mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-27 04:52:05 +08:00
3666a04883
This commits the result of running gdb/copyright.py as per our Start of New Year procedure... gdb/ChangeLog Update copyright year range in copyright header of all GDB files.
4021 lines
126 KiB
C
4021 lines
126 KiB
C
/* Target-dependent code for the IA-64 for GDB, the GNU debugger.
|
||
|
||
Copyright (C) 1999-2021 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include "inferior.h"
|
||
#include "gdbcore.h"
|
||
#include "arch-utils.h"
|
||
#include "floatformat.h"
|
||
#include "gdbtypes.h"
|
||
#include "regcache.h"
|
||
#include "reggroups.h"
|
||
#include "frame.h"
|
||
#include "frame-base.h"
|
||
#include "frame-unwind.h"
|
||
#include "target-float.h"
|
||
#include "value.h"
|
||
#include "objfiles.h"
|
||
#include "elf/common.h" /* for DT_PLTGOT value */
|
||
#include "elf-bfd.h"
|
||
#include "dis-asm.h"
|
||
#include "infcall.h"
|
||
#include "osabi.h"
|
||
#include "ia64-tdep.h"
|
||
#include "cp-abi.h"
|
||
|
||
#ifdef HAVE_LIBUNWIND_IA64_H
|
||
#include "elf/ia64.h" /* for PT_IA_64_UNWIND value */
|
||
#include "ia64-libunwind-tdep.h"
|
||
|
||
/* Note: KERNEL_START is supposed to be an address which is not going
|
||
to ever contain any valid unwind info. For ia64 linux, the choice
|
||
of 0xc000000000000000 is fairly safe since that's uncached space.
|
||
|
||
We use KERNEL_START as follows: after obtaining the kernel's
|
||
unwind table via getunwind(), we project its unwind data into
|
||
address-range KERNEL_START-(KERNEL_START+ktab_size) and then
|
||
when ia64_access_mem() sees a memory access to this
|
||
address-range, we redirect it to ktab instead.
|
||
|
||
None of this hackery is needed with a modern kernel/libcs
|
||
which uses the kernel virtual DSO to provide access to the
|
||
kernel's unwind info. In that case, ktab_size remains 0 and
|
||
hence the value of KERNEL_START doesn't matter. */
|
||
|
||
#define KERNEL_START 0xc000000000000000ULL
|
||
|
||
static size_t ktab_size = 0;
|
||
struct ia64_table_entry
|
||
{
|
||
uint64_t start_offset;
|
||
uint64_t end_offset;
|
||
uint64_t info_offset;
|
||
};
|
||
|
||
static struct ia64_table_entry *ktab = NULL;
|
||
static gdb::optional<gdb::byte_vector> ktab_buf;
|
||
|
||
#endif
|
||
|
||
/* An enumeration of the different IA-64 instruction types. */
|
||
|
||
typedef enum instruction_type
|
||
{
|
||
A, /* Integer ALU ; I-unit or M-unit */
|
||
I, /* Non-ALU integer; I-unit */
|
||
M, /* Memory ; M-unit */
|
||
F, /* Floating-point ; F-unit */
|
||
B, /* Branch ; B-unit */
|
||
L, /* Extended (L+X) ; I-unit */
|
||
X, /* Extended (L+X) ; I-unit */
|
||
undefined /* undefined or reserved */
|
||
} instruction_type;
|
||
|
||
/* We represent IA-64 PC addresses as the value of the instruction
|
||
pointer or'd with some bit combination in the low nibble which
|
||
represents the slot number in the bundle addressed by the
|
||
instruction pointer. The problem is that the Linux kernel
|
||
multiplies its slot numbers (for exceptions) by one while the
|
||
disassembler multiplies its slot numbers by 6. In addition, I've
|
||
heard it said that the simulator uses 1 as the multiplier.
|
||
|
||
I've fixed the disassembler so that the bytes_per_line field will
|
||
be the slot multiplier. If bytes_per_line comes in as zero, it
|
||
is set to six (which is how it was set up initially). -- objdump
|
||
displays pretty disassembly dumps with this value. For our purposes,
|
||
we'll set bytes_per_line to SLOT_MULTIPLIER. This is okay since we
|
||
never want to also display the raw bytes the way objdump does. */
|
||
|
||
#define SLOT_MULTIPLIER 1
|
||
|
||
/* Length in bytes of an instruction bundle. */
|
||
|
||
#define BUNDLE_LEN 16
|
||
|
||
/* See the saved memory layout comment for ia64_memory_insert_breakpoint. */
|
||
|
||
#if BREAKPOINT_MAX < BUNDLE_LEN - 2
|
||
# error "BREAKPOINT_MAX < BUNDLE_LEN - 2"
|
||
#endif
|
||
|
||
static gdbarch_init_ftype ia64_gdbarch_init;
|
||
|
||
static gdbarch_register_name_ftype ia64_register_name;
|
||
static gdbarch_register_type_ftype ia64_register_type;
|
||
static gdbarch_breakpoint_from_pc_ftype ia64_breakpoint_from_pc;
|
||
static gdbarch_skip_prologue_ftype ia64_skip_prologue;
|
||
static struct type *is_float_or_hfa_type (struct type *t);
|
||
static CORE_ADDR ia64_find_global_pointer (struct gdbarch *gdbarch,
|
||
CORE_ADDR faddr);
|
||
|
||
#define NUM_IA64_RAW_REGS 462
|
||
|
||
/* Big enough to hold a FP register in bytes. */
|
||
#define IA64_FP_REGISTER_SIZE 16
|
||
|
||
static int sp_regnum = IA64_GR12_REGNUM;
|
||
|
||
/* NOTE: we treat the register stack registers r32-r127 as
|
||
pseudo-registers because they may not be accessible via the ptrace
|
||
register get/set interfaces. */
|
||
|
||
enum pseudo_regs { FIRST_PSEUDO_REGNUM = NUM_IA64_RAW_REGS,
|
||
VBOF_REGNUM = IA64_NAT127_REGNUM + 1, V32_REGNUM,
|
||
V127_REGNUM = V32_REGNUM + 95,
|
||
VP0_REGNUM, VP16_REGNUM = VP0_REGNUM + 16,
|
||
VP63_REGNUM = VP0_REGNUM + 63, LAST_PSEUDO_REGNUM };
|
||
|
||
/* Array of register names; There should be ia64_num_regs strings in
|
||
the initializer. */
|
||
|
||
static const char * const ia64_register_names[] =
|
||
{ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
||
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
||
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
|
||
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
|
||
"", "", "", "", "", "", "", "",
|
||
"", "", "", "", "", "", "", "",
|
||
"", "", "", "", "", "", "", "",
|
||
"", "", "", "", "", "", "", "",
|
||
"", "", "", "", "", "", "", "",
|
||
"", "", "", "", "", "", "", "",
|
||
"", "", "", "", "", "", "", "",
|
||
"", "", "", "", "", "", "", "",
|
||
"", "", "", "", "", "", "", "",
|
||
"", "", "", "", "", "", "", "",
|
||
"", "", "", "", "", "", "", "",
|
||
"", "", "", "", "", "", "", "",
|
||
|
||
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
|
||
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
|
||
"f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
|
||
"f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
|
||
"f32", "f33", "f34", "f35", "f36", "f37", "f38", "f39",
|
||
"f40", "f41", "f42", "f43", "f44", "f45", "f46", "f47",
|
||
"f48", "f49", "f50", "f51", "f52", "f53", "f54", "f55",
|
||
"f56", "f57", "f58", "f59", "f60", "f61", "f62", "f63",
|
||
"f64", "f65", "f66", "f67", "f68", "f69", "f70", "f71",
|
||
"f72", "f73", "f74", "f75", "f76", "f77", "f78", "f79",
|
||
"f80", "f81", "f82", "f83", "f84", "f85", "f86", "f87",
|
||
"f88", "f89", "f90", "f91", "f92", "f93", "f94", "f95",
|
||
"f96", "f97", "f98", "f99", "f100", "f101", "f102", "f103",
|
||
"f104", "f105", "f106", "f107", "f108", "f109", "f110", "f111",
|
||
"f112", "f113", "f114", "f115", "f116", "f117", "f118", "f119",
|
||
"f120", "f121", "f122", "f123", "f124", "f125", "f126", "f127",
|
||
|
||
"", "", "", "", "", "", "", "",
|
||
"", "", "", "", "", "", "", "",
|
||
"", "", "", "", "", "", "", "",
|
||
"", "", "", "", "", "", "", "",
|
||
"", "", "", "", "", "", "", "",
|
||
"", "", "", "", "", "", "", "",
|
||
"", "", "", "", "", "", "", "",
|
||
"", "", "", "", "", "", "", "",
|
||
|
||
"b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7",
|
||
|
||
"vfp", "vrap",
|
||
|
||
"pr", "ip", "psr", "cfm",
|
||
|
||
"kr0", "kr1", "kr2", "kr3", "kr4", "kr5", "kr6", "kr7",
|
||
"", "", "", "", "", "", "", "",
|
||
"rsc", "bsp", "bspstore", "rnat",
|
||
"", "fcr", "", "",
|
||
"eflag", "csd", "ssd", "cflg", "fsr", "fir", "fdr", "",
|
||
"ccv", "", "", "", "unat", "", "", "",
|
||
"fpsr", "", "", "", "itc",
|
||
"", "", "", "", "", "", "", "", "", "",
|
||
"", "", "", "", "", "", "", "", "",
|
||
"pfs", "lc", "ec",
|
||
"", "", "", "", "", "", "", "", "", "",
|
||
"", "", "", "", "", "", "", "", "", "",
|
||
"", "", "", "", "", "", "", "", "", "",
|
||
"", "", "", "", "", "", "", "", "", "",
|
||
"", "", "", "", "", "", "", "", "", "",
|
||
"", "", "", "", "", "", "", "", "", "",
|
||
"",
|
||
"nat0", "nat1", "nat2", "nat3", "nat4", "nat5", "nat6", "nat7",
|
||
"nat8", "nat9", "nat10", "nat11", "nat12", "nat13", "nat14", "nat15",
|
||
"nat16", "nat17", "nat18", "nat19", "nat20", "nat21", "nat22", "nat23",
|
||
"nat24", "nat25", "nat26", "nat27", "nat28", "nat29", "nat30", "nat31",
|
||
"nat32", "nat33", "nat34", "nat35", "nat36", "nat37", "nat38", "nat39",
|
||
"nat40", "nat41", "nat42", "nat43", "nat44", "nat45", "nat46", "nat47",
|
||
"nat48", "nat49", "nat50", "nat51", "nat52", "nat53", "nat54", "nat55",
|
||
"nat56", "nat57", "nat58", "nat59", "nat60", "nat61", "nat62", "nat63",
|
||
"nat64", "nat65", "nat66", "nat67", "nat68", "nat69", "nat70", "nat71",
|
||
"nat72", "nat73", "nat74", "nat75", "nat76", "nat77", "nat78", "nat79",
|
||
"nat80", "nat81", "nat82", "nat83", "nat84", "nat85", "nat86", "nat87",
|
||
"nat88", "nat89", "nat90", "nat91", "nat92", "nat93", "nat94", "nat95",
|
||
"nat96", "nat97", "nat98", "nat99", "nat100","nat101","nat102","nat103",
|
||
"nat104","nat105","nat106","nat107","nat108","nat109","nat110","nat111",
|
||
"nat112","nat113","nat114","nat115","nat116","nat117","nat118","nat119",
|
||
"nat120","nat121","nat122","nat123","nat124","nat125","nat126","nat127",
|
||
|
||
"bof",
|
||
|
||
"r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
|
||
"r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
|
||
"r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
|
||
"r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
|
||
"r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
|
||
"r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
|
||
"r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
|
||
"r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
|
||
"r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
|
||
"r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
|
||
"r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
|
||
"r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
|
||
|
||
"p0", "p1", "p2", "p3", "p4", "p5", "p6", "p7",
|
||
"p8", "p9", "p10", "p11", "p12", "p13", "p14", "p15",
|
||
"p16", "p17", "p18", "p19", "p20", "p21", "p22", "p23",
|
||
"p24", "p25", "p26", "p27", "p28", "p29", "p30", "p31",
|
||
"p32", "p33", "p34", "p35", "p36", "p37", "p38", "p39",
|
||
"p40", "p41", "p42", "p43", "p44", "p45", "p46", "p47",
|
||
"p48", "p49", "p50", "p51", "p52", "p53", "p54", "p55",
|
||
"p56", "p57", "p58", "p59", "p60", "p61", "p62", "p63",
|
||
};
|
||
|
||
struct ia64_frame_cache
|
||
{
|
||
CORE_ADDR base; /* frame pointer base for frame */
|
||
CORE_ADDR pc; /* function start pc for frame */
|
||
CORE_ADDR saved_sp; /* stack pointer for frame */
|
||
CORE_ADDR bsp; /* points at r32 for the current frame */
|
||
CORE_ADDR cfm; /* cfm value for current frame */
|
||
CORE_ADDR prev_cfm; /* cfm value for previous frame */
|
||
int frameless;
|
||
int sof; /* Size of frame (decoded from cfm value). */
|
||
int sol; /* Size of locals (decoded from cfm value). */
|
||
int sor; /* Number of rotating registers (decoded from
|
||
cfm value). */
|
||
CORE_ADDR after_prologue;
|
||
/* Address of first instruction after the last
|
||
prologue instruction; Note that there may
|
||
be instructions from the function's body
|
||
intermingled with the prologue. */
|
||
int mem_stack_frame_size;
|
||
/* Size of the memory stack frame (may be zero),
|
||
or -1 if it has not been determined yet. */
|
||
int fp_reg; /* Register number (if any) used a frame pointer
|
||
for this frame. 0 if no register is being used
|
||
as the frame pointer. */
|
||
|
||
/* Saved registers. */
|
||
CORE_ADDR saved_regs[NUM_IA64_RAW_REGS];
|
||
|
||
};
|
||
|
||
static int
|
||
floatformat_valid (const struct floatformat *fmt, const void *from)
|
||
{
|
||
return 1;
|
||
}
|
||
|
||
static const struct floatformat floatformat_ia64_ext_little =
|
||
{
|
||
floatformat_little, 82, 0, 1, 17, 65535, 0x1ffff, 18, 64,
|
||
floatformat_intbit_yes, "floatformat_ia64_ext_little", floatformat_valid, NULL
|
||
};
|
||
|
||
static const struct floatformat floatformat_ia64_ext_big =
|
||
{
|
||
floatformat_big, 82, 46, 47, 17, 65535, 0x1ffff, 64, 64,
|
||
floatformat_intbit_yes, "floatformat_ia64_ext_big", floatformat_valid
|
||
};
|
||
|
||
static const struct floatformat *floatformats_ia64_ext[2] =
|
||
{
|
||
&floatformat_ia64_ext_big,
|
||
&floatformat_ia64_ext_little
|
||
};
|
||
|
||
static struct type *
|
||
ia64_ext_type (struct gdbarch *gdbarch)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
if (!tdep->ia64_ext_type)
|
||
tdep->ia64_ext_type
|
||
= arch_float_type (gdbarch, 128, "builtin_type_ia64_ext",
|
||
floatformats_ia64_ext);
|
||
|
||
return tdep->ia64_ext_type;
|
||
}
|
||
|
||
static int
|
||
ia64_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
|
||
struct reggroup *group)
|
||
{
|
||
int vector_p;
|
||
int float_p;
|
||
int raw_p;
|
||
if (group == all_reggroup)
|
||
return 1;
|
||
vector_p = register_type (gdbarch, regnum)->is_vector ();
|
||
float_p = register_type (gdbarch, regnum)->code () == TYPE_CODE_FLT;
|
||
raw_p = regnum < NUM_IA64_RAW_REGS;
|
||
if (group == float_reggroup)
|
||
return float_p;
|
||
if (group == vector_reggroup)
|
||
return vector_p;
|
||
if (group == general_reggroup)
|
||
return (!vector_p && !float_p);
|
||
if (group == save_reggroup || group == restore_reggroup)
|
||
return raw_p;
|
||
return 0;
|
||
}
|
||
|
||
static const char *
|
||
ia64_register_name (struct gdbarch *gdbarch, int reg)
|
||
{
|
||
return ia64_register_names[reg];
|
||
}
|
||
|
||
struct type *
|
||
ia64_register_type (struct gdbarch *arch, int reg)
|
||
{
|
||
if (reg >= IA64_FR0_REGNUM && reg <= IA64_FR127_REGNUM)
|
||
return ia64_ext_type (arch);
|
||
else
|
||
return builtin_type (arch)->builtin_long;
|
||
}
|
||
|
||
static int
|
||
ia64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
|
||
{
|
||
if (reg >= IA64_GR32_REGNUM && reg <= IA64_GR127_REGNUM)
|
||
return V32_REGNUM + (reg - IA64_GR32_REGNUM);
|
||
return reg;
|
||
}
|
||
|
||
|
||
/* Extract ``len'' bits from an instruction bundle starting at
|
||
bit ``from''. */
|
||
|
||
static long long
|
||
extract_bit_field (const gdb_byte *bundle, int from, int len)
|
||
{
|
||
long long result = 0LL;
|
||
int to = from + len;
|
||
int from_byte = from / 8;
|
||
int to_byte = to / 8;
|
||
unsigned char *b = (unsigned char *) bundle;
|
||
unsigned char c;
|
||
int lshift;
|
||
int i;
|
||
|
||
c = b[from_byte];
|
||
if (from_byte == to_byte)
|
||
c = ((unsigned char) (c << (8 - to % 8))) >> (8 - to % 8);
|
||
result = c >> (from % 8);
|
||
lshift = 8 - (from % 8);
|
||
|
||
for (i = from_byte+1; i < to_byte; i++)
|
||
{
|
||
result |= ((long long) b[i]) << lshift;
|
||
lshift += 8;
|
||
}
|
||
|
||
if (from_byte < to_byte && (to % 8 != 0))
|
||
{
|
||
c = b[to_byte];
|
||
c = ((unsigned char) (c << (8 - to % 8))) >> (8 - to % 8);
|
||
result |= ((long long) c) << lshift;
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Replace the specified bits in an instruction bundle. */
|
||
|
||
static void
|
||
replace_bit_field (gdb_byte *bundle, long long val, int from, int len)
|
||
{
|
||
int to = from + len;
|
||
int from_byte = from / 8;
|
||
int to_byte = to / 8;
|
||
unsigned char *b = (unsigned char *) bundle;
|
||
unsigned char c;
|
||
|
||
if (from_byte == to_byte)
|
||
{
|
||
unsigned char left, right;
|
||
c = b[from_byte];
|
||
left = (c >> (to % 8)) << (to % 8);
|
||
right = ((unsigned char) (c << (8 - from % 8))) >> (8 - from % 8);
|
||
c = (unsigned char) (val & 0xff);
|
||
c = (unsigned char) (c << (from % 8 + 8 - to % 8)) >> (8 - to % 8);
|
||
c |= right | left;
|
||
b[from_byte] = c;
|
||
}
|
||
else
|
||
{
|
||
int i;
|
||
c = b[from_byte];
|
||
c = ((unsigned char) (c << (8 - from % 8))) >> (8 - from % 8);
|
||
c = c | (val << (from % 8));
|
||
b[from_byte] = c;
|
||
val >>= 8 - from % 8;
|
||
|
||
for (i = from_byte+1; i < to_byte; i++)
|
||
{
|
||
c = val & 0xff;
|
||
val >>= 8;
|
||
b[i] = c;
|
||
}
|
||
|
||
if (to % 8 != 0)
|
||
{
|
||
unsigned char cv = (unsigned char) val;
|
||
c = b[to_byte];
|
||
c = c >> (to % 8) << (to % 8);
|
||
c |= ((unsigned char) (cv << (8 - to % 8))) >> (8 - to % 8);
|
||
b[to_byte] = c;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Return the contents of slot N (for N = 0, 1, or 2) in
|
||
and instruction bundle. */
|
||
|
||
static long long
|
||
slotN_contents (gdb_byte *bundle, int slotnum)
|
||
{
|
||
return extract_bit_field (bundle, 5+41*slotnum, 41);
|
||
}
|
||
|
||
/* Store an instruction in an instruction bundle. */
|
||
|
||
static void
|
||
replace_slotN_contents (gdb_byte *bundle, long long instr, int slotnum)
|
||
{
|
||
replace_bit_field (bundle, instr, 5+41*slotnum, 41);
|
||
}
|
||
|
||
static const enum instruction_type template_encoding_table[32][3] =
|
||
{
|
||
{ M, I, I }, /* 00 */
|
||
{ M, I, I }, /* 01 */
|
||
{ M, I, I }, /* 02 */
|
||
{ M, I, I }, /* 03 */
|
||
{ M, L, X }, /* 04 */
|
||
{ M, L, X }, /* 05 */
|
||
{ undefined, undefined, undefined }, /* 06 */
|
||
{ undefined, undefined, undefined }, /* 07 */
|
||
{ M, M, I }, /* 08 */
|
||
{ M, M, I }, /* 09 */
|
||
{ M, M, I }, /* 0A */
|
||
{ M, M, I }, /* 0B */
|
||
{ M, F, I }, /* 0C */
|
||
{ M, F, I }, /* 0D */
|
||
{ M, M, F }, /* 0E */
|
||
{ M, M, F }, /* 0F */
|
||
{ M, I, B }, /* 10 */
|
||
{ M, I, B }, /* 11 */
|
||
{ M, B, B }, /* 12 */
|
||
{ M, B, B }, /* 13 */
|
||
{ undefined, undefined, undefined }, /* 14 */
|
||
{ undefined, undefined, undefined }, /* 15 */
|
||
{ B, B, B }, /* 16 */
|
||
{ B, B, B }, /* 17 */
|
||
{ M, M, B }, /* 18 */
|
||
{ M, M, B }, /* 19 */
|
||
{ undefined, undefined, undefined }, /* 1A */
|
||
{ undefined, undefined, undefined }, /* 1B */
|
||
{ M, F, B }, /* 1C */
|
||
{ M, F, B }, /* 1D */
|
||
{ undefined, undefined, undefined }, /* 1E */
|
||
{ undefined, undefined, undefined }, /* 1F */
|
||
};
|
||
|
||
/* Fetch and (partially) decode an instruction at ADDR and return the
|
||
address of the next instruction to fetch. */
|
||
|
||
static CORE_ADDR
|
||
fetch_instruction (CORE_ADDR addr, instruction_type *it, long long *instr)
|
||
{
|
||
gdb_byte bundle[BUNDLE_LEN];
|
||
int slotnum = (int) (addr & 0x0f) / SLOT_MULTIPLIER;
|
||
long long templ;
|
||
int val;
|
||
|
||
/* Warn about slot numbers greater than 2. We used to generate
|
||
an error here on the assumption that the user entered an invalid
|
||
address. But, sometimes GDB itself requests an invalid address.
