binutils-gdb/bfd/rs6000-core.c
Alan Modra 226f9f4fad Rename bfd_bread and bfd_bwrite
These were renamed from bfd_read and bfd_write back in 2001 when they
lost an unnecessary parameter.  Rename them back, and get rid of a few
casts that are only needed without prototyped functions (K&R C).
2023-08-09 08:48:09 +09:30

820 lines
21 KiB
C

/* IBM RS/6000 "XCOFF" back-end for BFD.
Copyright (C) 1990-2023 Free Software Foundation, Inc.
Written by Metin G. Ozisik, Mimi Phuong-Thao Vo, and John Gilmore.
Archive support from Damon A. Permezel.
Contributed by IBM Corporation and Cygnus Support.
This file is part of BFD, the Binary File Descriptor library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
MA 02110-1301, USA. */
/* This port currently only handles reading object files, except when
compiled on an RS/6000 host. -- no archive support, no core files.
In all cases, it does not support writing.
This is in a separate file from coff-rs6000.c, because it includes
system include files that conflict with coff/rs6000.h. */
/* Internalcoff.h and coffcode.h modify themselves based on this flag. */
#define RS6000COFF_C 1
/* The AIX 4.1 kernel is obviously compiled with -D_LONG_LONG, so
we have to define _LONG_LONG for older versions of gcc to get the
proper alignments in the user structure. */
#if defined(_AIX41) && !defined(_LONG_LONG)
#define _LONG_LONG
#endif
#include "sysdep.h"
#include "bfd.h"
#include "libbfd.h"
#ifdef AIX_CORE
/* AOUTHDR is defined by the above. We need another defn of it, from the
system include files. Punt the old one and get us a new name for the
typedef in the system include files. */
#ifdef AOUTHDR
#undef AOUTHDR
#endif
#define AOUTHDR second_AOUTHDR
#undef SCNHDR
/* Support for core file stuff. */
#include <sys/user.h>
#define __LDINFO_PTRACE32__ /* for __ld_info32 */
#define __LDINFO_PTRACE64__ /* for __ld_info64 */
#include <sys/ldr.h>
#include <sys/core.h>
#include <sys/systemcfg.h>
/* Borrowed from <sys/inttypes.h> on recent AIX versions. */
typedef unsigned long ptr_to_uint;
#define core_hdr(bfd) ((CoreHdr *) bfd->tdata.any)
/* AIX 4.1 changed the names and locations of a few items in the core file.
AIX 4.3 defined an entirely new structure, core_dumpx, but kept support for
the previous 4.1 structure, core_dump.
AIX_CORE_DUMPX_CORE is defined (by configure) on AIX 4.3+, and
CORE_VERSION_1 is defined (by AIX core.h) as 2 on AIX 4.3+ and as 1 on AIX
4.1 and 4.2. AIX pre-4.1 (aka 3.x) either doesn't define CORE_VERSION_1
or else defines it as 0. */
#if defined(CORE_VERSION_1) && !CORE_VERSION_1
# undef CORE_VERSION_1
#endif
/* The following union and macros allow this module to compile on all AIX
versions and to handle both core_dumpx and core_dump on 4.3+. CNEW_*()
and COLD_*() macros respectively retrieve core_dumpx and core_dump
values. */
/* Union of 32-bit and 64-bit versions of ld_info. */
typedef union
{
#if defined (__ld_info32) || defined (__ld_info64)
struct __ld_info32 l32;
struct __ld_info64 l64;
#else
struct ld_info l32;
struct ld_info l64;
#endif
} LdInfo;
/* Union of old and new core dump structures. */
typedef union
{
#ifdef AIX_CORE_DUMPX_CORE
struct core_dumpx new_dump; /* New AIX 4.3+ core dump. */
#else
struct core_dump new_dump; /* For simpler coding. */
#endif
#ifndef BFD64 /* Use old only if gdb is 32-bit. */
struct core_dump old; /* Old AIX 4.2- core dump, still used on
4.3+ with appropriate SMIT config. */
#endif
} CoreHdr;
/* Union of old and new vm_info structures. */
#ifdef CORE_VERSION_1
typedef union
{
#ifdef AIX_CORE_DUMPX_CORE
struct vm_infox new_dump;
#else
struct vm_info new_dump;
#endif
#ifndef BFD64
struct vm_info old;
#endif
} VmInfo;
#endif
/* Return whether CoreHdr C is in new or old format. */
#ifdef AIX_CORE_DUMPX_CORE
# ifndef BFD64
# define CORE_NEW(c) (!(c).old.c_entries)
# else
# define CORE_NEW(c) 1
# endif
#else
# define CORE_NEW(c) 0
#endif
/* Return whether CoreHdr C usese core_dumpxx structure.
