_REGNUM, E_FPST_REGNUM = E_R130_REGNUM,
|
|
E_R131_REGNUM, E_FPCC_REGNUM = E_R131_REGNUM,
|
|
E_R132_REGNUM, E_FPCFG_REGNUM = E_R132_REGNUM,
|
|
E_R133_REGNUM,
|
|
E_R134_REGNUM,
|
|
E_R135_REGNUM,
|
|
E_R136_REGNUM,
|
|
E_R137_REGNUM,
|
|
E_R138_REGNUM,
|
|
E_R139_REGNUM,
|
|
E_R140_REGNUM,
|
|
E_R141_REGNUM,
|
|
E_R142_REGNUM,
|
|
E_R143_REGNUM,
|
|
E_R144_REGNUM,
|
|
E_R145_REGNUM,
|
|
E_R146_REGNUM,
|
|
E_R147_REGNUM,
|
|
E_R148_REGNUM,
|
|
E_R149_REGNUM,
|
|
E_NUM_OF_V850E2_REGS,
|
|
|
|
/* v850e3v5 system registers, selID 1 thru 7. */
|
|
E_SELID_1_R0_REGNUM = E_NUM_OF_V850E2_REGS,
|
|
E_SELID_1_R31_REGNUM = E_SELID_1_R0_REGNUM + 31,
|
|
|
|
E_SELID_2_R0_REGNUM,
|
|
E_SELID_2_R31_REGNUM = E_SELID_2_R0_REGNUM + 31,
|
|
|
|
E_SELID_3_R0_REGNUM,
|
|
E_SELID_3_R31_REGNUM = E_SELID_3_R0_REGNUM + 31,
|
|
|
|
E_SELID_4_R0_REGNUM,
|
|
E_SELID_4_R31_REGNUM = E_SELID_4_R0_REGNUM + 31,
|
|
|
|
E_SELID_5_R0_REGNUM,
|
|
E_SELID_5_R31_REGNUM = E_SELID_5_R0_REGNUM + 31,
|
|
|
|
E_SELID_6_R0_REGNUM,
|
|
E_SELID_6_R31_REGNUM = E_SELID_6_R0_REGNUM + 31,
|
|
|
|
E_SELID_7_R0_REGNUM,
|
|
E_SELID_7_R31_REGNUM = E_SELID_7_R0_REGNUM + 31,
|
|
|
|
/* v850e3v5 vector registers. */
|
|
E_VR0_REGNUM,
|
|
E_VR31_REGNUM = E_VR0_REGNUM + 31,
|
|
|
|
E_NUM_OF_V850E3V5_REGS,
|
|
|
|
/* Total number of possible registers. */
|
|
E_NUM_REGS = E_NUM_OF_V850E3V5_REGS
|
|
};
|
|
|
|
enum
|
|
{
|
|
v850_reg_size = 4
|
|
};
|
|
|
|
/* Size of return datatype which fits into all return registers. */
|
|
enum
|
|
{
|
|
E_MAX_RETTYPE_SIZE_IN_REGS = 2 * v850_reg_size
|
|
};
|
|
|
|
/* When v850 support was added to GCC in the late nineties, the intention
|
|
was to follow the Green Hills ABI for v850. In fact, the authors of
|
|
that support at the time thought that they were doing so. As far as
|
|
I can tell, the calling conventions are correct, but the return value
|
|
conventions were not quite right. Over time, the return value code
|
|
in this file was modified to mostly reflect what GCC was actually
|
|
doing instead of to actually follow the Green Hills ABI as it did
|
|
when the code was first written.
|
|
|
|
Renesas defined the RH850 ABI which they use in their compiler. It
|
|
is similar to the original Green Hills ABI with some minor
|
|
differences. */
|
|
|
|
enum v850_abi
|
|
{
|
|
V850_ABI_GCC,
|
|
V850_ABI_RH850
|
|
};
|
|
|
|
/* Architecture specific data. */
|
|
|
|
struct gdbarch_tdep
|
|
{
|
|
/* Fields from the ELF header. */
|
|
int e_flags;
|
|
int e_machine;
|
|
|
|
/* Which ABI are we using? */
|
|
enum v850_abi abi;
|
|
int eight_byte_align;
|
|
};
|
|
|
|
struct v850_frame_cache
|
|
{
|
|
/* Base address. */
|
|
CORE_ADDR base;
|
|
LONGEST sp_offset;
|
|
CORE_ADDR pc;
|
|
|
|
/* Flag showing that a frame has been created in the prologue code. */
|
|
int uses_fp;
|
|
|
|
/* Saved registers. */
|
|
struct trad_frame_saved_reg *saved_regs;
|
|
};
|
|
|
|
/* Info gleaned from scanning a function's prologue. */
|
|
struct pifsr /* Info about one saved register. */
|
|
{
|
|
int offset; /* Offset from sp or fp. */
|
|
int cur_frameoffset; /* Current frameoffset. */
|
|
int reg; /* Saved register number. */
|
|
};
|
|
|
|
static const char *
|
|
v850_register_name (struct gdbarch *gdbarch, int regnum)
|
|
{
|
|
static const char *v850_reg_names[] =
|
|
{ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
|
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
|
|
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
|
|
"eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7",
|
|
"sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15",
|
|
"sr16", "sr17", "sr18", "sr19", "sr20", "sr21", "sr22", "sr23",
|
|
"sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31",
|
|
"pc", "fp"
|
|
};
|
|
if (regnum < 0 || regnum > E_NUM_OF_V850_REGS)
|
|
return NULL;
|
|
return v850_reg_names[regnum];
|
|
}
|
|
|
|
static const char *
|
|
v850e_register_name (struct gdbarch *gdbarch, int regnum)
|
|
{
|
|
static const char *v850e_reg_names[] =
|
|
{
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
|
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
|
|
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
|
|
"eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7",
|
|
"sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15",
|
|
"ctpc", "ctpsw", "dbpc", "dbpsw", "ctbp", "sr21", "sr22", "sr23",
|
|
"sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31",
|
|
"pc", "fp"
|
|
};
|
|
if (regnum < 0 || regnum > E_NUM_OF_V850E_REGS)
|
|
return NULL;
|
|
return v850e_reg_names[regnum];
|
|
}
|
|
|
|
static const char *
|
|
v850e2_register_name (struct gdbarch *gdbarch, int regnum)
|
|
{
|
|
static const char *v850e2_reg_names[] =
|
|
{
|
|
/* General purpose registers. */
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
|
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
|
|
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
|
|
|
|
/* System registers - main banks. */
|
|
"eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "pid", "cfg",
|
|
"", "", "", "sccfg", "scbp", "eiic", "feic", "dbic",