|
||
This can (easily) happen when execution stops in a function for
|
||
which there are no symbols. The prologue scanner will attempt to
|
||
find the beginning of the function - if the nearest symbol
|
||
happens to not be aligned on a bundle boundary (16 bytes), the
|
||
resulting starting address will cause GDB to think that the slot
|
||
number is too large.
|
||
|
||
So we warn about it and set the slot number to zero. It is
|
||
not necessarily a fatal condition, particularly if debugging
|
||
at the assembly language level. */
|
||
if (slotnum > 2)
|
||
{
|
||
warning (_("Can't fetch instructions for slot numbers greater than 2.\n"
|
||
"Using slot 0 instead"));
|
||
slotnum = 0;
|
||
}
|
||
|
||
addr &= ~0x0f;
|
||
|
||
val = target_read_memory (addr, bundle, BUNDLE_LEN);
|
||
|
||
if (val != 0)
|
||
return 0;
|
||
|
||
*instr = slotN_contents (bundle, slotnum);
|
||
templ = extract_bit_field (bundle, 0, 5);
|
||
*it = template_encoding_table[(int)templ][slotnum];
|
||
|
||
if (slotnum == 2 || (slotnum == 1 && *it == L))
|
||
addr += 16;
|
||
else
|
||
addr += (slotnum + 1) * SLOT_MULTIPLIER;
|
||
|
||
return addr;
|
||
}
|
||
|
||
/* There are 5 different break instructions (break.i, break.b,
|
||
break.m, break.f, and break.x), but they all have the same
|
||
encoding. (The five bit template in the low five bits of the
|
||
instruction bundle distinguishes one from another.)
|
||
|
||
The runtime architecture manual specifies that break instructions
|
||
used for debugging purposes must have the upper two bits of the 21
|
||
bit immediate set to a 0 and a 1 respectively. A breakpoint
|
||
instruction encodes the most significant bit of its 21 bit
|
||
immediate at bit 36 of the 41 bit instruction. The penultimate msb
|
||
is at bit 25 which leads to the pattern below.
|
||
|
||
Originally, I had this set up to do, e.g, a "break.i 0x80000" But
|
||
it turns out that 0x80000 was used as the syscall break in the early
|
||
simulators. So I changed the pattern slightly to do "break.i 0x080001"
|
||
instead. But that didn't work either (I later found out that this
|
||
pattern was used by the simulator that I was using.) So I ended up
|
||
using the pattern seen below.
|
||
|
||
SHADOW_CONTENTS has byte-based addressing (PLACED_ADDRESS and SHADOW_LEN)
|
||
while we need bit-based addressing as the instructions length is 41 bits and
|
||
we must not modify/corrupt the adjacent slots in the same bundle.
|
||
Fortunately we may store larger memory incl. the adjacent bits with the
|
||
original memory content (not the possibly already stored breakpoints there).
|
||
We need to be careful in ia64_memory_remove_breakpoint to always restore
|
||
only the specific bits of this instruction ignoring any adjacent stored
|
||
bits.
|
||
|
||
We use the original addressing with the low nibble in the range <0..2> which
|
||
gets incorrectly interpreted by generic non-ia64 breakpoint_restore_shadows
|
||
as the direct byte offset of SHADOW_CONTENTS. We store whole BUNDLE_LEN
|
||
bytes just without these two possibly skipped bytes to not to exceed to the
|
||
next bundle.
|
||
|
||
If we would like to store the whole bundle to SHADOW_CONTENTS we would have
|
||
to store already the base address (`address & ~0x0f') into PLACED_ADDRESS.
|
||
In such case there is no other place where to store
|
||
SLOTNUM (`adress & 0x0f', value in the range <0..2>). We need to know
|
||
SLOTNUM in ia64_memory_remove_breakpoint.
|
||
|
||
There is one special case where we need to be extra careful:
|
||
L-X instructions, which are instructions that occupy 2 slots
|
||
(The L part is always in slot 1, and the X part is always in
|
||
slot 2). We must refuse to insert breakpoints for an address
|
||
that points at slot 2 of a bundle where an L-X instruction is
|
||
present, since there is logically no instruction at that address.
|
||
However, to make things more interesting, the opcode of L-X
|
||
instructions is located in slot 2. This means that, to insert
|
||
a breakpoint at an address that points to slot 1, we actually
|
||
need to write the breakpoint in slot 2! Slot 1 is actually
|
||
the extended operand, so writing the breakpoint there would not
|
||
have the desired effect. Another side-effect of this issue
|
||
is that we need to make sure that the shadow contents buffer
|
||
does save byte 15 of our instruction bundle (this is the tail
|
||
end of slot 2, which wouldn't be saved if we were to insert
|
||
the breakpoint in slot 1).
|
||
|
||
ia64 16-byte bundle layout:
|
||
| 5 bits | slot 0 with 41 bits | slot 1 with 41 bits | slot 2 with 41 bits |
|
||
|
||
The current addressing used by the code below:
|
||
original PC placed_address placed_size required covered
|
||
== bp_tgt->shadow_len reqd \subset covered
|
||
0xABCDE0 0xABCDE0 0x10 <0x0...0x5> <0x0..0xF>
|
||
0xABCDE1 0xABCDE1 0xF <0x5...0xA> <0x1..0xF>
|
||
0xABCDE2 0xABCDE2 0xE <0xA...0xF> <0x2..0xF>
|
||
|
||
L-X instructions are treated a little specially, as explained above:
|
||
0xABCDE1 0xABCDE1 0xF <0xA...0xF> <0x1..0xF>
|
||
|
||
`objdump -d' and some other tools show a bit unjustified offsets:
|
||
original PC byte where starts the instruction objdump offset
|
||
0xABCDE0 0xABCDE0 0xABCDE0
|
||
0xABCDE1 0xABCDE5 0xABCDE6
|
||
0xABCDE2 0xABCDEA 0xABCDEC
|
||
*/
|
||
|
||
#define IA64_BREAKPOINT 0x00003333300LL
|
||
|
||
static int
|
||
ia64_memory_insert_breakpoint (struct gdbarch *gdbarch,
|
||
struct bp_target_info *bp_tgt)
|
||
{
|
||
CORE_ADDR addr = bp_tgt->placed_address = bp_tgt->reqstd_address;
|
||
gdb_byte bundle[BUNDLE_LEN];
|
||
int slotnum = (int) (addr & 0x0f) / SLOT_MULTIPLIER, shadow_slotnum;
|
||
long long instr_breakpoint;
|
||
int val;
|
||
int templ;
|
||
|
||
if (slotnum > 2)
|
||
error (_("Can't insert breakpoint for slot numbers greater than 2."));
|
||
|
||
addr &= ~0x0f;
|
||
|
||
/* Enable the automatic memory restoration from breakpoints while
|
||
we read our instruction bundle for the purpose of SHADOW_CONTENTS.
|
||
Otherwise, we could possibly store into the shadow parts of the adjacent
|
||
placed breakpoints. It is due to our SHADOW_CONTENTS overlapping the real
|
||
breakpoint instruction bits region. */
|
||
scoped_restore restore_memory_0
|
||
= make_scoped_restore_show_memory_breakpoints (0);
|
||
val = target_read_memory (addr, bundle, BUNDLE_LEN);
|
||
if (val != 0)
|
||
return val;
|
||
|
||
/* SHADOW_SLOTNUM saves the original slot number as expected by the caller
|
||
for addressing the SHADOW_CONTENTS placement. */
|
||
shadow_slotnum = slotnum;
|
||
|
||
/* Always cover the last byte of the bundle in case we are inserting
|
||
a breakpoint on an L-X instruction. */
|
||
bp_tgt->shadow_len = BUNDLE_LEN - shadow_slotnum;
|
||
|
||
templ = extract_bit_field (bundle, 0, 5);
|
||
if (template_encoding_table[templ][slotnum] == X)
|
||
{
|
||
/* X unit types can only be used in slot 2, and are actually
|
||
part of a 2-slot L-X instruction. We cannot break at this
|
||
address, as this is the second half of an instruction that
|
||
lives in slot 1 of that bundle. */
|
||
gdb_assert (slotnum == 2);
|
||
error (_("Can't insert breakpoint for non-existing slot X"));
|
||
}
|
||
if (template_encoding_table[templ][slotnum] == L)
|
||
{
|
||
/* L unit types can only be used in slot 1. But the associated
|
||
opcode for that instruction is in slot 2, so bump the slot number
|
||
accordingly. */
|
||
gdb_assert (slotnum == 1);
|
||
slotnum = 2;
|
||
}
|
||
|
||
/* Store the whole bundle, except for the initial skipped bytes by the slot
|
||
number interpreted as bytes offset in PLACED_ADDRESS. */
|
||
memcpy (bp_tgt->shadow_contents, bundle + shadow_slotnum,
|
||
bp_tgt->shadow_len);
|
||
|
||
/* Re-read the same bundle as above except that, this time, read it in order
|
||
to compute the new bundle inside which we will be inserting the
|
||
breakpoint. Therefore, disable the automatic memory restoration from
|
||
breakpoints while we read our instruction bundle. Otherwise, the general
|
||
restoration mechanism kicks in and we would possibly remove parts of the
|
||
adjacent placed breakpoints. It is due to our SHADOW_CONTENTS overlapping
|
||
the real breakpoint instruction bits region. */
|
||
scoped_restore restore_memory_1
|
||
= make_scoped_restore_show_memory_breakpoints (1);
|
||
val = target_read_memory (addr, bundle, BUNDLE_LEN);
|
||
if (val != 0)
|
||
return val;
|
||
|
||
/* Breakpoints already present in the code will get detected and not get
|
||
reinserted by bp_loc_is_permanent. Multiple breakpoints at the same
|
||
location cannot induce the internal error as they are optimized into
|
||
a single instance by update_global_location_list. */
|
||
instr_breakpoint = slotN_contents (bundle, slotnum);
|
||
if (instr_breakpoint == IA64_BREAKPOINT)
|
||
internal_error (__FILE__, __LINE__,
|
||
_("Address %s already contains a breakpoint."),
|
||
paddress (gdbarch, bp_tgt->placed_address));
|
||
replace_slotN_contents (bundle, IA64_BREAKPOINT, slotnum);
|
||
|
||
val = target_write_memory (addr + shadow_slotnum, bundle + shadow_slotnum,
|
||
bp_tgt->shadow_len);
|
||
|
||
return val;
|
||
}
|
||
|
||
static int
|
||
ia64_memory_remove_breakpoint (struct gdbarch *gdbarch,
|
||
struct bp_target_info *bp_tgt)
|
||
{
|
||
CORE_ADDR addr = bp_tgt->placed_address;
|
||
gdb_byte bundle_mem[BUNDLE_LEN], bundle_saved[BUNDLE_LEN];
|
||
int slotnum = (addr & 0x0f) / SLOT_MULTIPLIER, shadow_slotnum;
|
||
long long instr_breakpoint, instr_saved;
|
||
int val;
|
||
int templ;
|
||
|
||
addr &= ~0x0f;
|
||
|
||
/* Disable the automatic memory restoration from breakpoints while
|
||
we read our instruction bundle. Otherwise, the general restoration
|
||
mechanism kicks in and we would possibly remove parts of the adjacent
|
||
placed breakpoints. It is due to our SHADOW_CONTENTS overlapping the real
|
||
breakpoint instruction bits region. */
|
||
scoped_restore restore_memory_1
|
||
= make_scoped_restore_show_memory_breakpoints (1);
|
||
val = target_read_memory (addr, bundle_mem, BUNDLE_LEN);
|
||
if (val != 0)
|
||
return val;
|
||
|
||
/* SHADOW_SLOTNUM saves the original slot number as expected by the caller
|
||
for addressing the SHADOW_CONTENTS placement. */
|
||
shadow_slotnum = slotnum;
|
||
|
||
templ = extract_bit_field (bundle_mem, 0, 5);
|
||
if (template_encoding_table[templ][slotnum] == X)
|
||
{
|
||
/* X unit types can only be used in slot 2, and are actually
|
||
part of a 2-slot L-X instruction. We refuse to insert
|
||
breakpoints at this address, so there should be no reason
|
||
for us attempting to remove one there, except if the program's
|
||
code somehow got modified in memory. */
|
||
gdb_assert (slotnum == 2);
|
||
warning (_("Cannot remove breakpoint at address %s from non-existing "
|
||
"X-type slot, memory has changed underneath"),
|
||
paddress (gdbarch, bp_tgt->placed_address));
|
||
return -1;
|
||
}
|
||
if (template_encoding_table[templ][slotnum] == L)
|
||
{
|
||
/* L unit types can only be used in slot 1. But the breakpoint
|
||
was actually saved using slot 2, so update the slot number
|
||
accordingly. */
|
||
gdb_assert (slotnum == 1);
|
||
slotnum = 2;
|
||
}
|
||
|
||
gdb_assert (bp_tgt->shadow_len == BUNDLE_LEN - shadow_slotnum);
|
||
|
||
instr_breakpoint = slotN_contents (bundle_mem, slotnum);
|
||
if (instr_breakpoint != IA64_BREAKPOINT)
|
||
{
|
||
warning (_("Cannot remove breakpoint at address %s, "
|
||
"no break instruction at such address."),
|
||
paddress (gdbarch, bp_tgt->placed_address));
|
||
return -1;
|
||
}
|
||
|
||
/* Extract the original saved instruction from SLOTNUM normalizing its
|
||
bit-shift for INSTR_SAVED. */
|
||
memcpy (bundle_saved, bundle_mem, BUNDLE_LEN);
|
||
memcpy (bundle_saved + shadow_slotnum, bp_tgt->shadow_contents,
|
||
bp_tgt->shadow_len);
|
||
instr_saved = slotN_contents (bundle_saved, slotnum);
|
||
|
||
/* In BUNDLE_MEM, be careful to modify only the bits belonging to SLOTNUM
|
||
and not any of the other ones that are stored in SHADOW_CONTENTS. */
|
||
replace_slotN_contents (bundle_mem, instr_saved, slotnum);
|
||
val = target_write_raw_memory (addr, bundle_mem, BUNDLE_LEN);
|
||
|
||
return val;
|
||
}
|
||
|
||
/* Implement the breakpoint_kind_from_pc gdbarch method. */
|
||
|
||
static int
|
||
ia64_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
|
||
{
|
||
/* A place holder of gdbarch method breakpoint_kind_from_pc. */
|
||
return 0;
|
||
}
|
||
|
||
/* As gdbarch_breakpoint_from_pc ranges have byte granularity and ia64
|
||
instruction slots ranges are bit-granular (41 bits) we have to provide an
|
||
extended range as described for ia64_memory_insert_breakpoint. We also take
|
||
care of preserving the `break' instruction 21-bit (or 62-bit) parameter to
|
||
make a match for permanent breakpoints. */
|
||
|
||
static const gdb_byte *
|
||
ia64_breakpoint_from_pc (struct gdbarch *gdbarch,
|
||
CORE_ADDR *pcptr, int *lenptr)
|
||
{
|
||
CORE_ADDR addr = *pcptr;
|
||
static gdb_byte bundle[BUNDLE_LEN];
|
||
int slotnum = (int) (*pcptr & 0x0f) / SLOT_MULTIPLIER, shadow_slotnum;
|
||
long long instr_fetched;
|
||
int val;
|
||
int templ;
|
||
|
||
if (slotnum > 2)
|
||
error (_("Can't insert breakpoint for slot numbers greater than 2."));
|
||
|
||
addr &= ~0x0f;
|
||
|
||
/* Enable the automatic memory restoration from breakpoints while
|
||
we read our instruction bundle to match bp_loc_is_permanent. */
|
||
{
|
||
scoped_restore restore_memory_0
|
||
= make_scoped_restore_show_memory_breakpoints (0);
|
||
val = target_read_memory (addr, bundle, BUNDLE_LEN);
|
||
}
|
||
|
||
/* The memory might be unreachable. This can happen, for instance,
|
||
when the user inserts a breakpoint at an invalid address. */
|
||
if (val != 0)
|
||
return NULL;
|
||
|
||
/* SHADOW_SLOTNUM saves the original slot number as expected by the caller
|
||
for addressing the SHADOW_CONTENTS placement. */
|
||
shadow_slotnum = slotnum;
|
||
|
||
/* Cover always the last byte of the bundle for the L-X slot case. */
|
||
*lenptr = BUNDLE_LEN - shadow_slotnum;
|
||
|
||
/* Check for L type instruction in slot 1, if present then bump up the slot
|
||
number to the slot 2. */
|
||
templ = extract_bit_field (bundle, 0, 5);
|
||
if (template_encoding_table[templ][slotnum] == X)
|
||
{
|
||
gdb_assert (slotnum == 2);
|
||
error (_("Can't insert breakpoint for non-existing slot X"));
|
||
}
|
||
if (template_encoding_table[templ][slotnum] == L)
|
||
{
|
||
gdb_assert (slotnum == 1);
|
||
slotnum = 2;
|
||
}
|
||
|
||
/* A break instruction has its all its opcode bits cleared except for
|
||
the parameter value. For L+X slot pair we are at the X slot (slot 2) so
|
||
we should not touch the L slot - the upper 41 bits of the parameter. */
|
||
instr_fetched = slotN_contents (bundle, slotnum);
|
||
instr_fetched &= 0x1003ffffc0LL;
|
||
replace_slotN_contents (bundle, instr_fetched, slotnum);
|
||
|
||
return bundle + shadow_slotnum;
|
||
}
|
||
|
||
static CORE_ADDR
|
||
ia64_read_pc (readable_regcache *regcache)
|
||
{
|
||
ULONGEST psr_value, pc_value;
|
||
int slot_num;
|
||
|
||
regcache->cooked_read (IA64_PSR_REGNUM, &psr_value);
|
||
regcache->cooked_read (IA64_IP_REGNUM, &pc_value);
|
||
slot_num = (psr_value >> 41) & 3;
|
||
|
||
return pc_value | (slot_num * SLOT_MULTIPLIER);
|
||
}
|
||
|
||
void
|
||
ia64_write_pc (struct regcache *regcache, CORE_ADDR new_pc)
|
||
{
|
||
int slot_num = (int) (new_pc & 0xf) / SLOT_MULTIPLIER;
|
||
ULONGEST psr_value;
|
||
|
||
regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr_value);
|
||
psr_value &= ~(3LL << 41);
|
||
psr_value |= (ULONGEST)(slot_num & 0x3) << 41;
|
||
|
||
new_pc &= ~0xfLL;
|
||
|
||
regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr_value);
|
||
regcache_cooked_write_unsigned (regcache, IA64_IP_REGNUM, new_pc);
|
||
}
|
||
|
||
#define IS_NaT_COLLECTION_ADDR(addr) ((((addr) >> 3) & 0x3f) == 0x3f)
|
||
|
||
/* Returns the address of the slot that's NSLOTS slots away from
|
||
the address ADDR. NSLOTS may be positive or negative. */
|
||
static CORE_ADDR
|
||
rse_address_add(CORE_ADDR addr, int nslots)
|
||
{
|
||
CORE_ADDR new_addr;
|
||
int mandatory_nat_slots = nslots / 63;
|
||
int direction = nslots < 0 ? -1 : 1;
|
||
|
||
new_addr = addr + 8 * (nslots + mandatory_nat_slots);
|
||
|
||
if ((new_addr >> 9) != ((addr + 8 * 64 * mandatory_nat_slots) >> 9))
|
||
new_addr += 8 * direction;
|
||
|
||
if (IS_NaT_COLLECTION_ADDR(new_addr))
|
||
new_addr += 8 * direction;
|
||
|
||
return new_addr;
|
||
}
|
||
|
||
static enum register_status
|
||
ia64_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
|
||
int regnum, gdb_byte *buf)
|
||
{
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
enum register_status status;
|
||
|
||
if (regnum >= V32_REGNUM && regnum <= V127_REGNUM)
|
||
{
|
||
#ifdef HAVE_LIBUNWIND_IA64_H
|
||
/* First try and use the libunwind special reg accessor,
|
||
otherwise fallback to standard logic. */
|
||
if (!libunwind_is_initialized ()
|
||
|| libunwind_get_reg_special (gdbarch, regcache, regnum, buf) != 0)
|
||
#endif
|
||
{
|
||
/* The fallback position is to assume that r32-r127 are
|
||
found sequentially in memory starting at $bof. This
|
||
isn't always true, but without libunwind, this is the
|
||
best we can do. */
|
||
ULONGEST cfm;
|
||
ULONGEST bsp;
|
||
CORE_ADDR reg;
|
||
|
||
status = regcache->cooked_read (IA64_BSP_REGNUM, &bsp);
|
||
if (status != REG_VALID)
|
||
return status;
|
||
|
||
status = regcache->cooked_read (IA64_CFM_REGNUM, &cfm);
|
||
if (status != REG_VALID)
|
||
return status;
|
||
|
||
/* The bsp points at the end of the register frame so we
|
||
subtract the size of frame from it to get start of
|
||
register frame. */
|
||
bsp = rse_address_add (bsp, -(cfm & 0x7f));
|
||
|
||
if ((cfm & 0x7f) > regnum - V32_REGNUM)
|
||
{
|
||
ULONGEST reg_addr = rse_address_add (bsp, (regnum - V32_REGNUM));
|
||
reg = read_memory_integer ((CORE_ADDR)reg_addr, 8, byte_order);
|
||
store_unsigned_integer (buf, register_size (gdbarch, regnum),
|
||
byte_order, reg);
|
||
}
|
||
else
|
||
store_unsigned_integer (buf, register_size (gdbarch, regnum),
|
||
byte_order, 0);
|
||
}
|
||
}
|
||
else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM)
|
||
{
|
||
ULONGEST unatN_val;
|
||
ULONGEST unat;
|
||
|
||
status = regcache->cooked_read (IA64_UNAT_REGNUM, &unat);
|
||
if (status != REG_VALID)
|
||
return status;
|
||
unatN_val = (unat & (1LL << (regnum - IA64_NAT0_REGNUM))) != 0;
|
||
store_unsigned_integer (buf, register_size (gdbarch, regnum),
|
||
byte_order, unatN_val);
|
||
}
|
||
else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
|
||
{
|
||
ULONGEST natN_val = 0;
|
||
ULONGEST bsp;
|
||
ULONGEST cfm;
|
||
CORE_ADDR gr_addr = 0;
|
||
|
||
status = regcache->cooked_read (IA64_BSP_REGNUM, &bsp);
|
||
if (status != REG_VALID)
|
||
return status;
|
||
|
||
status = regcache->cooked_read (IA64_CFM_REGNUM, &cfm);
|
||
if (status != REG_VALID)
|
||
return status;
|
||
|
||
/* The bsp points at the end of the register frame so we
|
||
subtract the size of frame from it to get start of register frame. */
|
||
bsp = rse_address_add (bsp, -(cfm & 0x7f));
|
||
|
||
if ((cfm & 0x7f) > regnum - V32_REGNUM)
|
||
gr_addr = rse_address_add (bsp, (regnum - V32_REGNUM));
|
||
|
||
if (gr_addr != 0)
|
||
{
|
||
/* Compute address of nat collection bits. */
|
||
CORE_ADDR nat_addr = gr_addr | 0x1f8;
|
||
ULONGEST nat_collection;
|
||
int nat_bit;
|
||
/* If our nat collection address is bigger than bsp, we have to get
|
||
the nat collection from rnat. Otherwise, we fetch the nat
|
||
collection from the computed address. */
|
||
if (nat_addr >= bsp)
|
||
regcache->cooked_read (IA64_RNAT_REGNUM, &nat_collection);
|
||
else
|
||
nat_collection = read_memory_integer (nat_addr, 8, byte_order);
|
||
nat_bit = (gr_addr >> 3) & 0x3f;
|
||
natN_val = (nat_collection >> nat_bit) & 1;
|
||
}
|
||
|
||
store_unsigned_integer (buf, register_size (gdbarch, regnum),
|
||
byte_order, natN_val);
|
||
}
|
||
else if (regnum == VBOF_REGNUM)
|
||
{
|
||
/* A virtual register frame start is provided for user convenience.