FIXME: the core file format version number used here definitely indicates
that struct core_dumpxx should be used to represent the core file header,
but that may not be the only such format version number. */
#ifdef AIX_5_CORE
# define CORE_DUMPXX_VERSION 267312562
# define CNEW_IS_CORE_DUMPXX(c) ((c).new_dump.c_version == CORE_DUMPXX_VERSION)
#else
# define CNEW_IS_CORE_DUMPXX(c) 0
#endif
/* Return the c_stackorg field from struct core_dumpx C. */
#ifdef AIX_CORE_DUMPX_CORE
# define CNEW_STACKORG(c) (c).c_stackorg
#else
# define CNEW_STACKORG(c) 0
#endif
/* Return the offset to the loader region from struct core_dump C. */
#ifdef AIX_CORE_DUMPX_CORE
# define CNEW_LOADER(c) (c).c_loader
#else
# define CNEW_LOADER(c) 0
#endif
/* Return the offset to the loader region from struct core_dump C. */
#define COLD_LOADER(c) (c).c_tab
/* Return the c_lsize field from struct core_dumpx C. */
#ifdef AIX_CORE_DUMPX_CORE
# define CNEW_LSIZE(c) (c).c_lsize
#else
# define CNEW_LSIZE(c) 0
#endif
/* Return the c_dataorg field from struct core_dumpx C. */
#ifdef AIX_CORE_DUMPX_CORE
# define CNEW_DATAORG(c) (c).c_dataorg
#else
# define CNEW_DATAORG(c) 0
#endif
/* Return the c_datasize field from struct core_dumpx C. */
#ifdef AIX_CORE_DUMPX_CORE
# define CNEW_DATASIZE(c) (c).c_datasize
#else
# define CNEW_DATASIZE(c) 0
#endif
/* Return the c_impl field from struct core_dumpx C. */
#if defined (HAVE_ST_C_IMPL) || defined (AIX_5_CORE)
# define CNEW_IMPL(c) (c).c_impl
#else
# define CNEW_IMPL(c) 0
#endif
/* Return the command string from struct core_dumpx C. */
#ifdef AIX_CORE_DUMPX_CORE
# define CNEW_COMM(c) (c).c_u.U_proc.pi_comm
#else
# define CNEW_COMM(c) 0
#endif
/* Return the command string from struct core_dump C. */
#ifdef CORE_VERSION_1
# define COLD_COMM(c) (c).c_u.U_comm
#else
# define COLD_COMM(c) (c).c_u.u_comm
#endif
/* Return the struct __context64 pointer from struct core_dumpx C. */
#ifdef AIX_CORE_DUMPX_CORE
# define CNEW_CONTEXT64(c) (c).c_flt.hctx.r64
#else
# define CNEW_CONTEXT64(c) c
#endif
/* Return the struct mstsave pointer from struct core_dumpx C. */
#ifdef AIX_CORE_DUMPX_CORE
# define CNEW_MSTSAVE(c) (c).c_flt.hctx.r32
#else
# define CNEW_MSTSAVE(c) c
#endif
/* Return the struct mstsave pointer from struct core_dump C. */
#ifdef CORE_VERSION_1
# define COLD_MSTSAVE(c) (c).c_mst
#else
# define COLD_MSTSAVE(c) (c).c_u.u_save
#endif
/* Return whether struct core_dumpx is from a 64-bit process. */
#ifdef AIX_CORE_DUMPX_CORE
# define CNEW_PROC64(c) IS_PROC64(&(c).c_u.U_proc)
#else
# define CNEW_PROC64(c) 0
#endif
/* Magic end-of-stack addresses for old core dumps. This is _very_ fragile,
but I don't see any easy way to get that info right now. */
#ifdef CORE_VERSION_1
# define COLD_STACKEND 0x2ff23000
#else
# define COLD_STACKEND 0x2ff80000
#endif
/* Size of the leading portion that old and new core dump structures have in
common. */
#ifdef AIX_CORE_DUMPX_CORE
#define CORE_COMMONSZ ((long) &((struct core_dumpx *) 0)->c_entries \
+ sizeof (((struct core_dumpx *) 0)->c_entries))
#else
#define CORE_COMMONSZ ((int) &((struct core_dump *) 0)->c_entries \
+ sizeof (((struct core_dump *) 0)->c_entries))
#endif
/* Define prototypes for certain functions, to avoid a compiler warning
saying that they are missing. */
bfd_cleanup rs6000coff_core_p (bfd *abfd);
bool rs6000coff_core_file_matches_executable_p (bfd *core_bfd, bfd *exec_bfd);
char * rs6000coff_core_file_failing_command (bfd *abfd);
int rs6000coff_core_file_failing_signal (bfd *abfd);
/* Try to read into CORE the header from the core file associated with ABFD.