|
|
"ctpc", "ctpsw", "dbpc", "dbpsw", "ctbp", "dir", "", "",
|
|
"", "", "", "", "eiwr", "fewr", "dbwr", "bsel",
|
|
|
|
|
|
/* PC. */
|
|
"pc", "",
|
|
|
|
/* System registers - MPV (PROT00) bank. */
|
|
"vsecr", "vstid", "vsadr", "", "vmecr", "vmtid", "vmadr", "",
|
|
"vpecr", "vptid", "vpadr", "", "", "", "", "",
|
|
"", "", "", "", "", "", "", "",
|
|
"mca", "mcs", "mcc", "mcr",
|
|
|
|
/* System registers - MPU (PROT01) bank. */
|
|
"mpm", "mpc", "tid", "", "", "", "ipa0l", "ipa0u",
|
|
"ipa1l", "ipa1u", "ipa2l", "ipa2u", "ipa3l", "ipa3u", "ipa4l", "ipa4u",
|
|
"dpa0l", "dpa0u", "dpa1l", "dpa1u", "dpa2l", "dpa2u", "dpa3l", "dpa3u",
|
|
"dpa4l", "dpa4u", "dpa5l", "dpa5u",
|
|
|
|
/* FPU system registers. */
|
|
"", "", "", "", "", "", "fpsr", "fpepc",
|
|
"fpst", "fpcc", "fpcfg", "fpec", "", "", "", "",
|
|
"", "", "", "", "", "", "", "",
|
|
"", "", "", "fpspc"
|
|
};
|
|
if (regnum < 0 || regnum >= E_NUM_OF_V850E2_REGS)
|
|
return NULL;
|
|
return v850e2_reg_names[regnum];
|
|
}
|
|
|
|
/* Implement the "register_name" gdbarch method for v850e3v5. */
|
|
|
|
static const char *
|
|
v850e3v5_register_name (struct gdbarch *gdbarch, int regnum)
|
|
{
|
|
static const char *v850e3v5_reg_names[] =
|
|
{
|
|
/* General purpose registers. */
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
|
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
|
|
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
|
|
|
|
/* selID 0, not including FPU registers. The FPU registers are
|
|
listed later on. */
|
|
"eipc", "eipsw", "fepc", "fepsw",
|
|
"", "psw", "" /* fpsr */, "" /* fpepc */,
|
|
"" /* fpst */, "" /* fpcc */, "" /* fpcfg */, "" /* fpec */,
|
|
"sesr", "eiic", "feic", "",
|
|
"ctpc", "ctpsw", "", "", "ctbp", "", "", "",
|
|
"", "", "", "", "eiwr", "fewr", "", "bsel",
|
|
|
|
|
|
/* PC. */
|
|
"pc", "",
|
|
|
|
/* v850e2 MPV bank. */
|
|
"", "", "", "", "", "", "", "",
|
|
"", "", "", "", "", "", "", "",
|
|
"", "", "", "", "", "", "", "",
|
|
"", "", "", "",
|
|
|
|
/* Skip v850e2 MPU bank. It's tempting to reuse these, but we need
|
|
32 entries for this bank. */
|
|
"", "", "", "", "", "", "", "",
|
|
"", "", "", "", "", "", "", "",
|
|
"", "", "", "", "", "", "", "",
|
|
"", "", "", "",
|
|
|
|
/* FPU system registers. These are actually in selID 0, but
|
|
are placed here to preserve register numbering compatibility
|
|
with previous architectures. */
|
|
"", "", "", "", "", "", "fpsr", "fpepc",
|
|
"fpst", "fpcc", "fpcfg", "fpec", "", "", "", "",
|
|
"", "", "", "", "", "", "", "",
|
|
"", "", "", "",
|
|
|
|
/* selID 1. */
|
|
"mcfg0", "mcfg1", "rbase", "ebase", "intbp", "mctl", "pid", "fpipr",
|
|
"", "", "tcsel", "sccfg", "scbp", "hvccfg", "hvcbp", "vsel",
|
|
"vmprt0", "vmprt1", "vmprt2", "", "", "", "", "vmscctl",
|
|
"vmsctbl0", "vmsctbl1", "vmsctbl2", "vmsctbl3", "", "", "", "",
|
|
|
|
/* selID 2. */
|
|
"htcfg0", "", "", "", "", "htctl", "mea", "asid",
|
|
"mei", "ispr", "pmr", "icsr", "intcfg", "", "", "",
|
|
"tlbsch", "", "", "", "", "", "", "htscctl",
|
|
"htsctbl0", "htsctbl1", "htsctbl2", "htsctbl3",
|
|
"htsctbl4", "htsctbl5", "htsctbl6", "htsctbl7",
|
|
|
|
/* selID 3. */
|
|
"", "", "", "", "", "", "", "",
|
|
"", "", "", "", "", "", "", "",
|
|
"", "", "", "", "", "", "", "",
|
|
"", "", "", "", "", "", "", "",
|
|
|
|
/* selID 4. */
|
|
"tlbidx", "", "", "", "telo0", "telo1", "tehi0", "tehi1",
|
|
"", "", "tlbcfg", "", "bwerrl", "bwerrh", "brerrl", "brerrh",
|
|
"ictagl", "ictagh", "icdatl", "icdath",
|
|
"dctagl", "dctagh", "dcdatl", "dcdath",
|
|
"icctrl", "dcctrl", "iccfg", "dccfg", "icerr", "dcerr", "", "",
|
|
|
|
/* selID 5. */
|
|
"mpm", "mprc", "", "", "mpbrgn", "mptrgn", "", "",
|
|
"mca", "mcs", "mcc", "mcr", "", "", "", "",
|
|
"", "", "", "", "mpprt0", "mpprt1", "mpprt2", "",
|
|
"", "", "", "", "", "", "", "",
|
|
|
|
/* selID 6. */
|
|
"mpla0", "mpua0", "mpat0", "", "mpla1", "mpua1", "mpat1", "",
|
|
"mpla2", "mpua2", "mpat2", "", "mpla3", "mpua3", "mpat3", "",
|
|
"mpla4", "mpua4", "mpat4", "", "mpla5", "mpua5", "mpat5", "",
|
|
"mpla6", "mpua6", "mpat6", "", "mpla7", "mpua7", "mpat7", "",
|
|
|
|
/* selID 7. */
|
|
"mpla8", "mpua8", "mpat8", "", "mpla9", "mpua9", "mpat9", "",
|
|
"mpla10", "mpua10", "mpat10", "", "mpla11", "mpua11", "mpat11", "",
|
|
"mpla12", "mpua12", "mpat12", "", "mpla13", "mpua13", "mpat13", "",
|
|
"mpla14", "mpua14", "mpat14", "", "mpla15", "mpua15", "mpat15", "",
|
|
|
|
/* Vector Registers */
|
|
"vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
|
|
"vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
|
|
"vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
|
|
"vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31",
|
|
};
|
|
|
|
if (regnum < 0 || regnum >= E_NUM_OF_V850E3V5_REGS)
|
|
return NULL;
|
|
return v850e3v5_reg_names[regnum];
|
|
}
|
|
|
|
/* Returns the default type for register N. */
|
|
|
|
static struct type *
|
|
v850_register_type (struct gdbarch *gdbarch, int regnum)
|
|
{
|
|
if (regnum == E_PC_REGNUM)
|
|
return builtin_type (gdbarch)->builtin_func_ptr;
|
|