|
||
It can be calculated as the bsp - sof (sizeof frame). */
|
||
ULONGEST bsp, vbsp;
|
||
ULONGEST cfm;
|
||
|
||
status = regcache->cooked_read (IA64_BSP_REGNUM, &bsp);
|
||
if (status != REG_VALID)
|
||
return status;
|
||
status = regcache->cooked_read (IA64_CFM_REGNUM, &cfm);
|
||
if (status != REG_VALID)
|
||
return status;
|
||
|
||
/* The bsp points at the end of the register frame so we
|
||
subtract the size of frame from it to get beginning of frame. */
|
||
vbsp = rse_address_add (bsp, -(cfm & 0x7f));
|
||
store_unsigned_integer (buf, register_size (gdbarch, regnum),
|
||
byte_order, vbsp);
|
||
}
|
||
else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
|
||
{
|
||
ULONGEST pr;
|
||
ULONGEST cfm;
|
||
ULONGEST prN_val;
|
||
|
||
status = regcache->cooked_read (IA64_PR_REGNUM, &pr);
|
||
if (status != REG_VALID)
|
||
return status;
|
||
status = regcache->cooked_read (IA64_CFM_REGNUM, &cfm);
|
||
if (status != REG_VALID)
|
||
return status;
|
||
|
||
if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM)
|
||
{
|
||
/* Fetch predicate register rename base from current frame
|
||
marker for this frame. */
|
||
int rrb_pr = (cfm >> 32) & 0x3f;
|
||
|
||
/* Adjust the register number to account for register rotation. */
|
||
regnum = VP16_REGNUM
|
||
+ ((regnum - VP16_REGNUM) + rrb_pr) % 48;
|
||
}
|
||
prN_val = (pr & (1LL << (regnum - VP0_REGNUM))) != 0;
|
||
store_unsigned_integer (buf, register_size (gdbarch, regnum),
|
||
byte_order, prN_val);
|
||
}
|
||
else
|
||
memset (buf, 0, register_size (gdbarch, regnum));
|
||
|
||
return REG_VALID;
|
||
}
|
||
|
||
static void
|
||
ia64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
|
||
int regnum, const gdb_byte *buf)
|
||
{
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
|
||
if (regnum >= V32_REGNUM && regnum <= V127_REGNUM)
|
||
{
|
||
ULONGEST bsp;
|
||
ULONGEST cfm;
|
||
regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
|
||
regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
|
||
|
||
bsp = rse_address_add (bsp, -(cfm & 0x7f));
|
||
|
||
if ((cfm & 0x7f) > regnum - V32_REGNUM)
|
||
{
|
||
ULONGEST reg_addr = rse_address_add (bsp, (regnum - V32_REGNUM));
|
||
write_memory (reg_addr, buf, 8);
|
||
}
|
||
}
|
||
else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM)
|
||
{
|
||
ULONGEST unatN_val, unat, unatN_mask;
|
||
regcache_cooked_read_unsigned (regcache, IA64_UNAT_REGNUM, &unat);
|
||
unatN_val = extract_unsigned_integer (buf, register_size (gdbarch,
|
||
regnum),
|
||
byte_order);
|
||
unatN_mask = (1LL << (regnum - IA64_NAT0_REGNUM));
|
||
if (unatN_val == 0)
|
||
unat &= ~unatN_mask;
|
||
else if (unatN_val == 1)
|
||
unat |= unatN_mask;
|
||
regcache_cooked_write_unsigned (regcache, IA64_UNAT_REGNUM, unat);
|
||
}
|
||
else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
|
||
{
|
||
ULONGEST natN_val;
|
||
ULONGEST bsp;
|
||
ULONGEST cfm;
|
||
CORE_ADDR gr_addr = 0;
|
||
regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
|
||
regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
|
||
|
||
/* The bsp points at the end of the register frame so we
|
||
subtract the size of frame from it to get start of register frame. */
|
||
bsp = rse_address_add (bsp, -(cfm & 0x7f));
|
||
|
||
if ((cfm & 0x7f) > regnum - V32_REGNUM)
|
||
gr_addr = rse_address_add (bsp, (regnum - V32_REGNUM));
|
||
|
||
natN_val = extract_unsigned_integer (buf, register_size (gdbarch,
|
||
regnum),
|
||
byte_order);
|
||
|
||
if (gr_addr != 0 && (natN_val == 0 || natN_val == 1))
|
||
{
|
||
/* Compute address of nat collection bits. */
|
||
CORE_ADDR nat_addr = gr_addr | 0x1f8;
|
||
CORE_ADDR nat_collection;
|
||
int natN_bit = (gr_addr >> 3) & 0x3f;
|
||
ULONGEST natN_mask = (1LL << natN_bit);
|
||
/* If our nat collection address is bigger than bsp, we have to get
|
||
the nat collection from rnat. Otherwise, we fetch the nat
|
||
collection from the computed address. */
|
||
if (nat_addr >= bsp)
|
||
{
|
||
regcache_cooked_read_unsigned (regcache,
|
||
IA64_RNAT_REGNUM,
|
||
&nat_collection);
|
||
if (natN_val)
|
||
nat_collection |= natN_mask;
|
||
else
|
||
nat_collection &= ~natN_mask;
|
||
regcache_cooked_write_unsigned (regcache, IA64_RNAT_REGNUM,
|
||
nat_collection);
|
||
}
|
||
else
|
||
{
|
||
gdb_byte nat_buf[8];
|
||
nat_collection = read_memory_integer (nat_addr, 8, byte_order);
|
||
if (natN_val)
|
||
nat_collection |= natN_mask;
|
||
else
|
||
nat_collection &= ~natN_mask;
|
||
store_unsigned_integer (nat_buf, register_size (gdbarch, regnum),
|
||
byte_order, nat_collection);
|
||
write_memory (nat_addr, nat_buf, 8);
|
||
}
|
||
}
|
||
}
|
||
else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
|
||
{
|
||
ULONGEST pr;
|
||
ULONGEST cfm;
|
||
ULONGEST prN_val;
|
||
ULONGEST prN_mask;
|
||
|
||
regcache_cooked_read_unsigned (regcache, IA64_PR_REGNUM, &pr);
|
||
regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
|
||
|
||
if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM)
|
||
{
|
||
/* Fetch predicate register rename base from current frame
|
||
marker for this frame. */
|
||
int rrb_pr = (cfm >> 32) & 0x3f;
|
||
|
||
/* Adjust the register number to account for register rotation. */
|
||
regnum = VP16_REGNUM
|
||
+ ((regnum - VP16_REGNUM) + rrb_pr) % 48;
|
||
}
|
||
prN_val = extract_unsigned_integer (buf, register_size (gdbarch, regnum),
|
||
byte_order);
|
||
prN_mask = (1LL << (regnum - VP0_REGNUM));
|
||
if (prN_val == 0)
|
||
pr &= ~prN_mask;
|
||
else if (prN_val == 1)
|
||
pr |= prN_mask;
|
||
regcache_cooked_write_unsigned (regcache, IA64_PR_REGNUM, pr);
|
||
}
|
||
}
|
||
|
||
/* The ia64 needs to convert between various ieee floating-point formats
|
||
and the special ia64 floating point register format. */
|
||
|
||
static int
|
||
ia64_convert_register_p (struct gdbarch *gdbarch, int regno, struct type *type)
|
||
{
|
||
return (regno >= IA64_FR0_REGNUM && regno <= IA64_FR127_REGNUM
|
||
&& type->code () == TYPE_CODE_FLT
|
||
&& type != ia64_ext_type (gdbarch));
|
||
}
|
||
|
||
static int
|
||
ia64_register_to_value (struct frame_info *frame, int regnum,
|
||
struct type *valtype, gdb_byte *out,
|
||
int *optimizedp, int *unavailablep)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (frame);
|
||
gdb_byte in[IA64_FP_REGISTER_SIZE];
|
||
|
||
/* Convert to TYPE. */
|
||
if (!get_frame_register_bytes (frame, regnum, 0,
|
||
register_size (gdbarch, regnum),
|
||
in, optimizedp, unavailablep))
|
||
return 0;
|
||
|
||
target_float_convert (in, ia64_ext_type (gdbarch), out, valtype);
|
||
*optimizedp = *unavailablep = 0;
|
||
return 1;
|
||
}
|
||
|
||
static void
|
||
ia64_value_to_register (struct frame_info *frame, int regnum,
|
||
struct type *valtype, const gdb_byte *in)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (frame);
|
||
gdb_byte out[IA64_FP_REGISTER_SIZE];
|
||
target_float_convert (in, valtype, out, ia64_ext_type (gdbarch));
|
||
put_frame_register (frame, regnum, out);
|
||
}
|
||
|
||
|
||
/* Limit the number of skipped non-prologue instructions since examining
|
||
of the prologue is expensive. */
|
||
static int max_skip_non_prologue_insns = 40;
|
||
|
||
/* Given PC representing the starting address of a function, and
|
||
LIM_PC which is the (sloppy) limit to which to scan when looking
|
||
for a prologue, attempt to further refine this limit by using
|
||
the line data in the symbol table. If successful, a better guess
|
||
on where the prologue ends is returned, otherwise the previous
|
||
value of lim_pc is returned. TRUST_LIMIT is a pointer to a flag
|
||
which will be set to indicate whether the returned limit may be
|
||
used with no further scanning in the event that the function is
|
||
frameless. */
|
||
|
||
/* FIXME: cagney/2004-02-14: This function and logic have largely been
|
||
superseded by skip_prologue_using_sal. */
|
||
|
||
static CORE_ADDR
|
||
refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc, int *trust_limit)
|
||
{
|
||
struct symtab_and_line prologue_sal;
|
||
CORE_ADDR start_pc = pc;
|
||
CORE_ADDR end_pc;
|
||
|
||
/* The prologue can not possibly go past the function end itself,
|
||
so we can already adjust LIM_PC accordingly. */
|
||
if (find_pc_partial_function (pc, NULL, NULL, &end_pc) && end_pc < lim_pc)
|
||
lim_pc = end_pc;
|
||
|
||
/* Start off not trusting the limit. */
|
||
*trust_limit = 0;
|
||
|
||
prologue_sal = find_pc_line (pc, 0);
|
||
if (prologue_sal.line != 0)
|
||
{
|
||
int i;
|
||
CORE_ADDR addr = prologue_sal.end;
|
||
|
||
/* Handle the case in which compiler's optimizer/scheduler
|
||
has moved instructions into the prologue. We scan ahead
|
||
in the function looking for address ranges whose corresponding
|
||
line number is less than or equal to the first one that we
|
||
found for the function. (It can be less than when the
|
||
scheduler puts a body instruction before the first prologue
|
||
instruction.) */
|
||
for (i = 2 * max_skip_non_prologue_insns;
|
||
i > 0 && (lim_pc == 0 || addr < lim_pc);
|
||
i--)
|
||
{
|
||
struct symtab_and_line sal;
|
||
|
||
sal = find_pc_line (addr, 0);
|
||
if (sal.line == 0)
|
||
break;
|
||
if (sal.line <= prologue_sal.line
|
||
&& sal.symtab == prologue_sal.symtab)
|
||
{
|
||
prologue_sal = sal;
|
||
}
|
||
addr = sal.end;
|
||
}
|
||
|
||
if (lim_pc == 0 || prologue_sal.end < lim_pc)
|
||
{
|
||
lim_pc = prologue_sal.end;
|
||
if (start_pc == get_pc_function_start (lim_pc))
|
||
*trust_limit = 1;
|
||
}
|
||
}
|
||
return lim_pc;
|
||
}
|
||
|
||
#define isScratch(_regnum_) ((_regnum_) == 2 || (_regnum_) == 3 \
|
||
|| (8 <= (_regnum_) && (_regnum_) <= 11) \
|
||
|| (14 <= (_regnum_) && (_regnum_) <= 31))
|
||
#define imm9(_instr_) \
|
||
( ((((_instr_) & 0x01000000000LL) ? -1 : 0) << 8) \
|
||
| (((_instr_) & 0x00008000000LL) >> 20) \
|
||
| (((_instr_) & 0x00000001fc0LL) >> 6))
|
||
|
||
/* Allocate and initialize a frame cache. */
|
||
|
||
static struct ia64_frame_cache *
|
||
ia64_alloc_frame_cache (void)
|
||
{
|
||
struct ia64_frame_cache *cache;
|
||
int i;
|
||
|
||
cache = FRAME_OBSTACK_ZALLOC (struct ia64_frame_cache);
|
||
|
||
/* Base address. */
|
||
cache->base = 0;
|
||
cache->pc = 0;
|
||
cache->cfm = 0;
|
||
cache->prev_cfm = 0;
|
||
cache->sof = 0;
|
||
cache->sol = 0;
|
||
cache->sor = 0;
|
||
cache->bsp = 0;
|
||
cache->fp_reg = 0;
|
||
cache->frameless = 1;
|
||
|
||
for (i = 0; i < NUM_IA64_RAW_REGS; i++)
|
||
cache->saved_regs[i] = 0;
|
||
|
||
return cache;
|
||
}
|
||
|
||
static CORE_ADDR
|
||
examine_prologue (CORE_ADDR pc, CORE_ADDR lim_pc,
|
||
struct frame_info *this_frame,
|
||
struct ia64_frame_cache *cache)
|
||
{
|
||
CORE_ADDR next_pc;
|
||
CORE_ADDR last_prologue_pc = pc;
|
||
instruction_type it;
|
||
long long instr;
|
||
int cfm_reg = 0;
|
||
int ret_reg = 0;
|
||
int fp_reg = 0;
|
||
int unat_save_reg = 0;
|
||
int pr_save_reg = 0;
|
||
int mem_stack_frame_size = 0;
|
||
int spill_reg = 0;
|
||
CORE_ADDR spill_addr = 0;
|
||
char instores[8];
|
||
char infpstores[8];
|
||
char reg_contents[256];
|
||
int trust_limit;
|
||
int frameless = 1;
|
||
int i;
|
||
CORE_ADDR addr;
|
||
gdb_byte buf[8];
|
||
CORE_ADDR bof, sor, sol, sof, cfm, rrb_gr;
|
||
|
||
memset (instores, 0, sizeof instores);
|
||
memset (infpstores, 0, sizeof infpstores);
|
||
memset (reg_contents, 0, sizeof reg_contents);
|
||
|
||
if (cache->after_prologue != 0
|
||
&& cache->after_prologue <= lim_pc)
|
||
return cache->after_prologue;
|
||
|
||
lim_pc = refine_prologue_limit (pc, lim_pc, &trust_limit);
|
||
next_pc = fetch_instruction (pc, &it, &instr);
|
||
|
||
/* We want to check if we have a recognizable function start before we
|
||
look ahead for a prologue. */
|
||
if (pc < lim_pc && next_pc
|
||
&& it == M && ((instr & 0x1ee0000003fLL) == 0x02c00000000LL))
|
||
{
|
||
/* alloc - start of a regular function. */
|
||
int sol_bits = (int) ((instr & 0x00007f00000LL) >> 20);
|
||
int sof_bits = (int) ((instr & 0x000000fe000LL) >> 13);
|
||
int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
|
||
|
||
/* Verify that the current cfm matches what we think is the
|
||
function start. If we have somehow jumped within a function,
|
||
we do not want to interpret the prologue and calculate the
|
||
addresses of various registers such as the return address.