Return success. */
static bool
read_hdr (bfd *abfd, CoreHdr *core)
{
bfd_size_type size;
if (bfd_seek (abfd, 0, SEEK_SET) != 0)
return false;
/* Read the leading portion that old and new core dump structures have in
common. */
size = CORE_COMMONSZ;
if (bfd_read (core, size, abfd) != size)
return false;
/* Read the trailing portion of the structure. */
if (CORE_NEW (*core))
size = sizeof (core->new_dump);
#ifndef BFD64
else
size = sizeof (core->old);
#endif
size -= CORE_COMMONSZ;
return bfd_read ((char *) core + CORE_COMMONSZ, size, abfd) == size;
}
static asection *
make_bfd_asection (bfd *abfd, const char *name, flagword flags,
bfd_size_type size, bfd_vma vma, file_ptr filepos)
{
asection *asect;
asect = bfd_make_section_anyway_with_flags (abfd, name, flags);
if (!asect)
return NULL;
asect->size = size;
asect->vma = vma;
asect->filepos = filepos;
asect->alignment_power = 8;
return asect;
}
/* Decide if a given bfd represents a `core' file or not. There really is no
magic number or anything like, in rs6000coff. */
bfd_cleanup
rs6000coff_core_p (bfd *abfd)
{
CoreHdr core;
struct stat statbuf;
bfd_size_type size;
char *tmpptr;
/* Values from new and old core structures. */
int c_flag;
file_ptr c_stack, c_regoff, c_loader;
bfd_size_type c_size, c_regsize, c_lsize, c_extoff;
bfd_vma c_stackend;
void *c_regptr;
int proc64;
if (!read_hdr (abfd, &core))
{
if (bfd_get_error () != bfd_error_system_call)
bfd_set_error (bfd_error_wrong_format);
return NULL;
}
/* This isn't the right handler for 64-bit core files on AIX 5.x. */
if (CORE_NEW (core) && CNEW_IS_CORE_DUMPXX (core))
{
bfd_set_error (bfd_error_wrong_format);
return NULL;
}
/* Copy fields from new or old core structure. */
if (CORE_NEW (core))
{
c_flag = core.new_dump.c_flag;
c_stack = (file_ptr) core.new_dump.c_stack;
c_size = core.new_dump.c_size;
c_stackend = CNEW_STACKORG (core.new_dump) + c_size;
c_lsize = CNEW_LSIZE (core.new_dump);
c_loader = CNEW_LOADER (core.new_dump);
c_extoff = core.new_dump.c_extctx;
#ifndef BFD64
proc64 = CNEW_PROC64 (core.new_dump);
}
else
{
c_flag = core.old.c_flag;
c_stack = (file_ptr) (ptr_to_uint) core.old.c_stack;
c_size = core.old.c_size;
c_stackend = COLD_STACKEND;
c_lsize = 0x7ffffff;
c_loader = (file_ptr) (ptr_to_uint) COLD_LOADER (core.old);
#endif
proc64 = 0;
}
if (proc64)
{
c_regsize = sizeof (CNEW_CONTEXT64 (core.new_dump));
c_regptr = &CNEW_CONTEXT64 (core.new_dump);
}
else if (CORE_NEW (core))
{
c_regsize = sizeof (CNEW_MSTSAVE (core.new_dump));
c_regptr = &CNEW_MSTSAVE (core.new_dump);
}
#ifndef BFD64
else
{
c_regsize = sizeof (COLD_MSTSAVE (core.old));
c_regptr = &COLD_MSTSAVE (core.old);
}
#endif
c_regoff = (char *) c_regptr - (char *) &core;
if (bfd_stat (abfd, &statbuf) < 0)
{
bfd_set_error (bfd_error_system_call);
return NULL;
}
/* If the core file ulimit is too small, the system will first
omit the data segment, then omit the stack, then decline to
dump core altogether (as far as I know UBLOCK_VALID and LE_VALID
are always set) (this is based on experimentation on AIX 3.2).