else if (E_VR0_REGNUM <= regnum && regnum <= E_VR31_REGNUM)
|
|
return builtin_type (gdbarch)->builtin_uint64;
|
|
return builtin_type (gdbarch)->builtin_int32;
|
|
}
|
|
|
|
static int
|
|
v850_type_is_scalar (struct type *t)
|
|
{
|
|
return (TYPE_CODE (t) != TYPE_CODE_STRUCT
|
|
&& TYPE_CODE (t) != TYPE_CODE_UNION
|
|
&& TYPE_CODE (t) != TYPE_CODE_ARRAY);
|
|
}
|
|
|
|
/* Should call_function allocate stack space for a struct return? */
|
|
|
|
static int
|
|
v850_use_struct_convention (struct gdbarch *gdbarch, struct type *type)
|
|
{
|
|
int i;
|
|
struct type *fld_type, *tgt_type;
|
|
|
|
if (gdbarch_tdep (gdbarch)->abi == V850_ABI_RH850)
|
|
{
|
|
if (v850_type_is_scalar (type) && TYPE_LENGTH(type) <= 8)
|
|
return 0;
|
|
|
|
/* Structs are never returned in registers for this ABI. */
|
|
return 1;
|
|
}
|
|
/* 1. The value is greater than 8 bytes -> returned by copying. */
|
|
if (TYPE_LENGTH (type) > 8)
|
|
return 1;
|
|
|
|
/* 2. The value is a single basic type -> returned in register. */
|
|
if (v850_type_is_scalar (type))
|
|
return 0;
|
|
|
|
/* The value is a structure or union with a single element and that
|
|
element is either a single basic type or an array of a single basic
|
|
type whose size is greater than or equal to 4 -> returned in register. */
|
|
if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
|
|
|| TYPE_CODE (type) == TYPE_CODE_UNION)
|
|
&& TYPE_NFIELDS (type) == 1)
|
|
{
|
|
fld_type = TYPE_FIELD_TYPE (type, 0);
|
|
if (v850_type_is_scalar (fld_type) && TYPE_LENGTH (fld_type) >= 4)
|
|
return 0;
|
|
|
|
if (TYPE_CODE (fld_type) == TYPE_CODE_ARRAY)
|
|
{
|
|
tgt_type = TYPE_TARGET_TYPE (fld_type);
|
|
if (v850_type_is_scalar (tgt_type) && TYPE_LENGTH (tgt_type) >= 4)
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* The value is a structure whose first element is an integer or a float,
|
|
and which contains no arrays of more than two elements -> returned in
|
|
register. */
|
|
if (TYPE_CODE (type) == TYPE_CODE_STRUCT
|
|
&& v850_type_is_scalar (TYPE_FIELD_TYPE (type, 0))
|
|
&& TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == 4)
|
|
{
|
|
for (i = 1; i < TYPE_NFIELDS (type); ++i)
|
|
{
|
|
fld_type = TYPE_FIELD_TYPE (type, 0);
|
|
if (TYPE_CODE (fld_type) == TYPE_CODE_ARRAY)
|
|
{
|
|
tgt_type = TYPE_TARGET_TYPE (fld_type);
|
|
if (TYPE_LENGTH (tgt_type) > 0
|
|
&& TYPE_LENGTH (fld_type) / TYPE_LENGTH (tgt_type) > 2)
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* The value is a union which contains at least one field which
|
|
would be returned in registers according to these rules ->
|
|
returned in register. */
|
|
if (TYPE_CODE (type) == TYPE_CODE_UNION)
|
|
{
|
|
for (i = 0; i < TYPE_NFIELDS (type); ++i)
|
|
{
|
|
fld_type = TYPE_FIELD_TYPE (type, 0);
|
|
if (!v850_use_struct_convention (gdbarch, fld_type))
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Structure for mapping bits in register lists to register numbers. */
|
|
|
|
struct reg_list
|
|
{
|
|
long mask;
|
|
int regno;
|
|
};
|
|
|
|
/* Helper function for v850_scan_prologue to handle prepare instruction. */
|
|
|
|
static void
|
|
v850_handle_prepare (int insn, int insn2, CORE_ADDR * current_pc_ptr,
|
|
struct v850_frame_cache *pi, struct pifsr **pifsr_ptr)
|
|
{
|
|
CORE_ADDR current_pc = *current_pc_ptr;
|
|
struct pifsr *pifsr = *pifsr_ptr;
|
|
long next = insn2 & 0xffff;
|
|
long list12 = ((insn & 1) << 16) + (next & 0xffe0);
|
|
long offset = (insn & 0x3e) << 1;
|
|
static struct reg_list reg_table[] =
|
|
{
|
|
{0x00800, 20}, /* r20 */
|
|
{0x00400, 21}, /* r21 */
|
|
{0x00200, 22}, /* r22 */
|
|
{0x00100, 23}, /* r23 */
|
|
{0x08000, 24}, /* r24 */
|
|
{0x04000, 25}, /* r25 */
|
|
{0x02000, 26}, /* r26 */
|
|
{0x01000, 27}, /* r27 */
|
|
{0x00080, 28}, /* r28 */
|
|
{0x00040, 29}, /* r29 */
|
|
{0x10000, 30}, /* ep */
|
|
{0x00020, 31}, /* lp */
|
|
{0, 0} /* end of table */
|
|
};
|
|
int i;
|
|
|
|
if ((next & 0x1f) == 0x0b) /* skip imm16 argument */
|
|
current_pc += 2;
|
|
else if ((next & 0x1f) == 0x13) /* skip imm16 argument */
|
|
current_pc += 2;
|
|
else if ((next & 0x1f) == 0x1b) /* skip imm32 argument */
|
|
current_pc += 4;
|
|
|
|
/* Calculate the total size of the saved registers, and add it to the
|
|
immediate value used to adjust SP. */
|
|
for (i = 0; reg_table[i].mask != 0; i++)
|
|
if (list12 & reg_table[i].mask)
|
|
offset += v850_reg_size;
|
|
pi->sp_offset -= offset;
|
|
|
|
/* Calculate the offsets of the registers relative to the value the SP
|
|
will have after the registers have been pushed and the imm5 value has
|
|
been subtracted from it. */
|
|
if (pifsr)
|
|
{
|
|
for (i = 0; reg_table[i].mask != 0; i++)
|
|
{
|
|
if (list12 & reg_table[i].mask)
|
|
{
|
|
int reg = reg_table[i].regno;
|
|
offset -= v850_reg_size;
|
|
pifsr->reg = reg;
|
|
pifsr->offset = offset;
|
|
pifsr->cur_frameoffset = pi->sp_offset;
|
|
pifsr++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Set result parameters. */
|
|
*current_pc_ptr = current_pc;
|
|
*pifsr_ptr = pifsr;
|
|
}
|
|
|
|
|
|
/* Helper function for v850_scan_prologue to handle pushm/pushl instructions.