|
||
We will instead treat the frame as frameless. */
|
||
if (!this_frame ||
|
||
(sof_bits == (cache->cfm & 0x7f) &&
|
||
sol_bits == ((cache->cfm >> 7) & 0x7f)))
|
||
frameless = 0;
|
||
|
||
cfm_reg = rN;
|
||
last_prologue_pc = next_pc;
|
||
pc = next_pc;
|
||
}
|
||
else
|
||
{
|
||
/* Look for a leaf routine. */
|
||
if (pc < lim_pc && next_pc
|
||
&& (it == I || it == M)
|
||
&& ((instr & 0x1ee00000000LL) == 0x10800000000LL))
|
||
{
|
||
/* adds rN = imm14, rM (or mov rN, rM when imm14 is 0) */
|
||
int imm = (int) ((((instr & 0x01000000000LL) ? -1 : 0) << 13)
|
||
| ((instr & 0x001f8000000LL) >> 20)
|
||
| ((instr & 0x000000fe000LL) >> 13));
|
||
int rM = (int) ((instr & 0x00007f00000LL) >> 20);
|
||
int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
|
||
int qp = (int) (instr & 0x0000000003fLL);
|
||
if (qp == 0 && rN == 2 && imm == 0 && rM == 12 && fp_reg == 0)
|
||
{
|
||
/* mov r2, r12 - beginning of leaf routine. */
|
||
fp_reg = rN;
|
||
last_prologue_pc = next_pc;
|
||
}
|
||
}
|
||
|
||
/* If we don't recognize a regular function or leaf routine, we are
|
||
done. */
|
||
if (!fp_reg)
|
||
{
|
||
pc = lim_pc;
|
||
if (trust_limit)
|
||
last_prologue_pc = lim_pc;
|
||
}
|
||
}
|
||
|
||
/* Loop, looking for prologue instructions, keeping track of
|
||
where preserved registers were spilled. */
|
||
while (pc < lim_pc)
|
||
{
|
||
next_pc = fetch_instruction (pc, &it, &instr);
|
||
if (next_pc == 0)
|
||
break;
|
||
|
||
if (it == B && ((instr & 0x1e1f800003fLL) != 0x04000000000LL))
|
||
{
|
||
/* Exit loop upon hitting a non-nop branch instruction. */
|
||
if (trust_limit)
|
||
lim_pc = pc;
|
||
break;
|
||
}
|
||
else if (((instr & 0x3fLL) != 0LL) &&
|
||
(frameless || ret_reg != 0))
|
||
{
|
||
/* Exit loop upon hitting a predicated instruction if
|
||
we already have the return register or if we are frameless. */
|
||
if (trust_limit)
|
||
lim_pc = pc;
|
||
break;
|
||
}
|
||
else if (it == I && ((instr & 0x1eff8000000LL) == 0x00188000000LL))
|
||
{
|
||
/* Move from BR */
|
||
int b2 = (int) ((instr & 0x0000000e000LL) >> 13);
|
||
int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
|
||
int qp = (int) (instr & 0x0000000003f);
|
||
|
||
if (qp == 0 && b2 == 0 && rN >= 32 && ret_reg == 0)
|
||
{
|
||
ret_reg = rN;
|
||
last_prologue_pc = next_pc;
|
||
}
|
||
}
|
||
else if ((it == I || it == M)
|
||
&& ((instr & 0x1ee00000000LL) == 0x10800000000LL))
|
||
{
|
||
/* adds rN = imm14, rM (or mov rN, rM when imm14 is 0) */
|
||
int imm = (int) ((((instr & 0x01000000000LL) ? -1 : 0) << 13)
|
||
| ((instr & 0x001f8000000LL) >> 20)
|
||
| ((instr & 0x000000fe000LL) >> 13));
|
||
int rM = (int) ((instr & 0x00007f00000LL) >> 20);
|
||
int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
|
||
int qp = (int) (instr & 0x0000000003fLL);
|
||
|
||
if (qp == 0 && rN >= 32 && imm == 0 && rM == 12 && fp_reg == 0)
|
||
{
|
||
/* mov rN, r12 */
|
||
fp_reg = rN;
|
||
last_prologue_pc = next_pc;
|
||
}
|
||
else if (qp == 0 && rN == 12 && rM == 12)
|
||
{
|
||
/* adds r12, -mem_stack_frame_size, r12 */
|
||
mem_stack_frame_size -= imm;
|
||
last_prologue_pc = next_pc;
|
||
}
|
||
else if (qp == 0 && rN == 2
|
||
&& ((rM == fp_reg && fp_reg != 0) || rM == 12))
|
||
{
|
||
CORE_ADDR saved_sp = 0;
|
||
/* adds r2, spilloffset, rFramePointer
|
||
or
|
||
adds r2, spilloffset, r12
|
||
|
||
Get ready for stf.spill or st8.spill instructions.
|
||
The address to start spilling at is loaded into r2.
|
||
FIXME: Why r2? That's what gcc currently uses; it
|
||
could well be different for other compilers. */
|
||
|
||
/* Hmm... whether or not this will work will depend on
|
||
where the pc is. If it's still early in the prologue
|
||
this'll be wrong. FIXME */
|
||
if (this_frame)
|
||
saved_sp = get_frame_register_unsigned (this_frame,
|
||
sp_regnum);
|
||
spill_addr = saved_sp
|
||
+ (rM == 12 ? 0 : mem_stack_frame_size)
|
||
+ imm;
|
||
spill_reg = rN;
|
||
last_prologue_pc = next_pc;
|
||
}
|
||
else if (qp == 0 && rM >= 32 && rM < 40 && !instores[rM-32] &&
|
||
rN < 256 && imm == 0)
|
||
{
|
||
/* mov rN, rM where rM is an input register. */
|
||
reg_contents[rN] = rM;
|
||
last_prologue_pc = next_pc;
|
||
}
|
||
else if (frameless && qp == 0 && rN == fp_reg && imm == 0 &&
|
||
rM == 2)
|
||
{
|
||
/* mov r12, r2 */
|
||
last_prologue_pc = next_pc;
|
||
break;
|
||
}
|
||
}
|
||
else if (it == M
|
||
&& ( ((instr & 0x1efc0000000LL) == 0x0eec0000000LL)
|
||
|| ((instr & 0x1ffc8000000LL) == 0x0cec0000000LL) ))
|
||
{
|
||
/* stf.spill [rN] = fM, imm9
|
||
or
|
||
stf.spill [rN] = fM */
|
||
|
||
int imm = imm9(instr);
|
||
int rN = (int) ((instr & 0x00007f00000LL) >> 20);
|
||
int fM = (int) ((instr & 0x000000fe000LL) >> 13);
|
||
int qp = (int) (instr & 0x0000000003fLL);
|
||
if (qp == 0 && rN == spill_reg && spill_addr != 0
|
||
&& ((2 <= fM && fM <= 5) || (16 <= fM && fM <= 31)))
|
||
{
|
||
cache->saved_regs[IA64_FR0_REGNUM + fM] = spill_addr;
|
||
|
||
if ((instr & 0x1efc0000000LL) == 0x0eec0000000LL)
|
||
spill_addr += imm;
|
||
else
|
||
spill_addr = 0; /* last one; must be done. */
|
||
last_prologue_pc = next_pc;
|
||
}
|
||
}
|
||
else if ((it == M && ((instr & 0x1eff8000000LL) == 0x02110000000LL))
|
||
|| (it == I && ((instr & 0x1eff8000000LL) == 0x00050000000LL)) )
|
||
{
|
||
/* mov.m rN = arM
|
||
or
|
||
mov.i rN = arM */
|
||
|
||
int arM = (int) ((instr & 0x00007f00000LL) >> 20);
|
||
int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
|
||
int qp = (int) (instr & 0x0000000003fLL);
|
||
if (qp == 0 && isScratch (rN) && arM == 36 /* ar.unat */)
|
||
{
|
||
/* We have something like "mov.m r3 = ar.unat". Remember the
|
||
r3 (or whatever) and watch for a store of this register... */
|
||
unat_save_reg = rN;
|
||
last_prologue_pc = next_pc;
|
||
}
|
||
}
|
||
else if (it == I && ((instr & 0x1eff8000000LL) == 0x00198000000LL))
|
||
{
|
||
/* mov rN = pr */
|
||
int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
|
||
int qp = (int) (instr & 0x0000000003fLL);
|
||
if (qp == 0 && isScratch (rN))
|
||
{
|
||
pr_save_reg = rN;
|
||
last_prologue_pc = next_pc;
|
||
}
|
||
}
|
||
else if (it == M
|
||
&& ( ((instr & 0x1ffc8000000LL) == 0x08cc0000000LL)
|
||
|| ((instr & 0x1efc0000000LL) == 0x0acc0000000LL)))
|
||
{
|
||
/* st8 [rN] = rM
|
||
or
|
||
st8 [rN] = rM, imm9 */
|
||
int rN = (int) ((instr & 0x00007f00000LL) >> 20);
|
||
int rM = (int) ((instr & 0x000000fe000LL) >> 13);
|
||
int qp = (int) (instr & 0x0000000003fLL);
|
||
int indirect = rM < 256 ? reg_contents[rM] : 0;
|
||
if (qp == 0 && rN == spill_reg && spill_addr != 0
|
||
&& (rM == unat_save_reg || rM == pr_save_reg))
|
||
{
|
||
/* We've found a spill of either the UNAT register or the PR
|
||
register. (Well, not exactly; what we've actually found is
|
||
a spill of the register that UNAT or PR was moved to).
|
||
Record that fact and move on... */
|
||
if (rM == unat_save_reg)
|
||
{
|
||
/* Track UNAT register. */
|
||
cache->saved_regs[IA64_UNAT_REGNUM] = spill_addr;
|
||
unat_save_reg = 0;
|
||
}
|
||
else
|
||
{
|
||
/* Track PR register. */
|
||
cache->saved_regs[IA64_PR_REGNUM] = spill_addr;
|
||
pr_save_reg = 0;
|
||
}
|
||
if ((instr & 0x1efc0000000LL) == 0x0acc0000000LL)
|
||
/* st8 [rN] = rM, imm9 */
|
||
spill_addr += imm9(instr);
|
||
else
|
||
spill_addr = 0; /* Must be done spilling. */
|
||
last_prologue_pc = next_pc;
|
||
}
|
||
else if (qp == 0 && 32 <= rM && rM < 40 && !instores[rM-32])
|
||
{
|
||
/* Allow up to one store of each input register. */
|
||
instores[rM-32] = 1;
|
||
last_prologue_pc = next_pc;
|
||
}
|
||
else if (qp == 0 && 32 <= indirect && indirect < 40 &&
|
||
!instores[indirect-32])
|
||
{
|
||
/* Allow an indirect store of an input register. */
|
||
instores[indirect-32] = 1;
|
||
last_prologue_pc = next_pc;
|
||
}
|
||
}
|
||
else if (it == M && ((instr & 0x1ff08000000LL) == 0x08c00000000LL))
|
||
{
|
||
/* One of
|
||
st1 [rN] = rM
|
||
st2 [rN] = rM
|
||
st4 [rN] = rM
|
||
st8 [rN] = rM
|
||
Note that the st8 case is handled in the clause above.
|
||
|
||
Advance over stores of input registers. One store per input
|
||
register is permitted. */
|
||
int rM = (int) ((instr & 0x000000fe000LL) >> 13);
|
||
int qp = (int) (instr & 0x0000000003fLL);
|
||
int indirect = rM < 256 ? reg_contents[rM] : 0;
|
||
if (qp == 0 && 32 <= rM && rM < 40 && !instores[rM-32])
|
||
{
|
||
instores[rM-32] = 1;
|
||
last_prologue_pc = next_pc;
|
||
}
|
||
else if (qp == 0 && 32 <= indirect && indirect < 40 &&
|
||
!instores[indirect-32])
|
||
{
|
||
/* Allow an indirect store of an input register. */
|
||
instores[indirect-32] = 1;
|
||
last_prologue_pc = next_pc;
|
||
}
|
||
}
|
||
else if (it == M && ((instr & 0x1ff88000000LL) == 0x0cc80000000LL))
|
||
{
|
||
/* Either
|
||
stfs [rN] = fM
|
||
or
|
||
stfd [rN] = fM
|
||
|
||
Advance over stores of floating point input registers. Again
|
||
one store per register is permitted. */
|
||
int fM = (int) ((instr & 0x000000fe000LL) >> 13);
|
||
int qp = (int) (instr & 0x0000000003fLL);
|
||
if (qp == 0 && 8 <= fM && fM < 16 && !infpstores[fM - 8])
|
||
{
|
||
infpstores[fM-8] = 1;
|
||
last_prologue_pc = next_pc;
|
||
}
|
||
}
|
||
else if (it == M
|
||
&& ( ((instr & 0x1ffc8000000LL) == 0x08ec0000000LL)
|
||
|| ((instr & 0x1efc0000000LL) == 0x0aec0000000LL)))
|
||
{
|
||
/* st8.spill [rN] = rM
|
||
or
|
||
st8.spill [rN] = rM, imm9 */
|
||
int rN = (int) ((instr & 0x00007f00000LL) >> 20);
|
||
int rM = (int) ((instr & 0x000000fe000LL) >> 13);
|
||
int qp = (int) (instr & 0x0000000003fLL);
|
||
if (qp == 0 && rN == spill_reg && 4 <= rM && rM <= 7)
|
||
{
|
||
/* We've found a spill of one of the preserved general purpose
|
||
regs. Record the spill address and advance the spill
|
||
register if appropriate. */
|
||
cache->saved_regs[IA64_GR0_REGNUM + rM] = spill_addr;
|
||
if ((instr & 0x1efc0000000LL) == 0x0aec0000000LL)
|
||
/* st8.spill [rN] = rM, imm9 */
|
||
spill_addr += imm9(instr);
|
||
else
|
||
spill_addr = 0; /* Done spilling. */
|
||
last_prologue_pc = next_pc;
|
||
}
|
||
}
|
||
|
||
pc = next_pc;
|
||
}
|
||
|
||
/* If not frameless and we aren't called by skip_prologue, then we need
|
||
to calculate registers for the previous frame which will be needed
|
||
later. */
|
||
|
||
if (!frameless && this_frame)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
|
||
/* Extract the size of the rotating portion of the stack
|
||
frame and the register rename base from the current
|
||
frame marker. */
|
||
cfm = cache->cfm;
|
||
sor = cache->sor;
|
||
sof = cache->sof;
|
||
sol = cache->sol;
|
||
rrb_gr = (cfm >> 18) & 0x7f;
|
||
|
||
/* Find the bof (beginning of frame). */
|
||
bof = rse_address_add (cache->bsp, -sof);
|
||
|
||
for (i = 0, addr = bof;
|
||
i < sof;
|
||
i++, addr += 8)
|
||
{
|
||
if (IS_NaT_COLLECTION_ADDR (addr))
|
||
{
|
||
addr += 8;
|
||
}
|
||
if (i+32 == cfm_reg)
|
||
cache->saved_regs[IA64_CFM_REGNUM] = addr;
|
||
if (i+32 == ret_reg)
|
||
cache->saved_regs[IA64_VRAP_REGNUM] = addr;
|
||
if (i+32 == fp_reg)
|
||
cache->saved_regs[IA64_VFP_REGNUM] = addr;
|
||
}
|
||
|
||
/* For the previous argument registers we require the previous bof.
|
||
If we can't find the previous cfm, then we can do nothing. */
|
||
cfm = 0;
|
||
if (cache->saved_regs[IA64_CFM_REGNUM] != 0)
|
||
{
|
||
cfm = read_memory_integer (cache->saved_regs[IA64_CFM_REGNUM],
|
||
8, byte_order);
|
||
}
|
||
else if (cfm_reg != 0)
|
||
{
|
||
get_frame_register (this_frame, cfm_reg, buf);
|
||
cfm = extract_unsigned_integer (buf, 8, byte_order);
|
||
}
|
||
cache->prev_cfm = cfm;
|
||
|
||
if (cfm != 0)
|
||
{
|
||
sor = ((cfm >> 14) & 0xf) * 8;
|
||
sof = (cfm & 0x7f);
|
||
sol = (cfm >> 7) & 0x7f;
|
||
rrb_gr = (cfm >> 18) & 0x7f;
|
||
|
||
/* The previous bof only requires subtraction of the sol (size of
|
||
locals) due to the overlap between output and input of
|
||
subsequent frames. */
|
||
bof = rse_address_add (bof, -sol);
|
||
|
||
for (i = 0, addr = bof;
|
||
i < sof;
|
||
i++, addr += 8)
|
||
{
|
||
if (IS_NaT_COLLECTION_ADDR (addr))
|
||
{
|
||
addr += 8;
|
||
}
|
||
if (i < sor)
|
||
cache->saved_regs[IA64_GR32_REGNUM
|
||
+ ((i + (sor - rrb_gr)) % sor)]
|
||
= addr;
|
||
else
|
||
cache->saved_regs[IA64_GR32_REGNUM + i] = addr;
|
||
}
|
||
|
||
}
|
||
}
|
||
|
||
/* Try and trust the lim_pc value whenever possible. */
|
||
if (trust_limit && lim_pc >= last_prologue_pc)
|
||
last_prologue_pc = lim_pc;
|
||
|
||
cache->frameless = frameless;
|
||
cache->after_prologue = last_prologue_pc;
|
||
cache->mem_stack_frame_size = mem_stack_frame_size;
|
||
cache->fp_reg = fp_reg;
|
||
|
||
return last_prologue_pc;
|
||
}
|
||
|
||
CORE_ADDR
|
||
ia64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
|
||
{
|
||
struct ia64_frame_cache cache;
|
||
cache.base = 0;
|
||
cache.after_prologue = 0;
|
||
cache.cfm = 0;
|
||
cache.bsp = 0;
|
||
|
||
/* Call examine_prologue with - as third argument since we don't
|
||
have a next frame pointer to send. */
|
||
return examine_prologue (pc, pc+1024, 0, &cache);
|
||
}
|
||
|
||
|
||
/* Normal frames. */
|
||
|
||
static struct ia64_frame_cache *
|
||
ia64_frame_cache (struct frame_info *this_frame, void **this_cache)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
struct ia64_frame_cache *cache;
|
||
gdb_byte buf[8];
|
||
CORE_ADDR cfm;
|
||
|
||
if (*this_cache)
|
||
return (struct ia64_frame_cache *) *this_cache;
|
||
|
||
cache = ia64_alloc_frame_cache ();
|
||
*this_cache = cache;
|
||
|
||
get_frame_register (this_frame, sp_regnum, buf);
|
||
cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order);
|
||
|
||
/* We always want the bsp to point to the end of frame.