Now, the thing is that GDB users will be surprised
if segments just silently don't appear (well, maybe they would
think to check "info files", I don't know).
For the data segment, we have no choice but to keep going if it's
not there, since the default behavior is not to dump it (regardless
of the ulimit, it's based on SA_FULLDUMP). But for the stack segment,
if it's not there, we refuse to have anything to do with this core
file. The usefulness of a core dump without a stack segment is pretty
limited anyway. */
if (!(c_flag & UBLOCK_VALID)
|| !(c_flag & LE_VALID))
{
bfd_set_error (bfd_error_wrong_format);
return NULL;
}
if (!(c_flag & USTACK_VALID))
{
bfd_set_error (bfd_error_file_truncated);
return NULL;
}
/* Don't check the core file size for a full core, AIX 4.1 includes
additional shared library sections in a full core. */
if (!(c_flag & (FULL_CORE | CORE_TRUNC)))
{
/* If the size is wrong, it means we're misinterpreting something. */
if (c_stack + (file_ptr) c_size != statbuf.st_size)
{
bfd_set_error (bfd_error_wrong_format);
return NULL;
}
}
/* Sanity check on the c_tab field. */
if (!CORE_NEW (core)
&& (
#ifndef BFD64
c_loader < (file_ptr) sizeof core.old
#else
c_loader < (file_ptr) sizeof core.new_dump
#endif
|| c_loader >= statbuf.st_size
|| c_loader >= c_stack))
{
bfd_set_error (bfd_error_wrong_format);
return NULL;
}
/* Issue warning if the core file was truncated during writing. */
if (c_flag & CORE_TRUNC)
_bfd_error_handler (_("%pB: warning core file truncated"), abfd);
/* Allocate core file header. */
#ifndef BFD64
size = CORE_NEW (core) ? sizeof (core.new_dump) : sizeof (core.old);
#else
size = sizeof (core.new_dump);
#endif
tmpptr = (char *) bfd_zalloc (abfd, (bfd_size_type) size);
if (!tmpptr)
return NULL;
/* Copy core file header. */
memcpy (tmpptr, &core, size);
set_tdata (abfd, tmpptr);
/* Set architecture. */
if (CORE_NEW (core))
{
enum bfd_architecture arch;
unsigned long mach;
switch (CNEW_IMPL (core.new_dump))
{
case POWER_RS1:
case POWER_RSC:
case POWER_RS2:
arch = bfd_arch_rs6000;
mach = bfd_mach_rs6k;
break;
default:
arch = bfd_arch_powerpc;
mach = bfd_mach_ppc;
break;
}
bfd_default_set_arch_mach (abfd, arch, mach);
}
/* .stack section. */
if (!make_bfd_asection (abfd, ".stack",
SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS,
c_size, c_stackend - c_size, c_stack))
goto fail;
/* .reg section for all registers. */
if (!make_bfd_asection (abfd, ".reg",
SEC_HAS_CONTENTS,
c_regsize, (bfd_vma) 0, c_regoff))
goto fail;
if (c_extoff)
{
if (!make_bfd_asection (abfd, ".aix-vmx",
SEC_HAS_CONTENTS,
560, (bfd_vma) 0, c_extoff))
goto fail;
if (!make_bfd_asection (abfd, ".aix-vsx",
SEC_HAS_CONTENTS,
256, (bfd_vma) 0, c_extoff + 584))
goto fail;
}
/* .ldinfo section.