|
|
The SR bit of the register list is not supported. gcc does not generate
|
|
this bit. */
|
|
|
|
static void
|
|
v850_handle_pushm (int insn, int insn2, struct v850_frame_cache *pi,
|
|
struct pifsr **pifsr_ptr)
|
|
{
|
|
struct pifsr *pifsr = *pifsr_ptr;
|
|
long list12 = ((insn & 0x0f) << 16) + (insn2 & 0xfff0);
|
|
long offset = 0;
|
|
static struct reg_list pushml_reg_table[] =
|
|
{
|
|
{0x80000, E_PS_REGNUM}, /* PSW */
|
|
{0x40000, 1}, /* r1 */
|
|
{0x20000, 2}, /* r2 */
|
|
{0x10000, 3}, /* r3 */
|
|
{0x00800, 4}, /* r4 */
|
|
{0x00400, 5}, /* r5 */
|
|
{0x00200, 6}, /* r6 */
|
|
{0x00100, 7}, /* r7 */
|
|
{0x08000, 8}, /* r8 */
|
|
{0x04000, 9}, /* r9 */
|
|
{0x02000, 10}, /* r10 */
|
|
{0x01000, 11}, /* r11 */
|
|
{0x00080, 12}, /* r12 */
|
|
{0x00040, 13}, /* r13 */
|
|
{0x00020, 14}, /* r14 */
|
|
{0x00010, 15}, /* r15 */
|
|
{0, 0} /* end of table */
|
|
};
|
|
static struct reg_list pushmh_reg_table[] =
|
|
{
|
|
{0x80000, 16}, /* r16 */
|
|
{0x40000, 17}, /* r17 */
|
|
{0x20000, 18}, /* r18 */
|
|
{0x10000, 19}, /* r19 */
|
|
{0x00800, 20}, /* r20 */
|
|
{0x00400, 21}, /* r21 */
|
|
{0x00200, 22}, /* r22 */
|
|
{0x00100, 23}, /* r23 */
|
|
{0x08000, 24}, /* r24 */
|
|
{0x04000, 25}, /* r25 */
|
|
{0x02000, 26}, /* r26 */
|
|
{0x01000, 27}, /* r27 */
|
|
{0x00080, 28}, /* r28 */
|
|
{0x00040, 29}, /* r29 */
|
|
{0x00010, 30}, /* r30 */
|
|
{0x00020, 31}, /* r31 */
|
|
{0, 0} /* end of table */
|
|
};
|
|
struct reg_list *reg_table;
|
|
int i;
|
|
|
|
/* Is this a pushml or a pushmh? */
|
|
if ((insn2 & 7) == 1)
|
|
reg_table = pushml_reg_table;
|
|
else
|
|
reg_table = pushmh_reg_table;
|
|
|
|
/* Calculate the total size of the saved registers, and add it to the
|
|
immediate value used to adjust SP. */
|
|
for (i = 0; reg_table[i].mask != 0; i++)
|
|
if (list12 & reg_table[i].mask)
|
|
offset += v850_reg_size;
|
|
pi->sp_offset -= offset;
|
|
|
|
/* Calculate the offsets of the registers relative to the value the SP
|
|
will have after the registers have been pushed and the imm5 value is
|
|
subtracted from it. */
|
|
if (pifsr)
|
|
{
|
|
for (i = 0; reg_table[i].mask != 0; i++)
|
|
{
|
|
if (list12 & reg_table[i].mask)
|
|
{
|
|
int reg = reg_table[i].regno;
|
|
offset -= v850_reg_size;
|
|
pifsr->reg = reg;
|
|
pifsr->offset = offset;
|
|
pifsr->cur_frameoffset = pi->sp_offset;
|
|
pifsr++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Set result parameters. */
|
|
*pifsr_ptr = pifsr;
|
|
}
|
|
|
|
/* Helper function to evaluate if register is one of the "save" registers.