|
||
This way, we can always get the beginning of frame (bof)
|
||
by subtracting frame size. */
|
||
get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
|
||
cache->bsp = extract_unsigned_integer (buf, 8, byte_order);
|
||
|
||
get_frame_register (this_frame, IA64_PSR_REGNUM, buf);
|
||
|
||
get_frame_register (this_frame, IA64_CFM_REGNUM, buf);
|
||
cfm = extract_unsigned_integer (buf, 8, byte_order);
|
||
|
||
cache->sof = (cfm & 0x7f);
|
||
cache->sol = (cfm >> 7) & 0x7f;
|
||
cache->sor = ((cfm >> 14) & 0xf) * 8;
|
||
|
||
cache->cfm = cfm;
|
||
|
||
cache->pc = get_frame_func (this_frame);
|
||
|
||
if (cache->pc != 0)
|
||
examine_prologue (cache->pc, get_frame_pc (this_frame), this_frame, cache);
|
||
|
||
cache->base = cache->saved_sp + cache->mem_stack_frame_size;
|
||
|
||
return cache;
|
||
}
|
||
|
||
static void
|
||
ia64_frame_this_id (struct frame_info *this_frame, void **this_cache,
|
||
struct frame_id *this_id)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
||
struct ia64_frame_cache *cache =
|
||
ia64_frame_cache (this_frame, this_cache);
|
||
|
||
/* If outermost frame, mark with null frame id. */
|
||
if (cache->base != 0)
|
||
(*this_id) = frame_id_build_special (cache->base, cache->pc, cache->bsp);
|
||
if (gdbarch_debug >= 1)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"regular frame id: code %s, stack %s, "
|
||
"special %s, this_frame %s\n",
|
||
paddress (gdbarch, this_id->code_addr),
|
||
paddress (gdbarch, this_id->stack_addr),
|
||
paddress (gdbarch, cache->bsp),
|
||
host_address_to_string (this_frame));
|
||
}
|
||
|
||
static struct value *
|
||
ia64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
|
||
int regnum)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
struct ia64_frame_cache *cache = ia64_frame_cache (this_frame, this_cache);
|
||
gdb_byte buf[8];
|
||
|
||
gdb_assert (regnum >= 0);
|
||
|
||
if (!target_has_registers ())
|
||
error (_("No registers."));
|
||
|
||
if (regnum == gdbarch_sp_regnum (gdbarch))
|
||
return frame_unwind_got_constant (this_frame, regnum, cache->base);
|
||
|
||
else if (regnum == IA64_BSP_REGNUM)
|
||
{
|
||
struct value *val;
|
||
CORE_ADDR prev_cfm, bsp, prev_bsp;
|
||
|
||
/* We want to calculate the previous bsp as the end of the previous
|
||
register stack frame. This corresponds to what the hardware bsp
|
||
register will be if we pop the frame back which is why we might
|
||
have been called. We know the beginning of the current frame is
|
||
cache->bsp - cache->sof. This value in the previous frame points
|
||
to the start of the output registers. We can calculate the end of
|
||
that frame by adding the size of output:
|
||
(sof (size of frame) - sol (size of locals)). */
|
||
val = ia64_frame_prev_register (this_frame, this_cache, IA64_CFM_REGNUM);
|
||
prev_cfm = extract_unsigned_integer (value_contents_all (val),
|
||
8, byte_order);
|
||
bsp = rse_address_add (cache->bsp, -(cache->sof));
|
||
prev_bsp =
|
||
rse_address_add (bsp, (prev_cfm & 0x7f) - ((prev_cfm >> 7) & 0x7f));
|
||
|
||
return frame_unwind_got_constant (this_frame, regnum, prev_bsp);
|
||
}
|
||
|
||
else if (regnum == IA64_CFM_REGNUM)
|
||
{
|
||
CORE_ADDR addr = cache->saved_regs[IA64_CFM_REGNUM];
|
||
|
||
if (addr != 0)
|
||
return frame_unwind_got_memory (this_frame, regnum, addr);
|
||
|
||
if (cache->prev_cfm)
|
||
return frame_unwind_got_constant (this_frame, regnum, cache->prev_cfm);
|
||
|
||
if (cache->frameless)
|
||
return frame_unwind_got_register (this_frame, IA64_PFS_REGNUM,
|
||
IA64_PFS_REGNUM);
|
||
return frame_unwind_got_register (this_frame, regnum, 0);
|
||
}
|
||
|
||
else if (regnum == IA64_VFP_REGNUM)
|
||
{
|
||
/* If the function in question uses an automatic register (r32-r127)
|
||
for the frame pointer, it'll be found by ia64_find_saved_register()
|
||
above. If the function lacks one of these frame pointers, we can
|
||
still provide a value since we know the size of the frame. */
|
||
return frame_unwind_got_constant (this_frame, regnum, cache->base);
|
||
}
|
||
|
||
else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
|
||
{
|
||
struct value *pr_val;
|
||
ULONGEST prN;
|
||
|
||
pr_val = ia64_frame_prev_register (this_frame, this_cache,
|
||
IA64_PR_REGNUM);
|
||
if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM)
|
||
{
|
||
/* Fetch predicate register rename base from current frame
|
||
marker for this frame. */
|
||
int rrb_pr = (cache->cfm >> 32) & 0x3f;
|
||
|
||
/* Adjust the register number to account for register rotation. */
|
||
regnum = VP16_REGNUM + ((regnum - VP16_REGNUM) + rrb_pr) % 48;
|
||
}
|
||
prN = extract_bit_field (value_contents_all (pr_val),
|
||
regnum - VP0_REGNUM, 1);
|
||
return frame_unwind_got_constant (this_frame, regnum, prN);
|
||
}
|
||
|
||
else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM)
|
||
{
|
||
struct value *unat_val;
|
||
ULONGEST unatN;
|
||
unat_val = ia64_frame_prev_register (this_frame, this_cache,
|
||
IA64_UNAT_REGNUM);
|
||
unatN = extract_bit_field (value_contents_all (unat_val),
|
||
regnum - IA64_NAT0_REGNUM, 1);
|
||
return frame_unwind_got_constant (this_frame, regnum, unatN);
|
||
}
|
||
|
||
else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
|
||
{
|
||
int natval = 0;
|
||
/* Find address of general register corresponding to nat bit we're
|
||
interested in. */
|
||
CORE_ADDR gr_addr;
|
||
|
||
gr_addr = cache->saved_regs[regnum - IA64_NAT0_REGNUM + IA64_GR0_REGNUM];
|
||
|
||
if (gr_addr != 0)
|
||
{
|
||
/* Compute address of nat collection bits. */
|
||
CORE_ADDR nat_addr = gr_addr | 0x1f8;
|
||
CORE_ADDR bsp;
|
||
CORE_ADDR nat_collection;
|
||
int nat_bit;
|
||
|
||
/* If our nat collection address is bigger than bsp, we have to get
|
||
the nat collection from rnat. Otherwise, we fetch the nat
|
||
collection from the computed address. */
|
||
get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
|
||
bsp = extract_unsigned_integer (buf, 8, byte_order);
|
||
if (nat_addr >= bsp)
|
||
{
|
||
get_frame_register (this_frame, IA64_RNAT_REGNUM, buf);
|
||
nat_collection = extract_unsigned_integer (buf, 8, byte_order);
|
||
}
|
||
else
|
||
nat_collection = read_memory_integer (nat_addr, 8, byte_order);
|
||
nat_bit = (gr_addr >> 3) & 0x3f;
|
||
natval = (nat_collection >> nat_bit) & 1;
|
||
}
|
||
|
||
return frame_unwind_got_constant (this_frame, regnum, natval);
|
||
}
|
||
|
||
else if (regnum == IA64_IP_REGNUM)
|
||
{
|
||
CORE_ADDR pc = 0;
|
||
CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM];
|
||
|
||
if (addr != 0)
|
||
{
|
||
read_memory (addr, buf, register_size (gdbarch, IA64_IP_REGNUM));
|
||
pc = extract_unsigned_integer (buf, 8, byte_order);
|
||
}
|
||
else if (cache->frameless)
|
||
{
|
||
get_frame_register (this_frame, IA64_BR0_REGNUM, buf);
|
||
pc = extract_unsigned_integer (buf, 8, byte_order);
|
||
}
|
||
pc &= ~0xf;
|
||
return frame_unwind_got_constant (this_frame, regnum, pc);
|
||
}
|
||
|
||
else if (regnum == IA64_PSR_REGNUM)
|
||
{
|
||
/* We don't know how to get the complete previous PSR, but we need it
|
||
for the slot information when we unwind the pc (pc is formed of IP
|
||
register plus slot information from PSR). To get the previous
|
||
slot information, we mask it off the return address. */
|
||
ULONGEST slot_num = 0;
|
||
CORE_ADDR pc = 0;
|
||
CORE_ADDR psr = 0;
|
||
CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM];
|
||
|
||
get_frame_register (this_frame, IA64_PSR_REGNUM, buf);
|
||
psr = extract_unsigned_integer (buf, 8, byte_order);
|
||
|
||
if (addr != 0)
|
||
{
|
||
read_memory (addr, buf, register_size (gdbarch, IA64_IP_REGNUM));
|
||
pc = extract_unsigned_integer (buf, 8, byte_order);
|
||
}
|
||
else if (cache->frameless)
|
||
{
|
||
get_frame_register (this_frame, IA64_BR0_REGNUM, buf);
|
||
pc = extract_unsigned_integer (buf, 8, byte_order);
|
||
}
|
||
psr &= ~(3LL << 41);
|
||
slot_num = pc & 0x3LL;
|
||
psr |= (CORE_ADDR)slot_num << 41;
|
||
return frame_unwind_got_constant (this_frame, regnum, psr);
|
||
}
|
||
|
||
else if (regnum == IA64_BR0_REGNUM)
|
||
{
|
||
CORE_ADDR addr = cache->saved_regs[IA64_BR0_REGNUM];
|
||
|
||
if (addr != 0)
|
||
return frame_unwind_got_memory (this_frame, regnum, addr);
|
||
|
||
return frame_unwind_got_constant (this_frame, regnum, 0);
|
||
}
|
||
|
||
else if ((regnum >= IA64_GR32_REGNUM && regnum <= IA64_GR127_REGNUM)
|
||
|| (regnum >= V32_REGNUM && regnum <= V127_REGNUM))
|
||
{
|
||
CORE_ADDR addr = 0;
|
||
|
||
if (regnum >= V32_REGNUM)
|
||
regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM);
|
||
addr = cache->saved_regs[regnum];
|
||
if (addr != 0)
|
||
return frame_unwind_got_memory (this_frame, regnum, addr);
|
||
|
||
if (cache->frameless)
|
||
{
|
||
struct value *reg_val;
|
||
CORE_ADDR prev_cfm, prev_bsp, prev_bof;
|
||
|
||
/* FIXME: brobecker/2008-05-01: Doesn't this seem redundant
|
||
with the same code above? */
|
||
if (regnum >= V32_REGNUM)
|
||
regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM);
|
||
reg_val = ia64_frame_prev_register (this_frame, this_cache,
|
||
IA64_CFM_REGNUM);
|
||
prev_cfm = extract_unsigned_integer (value_contents_all (reg_val),
|
||
8, byte_order);
|
||
reg_val = ia64_frame_prev_register (this_frame, this_cache,
|
||
IA64_BSP_REGNUM);
|
||
prev_bsp = extract_unsigned_integer (value_contents_all (reg_val),
|
||
8, byte_order);
|
||
prev_bof = rse_address_add (prev_bsp, -(prev_cfm & 0x7f));
|
||
|
||
addr = rse_address_add (prev_bof, (regnum - IA64_GR32_REGNUM));
|
||
return frame_unwind_got_memory (this_frame, regnum, addr);
|
||
}
|
||
|
||
return frame_unwind_got_constant (this_frame, regnum, 0);
|
||
}
|
||
|
||
else /* All other registers. */
|
||
{
|
||
CORE_ADDR addr = 0;
|
||
|
||
if (IA64_FR32_REGNUM <= regnum && regnum <= IA64_FR127_REGNUM)
|
||
{
|
||
/* Fetch floating point register rename base from current
|
||
frame marker for this frame. */
|
||
int rrb_fr = (cache->cfm >> 25) & 0x7f;
|
||
|
||
/* Adjust the floating point register number to account for
|
||
register rotation. */
|
||
regnum = IA64_FR32_REGNUM
|
||
+ ((regnum - IA64_FR32_REGNUM) + rrb_fr) % 96;
|
||
}
|
||
|
||
/* If we have stored a memory address, access the register. */
|
||
addr = cache->saved_regs[regnum];
|
||
if (addr != 0)
|
||
return frame_unwind_got_memory (this_frame, regnum, addr);
|
||
/* Otherwise, punt and get the current value of the register. */
|
||
else
|
||
return frame_unwind_got_register (this_frame, regnum, regnum);
|
||
}
|
||
}
|
||
|
||
static const struct frame_unwind ia64_frame_unwind =
|
||
{
|
||
NORMAL_FRAME,
|
||
default_frame_unwind_stop_reason,
|
||
&ia64_frame_this_id,
|
||
&ia64_frame_prev_register,
|
||
NULL,
|
||
default_frame_sniffer
|
||
};
|
||
|
||
/* Signal trampolines. */
|
||
|
||
static void
|
||
ia64_sigtramp_frame_init_saved_regs (struct frame_info *this_frame,
|
||
struct ia64_frame_cache *cache)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
if (tdep->sigcontext_register_address)
|
||
{
|
||
int regno;
|
||
|
||
cache->saved_regs[IA64_VRAP_REGNUM]
|
||
= tdep->sigcontext_register_address (gdbarch, cache->base,
|
||
IA64_IP_REGNUM);
|
||
cache->saved_regs[IA64_CFM_REGNUM]
|
||
= tdep->sigcontext_register_address (gdbarch, cache->base,
|
||
IA64_CFM_REGNUM);
|
||
cache->saved_regs[IA64_PSR_REGNUM]
|
||
= tdep->sigcontext_register_address (gdbarch, cache->base,
|
||
IA64_PSR_REGNUM);
|
||
cache->saved_regs[IA64_BSP_REGNUM]
|
||
= tdep->sigcontext_register_address (gdbarch, cache->base,
|
||
IA64_BSP_REGNUM);
|
||
cache->saved_regs[IA64_RNAT_REGNUM]
|
||
= tdep->sigcontext_register_address (gdbarch, cache->base,
|
||
IA64_RNAT_REGNUM);
|
||
cache->saved_regs[IA64_CCV_REGNUM]
|
||
= tdep->sigcontext_register_address (gdbarch, cache->base,
|
||
IA64_CCV_REGNUM);
|
||
cache->saved_regs[IA64_UNAT_REGNUM]
|
||
= tdep->sigcontext_register_address (gdbarch, cache->base,
|
||
IA64_UNAT_REGNUM);
|
||
cache->saved_regs[IA64_FPSR_REGNUM]
|
||
= tdep->sigcontext_register_address (gdbarch, cache->base,
|
||
IA64_FPSR_REGNUM);
|
||
cache->saved_regs[IA64_PFS_REGNUM]
|
||
= tdep->sigcontext_register_address (gdbarch, cache->base,
|
||
IA64_PFS_REGNUM);
|
||
cache->saved_regs[IA64_LC_REGNUM]
|
||
= tdep->sigcontext_register_address (gdbarch, cache->base,
|
||
IA64_LC_REGNUM);
|
||
|
||
for (regno = IA64_GR1_REGNUM; regno <= IA64_GR31_REGNUM; regno++)
|
||
cache->saved_regs[regno] =
|
||
tdep->sigcontext_register_address (gdbarch, cache->base, regno);
|
||
for (regno = IA64_BR0_REGNUM; regno <= IA64_BR7_REGNUM; regno++)
|
||
cache->saved_regs[regno] =
|
||
tdep->sigcontext_register_address (gdbarch, cache->base, regno);
|
||
for (regno = IA64_FR2_REGNUM; regno <= IA64_FR31_REGNUM; regno++)
|
||
cache->saved_regs[regno] =
|
||
tdep->sigcontext_register_address (gdbarch, cache->base, regno);
|
||
}
|
||
}
|
||
|
||
static struct ia64_frame_cache *
|
||
ia64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
struct ia64_frame_cache *cache;
|
||
gdb_byte buf[8];
|
||
|
||
if (*this_cache)
|
||
return (struct ia64_frame_cache *) *this_cache;
|
||
|
||
cache = ia64_alloc_frame_cache ();
|
||
|
||
get_frame_register (this_frame, sp_regnum, buf);
|
||
/* Note that frame size is hard-coded below. We cannot calculate it
|
||
via prologue examination. */
|
||
cache->base = extract_unsigned_integer (buf, 8, byte_order) + 16;
|
||
|
||
get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
|
||
cache->bsp = extract_unsigned_integer (buf, 8, byte_order);
|
||
|
||
get_frame_register (this_frame, IA64_CFM_REGNUM, buf);
|
||
cache->cfm = extract_unsigned_integer (buf, 8, byte_order);
|
||
cache->sof = cache->cfm & 0x7f;
|
||
|
||
ia64_sigtramp_frame_init_saved_regs (this_frame, cache);
|
||
|
||
*this_cache = cache;
|
||
return cache;
|
||
}
|
||
|
||
static void
|
||
ia64_sigtramp_frame_this_id (struct frame_info *this_frame,
|
||
void **this_cache, struct frame_id *this_id)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
||
struct ia64_frame_cache *cache =
|
||
ia64_sigtramp_frame_cache (this_frame, this_cache);
|
||
|
||
(*this_id) = frame_id_build_special (cache->base,
|
||
get_frame_pc (this_frame),
|
||
cache->bsp);
|
||
if (gdbarch_debug >= 1)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"sigtramp frame id: code %s, stack %s, "
|
||
"special %s, this_frame %s\n",
|
||
paddress (gdbarch, this_id->code_addr),
|
||
paddress (gdbarch, this_id->stack_addr),
|
||
paddress (gdbarch, cache->bsp),
|
||
host_address_to_string (this_frame));
|
||
}
|
||
|
||
static struct value *
|
||
ia64_sigtramp_frame_prev_register (struct frame_info *this_frame,
|
||
void **this_cache, int regnum)
|
||
{
|
||
struct ia64_frame_cache *cache =
|
||
ia64_sigtramp_frame_cache (this_frame, this_cache);
|
||
|
||
gdb_assert (regnum >= 0);
|
||
|
||
if (!target_has_registers ())
|
||
error (_("No registers."));
|
||
|
||
if (regnum == IA64_IP_REGNUM)
|
||
{
|
||
CORE_ADDR pc = 0;
|
||
CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM];
|
||
|
||
if (addr != 0)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
pc = read_memory_unsigned_integer (addr, 8, byte_order);
|
||
}
|
||
pc &= ~0xf;
|
||
return frame_unwind_got_constant (this_frame, regnum, pc);
|
||
}
|
||
|
||
else if ((regnum >= IA64_GR32_REGNUM && regnum <= IA64_GR127_REGNUM)
|
||
|| (regnum >= V32_REGNUM && regnum <= V127_REGNUM))
|
||
{
|
||
CORE_ADDR addr = 0;
|
||
|
||
if (regnum >= V32_REGNUM)
|
||
regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM);
|
||
addr = cache->saved_regs[regnum];
|
||
if (addr != 0)
|
||
return frame_unwind_got_memory (this_frame, regnum, addr);
|
||
|
||
return frame_unwind_got_constant (this_frame, regnum, 0);
|
||
}
|
||
|
||
else /* All other registers not listed above. */
|
||
{
|
||
CORE_ADDR addr = cache->saved_regs[regnum];
|
||
|
||
if (addr != 0)
|
||
return frame_unwind_got_memory (this_frame, regnum, addr);
|
||
|
||
return frame_unwind_got_constant (this_frame, regnum, 0);
|
||
}
|
||
}
|
||
|
||
static int
|
||
ia64_sigtramp_frame_sniffer (const struct frame_unwind *self,
|
||
struct frame_info *this_frame,
|
||
void **this_cache)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
|
||
if (tdep->pc_in_sigtramp)
|
||
{
|
||
CORE_ADDR pc = get_frame_pc (this_frame);
|
||
|
||
if (tdep->pc_in_sigtramp (pc))
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
static const struct frame_unwind ia64_sigtramp_frame_unwind =
|
||
{
|
||
SIGTRAMP_FRAME,
|
||
default_frame_unwind_stop_reason,
|
||
ia64_sigtramp_frame_this_id,
|
||
ia64_sigtramp_frame_prev_register,
|
||
NULL,
|
||
ia64_sigtramp_frame_sniffer
|
||
};
|
||
|
||
|
||
|
||
static CORE_ADDR
|
||
ia64_frame_base_address (struct frame_info *this_frame, void **this_cache)
|
||
{
|
||
struct ia64_frame_cache *cache = ia64_frame_cache (this_frame, this_cache);
|
||
|
||
return cache->base;
|
||
}
|
||
|
||
static const struct frame_base ia64_frame_base =
|
||
{
|
||
&ia64_frame_unwind,
|
||
ia64_frame_base_address,
|
||
ia64_frame_base_address,
|
||
ia64_frame_base_address
|
||
};
|
||
|
||
#ifdef HAVE_LIBUNWIND_IA64_H
|
||
|
||
struct ia64_unwind_table_entry
|
||
{
|
||
unw_word_t start_offset;
|
||
unw_word_t end_offset;
|
||
unw_word_t info_offset;
|
||
};
|
||
|
||
static __inline__ uint64_t
|
||
ia64_rse_slot_num (uint64_t addr)
|
||
{
|
||
return (addr >> 3) & 0x3f;
|
||
}
|
||
|
||
/* Skip over a designated number of registers in the backing
|
||
store, remembering every 64th position is for NAT. */
|
||
static __inline__ uint64_t
|
||
ia64_rse_skip_regs (uint64_t addr, long num_regs)
|
||
{
|
||
long delta = ia64_rse_slot_num(addr) + num_regs;
|
||
|
||
if (num_regs < 0)
|
||
delta -= 0x3e;
|
||
return addr + ((num_regs + delta/0x3f) << 3);
|
||
}
|
||
|
||
/* Gdb ia64-libunwind-tdep callback function to convert from an ia64 gdb
|
||
register number to a libunwind register number. */
|
||
static int
|
||
ia64_gdb2uw_regnum (int regnum)
|
||
{
|
||
if (regnum == sp_regnum)
|
||
return UNW_IA64_SP;
|
||
else if (regnum == IA64_BSP_REGNUM)
|
||
return UNW_IA64_BSP;
|
||
else if ((unsigned) (regnum - IA64_GR0_REGNUM) < 128)
|
||
return UNW_IA64_GR + (regnum - IA64_GR0_REGNUM);
|
||
else if ((unsigned) (regnum - V32_REGNUM) < 95)
|
||
return UNW_IA64_GR + 32 + (regnum - V32_REGNUM);
|
||
else if ((unsigned) (regnum - IA64_FR0_REGNUM) < 128)
|
||
return UNW_IA64_FR + (regnum - IA64_FR0_REGNUM);
|
||
else if ((unsigned) (regnum - IA64_PR0_REGNUM) < 64)
|
||
return -1;
|
||
else if ((unsigned) (regnum - IA64_BR0_REGNUM) < 8)
|
||
return UNW_IA64_BR + (regnum - IA64_BR0_REGNUM);
|
||
else if (regnum == IA64_PR_REGNUM)
|
||
return UNW_IA64_PR;
|
||
else if (regnum == IA64_IP_REGNUM)
|
||
return UNW_REG_IP;
|
||
else if (regnum == IA64_CFM_REGNUM)
|
||
return UNW_IA64_CFM;
|
||
else if ((unsigned) (regnum - IA64_AR0_REGNUM) < 128)
|
||
return UNW_IA64_AR + (regnum - IA64_AR0_REGNUM);
|
||
else if ((unsigned) (regnum - IA64_NAT0_REGNUM) < 128)
|
||
return UNW_IA64_NAT + (regnum - IA64_NAT0_REGNUM);
|
||
else
|
||
return -1;
|
||
}
|
||
|
||
/* Gdb ia64-libunwind-tdep callback function to convert from a libunwind
|
||
register number to a ia64 gdb register number. */
|
||
static int
|
||
ia64_uw2gdb_regnum (int uw_regnum)
|
||
{
|
||
if (uw_regnum == UNW_IA64_SP)
|
||
return sp_regnum;
|
||
else if (uw_regnum == UNW_IA64_BSP)
|
||
return IA64_BSP_REGNUM;
|
||
else if ((unsigned) (uw_regnum - UNW_IA64_GR) < 32)
|
||
return IA64_GR0_REGNUM + (uw_regnum - UNW_IA64_GR);
|
||
else if ((unsigned) (uw_regnum - UNW_IA64_GR) < 128)
|
||
return V32_REGNUM + (uw_regnum - (IA64_GR0_REGNUM + 32));
|
||
else if ((unsigned) (uw_regnum - UNW_IA64_FR) < 128)
|
||
return IA64_FR0_REGNUM + (uw_regnum - UNW_IA64_FR);
|
||
else if ((unsigned) (uw_regnum - UNW_IA64_BR) < 8)
|
||
return IA64_BR0_REGNUM + (uw_regnum - UNW_IA64_BR);
|
||
else if (uw_regnum == UNW_IA64_PR)
|
||
return IA64_PR_REGNUM;
|
||
else if (uw_regnum == UNW_REG_IP)
|
||
return IA64_IP_REGNUM;
|
||
else if (uw_regnum == UNW_IA64_CFM)
|
||
return IA64_CFM_REGNUM;
|
||
else if ((unsigned) (uw_regnum - UNW_IA64_AR) < 128)
|
||
return IA64_AR0_REGNUM + (uw_regnum - UNW_IA64_AR);
|
||
else if ((unsigned) (uw_regnum - UNW_IA64_NAT) < 128)
|
||
return IA64_NAT0_REGNUM + (uw_regnum - UNW_IA64_NAT);
|
||
else
|
||
return -1;
|
||
}
|
||
|
||
/* Gdb ia64-libunwind-tdep callback function to reveal if register is
|
||
a float register or not. */
|
||
static int
|
||
ia64_is_fpreg (int uw_regnum)
|
||
{
|
||
return unw_is_fpreg (uw_regnum);
|
||
}
|
||
|
||
/* Libunwind callback accessor function for general registers. */
|
||
static int
|
||
ia64_access_reg (unw_addr_space_t as, unw_regnum_t uw_regnum, unw_word_t *val,
|
||
int write, void *arg)
|
||
{
|
||
int regnum = ia64_uw2gdb_regnum (uw_regnum);
|
||
unw_word_t bsp, sof, cfm, psr, ip;
|
||
struct frame_info *this_frame = (struct frame_info *) arg;
|
||
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
||
|
||
/* We never call any libunwind routines that need to write registers. */
|
||
gdb_assert (!write);
|
||
|
||
switch (uw_regnum)
|
||
{
|
||
case UNW_REG_IP:
|
||
/* Libunwind expects to see the pc value which means the slot number
|
||
from the psr must be merged with the ip word address. */
|
||
ip = get_frame_register_unsigned (this_frame, IA64_IP_REGNUM);
|
||
psr = get_frame_register_unsigned (this_frame, IA64_PSR_REGNUM);
|
||
*val = ip | ((psr >> 41) & 0x3);
|
||
break;
|
||
|
||
case UNW_IA64_AR_BSP:
|
||
/* Libunwind expects to see the beginning of the current
|
||
register frame so we must account for the fact that
|
||
ptrace() will return a value for bsp that points *after*
|
||
the current register frame. */
|
||
bsp = get_frame_register_unsigned (this_frame, IA64_BSP_REGNUM);
|
||
cfm = get_frame_register_unsigned (this_frame, IA64_CFM_REGNUM);
|
||
sof = gdbarch_tdep (gdbarch)->size_of_register_frame (this_frame, cfm);
|
||
*val = ia64_rse_skip_regs (bsp, -sof);
|
||
break;
|
||
|
||
case UNW_IA64_AR_BSPSTORE:
|
||
/* Libunwind wants bspstore to be after the current register frame.