To actually find out how long this section is in this particular
core dump would require going down the whole list of struct ld_info's.
See if we can just fake it. */
if (!make_bfd_asection (abfd, ".ldinfo",
SEC_HAS_CONTENTS,
c_lsize, (bfd_vma) 0, c_loader))
goto fail;
#ifndef CORE_VERSION_1
/* .data section if present.
AIX 3 dumps the complete data section and sets FULL_CORE if the
ulimit is large enough, otherwise the data section is omitted.
AIX 4 sets FULL_CORE even if the core file is truncated, we have
to examine core.c_datasize below to find out the actual size of
the .data section. */
if (c_flag & FULL_CORE)
{
if (!make_bfd_asection (abfd, ".data",
SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS,
(bfd_size_type) core.old.c_u.u_dsize,
(bfd_vma)
CDATA_ADDR (core.old.c_u.u_dsize),
c_stack + c_size))
goto fail;
}
#endif
#ifdef CORE_VERSION_1
/* AIX 4 adds data sections from loaded objects to the core file,
which can be found by examining ldinfo, and anonymously mmapped
regions. */
{
LdInfo ldinfo;
bfd_size_type ldi_datasize;
file_ptr ldi_core;
uint ldi_next;
bfd_vma ldi_dataorg;
bfd_vma core_dataorg;
/* Fields from new and old core structures. */
bfd_size_type c_datasize, c_vmregions;
file_ptr c_data, c_vmm;
if (CORE_NEW (core))
{
c_datasize = CNEW_DATASIZE (core.new_dump);
c_data = (file_ptr) core.new_dump.c_data;
c_vmregions = core.new_dump.c_vmregions;
c_vmm = (file_ptr) core.new_dump.c_vmm;
}
#ifndef BFD64
else
{
c_datasize = core.old.c_datasize;
c_data = (file_ptr) (ptr_to_uint) core.old.c_data;
c_vmregions = core.old.c_vmregions;
c_vmm = (file_ptr) (ptr_to_uint) core.old.c_vmm;
}
#endif
/* .data section from executable. */
if (c_datasize)
{
/* If Large Memory Model is used, then the .data segment should start from
BDATAORG which has been defined in the system header files. */
if (c_flag & CORE_BIGDATA)
core_dataorg = BDATAORG;
else
core_dataorg = CDATA_ADDR (c_datasize);
if (!make_bfd_asection (abfd, ".data",
SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS,
c_datasize,
(bfd_vma) core_dataorg,
c_data))
goto fail;
}
/* .data sections from loaded objects. */
if (proc64)
size = (unsigned long) ((LdInfo *) 0)->l64.ldinfo_filename;
else
size = (unsigned long) ((LdInfo *) 0)->l32.ldinfo_filename;
while (1)
{
if (bfd_seek (abfd, c_loader, SEEK_SET) != 0)
goto fail;
if (bfd_read (&ldinfo, size, abfd) != size)
goto fail;
if (proc64)
{
ldi_core = ldinfo.l64.ldinfo_core;
ldi_datasize = ldinfo.l64.ldinfo_datasize;
ldi_dataorg = (bfd_vma) ldinfo.l64.ldinfo_dataorg;
ldi_next = ldinfo.l64.ldinfo_next;
}
else
{
ldi_core = ldinfo.l32.ldinfo_core;
ldi_datasize = ldinfo.l32.ldinfo_datasize;
ldi_dataorg = (bfd_vma) (ptr_to_uint) ldinfo.l32.ldinfo_dataorg;
ldi_next = ldinfo.l32.ldinfo_next;
}
if (ldi_core)
if (!make_bfd_asection (abfd, ".data",
SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS,
ldi_datasize, ldi_dataorg, ldi_core))
goto fail;
if (ldi_next == 0)
break;
c_loader += ldi_next;
}