|
|
This allows to simplify conditionals in v850_analyze_prologue a lot. */
|
|
|
|
static int
|
|
v850_is_save_register (int reg)
|
|
{
|
|
/* The caller-save registers are R2, R20 - R29 and R31. All other
|
|
registers are either special purpose (PC, SP), argument registers,
|
|
or just considered free for use in the caller. */
|
|
return reg == E_R2_REGNUM
|
|
|| (reg >= E_R20_REGNUM && reg <= E_R29_REGNUM)
|
|
|| reg == E_R31_REGNUM;
|
|
}
|
|
|
|
/* Scan the prologue of the function that contains PC, and record what
|
|
we find in PI. Returns the pc after the prologue. Note that the
|
|
addresses saved in frame->saved_regs are just frame relative (negative
|
|
offsets from the frame pointer). This is because we don't know the
|
|
actual value of the frame pointer yet. In some circumstances, the
|
|
frame pointer can't be determined till after we have scanned the
|
|
prologue. */
|
|
|
|
static CORE_ADDR
|
|
v850_analyze_prologue (struct gdbarch *gdbarch,
|
|
CORE_ADDR func_addr, CORE_ADDR pc,
|
|
struct v850_frame_cache *pi, ULONGEST ctbp)
|
|
{
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
CORE_ADDR prologue_end, current_pc;
|
|
struct pifsr pifsrs[E_NUM_REGS + 1];
|
|
struct pifsr *pifsr, *pifsr_tmp;
|
|
int ep_used;
|
|
int reg;
|
|
CORE_ADDR save_pc, save_end;
|
|
int regsave_func_p;
|
|
int r12_tmp;
|
|
|
|
memset (&pifsrs, 0, sizeof pifsrs);
|
|
pifsr = &pifsrs[0];
|
|
|
|
prologue_end = pc;
|
|
|
|
/* Now, search the prologue looking for instructions that setup fp, save
|
|
rp, adjust sp and such. We also record the frame offset of any saved
|
|
registers. */
|
|
|
|
pi->sp_offset = 0;
|
|
pi->uses_fp = 0;
|
|
ep_used = 0;
|
|
regsave_func_p = 0;
|
|
save_pc = 0;
|
|
save_end = 0;
|
|
r12_tmp = 0;
|
|
|
|
for (current_pc = func_addr; current_pc < prologue_end;)
|
|
{
|
|
int insn;
|
|
int insn2 = -1; /* dummy value */
|
|
|
|
insn = read_memory_integer (current_pc, 2, byte_order);
|
|
current_pc += 2;
|
|
if ((insn & 0x0780) >= 0x0600) /* Four byte instruction? */
|
|
{
|
|
insn2 = read_memory_integer (current_pc, 2, byte_order);
|
|
current_pc += 2;
|
|
}
|
|
|
|
if ((insn & 0xffc0) == ((10 << 11) | 0x0780) && !regsave_func_p)
|
|
{ /* jarl <func>,10 */
|
|
long low_disp = insn2 & ~(long) 1;
|
|
long disp = (((((insn & 0x3f) << 16) + low_disp)
|
|
& ~(long) 1) ^ 0x00200000) - 0x00200000;
|
|
|
|
save_pc = current_pc;
|
|
save_end = prologue_end;
|
|
regsave_func_p = 1;
|
|
current_pc += disp - 4;
|
|
prologue_end = (current_pc
|
|
+ (2 * 3) /* moves to/from ep */
|
|
+ 4 /* addi <const>,sp,sp */
|
|
+ 2 /* jmp [r10] */
|
|
+ (2 * 12) /* sst.w to save r2, r20-r29, r31 */
|
|
+ 20); /* slop area */
|
|
}
|
|
else if ((insn & 0xffc0) == 0x0200 && !regsave_func_p)
|
|
{ /* callt <imm6> */
|
|
long adr = ctbp + ((insn & 0x3f) << 1);
|
|
|
|
save_pc = current_pc;
|
|
save_end = prologue_end;
|
|
regsave_func_p = 1;
|
|
current_pc = ctbp + (read_memory_unsigned_integer (adr, 2, byte_order)
|
|
& 0xffff);
|
|
prologue_end = (current_pc
|
|
+ (2 * 3) /* prepare list2,imm5,sp/imm */
|
|
+ 4 /* ctret */
|
|
+ 20); /* slop area */
|
|
continue;
|
|
}
|
|
else if ((insn & 0xffc0) == 0x0780) /* prepare list2,imm5 */
|
|
{
|
|
v850_handle_prepare (insn, insn2, ¤t_pc, pi, &pifsr);
|
|
continue;
|
|
}
|
|
else if (insn == 0x07e0 && regsave_func_p && insn2 == 0x0144)
|
|
{ /* ctret after processing register save. */
|
|
current_pc = save_pc;
|
|
prologue_end = save_end;
|
|
regsave_func_p = 0;
|
|
continue;
|
|
}
|
|
else if ((insn & 0xfff0) == 0x07e0 && (insn2 & 5) == 1)
|
|
{ /* pushml, pushmh */
|
|
v850_handle_pushm (insn, insn2, pi, &pifsr);
|
|
continue;
|
|
}
|
|
else if ((insn & 0xffe0) == 0x0060 && regsave_func_p)
|
|
{ /* jmp after processing register save. */
|
|
current_pc = save_pc;
|
|
prologue_end = save_end;
|
|
regsave_func_p = 0;
|
|
continue;
|
|
}
|
|
else if ((insn & 0x07c0) == 0x0780 /* jarl or jr */
|
|
|| (insn & 0xffe0) == 0x0060 /* jmp */
|
|
|| (insn & 0x0780) == 0x0580) /* branch */
|
|
{
|
|
break; /* Ran into end of prologue. */
|
|
}
|
|
|
|
else if ((insn & 0xffe0) == ((E_SP_REGNUM << 11) | 0x0240))
|
|
/* add <imm>,sp */
|
|
pi->sp_offset += ((insn & 0x1f) ^ 0x10) - 0x10;
|
|
else if (insn == ((E_SP_REGNUM << 11) | 0x0600 | E_SP_REGNUM))
|
|
/* addi <imm>,sp,sp */
|
|
pi->sp_offset += insn2;
|
|
else if (insn == ((E_FP_REGNUM << 11) | 0x0000 | E_SP_REGNUM))
|
|
/* mov sp,fp */
|
|
pi->uses_fp = 1;
|
|
else if (insn == ((E_R12_REGNUM << 11) | 0x0640 | E_R0_REGNUM))
|
|
/* movhi hi(const),r0,r12 */
|
|
r12_tmp = insn2 << 16;
|
|
else if (insn == ((E_R12_REGNUM << 11) | 0x0620 | E_R12_REGNUM))
|
|
/* movea lo(const),r12,r12 */
|
|
r12_tmp += insn2;
|
|
else if (insn == ((E_SP_REGNUM << 11) | 0x01c0 | E_R12_REGNUM) && r12_tmp)
|
|
/* add r12,sp */
|
|
pi->sp_offset += r12_tmp;
|
|
else if (insn == ((E_EP_REGNUM << 11) | 0x0000 | E_SP_REGNUM))
|
|
/* mov sp,ep */
|
|
ep_used = 1;
|
|
else if (insn == ((E_EP_REGNUM << 11) | 0x0000 | E_R1_REGNUM))
|
|
/* mov r1,ep */
|
|
ep_used = 0;
|
|
else if (((insn & 0x07ff) == (0x0760 | E_SP_REGNUM)
|
|
|| (pi->uses_fp
|
|
&& (insn & 0x07ff) == (0x0760 | E_FP_REGNUM)))
|
|
&& pifsr
|
|
&& v850_is_save_register (reg = (insn >> 11) & 0x1f))
|
|
{
|
|
/* st.w <reg>,<offset>[sp] or st.w <reg>,<offset>[fp] */
|
|
pifsr->reg = reg;
|
|
pifsr->offset = insn2 & ~1;
|
|
pifsr->cur_frameoffset = pi->sp_offset;
|
|
pifsr++;
|
|
}
|