|
||
This is what ptrace() and gdb treats as the regular bsp value. */
|
||
*val = get_frame_register_unsigned (this_frame, IA64_BSP_REGNUM);
|
||
break;
|
||
|
||
default:
|
||
/* For all other registers, just unwind the value directly. */
|
||
*val = get_frame_register_unsigned (this_frame, regnum);
|
||
break;
|
||
}
|
||
|
||
if (gdbarch_debug >= 1)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
" access_reg: from cache: %4s=%s\n",
|
||
(((unsigned) regnum <= IA64_NAT127_REGNUM)
|
||
? ia64_register_names[regnum] : "r??"),
|
||
paddress (gdbarch, *val));
|
||
return 0;
|
||
}
|
||
|
||
/* Libunwind callback accessor function for floating-point registers. */
|
||
static int
|
||
ia64_access_fpreg (unw_addr_space_t as, unw_regnum_t uw_regnum,
|
||
unw_fpreg_t *val, int write, void *arg)
|
||
{
|
||
int regnum = ia64_uw2gdb_regnum (uw_regnum);
|
||
struct frame_info *this_frame = (struct frame_info *) arg;
|
||
|
||
/* We never call any libunwind routines that need to write registers. */
|
||
gdb_assert (!write);
|
||
|
||
get_frame_register (this_frame, regnum, (gdb_byte *) val);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Libunwind callback accessor function for top-level rse registers. */
|
||
static int
|
||
ia64_access_rse_reg (unw_addr_space_t as, unw_regnum_t uw_regnum,
|
||
unw_word_t *val, int write, void *arg)
|
||
{
|
||
int regnum = ia64_uw2gdb_regnum (uw_regnum);
|
||
unw_word_t bsp, sof, cfm, psr, ip;
|
||
struct regcache *regcache = (struct regcache *) arg;
|
||
struct gdbarch *gdbarch = regcache->arch ();
|
||
|
||
/* We never call any libunwind routines that need to write registers. */
|
||
gdb_assert (!write);
|
||
|
||
switch (uw_regnum)
|
||
{
|
||
case UNW_REG_IP:
|
||
/* Libunwind expects to see the pc value which means the slot number
|
||
from the psr must be merged with the ip word address. */
|
||
regcache_cooked_read_unsigned (regcache, IA64_IP_REGNUM, &ip);
|
||
regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
|
||
*val = ip | ((psr >> 41) & 0x3);
|
||
break;
|
||
|
||
case UNW_IA64_AR_BSP:
|
||
/* Libunwind expects to see the beginning of the current
|
||
register frame so we must account for the fact that
|
||
ptrace() will return a value for bsp that points *after*
|
||
the current register frame. */
|
||
regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
|
||
regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
|
||
sof = (cfm & 0x7f);
|
||
*val = ia64_rse_skip_regs (bsp, -sof);
|
||
break;
|
||
|
||
case UNW_IA64_AR_BSPSTORE:
|
||
/* Libunwind wants bspstore to be after the current register frame.
|
||
This is what ptrace() and gdb treats as the regular bsp value. */
|
||
regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, val);
|
||
break;
|
||
|
||
default:
|
||
/* For all other registers, just unwind the value directly. */
|
||
regcache_cooked_read_unsigned (regcache, regnum, val);
|
||
break;
|
||
}
|
||
|
||
if (gdbarch_debug >= 1)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
" access_rse_reg: from cache: %4s=%s\n",
|
||
(((unsigned) regnum <= IA64_NAT127_REGNUM)
|
||
? ia64_register_names[regnum] : "r??"),
|
||
paddress (gdbarch, *val));
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Libunwind callback accessor function for top-level fp registers. */
|
||
static int
|
||
ia64_access_rse_fpreg (unw_addr_space_t as, unw_regnum_t uw_regnum,
|
||
unw_fpreg_t *val, int write, void *arg)
|
||
{
|
||
int regnum = ia64_uw2gdb_regnum (uw_regnum);
|
||
struct regcache *regcache = (struct regcache *) arg;
|
||
|
||
/* We never call any libunwind routines that need to write registers. */
|
||
gdb_assert (!write);
|
||
|
||
regcache->cooked_read (regnum, (gdb_byte *) val);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Libunwind callback accessor function for accessing memory. */
|
||
static int
|
||
ia64_access_mem (unw_addr_space_t as,
|
||
unw_word_t addr, unw_word_t *val,
|
||
int write, void *arg)
|
||
{
|
||
if (addr - KERNEL_START < ktab_size)
|
||
{
|
||
unw_word_t *laddr = (unw_word_t*) ((char *) ktab
|
||
+ (addr - KERNEL_START));
|
||
|
||
if (write)
|
||
*laddr = *val;
|
||
else
|
||
*val = *laddr;
|
||
return 0;
|
||
}
|
||
|
||
/* XXX do we need to normalize byte-order here? */
|
||
if (write)
|
||
return target_write_memory (addr, (gdb_byte *) val, sizeof (unw_word_t));
|
||
else
|
||
return target_read_memory (addr, (gdb_byte *) val, sizeof (unw_word_t));
|
||
}
|
||
|
||
/* Call low-level function to access the kernel unwind table. */
|
||
static gdb::optional<gdb::byte_vector>
|
||
getunwind_table ()
|
||
{
|
||
/* FIXME drow/2005-09-10: This code used to call
|
||
ia64_linux_xfer_unwind_table directly to fetch the unwind table
|
||
for the currently running ia64-linux kernel. That data should
|
||
come from the core file and be accessed via the auxv vector; if
|
||
we want to preserve fall back to the running kernel's table, then
|
||
we should find a way to override the corefile layer's
|
||
xfer_partial method. */
|
||
|
||
return target_read_alloc (current_top_target (), TARGET_OBJECT_UNWIND_TABLE,
|
||
NULL);
|
||
}
|
||
|
||
/* Get the kernel unwind table. */
|
||
static int
|
||
get_kernel_table (unw_word_t ip, unw_dyn_info_t *di)
|
||
{
|
||
static struct ia64_table_entry *etab;
|
||
|
||
if (!ktab)
|
||
{
|
||
ktab_buf = getunwind_table ();
|
||
if (!ktab_buf)
|
||
return -UNW_ENOINFO;
|
||
|
||
ktab = (struct ia64_table_entry *) ktab_buf->data ();
|
||
ktab_size = ktab_buf->size ();
|
||
|
||
for (etab = ktab; etab->start_offset; ++etab)
|
||
etab->info_offset += KERNEL_START;
|
||
}
|
||
|
||
if (ip < ktab[0].start_offset || ip >= etab[-1].end_offset)
|
||
return -UNW_ENOINFO;
|
||
|
||
di->format = UNW_INFO_FORMAT_TABLE;
|
||
di->gp = 0;
|
||
di->start_ip = ktab[0].start_offset;
|
||
di->end_ip = etab[-1].end_offset;
|
||
di->u.ti.name_ptr = (unw_word_t) "<kernel>";
|
||
di->u.ti.segbase = 0;
|
||
di->u.ti.table_len = ((char *) etab - (char *) ktab) / sizeof (unw_word_t);
|
||
di->u.ti.table_data = (unw_word_t *) ktab;
|
||
|
||
if (gdbarch_debug >= 1)
|
||
fprintf_unfiltered (gdb_stdlog, "get_kernel_table: found table `%s': "
|
||
"segbase=%s, length=%s, gp=%s\n",
|
||
(char *) di->u.ti.name_ptr,
|
||
hex_string (di->u.ti.segbase),
|
||
pulongest (di->u.ti.table_len),
|
||
hex_string (di->gp));
|
||
return 0;
|
||
}
|
||
|
||
/* Find the unwind table entry for a specified address. */
|
||
static int
|
||
ia64_find_unwind_table (struct objfile *objfile, unw_word_t ip,
|
||
unw_dyn_info_t *dip, void **buf)
|
||
{
|
||
Elf_Internal_Phdr *phdr, *p_text = NULL, *p_unwind = NULL;
|
||
Elf_Internal_Ehdr *ehdr;
|
||
unw_word_t segbase = 0;
|
||
CORE_ADDR load_base;
|
||
bfd *bfd;
|
||
int i;
|
||
|
||
bfd = objfile->obfd;
|
||
|
||
ehdr = elf_tdata (bfd)->elf_header;
|
||
phdr = elf_tdata (bfd)->phdr;
|
||
|
||
load_base = objfile->text_section_offset ();
|
||
|
||
for (i = 0; i < ehdr->e_phnum; ++i)
|
||
{
|
||
switch (phdr[i].p_type)
|
||
{
|
||
case PT_LOAD:
|
||
if ((unw_word_t) (ip - load_base - phdr[i].p_vaddr)
|
||
< phdr[i].p_memsz)
|
||
p_text = phdr + i;
|
||
break;
|
||
|
||
case PT_IA_64_UNWIND:
|
||
p_unwind = phdr + i;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (!p_text || !p_unwind)
|
||
return -UNW_ENOINFO;
|
||
|
||
/* Verify that the segment that contains the IP also contains
|
||
the static unwind table. If not, we may be in the Linux kernel's
|
||
DSO gate page in which case the unwind table is another segment.
|
||
Otherwise, we are dealing with runtime-generated code, for which we
|
||
have no info here. */
|
||
segbase = p_text->p_vaddr + load_base;
|
||
|
||
if ((p_unwind->p_vaddr - p_text->p_vaddr) >= p_text->p_memsz)
|
||
{
|
||
int ok = 0;
|
||
for (i = 0; i < ehdr->e_phnum; ++i)
|
||
{
|
||
if (phdr[i].p_type == PT_LOAD
|
||
&& (p_unwind->p_vaddr - phdr[i].p_vaddr) < phdr[i].p_memsz)
|
||
{
|
||
ok = 1;
|
||
/* Get the segbase from the section containing the
|
||
libunwind table. */
|
||
segbase = phdr[i].p_vaddr + load_base;
|
||
}
|
||
}
|
||
if (!ok)
|
||
return -UNW_ENOINFO;
|
||
}
|
||
|
||
dip->start_ip = p_text->p_vaddr + load_base;
|
||
dip->end_ip = dip->start_ip + p_text->p_memsz;
|
||
dip->gp = ia64_find_global_pointer (objfile->arch (), ip);
|
||
dip->format = UNW_INFO_FORMAT_REMOTE_TABLE;
|
||
dip->u.rti.name_ptr = (unw_word_t) bfd_get_filename (bfd);
|
||
dip->u.rti.segbase = segbase;
|
||
dip->u.rti.table_len = p_unwind->p_memsz / sizeof (unw_word_t);
|
||
dip->u.rti.table_data = p_unwind->p_vaddr + load_base;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Libunwind callback accessor function to acquire procedure unwind-info. */
|
||
static int
|
||
ia64_find_proc_info_x (unw_addr_space_t as, unw_word_t ip, unw_proc_info_t *pi,
|
||
int need_unwind_info, void *arg)
|
||
{
|
||
struct obj_section *sec = find_pc_section (ip);
|
||
unw_dyn_info_t di;
|
||
int ret;
|
||
void *buf = NULL;
|
||
|
||
if (!sec)
|
||
{
|
||
/* XXX This only works if the host and the target architecture are
|
||
both ia64 and if the have (more or less) the same kernel
|
||
version. */
|
||
if (get_kernel_table (ip, &di) < 0)
|
||
return -UNW_ENOINFO;
|
||
|
||
if (gdbarch_debug >= 1)
|
||
fprintf_unfiltered (gdb_stdlog, "ia64_find_proc_info_x: %s -> "
|
||
"(name=`%s',segbase=%s,start=%s,end=%s,gp=%s,"
|
||
"length=%s,data=%s)\n",
|
||
hex_string (ip), (char *)di.u.ti.name_ptr,
|
||
hex_string (di.u.ti.segbase),
|
||
hex_string (di.start_ip), hex_string (di.end_ip),
|
||
hex_string (di.gp),
|
||
pulongest (di.u.ti.table_len),
|
||
hex_string ((CORE_ADDR)di.u.ti.table_data));
|
||
}
|
||
else
|
||
{
|
||
ret = ia64_find_unwind_table (sec->objfile, ip, &di, &buf);
|
||
if (ret < 0)
|
||
return ret;
|
||
|
||
if (gdbarch_debug >= 1)
|
||
fprintf_unfiltered (gdb_stdlog, "ia64_find_proc_info_x: %s -> "
|
||
"(name=`%s',segbase=%s,start=%s,end=%s,gp=%s,"
|
||
"length=%s,data=%s)\n",
|
||
hex_string (ip), (char *)di.u.rti.name_ptr,
|
||
hex_string (di.u.rti.segbase),
|
||
hex_string (di.start_ip), hex_string (di.end_ip),
|
||
hex_string (di.gp),
|
||
pulongest (di.u.rti.table_len),
|
||
hex_string (di.u.rti.table_data));
|
||
}
|
||
|
||
ret = libunwind_search_unwind_table (&as, ip, &di, pi, need_unwind_info,
|
||
arg);
|
||
|
||
/* We no longer need the dyn info storage so free it. */
|
||
xfree (buf);
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Libunwind callback accessor function for cleanup. */
|
||
static void
|
||
ia64_put_unwind_info (unw_addr_space_t as,
|
||
unw_proc_info_t *pip, void *arg)
|
||
{
|
||
/* Nothing required for now. */
|
||
}
|
||
|
||
/* Libunwind callback accessor function to get head of the dynamic
|
||
unwind-info registration list. */
|
||
static int
|
||
ia64_get_dyn_info_list (unw_addr_space_t as,
|
||
unw_word_t *dilap, void *arg)
|
||
{
|
||
struct obj_section *text_sec;
|
||
unw_word_t ip, addr;
|
||
unw_dyn_info_t di;
|
||
int ret;
|
||
|
||
if (!libunwind_is_initialized ())
|
||
return -UNW_ENOINFO;
|
||
|
||
for (objfile *objfile : current_program_space->objfiles ())
|
||
{
|
||
void *buf = NULL;
|
||
|
||
text_sec = objfile->sections + SECT_OFF_TEXT (objfile);
|
||
ip = obj_section_addr (text_sec);
|
||
ret = ia64_find_unwind_table (objfile, ip, &di, &buf);
|
||
if (ret >= 0)
|
||
{
|
||
addr = libunwind_find_dyn_list (as, &di, arg);
|
||
/* We no longer need the dyn info storage so free it. */
|
||
xfree (buf);
|
||
|
||
if (addr)
|
||
{
|
||
if (gdbarch_debug >= 1)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"dynamic unwind table in objfile %s "
|
||
"at %s (gp=%s)\n",
|
||
bfd_get_filename (objfile->obfd),
|
||
hex_string (addr), hex_string (di.gp));
|
||
*dilap = addr;
|
||
return 0;
|
||
}
|
||
}
|
||
}
|
||
return -UNW_ENOINFO;
|
||
}
|
||
|
||
|
||
/* Frame interface functions for libunwind. */
|
||
|
||
static void
|
||
ia64_libunwind_frame_this_id (struct frame_info *this_frame, void **this_cache,
|
||
struct frame_id *this_id)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
struct frame_id id = outer_frame_id;
|
||
gdb_byte buf[8];
|
||
CORE_ADDR bsp;
|
||
|
||
libunwind_frame_this_id (this_frame, this_cache, &id);
|
||
if (frame_id_eq (id, outer_frame_id))
|
||
{
|
||
(*this_id) = outer_frame_id;
|
||
return;
|
||
}
|
||
|
||
/* We must add the bsp as the special address for frame comparison
|
||
purposes. */
|
||
get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
|
||
bsp = extract_unsigned_integer (buf, 8, byte_order);
|
||
|
||
(*this_id) = frame_id_build_special (id.stack_addr, id.code_addr, bsp);
|
||
|
||
if (gdbarch_debug >= 1)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"libunwind frame id: code %s, stack %s, "
|
||
"special %s, this_frame %s\n",
|
||
paddress (gdbarch, id.code_addr),
|
||
paddress (gdbarch, id.stack_addr),
|
||
paddress (gdbarch, bsp),
|
||
host_address_to_string (this_frame));
|
||
}
|
||
|
||
static struct value *
|
||
ia64_libunwind_frame_prev_register (struct frame_info *this_frame,
|
||
void **this_cache, int regnum)
|
||
{
|
||
int reg = regnum;
|
||
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
struct value *val;
|
||
|
||
if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
|
||
reg = IA64_PR_REGNUM;
|
||
else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
|
||
reg = IA64_UNAT_REGNUM;
|
||
|
||
/* Let libunwind do most of the work. */
|
||
val = libunwind_frame_prev_register (this_frame, this_cache, reg);
|
||
|
||
if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
|
||
{
|
||
ULONGEST prN_val;
|
||
|
||
if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM)
|
||
{
|
||
int rrb_pr = 0;
|
||
ULONGEST cfm;
|
||
|
||
/* Fetch predicate register rename base from current frame
|
||
marker for this frame. */
|
||
cfm = get_frame_register_unsigned (this_frame, IA64_CFM_REGNUM);
|
||
rrb_pr = (cfm >> 32) & 0x3f;
|
||
|
||
/* Adjust the register number to account for register rotation. */
|
||
regnum = VP16_REGNUM + ((regnum - VP16_REGNUM) + rrb_pr) % 48;
|
||
}
|
||
prN_val = extract_bit_field (value_contents_all (val),
|
||
regnum - VP0_REGNUM, 1);
|
||
return frame_unwind_got_constant (this_frame, regnum, prN_val);
|
||
}
|
||
|
||
else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
|
||
{
|
||
ULONGEST unatN_val;
|
||
|
||
unatN_val = extract_bit_field (value_contents_all (val),
|
||
regnum - IA64_NAT0_REGNUM, 1);
|
||
return frame_unwind_got_constant (this_frame, regnum, unatN_val);
|
||
}
|
||
|
||
else if (regnum == IA64_BSP_REGNUM)
|
||
{
|
||
struct value *cfm_val;
|
||
CORE_ADDR prev_bsp, prev_cfm;
|
||
|
||
/* We want to calculate the previous bsp as the end of the previous
|
||
register stack frame. This corresponds to what the hardware bsp
|
||
register will be if we pop the frame back which is why we might
|
||
have been called. We know that libunwind will pass us back the
|
||
beginning of the current frame so we should just add sof to it. */
|
||
prev_bsp = extract_unsigned_integer (value_contents_all (val),
|
||
8, byte_order);
|
||
cfm_val = libunwind_frame_prev_register (this_frame, this_cache,
|
||
IA64_CFM_REGNUM);
|
||
prev_cfm = extract_unsigned_integer (value_contents_all (cfm_val),
|
||
8, byte_order);
|
||
prev_bsp = rse_address_add (prev_bsp, (prev_cfm & 0x7f));
|
||
|
||
return frame_unwind_got_constant (this_frame, regnum, prev_bsp);
|
||
}
|
||
else
|
||
return val;
|
||
}
|
||
|
||
static int
|
||
ia64_libunwind_frame_sniffer (const struct frame_unwind *self,
|
||
struct frame_info *this_frame,
|
||
void **this_cache)
|
||
{
|
||
if (libunwind_is_initialized ()
|
||
&& libunwind_frame_sniffer (self, this_frame, this_cache))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
static const struct frame_unwind ia64_libunwind_frame_unwind =
|
||
{
|
||
NORMAL_FRAME,
|
||
default_frame_unwind_stop_reason,
|
||
ia64_libunwind_frame_this_id,
|
||
ia64_libunwind_frame_prev_register,
|
||
NULL,
|
||
ia64_libunwind_frame_sniffer,
|
||
libunwind_frame_dealloc_cache
|
||
};
|
||
|
||
static void
|
||
ia64_libunwind_sigtramp_frame_this_id (struct frame_info *this_frame,
|
||
void **this_cache,
|
||
struct frame_id *this_id)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
gdb_byte buf[8];
|
||
CORE_ADDR bsp;
|
||
struct frame_id id = outer_frame_id;
|
||
|
||
libunwind_frame_this_id (this_frame, this_cache, &id);
|
||
if (frame_id_eq (id, outer_frame_id))
|
||
{
|
||
(*this_id) = outer_frame_id;
|
||
return;
|
||
}
|
||
|
||