/* .vmdata sections from anonymously mmapped regions. */
if (c_vmregions)
{
bfd_size_type i;
if (bfd_seek (abfd, c_vmm, SEEK_SET) != 0)
goto fail;
for (i = 0; i < c_vmregions; i++)
{
VmInfo vminfo;
bfd_size_type vminfo_size;
file_ptr vminfo_offset;
bfd_vma vminfo_addr;
#ifndef BFD64
size = CORE_NEW (core) ? sizeof (vminfo.new_dump) : sizeof (vminfo.old);
#else
size = sizeof (vminfo.new_dump);
#endif
if (bfd_read (&vminfo, size, abfd) != size)
goto fail;
if (CORE_NEW (core))
{
vminfo_addr = (bfd_vma) vminfo.new_dump.vminfo_addr;
vminfo_size = vminfo.new_dump.vminfo_size;
vminfo_offset = vminfo.new_dump.vminfo_offset;
}
#ifndef BFD64
else
{
vminfo_addr = (bfd_vma) (ptr_to_uint) vminfo.old.vminfo_addr;
vminfo_size = vminfo.old.vminfo_size;
vminfo_offset = vminfo.old.vminfo_offset;
}
#endif
if (vminfo_offset)
if (!make_bfd_asection (abfd, ".vmdata",
SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS,
vminfo_size, vminfo_addr,
vminfo_offset))
goto fail;
}
}
}
#endif
return _bfd_no_cleanup;
fail:
bfd_release (abfd, abfd->tdata.any);
abfd->tdata.any = NULL;
bfd_section_list_clear (abfd);
return NULL;
}
/* Return `TRUE' if given core is from the given executable. */
bool
rs6000coff_core_file_matches_executable_p (bfd *core_bfd, bfd *exec_bfd)
{
CoreHdr core;
bfd_size_type size;
char *path, *s;
size_t alloc;
const char *str1, *str2;
bool ret;
file_ptr c_loader;
if (!read_hdr (core_bfd, &core))
return false;
if (CORE_NEW (core))
c_loader = CNEW_LOADER (core.new_dump);
#ifndef BFD64
else
c_loader = (file_ptr) (ptr_to_uint) COLD_LOADER (core.old);
#endif
if (CORE_NEW (core) && CNEW_PROC64 (core.new_dump))
size = (int) ((LdInfo *) 0)->l64.ldinfo_filename;
else
size = (int) ((LdInfo *) 0)->l32.ldinfo_filename;
if (bfd_seek (core_bfd, c_loader + size, SEEK_SET) != 0)
return false;
alloc = 100;
path = bfd_malloc ((bfd_size_type) alloc);
if (path == NULL)
return false;
s = path;
while (1)
{
if (bfd_read (s, 1, core_bfd) != 1)
{
free (path);
return false;
}
if (*s == '\0')
break;
++s;
if (s == path + alloc)
{
char *n;
alloc *= 2;
n = bfd_realloc (path, (bfd_size_type) alloc);
if (n == NULL)
{
free (path);
return false;
}
s = n + (path - s);
path = n;
}
}
str1 = strrchr (path, '/');
str2 = strrchr (bfd_get_filename (exec_bfd), '/');
/* step over character '/' */
str1 = str1 != NULL ? str1 + 1 : path;
str2 = str2 != NULL ? str2 + 1 : bfd_get_filename (exec_bfd);
if (strcmp (str1, str2) == 0)
ret = true;
else
ret = false;
free (path);
return ret;
}
char *
rs6000coff_core_file_failing_command (bfd *abfd)
{
CoreHdr *core = core_hdr (abfd);
#ifndef BFD64
char *com = CORE_NEW (*core) ?
CNEW_COMM (core->new_dump) : COLD_COMM (core->old);
#else
char *com = CNEW_COMM (core->new_dump);
#endif
if (*com)
return com;
else
return 0;
}
int
rs6000coff_core_file_failing_signal (bfd *abfd)
{
CoreHdr *core = core_hdr (abfd);
#ifndef BFD64
return CORE_NEW (*core) ? core->new_dump.c_signo : core->old.c_signo;
#else
return core->new_dump.c_signo;
#endif
}
#endif /* AIX_CORE */