|
else if (ep_used
|
|
&& ((insn & 0x0781) == 0x0501)
|
|
&& pifsr
|
|
&& v850_is_save_register (reg = (insn >> 11) & 0x1f))
|
|
{
|
|
/* sst.w <reg>,<offset>[ep] */
|
|
pifsr->reg = reg;
|
|
pifsr->offset = (insn & 0x007e) << 1;
|
|
pifsr->cur_frameoffset = pi->sp_offset;
|
|
pifsr++;
|
|
}
|
|
}
|
|
|
|
/* Fix up any offsets to the final offset. If a frame pointer was created,
|
|
use it instead of the stack pointer. */
|
|
for (pifsr_tmp = pifsrs; pifsr_tmp != pifsr; pifsr_tmp++)
|
|
{
|
|
pifsr_tmp->offset -= pi->sp_offset - pifsr_tmp->cur_frameoffset;
|
|
pi->saved_regs[pifsr_tmp->reg].addr = pifsr_tmp->offset;
|
|
}
|
|
|
|
return current_pc;
|
|
}
|
|
|
|
/* Return the address of the first code past the prologue of the function. */
|
|
|
|
static CORE_ADDR
|
|
v850_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
|
|
{
|
|
CORE_ADDR func_addr, func_end;
|
|
|
|
/* See what the symbol table says. */
|
|
|
|
if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
|
|
{
|
|
struct symtab_and_line sal;
|
|
|
|
sal = find_pc_line (func_addr, 0);
|
|
if (sal.line != 0 && sal.end < func_end)
|
|
return sal.end;
|
|
|
|
/* Either there's no line info, or the line after the prologue is after
|
|
the end of the function. In this case, there probably isn't a
|
|
prologue. */
|
|
return pc;
|
|
}
|
|
|
|
/* We can't find the start of this function, so there's nothing we
|
|
can do. */
|
|
return pc;
|
|
}
|
|
|
|
/* Return 1 if the data structure has any 8-byte fields that'll require
|
|
the entire data structure to be aligned. Otherwise, return 0. */
|
|
|
|
static int
|
|
v850_eight_byte_align_p (struct type *type)
|
|
{
|
|
type = check_typedef (type);
|
|
|
|
if (v850_type_is_scalar (type))
|
|
return (TYPE_LENGTH (type) == 8);
|
|
else
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < TYPE_NFIELDS (type); i++)
|
|
{
|
|
if (v850_eight_byte_align_p (TYPE_FIELD_TYPE (type, i)))
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
v850_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
|
|
{
|
|
return sp & ~3;
|
|
}
|
|
|
|
/* Setup arguments and LP for a call to the target. First four args
|
|
go in R6->R9, subsequent args go into sp + 16 -> sp + ... Structs
|
|
are passed by reference. 64 bit quantities (doubles and long longs)
|
|
may be split between the regs and the stack. When calling a function
|
|
that returns a struct, a pointer to the struct is passed in as a secret
|
|
first argument (always in R6).
|
|
|
|
Stack space for the args has NOT been allocated: that job is up to us. */
|
|
|
|
static CORE_ADDR
|
|
v850_push_dummy_call (struct gdbarch *gdbarch,
|
|
struct value *function,
|
|
struct regcache *regcache,
|
|
CORE_ADDR bp_addr,
|
|
int nargs,
|
|
struct value **args,
|
|
CORE_ADDR sp,
|
|
int struct_return,
|
|
CORE_ADDR struct_addr)
|
|
{
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
int argreg;
|
|
int argnum;
|
|
int len = 0;
|
|
int stack_offset;
|
|
|
|
if (gdbarch_tdep (gdbarch)->abi == V850_ABI_RH850)
|
|
stack_offset = 0;
|
|
else
|
|
/* The offset onto the stack at which we will start copying parameters
|
|
(after the registers are used up) begins at 16 rather than at zero.
|
|
That's how the ABI is defined, though there's no indication that these
|
|
16 bytes are used for anything, not even for saving incoming
|
|
argument registers. */
|
|
stack_offset = 16;
|
|
|
|
/* Now make space on the stack for the args. */
|
|
for (argnum = 0; argnum < nargs; argnum++)
|
|
len += ((TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3);
|
|
sp -= len + stack_offset;
|
|
|
|
argreg = E_ARG0_REGNUM;
|
|
/* The struct_return pointer occupies the first parameter register. */
|
|
if (struct_return)
|
|
regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
|
|
|
|
/* Now load as many as possible of the first arguments into
|
|
registers, and push the rest onto the stack. There are 16 bytes
|
|
in four registers available. Loop thru args from first to last. */
|
|
for (argnum = 0; argnum < nargs; argnum++)
|
|
{
|
|
int len;
|
|
gdb_byte *val;
|
|
gdb_byte valbuf[v850_reg_size];
|
|
|
|
if (!v850_type_is_scalar (value_type (*args))
|
|
&& gdbarch_tdep (gdbarch)->abi == V850_ABI_GCC
|
|
&& TYPE_LENGTH (value_type (*args)) > E_MAX_RETTYPE_SIZE_IN_REGS)
|
|
{
|
|
store_unsigned_integer (valbuf, 4, byte_order,
|
|
value_address (*args));
|
|
len = 4;
|
|
val = valbuf;
|
|
}
|
|
else
|
|
{
|
|
len = TYPE_LENGTH (value_type (*args));
|
|
val = (gdb_byte *) value_contents (*args);
|
|
}
|
|
|
|
if (gdbarch_tdep (gdbarch)->eight_byte_align
|
|
&& v850_eight_byte_align_p (value_type (*args)))
|
|
{
|
|
if (argreg <= E_ARGLAST_REGNUM && (argreg & 1))
|
|
argreg++;
|
|
else if (stack_offset & 0x4)
|
|
stack_offset += 4;
|
|
}
|
|
|
|
while (len > 0)
|
|
if (argreg <= E_ARGLAST_REGNUM)
|
|
{
|
|
CORE_ADDR regval;
|
|
|
|
regval = extract_unsigned_integer (val, v850_reg_size, byte_order);
|
|
regcache_cooked_write_unsigned (regcache, argreg, regval);
|
|
|
|
len -= v850_reg_size;
|
|
val += v850_reg_size;
|
|
argreg++;
|
|
}
|
|
else
|
|
{
|
|
write_memory (sp + stack_offset, val, 4);
|
|
|
|
len -= 4;
|
|
val += 4;
|
|
stack_offset += 4;
|
|
}
|
|
args++;
|
|
}
|
|
|
|
/* Store return address. */
|
|
regcache_cooked_write_unsigned (regcache, E_LP_REGNUM, bp_addr);
|
|
|
|
/* Update stack pointer. */
|
|
regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
|
|
|