/* We must add the bsp as the special address for frame comparison
|
||
purposes. */
|
||
get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
|
||
bsp = extract_unsigned_integer (buf, 8, byte_order);
|
||
|
||
/* For a sigtramp frame, we don't make the check for previous ip being 0. */
|
||
(*this_id) = frame_id_build_special (id.stack_addr, id.code_addr, bsp);
|
||
|
||
if (gdbarch_debug >= 1)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"libunwind sigtramp frame id: code %s, "
|
||
"stack %s, special %s, this_frame %s\n",
|
||
paddress (gdbarch, id.code_addr),
|
||
paddress (gdbarch, id.stack_addr),
|
||
paddress (gdbarch, bsp),
|
||
host_address_to_string (this_frame));
|
||
}
|
||
|
||
static struct value *
|
||
ia64_libunwind_sigtramp_frame_prev_register (struct frame_info *this_frame,
|
||
void **this_cache, int regnum)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
struct value *prev_ip_val;
|
||
CORE_ADDR prev_ip;
|
||
|
||
/* If the previous frame pc value is 0, then we want to use the SIGCONTEXT
|
||
method of getting previous registers. */
|
||
prev_ip_val = libunwind_frame_prev_register (this_frame, this_cache,
|
||
IA64_IP_REGNUM);
|
||
prev_ip = extract_unsigned_integer (value_contents_all (prev_ip_val),
|
||
8, byte_order);
|
||
|
||
if (prev_ip == 0)
|
||
{
|
||
void *tmp_cache = NULL;
|
||
return ia64_sigtramp_frame_prev_register (this_frame, &tmp_cache,
|
||
regnum);
|
||
}
|
||
else
|
||
return ia64_libunwind_frame_prev_register (this_frame, this_cache, regnum);
|
||
}
|
||
|
||
static int
|
||
ia64_libunwind_sigtramp_frame_sniffer (const struct frame_unwind *self,
|
||
struct frame_info *this_frame,
|
||
void **this_cache)
|
||
{
|
||
if (libunwind_is_initialized ())
|
||
{
|
||
if (libunwind_sigtramp_frame_sniffer (self, this_frame, this_cache))
|
||
return 1;
|
||
return 0;
|
||
}
|
||
else
|
||
return ia64_sigtramp_frame_sniffer (self, this_frame, this_cache);
|
||
}
|
||
|
||
static const struct frame_unwind ia64_libunwind_sigtramp_frame_unwind =
|
||
{
|
||
SIGTRAMP_FRAME,
|
||
default_frame_unwind_stop_reason,
|
||
ia64_libunwind_sigtramp_frame_this_id,
|
||
ia64_libunwind_sigtramp_frame_prev_register,
|
||
NULL,
|
||
ia64_libunwind_sigtramp_frame_sniffer
|
||
};
|
||
|
||
/* Set of libunwind callback acccessor functions. */
|
||
unw_accessors_t ia64_unw_accessors =
|
||
{
|
||
ia64_find_proc_info_x,
|
||
ia64_put_unwind_info,
|
||
ia64_get_dyn_info_list,
|
||
ia64_access_mem,
|
||
ia64_access_reg,
|
||
ia64_access_fpreg,
|
||
/* resume */
|
||
/* get_proc_name */
|
||
};
|
||
|
||
/* Set of special libunwind callback acccessor functions specific for accessing
|
||
the rse registers. At the top of the stack, we want libunwind to figure out
|
||
how to read r32 - r127. Though usually they are found sequentially in
|
||
memory starting from $bof, this is not always true. */
|
||
unw_accessors_t ia64_unw_rse_accessors =
|
||
{
|
||
ia64_find_proc_info_x,
|
||
ia64_put_unwind_info,
|
||
ia64_get_dyn_info_list,
|
||
ia64_access_mem,
|
||
ia64_access_rse_reg,
|
||
ia64_access_rse_fpreg,
|
||
/* resume */
|
||
/* get_proc_name */
|
||
};
|
||
|
||
/* Set of ia64-libunwind-tdep gdb callbacks and data for generic
|
||
ia64-libunwind-tdep code to use. */
|
||
struct libunwind_descr ia64_libunwind_descr =
|
||
{
|
||
ia64_gdb2uw_regnum,
|
||
ia64_uw2gdb_regnum,
|
||
ia64_is_fpreg,
|
||
&ia64_unw_accessors,
|
||
&ia64_unw_rse_accessors,
|
||
};
|
||
|
||
#endif /* HAVE_LIBUNWIND_IA64_H */
|
||
|
||
static int
|
||
ia64_use_struct_convention (struct type *type)
|
||
{
|
||
struct type *float_elt_type;
|
||
|
||
/* Don't use the struct convention for anything but structure,
|
||
union, or array types. */
|
||
if (!(type->code () == TYPE_CODE_STRUCT
|
||
|| type->code () == TYPE_CODE_UNION
|
||
|| type->code () == TYPE_CODE_ARRAY))
|
||
return 0;
|
||
|
||
/* HFAs are structures (or arrays) consisting entirely of floating
|
||
point values of the same length. Up to 8 of these are returned
|
||
in registers. Don't use the struct convention when this is the
|
||
case. */
|
||
float_elt_type = is_float_or_hfa_type (type);
|
||
if (float_elt_type != NULL
|
||
&& TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type) <= 8)
|
||
return 0;
|
||
|
||
/* Other structs of length 32 or less are returned in r8-r11.
|
||
Don't use the struct convention for those either. */
|
||
return TYPE_LENGTH (type) > 32;
|
||
}
|
||
|
||
/* Return non-zero if TYPE is a structure or union type. */
|
||
|
||
static int
|
||
ia64_struct_type_p (const struct type *type)
|
||
{
|
||
return (type->code () == TYPE_CODE_STRUCT
|
||
|| type->code () == TYPE_CODE_UNION);
|
||
}
|
||
|
||
static void
|
||
ia64_extract_return_value (struct type *type, struct regcache *regcache,
|
||
gdb_byte *valbuf)
|
||
{
|
||
struct gdbarch *gdbarch = regcache->arch ();
|
||
struct type *float_elt_type;
|
||
|
||
float_elt_type = is_float_or_hfa_type (type);
|
||
if (float_elt_type != NULL)
|
||
{
|
||
gdb_byte from[IA64_FP_REGISTER_SIZE];
|
||
int offset = 0;
|
||
int regnum = IA64_FR8_REGNUM;
|
||
int n = TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type);
|
||
|
||
while (n-- > 0)
|
||
{
|
||
regcache->cooked_read (regnum, from);
|
||
target_float_convert (from, ia64_ext_type (gdbarch),
|
||
valbuf + offset, float_elt_type);
|
||
offset += TYPE_LENGTH (float_elt_type);
|
||
regnum++;
|
||
}
|
||
}
|
||
else if (!ia64_struct_type_p (type) && TYPE_LENGTH (type) < 8)
|
||
{
|
||
/* This is an integral value, and its size is less than 8 bytes.
|
||
These values are LSB-aligned, so extract the relevant bytes,
|
||
and copy them into VALBUF. */
|
||
/* brobecker/2005-12-30: Actually, all integral values are LSB aligned,
|
||
so I suppose we should also add handling here for integral values
|
||
whose size is greater than 8. But I wasn't able to create such
|
||
a type, neither in C nor in Ada, so not worrying about these yet. */
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
ULONGEST val;
|
||
|
||
regcache_cooked_read_unsigned (regcache, IA64_GR8_REGNUM, &val);
|
||
store_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order, val);
|
||
}
|
||
else
|
||
{
|
||
ULONGEST val;
|
||
int offset = 0;
|
||
int regnum = IA64_GR8_REGNUM;
|
||
int reglen = TYPE_LENGTH (register_type (gdbarch, IA64_GR8_REGNUM));
|
||
int n = TYPE_LENGTH (type) / reglen;
|
||
int m = TYPE_LENGTH (type) % reglen;
|
||
|
||
while (n-- > 0)
|
||
{
|
||
ULONGEST regval;
|
||
regcache_cooked_read_unsigned (regcache, regnum, ®val);
|
||
memcpy ((char *)valbuf + offset, ®val, reglen);
|
||
offset += reglen;
|
||
regnum++;
|
||
}
|
||
|
||
if (m)
|
||
{
|
||
regcache_cooked_read_unsigned (regcache, regnum, &val);
|
||
memcpy ((char *)valbuf + offset, &val, m);
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
ia64_store_return_value (struct type *type, struct regcache *regcache,
|
||
const gdb_byte *valbuf)
|
||
{
|
||
struct gdbarch *gdbarch = regcache->arch ();
|
||
struct type *float_elt_type;
|
||
|
||
float_elt_type = is_float_or_hfa_type (type);
|
||
if (float_elt_type != NULL)
|
||
{
|
||
gdb_byte to[IA64_FP_REGISTER_SIZE];
|
||
int offset = 0;
|
||
int regnum = IA64_FR8_REGNUM;
|
||
int n = TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type);
|
||
|
||
while (n-- > 0)
|
||
{
|
||
target_float_convert (valbuf + offset, float_elt_type,
|
||
to, ia64_ext_type (gdbarch));
|
||
regcache->cooked_write (regnum, to);
|
||
offset += TYPE_LENGTH (float_elt_type);
|
||
regnum++;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
int offset = 0;
|
||
int regnum = IA64_GR8_REGNUM;
|
||
int reglen = TYPE_LENGTH (register_type (gdbarch, IA64_GR8_REGNUM));
|
||
int n = TYPE_LENGTH (type) / reglen;
|
||
int m = TYPE_LENGTH (type) % reglen;
|
||
|
||
while (n-- > 0)
|
||
{
|
||
ULONGEST val;
|
||
memcpy (&val, (char *)valbuf + offset, reglen);
|
||
regcache_cooked_write_unsigned (regcache, regnum, val);
|
||
offset += reglen;
|
||
regnum++;
|
||
}
|
||
|
||
if (m)
|
||
{
|
||
ULONGEST val;
|
||
memcpy (&val, (char *)valbuf + offset, m);
|
||
regcache_cooked_write_unsigned (regcache, regnum, val);
|
||
}
|
||
}
|
||
}
|
||
|
||
static enum return_value_convention
|
||
ia64_return_value (struct gdbarch *gdbarch, struct value *function,
|
||
struct type *valtype, struct regcache *regcache,
|
||
gdb_byte *readbuf, const gdb_byte *writebuf)
|
||
{
|
||
int struct_return = ia64_use_struct_convention (valtype);
|
||
|
||
if (writebuf != NULL)
|
||
{
|
||
gdb_assert (!struct_return);
|
||
ia64_store_return_value (valtype, regcache, writebuf);
|
||
}
|
||
|
||
if (readbuf != NULL)
|
||
{
|
||
gdb_assert (!struct_return);
|
||
ia64_extract_return_value (valtype, regcache, readbuf);
|
||
}
|
||
|
||
if (struct_return)
|
||
return RETURN_VALUE_STRUCT_CONVENTION;
|
||
else
|
||
return RETURN_VALUE_REGISTER_CONVENTION;
|
||
}
|
||
|
||
static int
|
||
is_float_or_hfa_type_recurse (struct type *t, struct type **etp)
|
||
{
|
||
switch (t->code ())
|
||
{
|
||
case TYPE_CODE_FLT:
|
||
if (*etp)
|
||
return TYPE_LENGTH (*etp) == TYPE_LENGTH (t);
|
||
else
|
||
{
|
||
*etp = t;
|
||
return 1;
|
||
}
|
||
break;
|
||
case TYPE_CODE_ARRAY:
|
||
return
|
||
is_float_or_hfa_type_recurse (check_typedef (TYPE_TARGET_TYPE (t)),
|
||
etp);
|
||
break;
|
||
case TYPE_CODE_STRUCT:
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < t->num_fields (); i++)
|
||
if (!is_float_or_hfa_type_recurse
|
||
(check_typedef (t->field (i).type ()), etp))
|
||
return 0;
|
||
return 1;
|
||
}
|
||
break;
|
||
default:
|
||
return 0;
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Determine if the given type is one of the floating point types or
|
||
and HFA (which is a struct, array, or combination thereof whose
|
||
bottom-most elements are all of the same floating point type). */
|
||
|
||
static struct type *
|
||
is_float_or_hfa_type (struct type *t)
|
||
{
|
||
struct type *et = 0;
|
||
|
||
return is_float_or_hfa_type_recurse (t, &et) ? et : 0;
|
||
}
|
||
|
||
|
||
/* Return 1 if the alignment of T is such that the next even slot
|
||
should be used. Return 0, if the next available slot should
|
||
be used. (See section 8.5.1 of the IA-64 Software Conventions
|
||
and Runtime manual). */
|
||
|
||
static int
|
||
slot_alignment_is_next_even (struct type *t)
|
||
{
|
||
switch (t->code ())
|
||
{
|
||
case TYPE_CODE_INT:
|
||
case TYPE_CODE_FLT:
|
||
if (TYPE_LENGTH (t) > 8)
|
||
return 1;
|
||
else
|
||
return 0;
|
||
case TYPE_CODE_ARRAY:
|
||
return
|
||
slot_alignment_is_next_even (check_typedef (TYPE_TARGET_TYPE (t)));
|
||
case TYPE_CODE_STRUCT:
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < t->num_fields (); i++)
|
||
if (slot_alignment_is_next_even
|
||
(check_typedef (t->field (i).type ())))
|
||
return 1;
|
||
return 0;
|
||
}
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Attempt to find (and return) the global pointer for the given
|
||
function.
|
||
|
||
This is a rather nasty bit of code searchs for the .dynamic section
|
||
in the objfile corresponding to the pc of the function we're trying
|
||
to call. Once it finds the addresses at which the .dynamic section
|
||
lives in the child process, it scans the Elf64_Dyn entries for a
|
||
DT_PLTGOT tag. If it finds one of these, the corresponding
|
||
d_un.d_ptr value is the global pointer. */
|
||
|
||
static CORE_ADDR
|
||
ia64_find_global_pointer_from_dynamic_section (struct gdbarch *gdbarch,
|
||
CORE_ADDR faddr)
|
||
{
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
struct obj_section *faddr_sect;
|
||
|
||
faddr_sect = find_pc_section (faddr);
|
||
if (faddr_sect != NULL)
|
||
{
|
||
struct obj_section *osect;
|
||
|
||
ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect)
|
||
{
|
||
if (strcmp (osect->the_bfd_section->name, ".dynamic") == 0)
|
||
break;
|
||
}
|
||
|
||
if (osect < faddr_sect->objfile->sections_end)
|
||
{
|
||
CORE_ADDR addr, endaddr;
|
||
|
||
addr = obj_section_addr (osect);
|
||
endaddr = obj_section_endaddr (osect);
|
||
|
||
while (addr < endaddr)
|
||
{
|
||
int status;
|
||
LONGEST tag;
|
||
gdb_byte buf[8];
|
||
|
||
status = target_read_memory (addr, buf, sizeof (buf));
|
||
if (status != 0)
|
||
break;
|
||
tag = extract_signed_integer (buf, sizeof (buf), byte_order);
|
||
|
||
if (tag == DT_PLTGOT)
|
||
{
|
||
CORE_ADDR global_pointer;
|
||
|
||
status = target_read_memory (addr + 8, buf, sizeof (buf));
|
||
if (status != 0)
|
||
break;
|
||
global_pointer = extract_unsigned_integer (buf, sizeof (buf),
|
||
byte_order);
|
||
|
||
/* The payoff... */
|
||
return global_pointer;
|
||
}
|
||
|
||
if (tag == DT_NULL)
|
||
break;
|
||
|
||
addr += 16;
|
||
}
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Attempt to find (and return) the global pointer for the given
|
||
function. We first try the find_global_pointer_from_solib routine
|
||
from the gdbarch tdep vector, if provided. And if that does not
|
||
work, then we try ia64_find_global_pointer_from_dynamic_section. */
|
||
|
||
static CORE_ADDR
|
||
ia64_find_global_pointer (struct gdbarch *gdbarch, CORE_ADDR faddr)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
CORE_ADDR addr = 0;
|
||
|
||
if (tdep->find_global_pointer_from_solib)
|
||
addr = tdep->find_global_pointer_from_solib (gdbarch, faddr);
|
||
if (addr == 0)
|
||
addr = ia64_find_global_pointer_from_dynamic_section (gdbarch, faddr);
|
||
return addr;
|
||
}
|
||
|
||
/* Given a function's address, attempt to find (and return) the
|
||
corresponding (canonical) function descriptor. Return 0 if
|
||
not found. */
|
||
static CORE_ADDR
|
||
find_extant_func_descr (struct gdbarch *gdbarch, CORE_ADDR faddr)
|
||
{
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
struct obj_section *faddr_sect;
|
||
|
||
/* Return early if faddr is already a function descriptor. */
|
||
faddr_sect = find_pc_section (faddr);
|
||
if (faddr_sect && strcmp (faddr_sect->the_bfd_section->name, ".opd") == 0)
|
||
return faddr;
|
||
|
||
if (faddr_sect != NULL)
|
||
{
|
||
struct obj_section *osect;
|
||
ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect)
|
||
{
|
||
if (strcmp (osect->the_bfd_section->name, ".opd") == 0)
|
||
break;
|
||
}
|
||
|
||
if (osect < faddr_sect->objfile->sections_end)
|
||
{
|
||
CORE_ADDR addr, endaddr;
|
||
|
||
addr = obj_section_addr (osect);
|
||
endaddr = obj_section_endaddr (osect);
|
||
|
||
while (addr < endaddr)
|
||
{
|
||
int status;
|
||
LONGEST faddr2;
|
||
gdb_byte buf[8];
|
||
|
||
status = target_read_memory (addr, buf, sizeof (buf));
|
||
if (status != 0)
|
||
break;
|
||
faddr2 = extract_signed_integer (buf, sizeof (buf), byte_order);
|
||
|
||
if (faddr == faddr2)
|
||
return addr;
|
||
|
||
addr += 16;
|
||
}
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Attempt to find a function descriptor corresponding to the
|
||
given address. If none is found, construct one on the
|
||
stack using the address at fdaptr. */
|
||
|
||
static CORE_ADDR
|
||
find_func_descr (struct regcache *regcache, CORE_ADDR faddr, CORE_ADDR *fdaptr)
|
||
{
|
||
struct gdbarch *gdbarch = regcache->arch ();
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
CORE_ADDR fdesc;
|
||
|
||
fdesc = find_extant_func_descr (gdbarch, faddr);
|
||
|
||
if (fdesc == 0)
|
||
{
|
||
ULONGEST global_pointer;
|
||
gdb_byte buf[16];
|
||
|
||
fdesc = *fdaptr;
|
||
*fdaptr += 16;
|
||
|
||
global_pointer = ia64_find_global_pointer (gdbarch, faddr);
|
||
|
||
if (global_pointer == 0)
|
||
regcache_cooked_read_unsigned (regcache,
|
||
IA64_GR1_REGNUM, &global_pointer);
|
||
|
||
store_unsigned_integer (buf, 8, byte_order, faddr);
|
||
store_unsigned_integer (buf + 8, 8, byte_order, global_pointer);
|
||
|
||
write_memory (fdesc, buf, 16);
|
||
}
|
||
|
||
return fdesc;
|
||
}
|
||
|
||
/* Use the following routine when printing out function pointers
|
||
so the user can see the function address rather than just the
|
||
function descriptor. */
|
||
static CORE_ADDR
|
||
ia64_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
|
||
struct target_ops *targ)
|
||
{
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
struct obj_section *s;
|
||
gdb_byte buf[8];
|
||
|
||
s = find_pc_section (addr);
|
||
|
||
/* check if ADDR points to a function descriptor. */
|
||
if (s && strcmp (s->the_bfd_section->name, ".opd") == 0)
|
||
return read_memory_unsigned_integer (addr, 8, byte_order);
|
||
|
||
/* Normally, functions live inside a section that is executable.