|
return sp;
|
|
}
|
|
|
|
static void
|
|
v850_extract_return_value (struct type *type, struct regcache *regcache,
|
|
gdb_byte *valbuf)
|
|
{
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
int len = TYPE_LENGTH (type);
|
|
|
|
if (len <= v850_reg_size)
|
|
{
|
|
ULONGEST val;
|
|
|
|
regcache_cooked_read_unsigned (regcache, E_V0_REGNUM, &val);
|
|
store_unsigned_integer (valbuf, len, byte_order, val);
|
|
}
|
|
else if (len <= 2 * v850_reg_size)
|
|
{
|
|
int i, regnum = E_V0_REGNUM;
|
|
gdb_byte buf[v850_reg_size];
|
|
for (i = 0; len > 0; i += 4, len -= 4)
|
|
{
|
|
regcache_raw_read (regcache, regnum++, buf);
|
|
memcpy (valbuf + i, buf, len > 4 ? 4 : len);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
v850_store_return_value (struct type *type, struct regcache *regcache,
|
|
const gdb_byte *valbuf)
|
|
{
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
int len = TYPE_LENGTH (type);
|
|
|
|
if (len <= v850_reg_size)
|
|
regcache_cooked_write_unsigned
|
|
(regcache, E_V0_REGNUM,
|
|
extract_unsigned_integer (valbuf, len, byte_order));
|
|
else if (len <= 2 * v850_reg_size)
|
|
{
|
|
int i, regnum = E_V0_REGNUM;
|
|
for (i = 0; i < len; i += 4)
|
|
regcache_raw_write (regcache, regnum++, valbuf + i);
|
|
}
|
|
}
|
|
|
|
static enum return_value_convention
|
|
v850_return_value (struct gdbarch *gdbarch, struct value *function,
|
|
struct type *type, struct regcache *regcache,
|
|
gdb_byte *readbuf, const gdb_byte *writebuf)
|
|
{
|
|
if (v850_use_struct_convention (gdbarch, type))
|
|
return RETURN_VALUE_STRUCT_CONVENTION;
|
|
if (writebuf)
|
|
v850_store_return_value (type, regcache, writebuf);
|
|
else if (readbuf)
|
|
v850_extract_return_value (type, regcache, readbuf);
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
|
|
/* Implement the breakpoint_kind_from_pc gdbarch method. */
|
|
|
|
static int
|
|
v850_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
|
|
{
|
|
return 2;
|
|
}
|
|
|
|
/* Implement the sw_breakpoint_from_kind gdbarch method. */
|
|
|
|
static const gdb_byte *
|
|
v850_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
|
|
{
|
|
*size = kind;
|
|
|
|
switch (gdbarch_bfd_arch_info (gdbarch)->mach)
|
|
{
|
|
case bfd_mach_v850e2:
|
|
case bfd_mach_v850e2v3:
|
|
case bfd_mach_v850e3v5:
|
|
{
|
|
/* Implement software breakpoints by using the dbtrap instruction.
|
|
Older architectures had no such instruction. For those, an
|
|
unconditional branch to self instruction is used. */
|
|
|
|
static unsigned char dbtrap_breakpoint[] = { 0x40, 0xf8 };
|
|
|
|
return dbtrap_breakpoint;
|
|
}
|
|
break;
|
|
default:
|
|
{
|
|
static unsigned char breakpoint[] = { 0x85, 0x05 };
|
|
|
|
return breakpoint;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
static struct v850_frame_cache *
|
|
v850_alloc_frame_cache (struct frame_info *this_frame)
|
|
{
|
|
struct v850_frame_cache *cache;
|
|
|
|
cache = FRAME_OBSTACK_ZALLOC (struct v850_frame_cache);
|
|
cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
|
|
|
|
/* Base address. */
|
|
cache->base = 0;
|
|
cache->sp_offset = 0;
|
|
cache->pc = 0;
|
|
|
|
/* Frameless until proven otherwise. */
|
|
cache->uses_fp = 0;
|
|
|
|
return cache;
|
|
}
|
|
|
|
static struct v850_frame_cache *
|
|
v850_frame_cache (struct frame_info *this_frame, void **this_cache)
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
|
struct v850_frame_cache *cache;
|
|
CORE_ADDR current_pc;
|
|
int i;
|
|
|
|
if (*this_cache)
|
|
return (struct v850_frame_cache *) *this_cache;
|
|
|
|
cache = v850_alloc_frame_cache (this_frame);
|
|
*this_cache = cache;
|
|
|
|
/* In principle, for normal frames, fp holds the frame pointer,
|
|
which holds the base address for the current stack frame.
|
|
However, for functions that don't need it, the frame pointer is
|
|
optional. For these "frameless" functions the frame pointer is
|
|
actually the frame pointer of the calling frame. */
|
|
cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM);
|
|
if (cache->base == 0)
|
|
return cache;
|
|
|
|
cache->pc = get_frame_func (this_frame);
|
|
current_pc = get_frame_pc (this_frame);
|
|
if (cache->pc != 0)
|
|
{
|
|
ULONGEST ctbp;
|
|
ctbp = get_frame_register_unsigned (this_frame, E_CTBP_REGNUM);
|
|
v850_analyze_prologue (gdbarch, cache->pc, current_pc, cache, ctbp);
|
|
}
|
|
|
|
if (!cache->uses_fp)
|
|
{
|
|
/* We didn't find a valid frame, which means that CACHE->base
|
|
currently holds the frame pointer for our calling frame. If
|
|
we're at the start of a function, or somewhere half-way its
|
|
prologue, the function's frame probably hasn't been fully
|
|
setup yet. Try to reconstruct the base address for the stack
|
|
frame by looking at the stack pointer. For truly "frameless"
|
|
functions this might work too. */
|
|
cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
|
|
}
|
|
|
|
/* Now that we have the base address for the stack frame we can
|
|
calculate the value of sp in the calling frame. */
|
|
trad_frame_set_value (cache->saved_regs, E_SP_REGNUM,
|
|
cache->base - cache->sp_offset);
|
|
|
|
/* Adjust all the saved registers such that they contain addresses
|
|
instead of offsets. */
|
|
for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
|
|
if (trad_frame_addr_p (cache->saved_regs, i))
|
|
cache->saved_regs[i].addr += cache->base;
|
|
|
|
/* The call instruction moves the caller's PC in the callee's LP.