|
||
So, if ADDR points to a non-executable section, then treat it
|
||
as a function descriptor and return the target address iff
|
||
the target address itself points to a section that is executable.
|
||
Check first the memory of the whole length of 8 bytes is readable. */
|
||
if (s && (s->the_bfd_section->flags & SEC_CODE) == 0
|
||
&& target_read_memory (addr, buf, 8) == 0)
|
||
{
|
||
CORE_ADDR pc = extract_unsigned_integer (buf, 8, byte_order);
|
||
struct obj_section *pc_section = find_pc_section (pc);
|
||
|
||
if (pc_section && (pc_section->the_bfd_section->flags & SEC_CODE))
|
||
return pc;
|
||
}
|
||
|
||
/* There are also descriptors embedded in vtables. */
|
||
if (s)
|
||
{
|
||
struct bound_minimal_symbol minsym;
|
||
|
||
minsym = lookup_minimal_symbol_by_pc (addr);
|
||
|
||
if (minsym.minsym
|
||
&& is_vtable_name (minsym.minsym->linkage_name ()))
|
||
return read_memory_unsigned_integer (addr, 8, byte_order);
|
||
}
|
||
|
||
return addr;
|
||
}
|
||
|
||
static CORE_ADDR
|
||
ia64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
|
||
{
|
||
return sp & ~0xfLL;
|
||
}
|
||
|
||
/* The default "allocate_new_rse_frame" ia64_infcall_ops routine for ia64. */
|
||
|
||
static void
|
||
ia64_allocate_new_rse_frame (struct regcache *regcache, ULONGEST bsp, int sof)
|
||
{
|
||
ULONGEST cfm, pfs, new_bsp;
|
||
|
||
regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
|
||
|
||
new_bsp = rse_address_add (bsp, sof);
|
||
regcache_cooked_write_unsigned (regcache, IA64_BSP_REGNUM, new_bsp);
|
||
|
||
regcache_cooked_read_unsigned (regcache, IA64_PFS_REGNUM, &pfs);
|
||
pfs &= 0xc000000000000000LL;
|
||
pfs |= (cfm & 0xffffffffffffLL);
|
||
regcache_cooked_write_unsigned (regcache, IA64_PFS_REGNUM, pfs);
|
||
|
||
cfm &= 0xc000000000000000LL;
|
||
cfm |= sof;
|
||
regcache_cooked_write_unsigned (regcache, IA64_CFM_REGNUM, cfm);
|
||
}
|
||
|
||
/* The default "store_argument_in_slot" ia64_infcall_ops routine for
|
||
ia64. */
|
||
|
||
static void
|
||
ia64_store_argument_in_slot (struct regcache *regcache, CORE_ADDR bsp,
|
||
int slotnum, gdb_byte *buf)
|
||
{
|
||
write_memory (rse_address_add (bsp, slotnum), buf, 8);
|
||
}
|
||
|
||
/* The default "set_function_addr" ia64_infcall_ops routine for ia64. */
|
||
|
||
static void
|
||
ia64_set_function_addr (struct regcache *regcache, CORE_ADDR func_addr)
|
||
{
|
||
/* Nothing needed. */
|
||
}
|
||
|
||
static CORE_ADDR
|
||
ia64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
||
struct regcache *regcache, CORE_ADDR bp_addr,
|
||
int nargs, struct value **args, CORE_ADDR sp,
|
||
function_call_return_method return_method,
|
||
CORE_ADDR struct_addr)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
int argno;
|
||
struct value *arg;
|
||
struct type *type;
|
||
int len, argoffset;
|
||
int nslots, rseslots, memslots, slotnum, nfuncargs;
|
||
int floatreg;
|
||
ULONGEST bsp;
|
||
CORE_ADDR funcdescaddr, global_pointer;
|
||
CORE_ADDR func_addr = find_function_addr (function, NULL);
|
||
|
||
nslots = 0;
|
||
nfuncargs = 0;
|
||
/* Count the number of slots needed for the arguments. */
|
||
for (argno = 0; argno < nargs; argno++)
|
||
{
|
||
arg = args[argno];
|
||
type = check_typedef (value_type (arg));
|
||
len = TYPE_LENGTH (type);
|
||
|
||
if ((nslots & 1) && slot_alignment_is_next_even (type))
|
||
nslots++;
|
||
|
||
if (type->code () == TYPE_CODE_FUNC)
|
||
nfuncargs++;
|
||
|
||
nslots += (len + 7) / 8;
|
||
}
|
||
|
||
/* Divvy up the slots between the RSE and the memory stack. */
|
||
rseslots = (nslots > 8) ? 8 : nslots;
|
||
memslots = nslots - rseslots;
|
||
|
||
/* Allocate a new RSE frame. */
|
||
regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
|
||
tdep->infcall_ops.allocate_new_rse_frame (regcache, bsp, rseslots);
|
||
|
||
/* We will attempt to find function descriptors in the .opd segment,
|
||
but if we can't we'll construct them ourselves. That being the
|
||
case, we'll need to reserve space on the stack for them. */
|
||
funcdescaddr = sp - nfuncargs * 16;
|
||
funcdescaddr &= ~0xfLL;
|
||
|
||
/* Adjust the stack pointer to it's new value. The calling conventions
|
||
require us to have 16 bytes of scratch, plus whatever space is
|
||
necessary for the memory slots and our function descriptors. */
|
||
sp = sp - 16 - (memslots + nfuncargs) * 8;
|
||
sp &= ~0xfLL; /* Maintain 16 byte alignment. */
|
||
|
||
/* Place the arguments where they belong. The arguments will be
|
||
either placed in the RSE backing store or on the memory stack.
|
||
In addition, floating point arguments or HFAs are placed in
|
||
floating point registers. */
|
||
slotnum = 0;
|
||
floatreg = IA64_FR8_REGNUM;
|
||
for (argno = 0; argno < nargs; argno++)
|
||
{
|
||
struct type *float_elt_type;
|
||
|
||
arg = args[argno];
|
||
type = check_typedef (value_type (arg));
|
||
len = TYPE_LENGTH (type);
|
||
|
||
/* Special handling for function parameters. */
|
||
if (len == 8
|
||
&& type->code () == TYPE_CODE_PTR
|
||
&& TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_FUNC)
|
||
{
|
||
gdb_byte val_buf[8];
|
||
ULONGEST faddr = extract_unsigned_integer (value_contents (arg),
|
||
8, byte_order);
|
||
store_unsigned_integer (val_buf, 8, byte_order,
|
||
find_func_descr (regcache, faddr,
|
||
&funcdescaddr));
|
||
if (slotnum < rseslots)
|
||
tdep->infcall_ops.store_argument_in_slot (regcache, bsp,
|
||
slotnum, val_buf);
|
||
else
|
||
write_memory (sp + 16 + 8 * (slotnum - rseslots), val_buf, 8);
|
||
slotnum++;
|
||
continue;
|
||
}
|
||
|
||
/* Normal slots. */
|
||
|
||
/* Skip odd slot if necessary... */
|
||
if ((slotnum & 1) && slot_alignment_is_next_even (type))
|
||
slotnum++;
|
||
|
||
argoffset = 0;
|
||
while (len > 0)
|
||
{
|
||
gdb_byte val_buf[8];
|
||
|
||
memset (val_buf, 0, 8);
|
||
if (!ia64_struct_type_p (type) && len < 8)
|
||
{
|
||
/* Integral types are LSB-aligned, so we have to be careful
|
||
to insert the argument on the correct side of the buffer.
|
||
This is why we use store_unsigned_integer. */
|
||
store_unsigned_integer
|
||
(val_buf, 8, byte_order,
|
||
extract_unsigned_integer (value_contents (arg), len,
|
||
byte_order));
|
||
}
|
||
else
|
||
{
|
||
/* This is either an 8bit integral type, or an aggregate.
|
||
For 8bit integral type, there is no problem, we just
|
||
copy the value over.
|
||
|
||
For aggregates, the only potentially tricky portion
|
||
is to write the last one if it is less than 8 bytes.
|
||
In this case, the data is Byte0-aligned. Happy news,
|
||
this means that we don't need to differentiate the
|
||
handling of 8byte blocks and less-than-8bytes blocks. */
|
||
memcpy (val_buf, value_contents (arg) + argoffset,
|
||
(len > 8) ? 8 : len);
|
||
}
|
||
|
||
if (slotnum < rseslots)
|
||
tdep->infcall_ops.store_argument_in_slot (regcache, bsp,
|
||
slotnum, val_buf);
|
||
else
|
||
write_memory (sp + 16 + 8 * (slotnum - rseslots), val_buf, 8);
|
||
|
||
argoffset += 8;
|
||
len -= 8;
|
||
slotnum++;
|
||
}
|
||
|
||
/* Handle floating point types (including HFAs). */
|
||
float_elt_type = is_float_or_hfa_type (type);
|
||
if (float_elt_type != NULL)
|
||
{
|
||
argoffset = 0;
|
||
len = TYPE_LENGTH (type);
|
||
while (len > 0 && floatreg < IA64_FR16_REGNUM)
|
||
{
|
||
gdb_byte to[IA64_FP_REGISTER_SIZE];
|
||
target_float_convert (value_contents (arg) + argoffset,
|
||
float_elt_type, to,
|
||
ia64_ext_type (gdbarch));
|
||
regcache->cooked_write (floatreg, to);
|
||
floatreg++;
|
||
argoffset += TYPE_LENGTH (float_elt_type);
|
||
len -= TYPE_LENGTH (float_elt_type);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Store the struct return value in r8 if necessary. */
|
||
if (return_method == return_method_struct)
|
||
regcache_cooked_write_unsigned (regcache, IA64_GR8_REGNUM,
|
||
(ULONGEST) struct_addr);
|
||
|
||
global_pointer = ia64_find_global_pointer (gdbarch, func_addr);
|
||
|
||
if (global_pointer != 0)
|
||
regcache_cooked_write_unsigned (regcache, IA64_GR1_REGNUM, global_pointer);
|
||
|
||
/* The following is not necessary on HP-UX, because we're using
|
||
a dummy code sequence pushed on the stack to make the call, and
|
||
this sequence doesn't need b0 to be set in order for our dummy
|
||
breakpoint to be hit. Nonetheless, this doesn't interfere, and
|
||
it's needed for other OSes, so we do this unconditionaly. */
|
||
regcache_cooked_write_unsigned (regcache, IA64_BR0_REGNUM, bp_addr);
|
||
|
||
regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
|
||
|
||
tdep->infcall_ops.set_function_addr (regcache, func_addr);
|
||
|
||
return sp;
|
||
}
|
||
|
||
static const struct ia64_infcall_ops ia64_infcall_ops =
|
||
{
|
||
ia64_allocate_new_rse_frame,
|
||
ia64_store_argument_in_slot,
|
||
ia64_set_function_addr
|
||
};
|
||
|
||
static struct frame_id
|
||
ia64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
|
||
{
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
gdb_byte buf[8];
|
||
CORE_ADDR sp, bsp;
|
||
|
||
get_frame_register (this_frame, sp_regnum, buf);
|
||
sp = extract_unsigned_integer (buf, 8, byte_order);
|
||
|
||
get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
|
||
bsp = extract_unsigned_integer (buf, 8, byte_order);
|
||
|
||
if (gdbarch_debug >= 1)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"dummy frame id: code %s, stack %s, special %s\n",
|
||
paddress (gdbarch, get_frame_pc (this_frame)),
|
||
paddress (gdbarch, sp), paddress (gdbarch, bsp));
|
||
|
||
return frame_id_build_special (sp, get_frame_pc (this_frame), bsp);
|
||
}
|
||
|
||
static CORE_ADDR
|
||
ia64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
||
{
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
gdb_byte buf[8];
|
||
CORE_ADDR ip, psr, pc;
|
||
|
||
frame_unwind_register (next_frame, IA64_IP_REGNUM, buf);
|
||
ip = extract_unsigned_integer (buf, 8, byte_order);
|
||
frame_unwind_register (next_frame, IA64_PSR_REGNUM, buf);
|
||
psr = extract_unsigned_integer (buf, 8, byte_order);
|
||
|
||
pc = (ip & ~0xf) | ((psr >> 41) & 3);
|
||
return pc;
|
||
}
|
||
|
||
static int
|
||
ia64_print_insn (bfd_vma memaddr, struct disassemble_info *info)
|
||
{
|
||
info->bytes_per_line = SLOT_MULTIPLIER;
|
||
return default_print_insn (memaddr, info);
|
||
}
|
||
|
||
/* The default "size_of_register_frame" gdbarch_tdep routine for ia64. */
|
||
|
||
static int
|
||
ia64_size_of_register_frame (struct frame_info *this_frame, ULONGEST cfm)
|
||
{
|
||
return (cfm & 0x7f);
|
||
}
|
||
|
||
static struct gdbarch *
|
||
ia64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
||
{
|
||
struct gdbarch *gdbarch;
|
||
struct gdbarch_tdep *tdep;
|
||
|
||
/* If there is already a candidate, use it. */
|
||
arches = gdbarch_list_lookup_by_info (arches, &info);
|
||
if (arches != NULL)
|
||
return arches->gdbarch;
|
||
|
||
tdep = XCNEW (struct gdbarch_tdep);
|
||
gdbarch = gdbarch_alloc (&info, tdep);
|
||
|
||
tdep->size_of_register_frame = ia64_size_of_register_frame;
|
||
|
||
/* According to the ia64 specs, instructions that store long double
|
||
floats in memory use a long-double format different than that
|
||
used in the floating registers. The memory format matches the
|
||
x86 extended float format which is 80 bits. An OS may choose to
|
||
use this format (e.g. GNU/Linux) or choose to use a different
|
||
format for storing long doubles (e.g. HPUX). In the latter case,
|
||
the setting of the format may be moved/overridden in an
|
||
OS-specific tdep file. */
|
||
set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
|
||
|
||
set_gdbarch_short_bit (gdbarch, 16);
|
||
set_gdbarch_int_bit (gdbarch, 32);
|
||
set_gdbarch_long_bit (gdbarch, 64);
|
||
set_gdbarch_long_long_bit (gdbarch, 64);
|
||
set_gdbarch_float_bit (gdbarch, 32);
|
||
set_gdbarch_double_bit (gdbarch, 64);
|
||
set_gdbarch_long_double_bit (gdbarch, 128);
|
||
set_gdbarch_ptr_bit (gdbarch, 64);
|
||
|
||
set_gdbarch_num_regs (gdbarch, NUM_IA64_RAW_REGS);
|
||
set_gdbarch_num_pseudo_regs (gdbarch,
|
||
LAST_PSEUDO_REGNUM - FIRST_PSEUDO_REGNUM);
|
||
set_gdbarch_sp_regnum (gdbarch, sp_regnum);
|
||
set_gdbarch_fp0_regnum (gdbarch, IA64_FR0_REGNUM);
|
||
|
||
set_gdbarch_register_name (gdbarch, ia64_register_name);
|
||
set_gdbarch_register_type (gdbarch, ia64_register_type);
|
||
|
||
set_gdbarch_pseudo_register_read (gdbarch, ia64_pseudo_register_read);
|
||
set_gdbarch_pseudo_register_write (gdbarch, ia64_pseudo_register_write);
|
||
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, ia64_dwarf_reg_to_regnum);
|
||
set_gdbarch_register_reggroup_p (gdbarch, ia64_register_reggroup_p);
|
||
set_gdbarch_convert_register_p (gdbarch, ia64_convert_register_p);
|
||
set_gdbarch_register_to_value (gdbarch, ia64_register_to_value);
|
||
set_gdbarch_value_to_register (gdbarch, ia64_value_to_register);
|
||
|
||
set_gdbarch_skip_prologue (gdbarch, ia64_skip_prologue);
|
||
|
||
set_gdbarch_return_value (gdbarch, ia64_return_value);
|
||
|
||
set_gdbarch_memory_insert_breakpoint (gdbarch,
|
||
ia64_memory_insert_breakpoint);
|
||
set_gdbarch_memory_remove_breakpoint (gdbarch,
|
||
ia64_memory_remove_breakpoint);
|
||
set_gdbarch_breakpoint_from_pc (gdbarch, ia64_breakpoint_from_pc);
|
||
set_gdbarch_breakpoint_kind_from_pc (gdbarch, ia64_breakpoint_kind_from_pc);
|
||
set_gdbarch_read_pc (gdbarch, ia64_read_pc);
|
||
set_gdbarch_write_pc (gdbarch, ia64_write_pc);
|
||
|
||
/* Settings for calling functions in the inferior. */
|
||
set_gdbarch_push_dummy_call (gdbarch, ia64_push_dummy_call);
|
||
tdep->infcall_ops = ia64_infcall_ops;
|
||
set_gdbarch_frame_align (gdbarch, ia64_frame_align);
|
||
set_gdbarch_dummy_id (gdbarch, ia64_dummy_id);
|
||
|
||
set_gdbarch_unwind_pc (gdbarch, ia64_unwind_pc);
|
||
#ifdef HAVE_LIBUNWIND_IA64_H
|
||
frame_unwind_append_unwinder (gdbarch,
|
||
&ia64_libunwind_sigtramp_frame_unwind);
|
||
frame_unwind_append_unwinder (gdbarch, &ia64_libunwind_frame_unwind);
|
||
frame_unwind_append_unwinder (gdbarch, &ia64_sigtramp_frame_unwind);
|
||
libunwind_frame_set_descr (gdbarch, &ia64_libunwind_descr);
|
||
#else
|
||
frame_unwind_append_unwinder (gdbarch, &ia64_sigtramp_frame_unwind);
|
||
#endif
|
||
frame_unwind_append_unwinder (gdbarch, &ia64_frame_unwind);
|
||
frame_base_set_default (gdbarch, &ia64_frame_base);
|
||
|
||
/* Settings that should be unnecessary. */
|
||
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
||
|
||
set_gdbarch_print_insn (gdbarch, ia64_print_insn);
|
||
set_gdbarch_convert_from_func_ptr_addr (gdbarch,
|
||
ia64_convert_from_func_ptr_addr);
|
||
|
||
/* The virtual table contains 16-byte descriptors, not pointers to
|
||
descriptors. */
|
||
set_gdbarch_vtable_function_descriptors (gdbarch, 1);
|
||
|
||
/* Hook in ABI-specific overrides, if they have been registered. */
|
||
gdbarch_init_osabi (info, gdbarch);
|
||
|
||
return gdbarch;
|
||
}
|
||
|
||
void _initialize_ia64_tdep ();
|
||
void
|
||
_initialize_ia64_tdep ()
|
||
{
|
||
gdbarch_register (bfd_arch_ia64, ia64_gdbarch_init, NULL);
|
||
}
|