|
|
Since this is an unwind, do the reverse. Copy the location of LP
|
|
into PC (the address / regnum) so that a request for PC will be
|
|
converted into a request for the LP. */
|
|
|
|
cache->saved_regs[E_PC_REGNUM] = cache->saved_regs[E_LP_REGNUM];
|
|
|
|
return cache;
|
|
}
|
|
|
|
|
|
static struct value *
|
|
v850_frame_prev_register (struct frame_info *this_frame,
|
|
void **this_cache, int regnum)
|
|
{
|
|
struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache);
|
|
|
|
gdb_assert (regnum >= 0);
|
|
|
|
return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum);
|
|
}
|
|
|
|
static void
|
|
v850_frame_this_id (struct frame_info *this_frame, void **this_cache,
|
|
struct frame_id *this_id)
|
|
{
|
|
struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache);
|
|
|
|
/* This marks the outermost frame. */
|
|
if (cache->base == 0)
|
|
return;
|
|
|
|
*this_id = frame_id_build (cache->saved_regs[E_SP_REGNUM].addr, cache->pc);
|
|
}
|
|
|
|
static const struct frame_unwind v850_frame_unwind = {
|
|
NORMAL_FRAME,
|
|
default_frame_unwind_stop_reason,
|
|
v850_frame_this_id,
|
|
v850_frame_prev_register,
|
|
NULL,
|
|
default_frame_sniffer
|
|
};
|
|
|
|
static CORE_ADDR
|
|
v850_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
|
{
|
|
return frame_unwind_register_unsigned (next_frame,
|
|
gdbarch_sp_regnum (gdbarch));
|
|
}
|
|
|
|
static CORE_ADDR
|
|
v850_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
|
{
|
|
return frame_unwind_register_unsigned (next_frame,
|
|
gdbarch_pc_regnum (gdbarch));
|
|
}
|
|
|
|
static struct frame_id
|
|
v850_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
|
|
{
|
|
CORE_ADDR sp = get_frame_register_unsigned (this_frame,
|
|
gdbarch_sp_regnum (gdbarch));
|
|
return frame_id_build (sp, get_frame_pc (this_frame));
|
|
}
|
|
|
|
static CORE_ADDR
|
|
v850_frame_base_address (struct frame_info *this_frame, void **this_cache)
|
|
{
|
|
struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache);
|
|
|
|
return cache->base;
|
|
}
|
|
|
|
static const struct frame_base v850_frame_base = {
|
|
&v850_frame_unwind,
|
|
v850_frame_base_address,
|
|
v850_frame_base_address,
|
|
v850_frame_base_address
|
|
};
|
|
|
|
static struct gdbarch *
|
|
v850_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
|
{
|
|
struct gdbarch *gdbarch;
|
|
struct gdbarch_tdep *tdep;
|
|
int e_flags, e_machine;
|
|
|
|
/* Extract the elf_flags if available. */
|
|
if (info.abfd != NULL
|
|
&& bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
|
|
{
|
|
e_flags = elf_elfheader (info.abfd)->e_flags;
|
|
e_machine = elf_elfheader (info.abfd)->e_machine;
|
|
}
|
|
else
|
|
{
|
|
e_flags = 0;
|
|
e_machine = 0;
|
|
}
|
|
|
|
|
|
/* Try to find the architecture in the list of already defined
|
|
architectures. */
|
|
for (arches = gdbarch_list_lookup_by_info (arches, &info);
|
|
arches != NULL;
|
|
arches = gdbarch_list_lookup_by_info (arches->next, &info))
|
|
{
|
|
if (gdbarch_tdep (arches->gdbarch)->e_flags != e_flags
|
|
|| gdbarch_tdep (arches->gdbarch)->e_machine != e_machine)
|
|
continue;
|
|
|
|
return arches->gdbarch;
|
|
}
|
|
tdep = XCNEW (struct gdbarch_tdep);
|
|
tdep->e_flags = e_flags;
|
|
tdep->e_machine = e_machine;
|
|
|
|
switch (tdep->e_machine)
|
|
{
|
|
case EM_V800:
|
|
tdep->abi = V850_ABI_RH850;
|
|
break;
|
|
default:
|
|
tdep->abi = V850_ABI_GCC;
|
|
break;
|
|
}
|
|
|
|
tdep->eight_byte_align = (tdep->e_flags & EF_RH850_DATA_ALIGN8) ? 1 : 0;
|
|
gdbarch = gdbarch_alloc (&info, tdep);
|
|
|
|
switch (info.bfd_arch_info->mach)
|
|
{
|
|
case bfd_mach_v850:
|
|
set_gdbarch_register_name (gdbarch, v850_register_name);
|
|
set_gdbarch_num_regs (gdbarch, E_NUM_OF_V850_REGS);
|
|
break;
|
|
case bfd_mach_v850e:
|
|
case bfd_mach_v850e1:
|
|
set_gdbarch_register_name (gdbarch, v850e_register_name);
|
|
set_gdbarch_num_regs (gdbarch, E_NUM_OF_V850E_REGS);
|
|
break;
|
|
case bfd_mach_v850e2:
|
|
case bfd_mach_v850e2v3:
|
|
set_gdbarch_register_name (gdbarch, v850e2_register_name);
|
|
set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
|
|
break;
|
|
case bfd_mach_v850e3v5:
|
|
set_gdbarch_register_name (gdbarch, v850e3v5_register_name);
|
|
set_gdbarch_num_regs (gdbarch, E_NUM_OF_V850E3V5_REGS);
|
|
break;
|
|
}
|
|
|
|
set_gdbarch_num_pseudo_regs (gdbarch, 0);
|
|
set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
|
|
set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
|
|
set_gdbarch_fp0_regnum (gdbarch, -1);
|
|
|
|
set_gdbarch_register_type (gdbarch, v850_register_type);
|
|
|
|
set_gdbarch_char_signed (gdbarch, 1);
|
|
set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
|
|
set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
|
set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
|
set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
|
|
|
set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
|
set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
|
set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
|
|
|
set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
|
set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
|
|
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
|
|
|
set_gdbarch_breakpoint_kind_from_pc (gdbarch, v850_breakpoint_kind_from_pc);
|
|
set_gdbarch_sw_breakpoint_from_kind (gdbarch, v850_sw_breakpoint_from_kind);
|
|
set_gdbarch_return_value (gdbarch, v850_return_value);
|
|
set_gdbarch_push_dummy_call (gdbarch, v850_push_dummy_call);
|
|
set_gdbarch_skip_prologue (gdbarch, v850_skip_prologue);
|
|
|
|
set_gdbarch_frame_align (gdbarch, v850_frame_align);
|
|
set_gdbarch_unwind_sp (gdbarch, v850_unwind_sp);
|
|
set_gdbarch_unwind_pc (gdbarch, v850_unwind_pc);
|
|
set_gdbarch_dummy_id (gdbarch, v850_dummy_id);
|
|
frame_base_set_default (gdbarch, &v850_frame_base);
|
|
|
|
/* Hook in ABI-specific overrides, if they have been registered. */
|
|
gdbarch_init_osabi (info, gdbarch);
|
|
|
|
dwarf2_append_unwinders (gdbarch);
|
|
frame_unwind_append_unwinder (gdbarch, &v850_frame_unwind);
|
|
|
|
return gdbarch;
|
|
}
|
|
|
|
void
|
|
_initialize_v850_tdep (void)
|
|
{
|
|
register_gdbarch_init (bfd_arch_v850, v850_gdbarch_init);
|
|
register_gdbarch_init (bfd_arch_v850_rh850, v850_gdbarch_init);
|
|
}
|